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Abstract

In this paper, we propose and analyze a nodal-continuous and H1-conforming finite element method for the numerical
computation of Maxwell’s equations, with singular solution in a fractional order Sobolev space Hr(Ω), where r may
take any value in the most interesting interval (0, 1). The key feature of the method is that mass-lumping linear finite
element L2 projections act on the curl and divergence partial differential operators so that the singular solution can be
sought in a setting of L2(Ω) space. We shall use the nodal-continuous linear finite elements, enriched with one element
bubble in each element, to approximate the singular and non-H1 solution. Discontinuous and nonhomogeneous media
are allowed in the method. Some error estimates are given and a number of numerical experiments for source problems
as well as eigenvalue problems are presented to illustrate the superior performance of the proposed method.
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1. Introduction

In electromagnetism, the governing spatial partial differential operators are mainly the curl operator and the divergence
(div) operator. As a mathematical foundation of electromagnetism, the well-known Maxwell’s equations are the set
of partial differential equations in terms of such two operators [15]. In general, these two characteristic operators
behave rather differently from the gradient operator, although they are closely related with the latter. In fact, whenever
the physical domain is nonsmooth, with re-entrant corners and/or edges on the boundary, the former would lead to
singular solution of not being in the Sobolev space H1(Ω), which is a Hilbert space of square integrable functions as
well as the gradients. As a matter of fact, the singular solution belongs to a fractional order Sobolev space Hr(Ω)
only, where the index r which stands for the regularity of the solution may take any value in the real interval (0, 1).
The Hr(Ω) space is an intermediate between the L2(Ω) space and the H1(Ω) space, where the L2(Ω) space is a Hilbert
space of square integrable functions. This case with singular solution is also particularly relevant in discontinuous,
anisotropic and nonhomogeneous media. In most cases, the regularity of the Maxwell’s solution is the one of the
solution of the elliptic problem of Laplacian minus one, while the latter is well known in [33] to be less than two on
nonsmooth domains (say, nonconvex polygons), so that the former is less than one. For more details, we refer the
readers to, e.g., [2, 19, 22, 23, 24] and the references cited therein.

For such a low regularity solution, it is well known that the classical nodal-continuous finite element method fails
in the plain curl/div formulation. The failure exhibits an incorrect convergence. In other words, the finite element
solution converges, but it does not converge to the true solution in Hr(Ω) space with r < 1, but to a member of
H1(Ω) space instead; see [4, 10, 36, 40]. Such a strange phenomenon had been puzzling to the community of both
mathematicians and engineers for a long while. Especially, an attempt is in vain to capture the unbounded singularity
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of the solution by using more elements and finer meshes near the re-entrant corners where the singularity takes place.
It turns out that, for r < 1, the H1(Ω) space is not dense in Hr(Ω) under the plain curl/div formulation. That is to
say, the plain curl/div formulation accounts for the failure. Actually, the plain curl/div formulation would result in
a Dirichlet integral formulation for any H1 functions (cf. Remark 2.1 below). The Dirichlet integral of the nodal-
continuous (and H1-conforming) finite element solution would enforce a convergence to a member of H1(Ω) space;
see [3, 4, 7, 9, 18, 35].

This fact directs the way out to the modification of the plain curl/div formulation. Indeed, if the nodal-continuous
finite element problem is properly formulated, a correct approximation can be achieved. However, unexpectedly, until
the last decade, several theoretically and numerically successful nodal-continuous finite element methods have been
available, such as the weighted method [21], the H−1 least-squares method [6, 8, 11], the weighted dual-potential
least-squares method [39], the weighted mixed method [14], and the L2 projection method [25, 26, 28, 29, 27]. These
methods were designed for different models from electromagnetism. The central idea for all these is to modify the
plain curl/div formulation in either the continuous stage or the discrete stage. The resultant modification can reduce or
even remove the actions on the solution from the curl and the div partial derivatives. With the effects from the curl and
the div operators being weaken, the nodal-continuous finite element solution could correctly converge to the true and
singular solution. Note that, the resultant curl/div formulation with the modifications will no longer lead to a Dirichlet
integral (cf. Remark 2.1 below), even if the finite element function is nodal-continuous and H1-conforming.

In this paper we shall propose a generalization of the L2 projection method to the Maxwell’s equations in two-
dimensional bounded domain Ω, of the form

curl µ−1curl u − ε∇ div εu − λεu = εf. (1.1)

The coefficients µ and ε may be discontinuous, anisotropic and nonhomogeneous, and the domain Ω may be nons-
mooth with re-entrant corners and/or edges on the boundary. For such a system of Maxwell’s equations, the solution
may not have the H1-regularity. The key technique is still to apply finite element L2 projections to the curl and div
operators, so that the solution can be sought in a setting of L2(Ω) space. In essence, this type of L2 projections mimics
the distributional partial derivatives in the finite element spaces. Thus, the partial derivatives of the curl and div oper-
ators are transferred to the test functions. As is well known (see [16, 17]), the nodal-continuous finite element space
is dense in any L2(Ω) space and even in any L1(Ω) space (A Sobolev space of Lebesgue integrable functions). Conse-
quently, we can expect that the underlying nodal-continuous finite element method could produce an approximation
of the singular solution in Hr(Ω) with r < 1. Note that the Hr(Ω) space is a trivial subspace of the L2(Ω) space.

In the present paper, we develop this new nodal-continuous finite element method for (1.1) with suitable boundary
conditions. In addition to the introduction of the mass-lumping linear finite element L2 projections to the curl and div
operators, we shall employ the nodal-continuous linear elements, enriched with one element bubble in each element
(see, e.g., [30, 31, 37] and the references cited therein). We should remark that this approach is essentially a three-node
nodal-continuous linear finite element method, since the element bubbles can be eliminated statically in advance (cf.
Appendix A). As will be seen from a number of numerical experiments, this new method is capable of approximating
the singular solution in Hr(Ω) space, where r can be any value in the most interesting interval (0, 1). The new method
is also suitable for discontinuous and nonhomogeneous media. In such cases, the solution would be prevalently more
singular. In general, only some piecewise Hr-regularity can be available. We will provide error estimates for the case
λ < 0, in which convergence and error bounds are established in the L2 norm. This case was not dealt with before and
the argument for this case can embody the most essential ingredients of the theory of the L2 projection method.

Finally, we emphasize that there are many essential differences between the present nodal-continuous finite ele-
ment method and our previous works [25, 26, 27, 28, 29]. In [25], we adopted local L2 projections for both curl and
div operators and the Maxwell’s solution is required to lie in Hr(Ω) for r > 1/2. The work [28] studies discontinu-
ous media, adopting local L2 projection for curl operator while mass-lumping L2 projection for div operator. Again,
the regularity r > 1/2 of the Maxwell’s solution is necessary in the error analysis. In addition, [27] focuses on the
homogeneous media and [26] studies the first-order curl-div magnetostatic problem with continuous media. Notice
that most of the above-mentioned works did not consider the associated eigenproblems. In contrast, [29] is devoted to
study the eigenproblems, using local L2 projections for both div and curl operators. However, the method in [29] still
requires the singular eigenfunctions lying in Hr(Ω) for r > 1/2 and the discontinuous media are not studied.

The remainder of this paper is organized as follows. In Section 2, we recall the continuous problem in curlcurl-
graddiv form, together with the plain curl/div variational formulation. Several representative models from computa-
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tional electromagnetism are also briefly reviewed. The nodal-continuous finite element method is defined in Section
3, where two mass-lumping L2 projections and the nodal-continuous finite element spaces are introduced. Error esti-
mates for the case λ < 0 are provided in Section 4. Numerical results are presented in Section 5, with applications to
the source and eigenvalue problems of Maxwell’s equations, in homogeneous as well as discontinuous nonhomoge-
neous media. Finally, some concluding remarks are given in Section 6.

2. Continuous problem

In relation to the Cartesian coordinates (x, y), we consider a simply-connected Lipschitz bounded domain Ω ⊂ R2

with boundary Γ. An example is the L-shaped domain, with an opening angle of 3π/2. Other examples include
the nonconvex polygons with re-entrant corners. Let τ denote the unit tangential vector along boundary Γ. Further,
let a real scalar parameter µ > 0 and a real scalar (or matrix) parameter ε > 0 denote the magnetic permeability
and the dielectric permittivity, respectively. Both µ and ε characterize the physical properties of the medium in Ω.
Let u = (u1, u2) denote the unknown field, e.g., the magnetic induction. Then the source problem of the Maxwell’s
equations that we shall consider reads as follows: Find u such that{

curl µ−1curl u − ε∇ div εu − λ εu = εf in Ω,
u · τ = 0, div εu = 0 on Γ.

(2.1)

Here f is a given source function and λ is a given real or complex number. In this paper, λ is assumed to be real, just for
convenience. For a vector-valued function u = (u1, u2), we define the curl operator on u as curl u = ∂x u2−∂y u1 and the
div operator as div u = ∂x u1 + ∂y u2. For a scalar function φ, we define the curl operator on φ as curl φ = (∂y φ,−∂x φ)
and the gradient operator as ∇ φ = (∂x φ, ∂y φ). The coefficients µ and ε may be discontinuous. In that case, let P
denote a partition of Ω, such that Ω = ∪J

j=1Ω j and we shall assume that µ and ε are piecewise positive constant
functions, i.e.,

µ|Ω j = µ j > 0 and ε|Ω j = ε j > 0 for 1 ≤ j ≤ J.

To formulate a variational statement of problem (2.1), we need to introduce some Hilbert spaces. First, let

L2(Ω) =

{
q : Ω→ R is Lebesgue measurable with

∫
Ω

|q|2 < ∞
}
,

equipped with the L2 inner product (p, q) :=
∫

Ω
pq and the L2 norm ‖q‖0 :=

√
(q, q). The vector L2 space (L2(Ω))2

will denote the product of two L2(Ω) spaces. The corresponding L2 inner product and the L2 norm will be denoted
by the same notations (·, ·) and ‖ · ‖0, i.e., (u, v) =

∫
Ω

u · v and ‖v‖0 =
√

(v, v). We introduce a Hilbert space for the
solution of (2.1) as follows:

U = {v ∈ (L2(Ω))2 : curl v ∈ L2(Ω), div εv ∈ L2(Ω), v · τ|Γ = 0}. (2.2)

By Green’s formula of integration by parts, problem (2.1) can be stated as the following plain curl/div variational
problem: Find u ∈ U such that

(µ−1curl u, curl v) + (div εu, div εv) − λ (εu, v) = (εf, v) ∀v ∈ U, (2.3)

where we assume that the source function f ∈ (L2(Ω))2.
Several representative models in computational electromagnetism are reviewed in [10]. With few modifications,

one can easily see that all of them can be stated in the same plain curl/div variational bilinear form as in (2.3), while
the right-hand side are different.

• Case 1. The time-harmonic Maxwell’s equations with the angular frequency ω2 > 0, i.e.,

curl curl u − ω2 u = J, div u = g in Ω, u · τ = 0 on Γ. (2.4)

Here and below J and g are given functions. Indeed, with µ = ε := 1 and λ := ω2, the time-harmonic Maxwell’s
equations can be stated in the form (2.3), with the following formulation:

(curl u, curl v) + (div u, div v) − λ (u, v) = (J, v) + (g, div v) ∀v ∈ U. (2.5)
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Note that the boundary condition of div u on Γ is not needed for (2.4), because of div u = g in Ω.

Similarly, the following three cases can be dealt with in the same bilinear form as in (2.3), with some obvious
modifications in the right-hand side.

• Case 2. The vector potential equations:

curl curl u = J, div u = g in Ω, u · τ = 0 on Γ.

• Case 3. The time-discretization of the transient Maxwell’s equations with the parameter −λ > 0 being in-
versely proportional to the time step:

curl curl u − λu = J, div u = g in Ω, u · τ = 0 on Γ.

• Case 4. The curl-div magnetostatic problem:

curl u = κ, div u = g in Ω, u · τ = 0 on Γ.

To obtain a curl/div variational problem similar to (2.3), one needs only to define the right-hand side as
(κ, curl v) + (g, div v), λ := 0 and µ = ε := 1.

Remark 2.1. We remark that in the case of ε = 1, the following Dirichlet integral holds (see [18]):

(curl u, curl v) + (div u, div v) = (∇u,∇ v) ∀u, v ∈ (H1(Ω))2 ∩ U,

where (H1(Ω))2 := H1(Ω) × H1(Ω) and H1(Ω) = {q ∈ L2(Ω) : ∇ q ∈ (L2(Ω))2}.

3. Discrete problem

In this section, we develop the new nodal-continuous and H1-conforming finite element method for problem (2.1).
First, we introduce the following two Hilbert spaces [1, 32, 40]:

H1
0(Ω) = {q ∈ H1(Ω) : q|Γ = 0},

H0(curl ; Ω) = {v ∈ (L2(Ω))2 : curl v ∈ L2(Ω), v · τ|Γ = 0}.
Let Th be a conforming triangulation of Ω into shape-regular triangles K [13, 16], where h := maxK∈Th hK and hK is
the diameter of K. We also assume that Th is conforming to the material interfaces, if any. On each K, we denote by
P`(K) the space of polynomials of degree not greater than ` ≥ 0. The nodal basis functions of P1(K) are given by λi,
1 ≤ i ≤ 3, associated with the three vertices of K. We introduce the element-bubble on K by bK := λ1λ2λ3. Moreover,
we define the bubble function space

Bh = {v ∈ (H1
0(Ω))2 : v|K ∈ bK(P0(K))2,∀K ∈ Th}, (3.1)

and define the nodal-continuous linear finite element space

Vh = {q ∈ H1(Ω) : q|K ∈ P1(K),K ∈ Th}. (3.2)

We then introduce the nodal-continuous and H1-conforming finite element space Uh for the solution of problem (2.1)
as follows:

Uh = ((Vh)2 ∩ H0(curl ; Ω)) + Bh. (3.3)

That is, for any vh ∈ Uh, vh|K ∈ (P+
1 (K))2 := (P1(K) + bK P0(K))2 on any K ∈ Th and it can be written as the following

sum:

vh =

3∑
i=1

ciλi + cKbK ,

4



where ci, cK represent coefficients. Note that Uh is nonconforming to U. In fact, the div εvh is generally not well-
defined for vh ∈ Uh.

Additionally, we define the nodal-continuous and H1-conforming finite element spaces Qh and Wh for defining L2

projections for the curl and the div operators as follows:

Qh = Vh ∩ H1
0(Ω), (3.4)

Wh = Vh. (3.5)

Over Qh, we introduce the discrete L2 inner product (·, ·)0,h which is defined as

(p, q)0,h =
∑

K∈Th

|K|
3

3∑
i=1

p(ai)q(ai) ∀p, q ∈ Qh, (3.6)

where |K| is the area of K, and ai, 1 ≤ i ≤ 3, are the vertices of K. This discrete L2 inner product (p, q)0,h is the
so-called mass-lumping approximation of the usual L2 inner product (p, q), see [43]. Note that the matrix generated
from (3.6) is diagonal. On the other hand, we introduce the following discrete µ-weighted L2 inner product (·, ·)0,µ,h
over Wh as

(w, z)0,µ,h =
∑

K∈Th

|K|
3

3∑
i=1

µw(ai)z(ai) ∀w, z ∈ Wh. (3.7)

Note that µ is a piecewise constant over Ω. The resultant matrix for (3.7) is still diagonal. In fact, (3.7) is a mass-
lumping approximation of the µ-weighted L2 inner product

(w, z)0,µ =

∫
Ω

µwz.

Next, for any given v ∈ (L2(Ω))2, we define the projections R̆h(div εv) ∈ Qh and Rh(µ−1curl v) ∈ Wh as follows:

(R̆h(div εv), q)0,h = −(v, ε∇ q) ∀q ∈ Qh, (3.8)

(Rh(µ−1curl v),w)0,µ,h = (v, curl w) ∀w ∈ Wh. (3.9)

Note that R̆h(div εv) and Rh(µ−1curl v) are not genuine L2 projections of div εv and µ−1curl v. This is because the
inner products are different from both sides of (3.8) and (3.9), and because div εv and µ−1curl v are not necessarily L2

functions. On the other hand, due to the fact that (·, ·)0,h and (·, ·)0,µ,h are the approximations of the L2 inner product
(·, ·) and the µ-weighted L2 inner product (·, ·)0,µ, whenever v ∈ U, R̆h(div εv) and Rh(µ−1curl v) are approximately
L2 projections of div εv and µ−1curl v, respectively. In fact, if replacing (·, ·)0,h and (·, ·)0,µ,h by (·, ·) and (·, ·)0,µ, both
R̆h(div εv) and Rh(µ−1curl v) become the genuine L2 projections of v ∈ U. That is, when v ∈ U, we have

(R̆h(div εv), q)0,h = (div εv, q) ∀q ∈ Qh,

(Rh(µ−1curl v),w)0,µ,h = (µ−1curl v,w)0,µ ∀w ∈ Wh.

We remark that (3.8) and (3.9) are well-defined for all v ∈ (L2(Ω))2 and even for all v ∈ (L1(Ω))2, whatever µ and
ε are discontinuous throughout Ω. The reason lies in that the curl and div partial derivatives have been transferred
to apply to the test finite element spaces Qh and Wh. In other words, both R̆h(div εv) and Rh(µ−1curl v) mimic the
the distributional div and curl operators which are defined in the following way. Let D(Ω) := C∞0 (Ω), the space
of infinitely differentiable functions with compact supports in Ω. Denote by D ′(Ω) the dual of D(Ω). For a given
v ∈ (L1(Ω))2, the distributional div εv ∈ D ′(Ω) and curl v ∈ D ′(Ω) are respectively defined by

〈div εv, q〉 = −
∫

Ω

v · ε∇ q ∀q ∈ D(Ω),

〈curl v, z〉 =

∫
Ω

v · curl z ∀z ∈ D(Ω).
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Figure 3.1. Degrees of freedom of uh = (u1h,u2h) on K.
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◦

Rh(µ−1curl uh)|K ∈ P1(K)

Figure 3.2. Degrees of freedom of R̆h(div εuh) and Rh(µ−1curl uh) on K.

Now, the nodal-continuous and H1-conforming finite element method for problem (2.1) that we consider can be
posed as follows: Find uh ∈ Uh such that

Ah(uh, vh) = (εf, vh) ∀vh ∈ Uh, (3.10)

where the bilinear formAh(·, ·) is given by

Ah(uh, vh) := (Rh(µ−1curl uh),Rh(µ−1curl vh))0,µ,h + (R̆h(div εuh), R̆h(div εvh))0,h − λ (εuh, vh), (3.11)

which is obviously symmetric whenever the real parameter ε is a scalar or a symmetric matrix. The proposed method
(3.10) is nonconforming, not only because the bilinear form is nonconforming to the plain curl/div bilinear form in
(2.3), but also because of the nonconformity of Uh in U. We should emphasize that Uh is always globally continuous
throughout Ω, no matter if µ and ε are continuous or discontinuous. In addition, since the element-bubbles in Uh can
be statically eliminated at element levels, (3.10) is in essence a nodal-continuous linear finite element method (see
Appendix A for more details). Note that uh ∈ Uh actually satisfies uh|K ∈ (P+

1 (K))2 := (P1(K) + bK P0(K))2 for all
K ∈ Th, so the degrees of freedom of uh = (u1h,u2h) on an element K are illustrated in Figure 3.1. For convenience,
the degrees of freedom for the computations of the L2 projections R̆h(div εuh) ∈ Qh and Rh(µ−1curl uh) ∈ Wh on an
element K are also illustrated in Figure 3.2.

From projections (3.8) and (3.9), we have seen that (3.11) makes sense even if the solution is in (L2(Ω))2 space
only. It is then expected that for all r ∈ (0, 1), method (3.10) can give a correctly convergent nodal-continuous
finite element solution. The convergence rate can be expected to be O(hr) in the L2 norm, if the exact solution
u ∈ ∏J

j=1(Hr(Ω j))2. This prediction will be verified in Section 4 for the case λ < 0. We also refer the readers to [27]
for some theoretical analyses for the homogeneous case of µ = ε = 1. Numerical results reported in Section 5 will
illustrate the superior performance of the proposed method (3.10).

The finite element method (3.10) will lead to a sparse linear algebraic system. In addition, if the real parameter ε is
a scalar or a symmetric matrix, then the resulting linear system will be symmetric. We now give some implementation
details of how the linear system is assembled. Let {η1, η2, · · · , ηnq } be a basis of Qh, {χ1, χ2, · · · , χnw } a basis of Wh,
and {ϕ1,ϕ2, · · · ,ϕnu

} a basis of Uh. Then the finite element solution uh ∈ Uh and the test function vh ∈ Uh in (3.10)
can be respectively expressed as

uh =

nu∑
i=1

aiϕi and vh =

nu∑
i=1

biϕi.
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We denote a := (a1, a2, · · · , anu )> ∈ Rnu and b := (b1, b2, · · · , bnu )> ∈ Rnu . First, let us consider the first term in
(3.11). Since Rh(µ−1curl vh) ∈ Wh, it can be written as Rh(µ−1curl vh) =

∑nw
k=1 b̂kχk for some b̂ := (̂b1, b̂2, · · · , b̂nw )>.

From (3.9), for any w =
∑nw

j=1 ŵ jχ j ∈ Wh with ŵ := (ŵ1, ŵ2, · · · , ŵnw )> ∈ Rnw , we have

ŵ>A1 b̂ = ŵ>Cb, (3.12)

where the entries of the matrices A1 = (A1 jk) ∈ Rnw×nw and C = (C ji) ∈ Rnw×nu are respectively given by

A1 jk = (χk, χ j)0,µ,h for j, k = 1, 2, · · · , nw,

C ji = (ϕi, curl χ j) for j = 1, 2, · · · , nw, i = 1, 2, · · · , nu.

Since w ∈ Wh can be arbitrarily chosen, (3.12) holds for all ŵ ∈ Rnw . This leads to

b̂ = A−1
1 Cb. (3.13)

Note that matrix C is sparse, and matrix A1 is diagonal because it is generated from the mass-lumping approximation
(3.7). Combining the fact Rh(µ−1curl vh) ∈ Wh with (3.9) and (3.13), the first term in (3.11) can be reformulated as

(Rh(µ−1curl uh),Rh(µ−1curl vh))0,µ,h = (uh, curl Rh(µ−1curl vh)) = b̂
>

Ca = b>C>A−1
1 Ca. (3.14)

Next, we consider the second term in (3.11). Let R̆h(div εvh) =
∑nq

k=1 b̆kηk ∈ Qh for some b̆ := (b̆1, b̆2, · · · , b̆nq )> ∈ Rnq .
From (3.8), for any q =

∑nq

j=1 q̆ jη j ∈ Qh with q̆ := (q̆1, q̆2, · · · , q̆nq )> ∈ Rnq , we have

q̆>A2 b̆ = q̆>Db, (3.15)

where the entries of the matrices A2 = (A2 jk) ∈ Rnq×nq and D = (D ji) ∈ Rnq×nu are respectively defined by

A2 jk = (ηk, η j)0,h for j, k = 1, 2, · · · , nq,

D ji = −(ϕi, ε∇η j) for j = 1, 2, · · · , nq, i = 1, 2, · · · , nu.

Similarly, since (3.15) holds for all q̆ ∈ Rnq , we obtain

b̆ = A−1
2 Db, (3.16)

where D is a sparse matrix and, due to the mass-lumping approximation (3.6), A2 is diagonal. Now, since R̆h(div εvh) ∈
Qh, with (3.8) and (3.16), we can rewrite the second term in (3.11) as

(R̆h(div εuh), R̆h(div εvh))0,h = −(uh, ε∇R̆h(div εvh)) = b̆>Da = b>D>A−1
2 Da. (3.17)

The last term in (3.11) and the right-hand side of (3.10) can be easily represented by

−λ(εuh, vh) = −b>Ma, (3.18)

where the entries of the matrix M = (Mi j) ∈ Rnu×nu are defined as

Mi j = λ(εϕ j,ϕi) for i, j = 1, 2, · · · , nu,

and
(εf, vh) = b>F (3.19)

with the vector F = (Fi) ∈ Rnu given by

Fi = (εf,ϕi) for i = 1, 2, · · · , nu.
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As the last step, combining (3.14), (3.17), (3.18) and (3.19) yields the following algebraic system:

b>
(
C>A−1

1 C + D>A−1
2 D −M

)
a = b>F,

which, since b can be arbitrarily chosen from Rnu , implies the sparse linear system,(
C>A−1

1 C + D>A−1
2 D −M

)
a = F. (3.20)

Once we solve this linear system for the unknown vector a, we obtain equivalently the finite element solution uh of
problem (3.10).

To conclude this section, we give a brief remark on the associated eigenvalue problem. Indeed, we can further
consider the Maxwell eigenvalue problem posed as follows: Find ω2 ∈ R and u ∈ U such that

curl µ−1curl u − ε∇ div εu = ω2εu in Ω, u · τ = 0, div εu = 0 on Γ. (3.21)

An example from computational electromagnetism is to find ω2 ∈ R and u ∈ U such that

curl µ−1curl u = ω2εu, div εu = 0 in Ω, u · τ = 0 on Γ. (3.22)

When applied to the corresponding eigenvalue problem, the proposed finite element method can produce correctly
convergent finite element eigenvalues, with convergence rate of O(h2r), whenever the corresponding eigenfunctions
are of

∏J
j=1(Hr(Ω j))2 (cf. [29]). In addition, there are some eigenvalues for which the eigenfunctions belong to∏J

j=1(H1(Ω j))2 and even more regular. For these eigenvalues, the theoretical convergence rate is at most O(h2). This
is because the linear finite elements are only used and because there exist consistency errors due to the replacements
of the L2 inner product (·, ·) and the µ-weighted L2 inner product (·, ·)0,µ by the discrete L2 inner products (·, ·)0,h and
(·, ·)0,µ,h. The correctness of this assertion is supported by the numerical results given in Section 5.

4. Error estimates

In this section, we derive error estimates for the finite element solution of (3.10). For simplicity, we consider the case
λ < 0. On the one hand, this case was not dealt with before, and on the other hand, the argument for this case can
embody the most essential ingredients of the theory of the L2 projection method. The error estimates consist of two
parts, one is the consistent errors from the L2 projections and the other is the finite element interpolation errors.

We introduce some notations of Sobolev spaces [1]. As usual, for any D ⊂ Ω, ‖ · ‖t,D denotes the norm of Ht(D),
where t ∈ R. For t = 0, H0(D) = L2(D). For t = 1, we will use |q|1,D = ‖∇q‖0,D for q ∈ H1(D). When D = Ω, the
subscript D will be omitted.

Since λ < 0, the following coercivity

Ah(vh, vh) ≥ c
(
‖vh‖20 + ‖Rh(µ−1curl vh)‖20,µ,h + ‖R̆h(div εvh)‖20,h

)
(4.1)

holds trivially for all vh ∈ Uh. This ensures the existence and uniqueness of the finite element solution uh ∈ Uh to
(3.10). Regarding the discrete L2 inner product (·, ·)0,h and the nodal-continuous linear finite element space Qh, from
[16, 43] we have

‖qh‖0,h ≤ c‖qh‖0, ‖qh‖0 ≤ c‖qh‖0,h ∀qh ∈ Qh, (4.2)

|(ph, qh) − (ph, qh)0,h| ≤ ch‖ph‖1‖qh‖0 ∀ph, qh ∈ Qh. (4.3)

Similar results hold for the discrete µ-weighted L2 inner product (·, ·)0,µ,h and the nodal-continuous linear finite element
space Wh.

Let u be the exact solution of the Maxwell’s problem (2.1). From (3.8), (3.9), (3.10) and (2.1), we have

Ah(u − uh, vh) = (µ−1curl u,Rh(µ−1curl vh))0,µ − (µ−1curl u, µ−1curl vh)0,µ

+(div εu, R̆h(div εvh)) + (ε∇div εu, vh) ∀vh ∈ Uh.
(4.4)

Put
w := µ−1curl u, p := div εu. (4.5)
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It follows from (2.1) that w ∈ H1(Ω) and p ∈ H1
0(Ω). Let w̃ ∈ Wh and p̃ ∈ Qh denote their finite element interpola-

tions. If w ∈ H1(Ω) ∩∏J
j=1 H1+r(Ω j) and p ∈ H1

0(Ω) ∩∏J
j=1 H1+r(Ω j), r ∈ (0, 1), from the standard finite element

interpolation theory [13, 16, 17, 42], we find that

‖w̃ − w‖0 + h|w̃ − w|1 ≤ ch1+r
J∑

j=1

‖w‖1+r,Ω j , (4.6)

‖p̃ − p‖0 + h| p̃ − p|1 ≤ ch1+r
J∑

j=1

‖p‖1+r,Ω j . (4.7)

Now, we can give the bound ofAh(u − uh, vh). Introduce the energy norm ||| · |||h on Uh by

|||vh|||2h := ‖vh‖20 + ‖Rh(µ−1curl vh)‖20,µ,h + ‖R̆h(div εvh)‖20,h. (4.8)

Lemma 4.1. Assume that w ∈ H1(Ω) ∩∏J
j=1 H1+r(Ω j) and p ∈ H1

0(Ω) ∩∏J
j=1 H1+r(Ω j), r ∈ (0, 1). Then we have

Ah(u − uh, vh) ≤ chr
(
‖w‖1 + ‖p‖1 +

J∑
j=1

‖w‖1+r,Ω j +

J∑
j=1

‖p‖1+r,Ω j

)
|||vh|||h ∀vh ∈ Uh. (4.9)

Proof. From (4.4), (3.8) and (3.9), we have

Ah(u − uh, vh) = (w − w̃,Rh(µ−1curl vh))0,µ + (w̃,Rh(µ−1curl vh))0,µ − (w̃,Rh(µ−1curl vh))0,µ,h

+(w̃ − w, µ−1curl vh)0,µ + (p − p̃, R̆h(div εvh)) + ( p̃, R̆h(div εvh))
−(p̃, R̆h(div εvh))0,h + (ε∇(p − p̃), vh),

(4.10)

where
(w − w̃,Rh(µ−1curl vh))0,µ ≤ ch‖w‖1‖Rh(µ−1curl vh)‖0,µ,h,

(w̃,Rh(µ−1curl vh))0,µ − (w̃,Rh(µ−1curl vh))0,µ,h ≤ ch‖w‖1‖Rh(µ−1curl vh)‖0,µ,h,

(w̃ − w, µ−1curl vh)0,µ ≤ chr
J∑

j=1

‖w‖1+r,Ω j‖vh‖0.

Similar results hold for the remaining parts of p in (4.10). The proof is completed. 2

In what follows, we shall construct a finite element interpolation ũ ∈ Uh to the exact solution u such that

‖Rh(µ−1curl (u − ũ))‖0,µ,h = ‖R̆h(div ε(u − ũ))‖0,h = 0 (4.11)

and

‖u − ũ‖0 ≤ chr
J∑

j=1

‖u‖r,Ω j . (4.12)

The equalities in (4.11) are the key ingredients for the L2 projected terms Rh(µ−1curl (u − ũ)) and R̆h(div ε(u − ũ))
to yield zero errors only. Otherwise, the proposed method cannot produce a correctly convergent nodal-continuous
finite element solution whenever the exact solution does not belong to H1(Ω). Note that the standard finite element
interpolation of u can satisfy (4.12), but (4.11) is not necessarily fulfilled. This is why we enrich the linear element
space (Vh)2 ∩ H0(curl ; Ω) with an element-bubble space Bh, so that we can have (4.11). To establish (4.11), we shall
also make use of the following trivial inclusions:

curl P1(K), ε|K∇P1(K) ⊂ (P0(K))2. (4.13)

Lemma 4.2. For u ∈∏J
j=1(Hr(Ω j))2, r ∈ (0, 1), there exists ũ ∈ Uh such that (4.11) and (4.12) hold.
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Proof. From the standard finite element interpolation, there exists u0 ∈ (Vh)2∩H0(curl ; Ω) such that (4.12) holds, i.e.,

‖u − u0‖0 ≤ chr
J∑

j=1

‖u‖r,Ω j .

We now construct the desired ũ ∈ Uh in the following way. On K, we write

ũ = u0 +
∑

K∈Th

cKbK ,

where cK is to be determined so that (4.12) holds. Since bK ∈ H1
0(K), it can be easily verified that ũ can be uniquely

determined by requiring that
ũ(a) = u0(a) for all vertices a

and ∫
K

(̃u − u) = 0 (4.14)

hold. By a standard scaling argument from K to a unique reference element, we can obtain

‖u − ũ‖0,K ≤ c‖u − u0‖0,K .
Hence, (4.12) holds for ũ. Further, we can verify (4.11) from (3.8), (3.9), (4.13) and (4.14). The proof is completed. 2

Theorem 4.1. Let u be the exact solution of (2.1) and uh ∈ Uh the finite element solution of (3.10). Assume that
u ∈ ∏J

j=1(Hr(Ω j))2, w := µ−1curl u ∈ H1(Ω) ∩∏J
j=1 H1+r(Ω j) and p := div εu ∈ H1

0(Ω) ∩∏J
j=1 H1+r(Ω j), r ∈ (0, 1).

Then we have

|||u − uh|||h ≤ chr
(
‖p‖1 + ‖w‖1 +

J∑
j=1

‖w‖1+r,Ω j +

J∑
j=1

‖p‖1+r,Ω j +

J∑
j=1

‖u‖r,Ω j

)
. (4.15)

Proof. Let ũ ∈ Uh denote the finite element interpolation of u given in Lemma 4.2. We have

c|||̃u − uh|||2h ≤ Ah (̃u − uh, ũ − uh),

where
Ah (̃u − uh, ũ − uh) = Ah (̃u − u, ũ − uh) +Ah(u − uh, ũ − uh).

From Lemma 4.2, we obtain

Ah (̃u − u, ũ − uh) = −λ(̃u − u, ũ − uh) ≤ chr
J∑

j=1

‖u‖r,Ω j‖ũ − uh‖0,

and from Lemma 4.1 we have

Ah(u − uh, ũ − uh) ≤ chr
(
‖p‖1 + ‖w‖1 +

J∑
j=1

‖w‖1+r,Ω j +

J∑
j=1

‖p‖1+r,Ω j

)
|||̃u − uh|||h.

Hence, we obtain

|||̃u − uh|||h ≤ chr
(
‖p‖1 + ‖w‖1 +

J∑
j=1

‖w‖1+r,Ω j +

J∑
j=1

‖p‖1+r,Ω j +

J∑
j=1

‖u‖r,Ω j

)
.

But, Lemma 4.2 and the definition (4.8) of ||| · |||h result in

|||̃u − u|||h = ‖ũ − u‖0 ≤ chr
J∑

j=1

‖u‖r,Ω j .
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Now, the bound for |||u−uh|||h follows, using the triangle inequality with |||̃u−uh|||h and |||̃u−u|||h. This completes the
proof. 2

Remark 4.1. From the theory of eigenproblem in [5], when solving eigenproblem (3.12), we can conclude from The-
orem 4.1 that the error bound for eigenvalues is O(h2r).

Remark 4.2. For general piecewise smooth ε, we may consider its suitable finite element interpolation εh, as done in
Remark 4.7 in [26]. In that case, the element-bubble space Bh in (3.1) should be replaced by the following one:

Bh(εh) = {v ∈ (H1
0(Ω))2 : v|K ∈ bKP(K, εh),∀K ∈ Th},

where
P(K, εh) = span{εh(P0(K))2, (P0(K))2}.

5. Numerical experiments

In this section, by considering a number of examples of source problem and eigenvalue problem for Maxwell’s equa-
tions, we are going to illustrate the superior performance of the proposed nodal-continuous linear finite element
approach. The numerical examples are divided into two subsections of source problem and eigenvalue problem, while
each subsection is further divided into two subsections of homogeneous medium and nonhomogeneous medium.

5.1. Source problem

5.1.1. Homogeneous medium
We consider the time-harmonic Maxwell’s equations (2.4) on an L-domain Ω = (−1, 1)2\([0, 1) × (−1, 0]) and a
cracked domain Ω = (−1, 1)2\{(x, y) ∈ R2| 0 ≤ x < 1, y = 0}. The continuous variational problem is given in (2.5).
The finite element problem can be stated as (3.10), with the bilinear form (3.11), while the right-hand side is replaced
by (J, vh) + (g, R̆h(div vh)). Note that λ = ω2 and µ = ε = 1. In this subsection, we always take λ = 1.

For the L-domain problem, we take the exact solution to be

u(x, y) = ∇((1 − x2)(1 − y2)p(x, y)),

where x = ρ cos(θ), y = ρ sin(θ), p(x, y) := ρ2/3 sin( 2
3θ), and ρ is the distance to the origin and θ is the angular degree

varying form 0 to 3π/2. One can check that the exact solution u has a strong unbounded singularity at the origin, and
it satisfies the homogeneous tangential boundary condition, u · τ = 0 on Γ. For simplifying the computations, we will
use the uniform triangle meshes as shown in Figure 5.1 (left). To observe the convergence rate, we let the mesh size h
decrease by half, i.e., h = 1/4, 1/8, · · · , 1/128. Since p ∈ H5/3−ε(Ω) for any ε > 0, it follows that u ∈ (H2/3−ε(Ω))2 (cf.
[27]). Thus, the predicted convergence rate for the finite element solution is approximately 2/3 ≈ 0.67. The computed
results which are shown in Table 5.1 confirm this rate. The elevations and contour plots of the finite element solution
uh and the exact solution u for h = 1/32 are shown in Figure 5.2. We remark that, due to the unbounded singularity
of the exact solution at the origin, a fraction of the graphs near the origin will not be displayed.

For the cracked domain problem, we choose J and g such that the exact solution is

u(x, y) = ∇((1 − x2)(1 − y2)q(x, y)),

where q(x, y) := ρ1/2 sin( 1
2θ) and θ is varying form 0 to 2π. This exact solution u has a strong unbounded singularity

at the origin, and u · τ = 0 on Γ. In this case, since q ∈ H3/2−ε(Ω) for any ε > 0, we have u ∈ (H1/2−ε(Ω))2. Thus, the
predicted convergence rate for the finite element solution is approximately 0.5. A typical uniform triangle mesh of the
cracked domain employed in the computation is drawn in Figure 5.1 (right). Again, the computed results reported in
Table 5.2 confirm this rate. The elevations and contour curves of the finite element solution uh and the exact solution
u for h = 1/32 are depicted in Figure 5.3.
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Figure 5.1. A typical uniform triangle mesh with h = 1/4: (left) L-domain; (right) cracked domain.

Table 5.1. Relative errors of u1h and u2h in the L2 norm of the L-domain problem

1/h 4 8 16 32 64 128
‖u1−u1h‖0
‖u1‖0 7.7325E-02 4.5382E-02 2.8208E-02 1.7723E-02 1.1158E-02 7.0280E-03
Rate − 0.77 0.69 0.67 0.67 0.67

‖u2−u2h‖0
‖u2‖0 7.7325E-02 4.5382E-02 2.8208E-02 1.7723E-02 1.1158E-02 7.0280E-03
Rate − 0.77 0.69 0.67 0.67 0.67

Table 5.2. Relative errors of u1h and u2h in the L2 norm of the cracked domain problem

1/h 4 8 16 32 64 128
‖u1−u1h‖0
‖u1‖0 2.3850E-01 1.6608E-01 1.0982E-01 6.8315E-02 4.1182E-02 2.5361E-02
Rate − 0.52 0.60 0.68 0.73 0.70

‖u2−u2h‖0
‖u2‖0 3.2858E-01 2.2422E-01 1.5000E-01 9.7902E-02 6.3732E-02 4.2395E-02
Rate − 0.55 0.58 0.62 0.62 0.59
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Figure 5.2. Elevations and contour curves of the finite element solution uh = (u1h, u2h) and the exact
solution u = (u1, u2) for h = 1/32 of the L-domain problem.

13



−1

0

1

−1

0

1
−2

−1

0

1

2

x

Finite element solution u
1h

y −1

0

1

−1

0

1
−2

−1

0

1

2

x

Exact solution u
1

y

Finite element solution u
1h

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Exact solution u
1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1

0

1

−1

0

1
−2

−1

0

1

2

x

Finite element solution u
2h

y −1

0

1

−1

0

1
−2

−1

0

1

2

x

Exact solution u
2

y

Finite element solution u
2h

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Exact solution u
2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5.3. Elevations and contour curves of the finite element solution uh = (u1h, u2h) and the exact
solution u = (u1, u2) for h = 1/32 of the cracked domain problem.
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5.1.2. Nonhomogeneous medium
Given a square domain Ω = (−1, 1)2, we consider the time-harmonic Maxwell’s equations, with angular frequency
ω2, in a discontinuous and nonhomogeneous medium as follows:

curl curl u − ω2εu = J, div εu = 0 in Ω, u · τ = χ on Γ. (5.1)

Here µ = 1. The coefficient ε is piecewise constant, ε = β in [0, 1]2 and [−1, 0]2, while ε = 1 in [−1, 0) × (0, 1] and
(0, 1] × [−1, 0). Let λ := ω2 = 1.

We consider the numerical example used in [41] for our purpose. Taking

p(x, y) = ρξψ(θ)

in the polar coordinate system with the variables (ρ, θ), where

ψ(θ) =


cos((π/2 − σ)ξ) · cos((θ − π/2 + α)ξ), 0 ≤ θ ≤ π/2,
cos(αξ) · cos((θ − π + σ)ξ), π/2 ≤ θ ≤ π,
cos(σξ) · cos((θ − π − α)ξ), π ≤ θ ≤ 3π/2,
cos((π/2 − α)ξ) · cos((θ − 3π/2 − σ)ξ), 3π/2 ≤ θ ≤ 2π,

and the numbers ξ, α, σ and β satisfy the following nonlinear relations:

β = − tan((π/2 − σ)ξ) · cot(αξ),
1/β = − tan(αξ) · cot(σξ),
β = − tan(σξ) · cot((π/2 − α)ξ),
0 < ξ < 2,
max(0, πξ − π) < 2ξα < min(πξ, π),
max(0, π − πξ) < −2ξσ < min(π, 2π − πξ),

then one can verify that
div (ε∇p) = 0.

Since

p ∈ H1(Ω) ∩
4∏

j=1

H1+η(Ω j), where η < ξ,

if we set u := ∇p to be the exact solution of (5.1) then we have

u := ∇p ∈
4∏

j=1

(Hη(Ω j))2.

Notice that this exact solution u has a strong unbounded singularity at the origin.
Now, we consider the following three cases (see Figure 5.4):

• Case A. ξ = 0.5, β = 5.8284271247461907, α = π/4, σ = −2.3561944901923448.

• Case B. ξ = 0.1, β = 161.4476387975881, α = π/4, σ = −14.92256510455152.

• Case C. ξ = 0.02, β = 4052.1806954768103, α = π/4, σ = −77.754418176347386.

According to the regularity of u, the predicted rate should be about η, approximately near to ξ. For Case A, ξ = 0.5,
for Case B, ξ = 0.1, while, for Case C, ξ = 0.02. The numerical results reported in Tables 5.3–5.5 confirm the
predictions, where we use the uniform triangulations as that shown in Figure 5.5. The contour plots of the finite
element solution uh for h = 1/128 and the exact solution u are depicted in Figures 5.6–5.8. Numerical results show
the superior performance of the proposed nodal-continuous linear finite element approach.
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Figure 5.4. Elevations of the exact solution u = (u1, u2) of the nonhomogeneous medium problem: Case
A, ξ = 0.5 (top row); Case B, ξ = 0.1 (middle row); Case C, ξ = 0.02 (bottom row).
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Figure 5.5. A typical uniform triangle mesh with h = 1/4 of the square domain Ω.
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Table 5.3. Relative errors of u1h and u2h in the L2 norm of the nonhomogeneous medium problem, Case A

1/h 4 8 16 32 64 128
‖u1−u1h‖0
‖u1‖0 8.4969E-01 3.3310E-01 1.7622E-01 1.1774E-01 8.5445E-02 6.3163E-02
Rate − 1.35 0.92 0.58 0.46 0.44

‖u2−u2h‖0
‖u2‖0 8.4969E-01 3.3310E-01 1.7622E-01 1.1774E-01 8.5445E-02 6.3163E-02
Rate − 1.35 0.92 0.58 0.46 0.44

Table 5.4. Relative errors of u1h and u2h in the L2 norm of the nonhomogeneous medium problem, Case B

1/h 4 8 16 32 64 128
‖u1−u1h‖0
‖u1‖0 5.6533E-01 5.4702E-01 4.6614E-01 4.2381E-01 3.8665E-01 3.5393E-01
Rate − 0.05 0.23 0.14 0.13 0.13

‖u2−u2h‖0
‖u2‖0 5.6533E-01 5.4702E-01 4.6614E-01 4.2381E-01 3.8665E-01 3.5393E-01
Rate − 0.05 0.23 0.14 0.13 0.13

Table 5.5. Relative errors of u1h and u2h in the L2 norm of the nonhomogeneous medium problem, Case C

1/h 4 8 16 32 64 128
‖u1−u1h‖0
‖u1‖0 6.5462E-01 6.1066E-01 5.7082E-01 5.3611E-01 5.0594E-01 4.8034E-01
Rate − 0.10 0.10 0.09 0.08 0.07

‖u2−u2h‖0
‖u2‖0 6.5462E-01 6.1066E-01 5.7082E-01 5.3611E-01 5.0594E-01 4.8034E-01
Rate − 0.10 0.10 0.09 0.08 0.07
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Figure 5.6. Contour plots of the finite element solution uh = (u1h, u2h) for h = 1/128 and the exact
solution u = (u1, u2) of the nonhomogeneous medium problem, Case A, ξ = 0.5.
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Figure 5.7. Contour plots of the finite element solution uh = (u1h, u2h) for h = 1/128 and the exact
solution u = (u1, u2) of the nonhomogeneous medium problem, Case B, ξ = 0.1.

5.2. Eigenvalue problem
In this subsection, we shall seek the finite element solutions of the Maxwell eigenvalue problem (3.21). Both the
homogeneous medium and the discontinuous nonhomogeneous medium will be studied. As in the previous subsection,
we use the uniform triangle meshes. We compute the eigenvalues by the following ‘shift’ formulation: Find λh = 1+ω2

h
and uh ∈ Uh, uh , 0, such that

(Rh(µ−1curl uh),Rh(µ−1curl vh))0,µ,h + (R̆h(div εuh), R̆h(div εvh))0,h + (εuh, vh) = λh(εuh, vh) ∀vh ∈ Uh. (5.2)

5.2.1. Homogeneous medium
Taking µ = ε = 1, we first consider the eigenvalue problem on the L-domain Ω = (−1, 1)2\([0, 1) × (−1, 0]). We will
take the nonzero eigenvalues provided by Monique Dauge at her personal page

http : //perso.univ − rennes1.fr/monique.dauge/benchmax.html
as the benchmark. For example, the first two nonzero eigenvalues given there are

ω2
1 = 1.47562182408 and ω2

2 = 3.53403136678.

The corresponding eigenfunctions are u1 ∈ (H2/3−ε(Ω))2 and u2 ∈ (H4/3−ε(Ω))2, for any ε > 0 (cf. [20]). Then the
predicted convergence rate of the nonzero finite element eigenvalue ω2

h to ω2 is as follows: for ω2
1, it is approximately

2 × 2/3 ≈ 1.33, while, for ω2
2, it is 2. Note that for the second eigenvalue the convergence rate is not approximately

2 × 4/3 from the theoretical analysis, because here we only use the linear finite elements. The numerical results
reported in Table 5.6 confirm the predicted rates of convergence. One can find that our method can approximate the
eigenvalues very well, even for a rather coarse grid. Moreover, we can accurately approximate the other three nonzero
eigenvalues given by Monique Dauge as well. The convergence rates are still of second order, which is optimal for
smooth eigenfunctions. We omit the details here.
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Figure 5.8. Contour plots of the finite element solution uh = (u1h, u2h) for h = 1/128 and the exact
solution u = (u1, u2) of the nonhomogeneous medium problem, Case C, ξ = 0.02.

Table 5.6. Relative errors and rates of convergence of the first two nonzero finite element eigenvalues of
the eigenvalue problem on the L-domain

ω2 1/h ω2
h |ω2 − ω2

h|/|ω2| Rate
4 1.48831405934 8.6013E-03 −
8 1.48334479049 5.2337E-03 0.72

1.47562182408 16 1.47934670251 2.5243E-03 1.05
32 1.47726489565 1.1135E-03 1.18
64 1.47631519067 4.6988E-04 1.24

128 1.47590733958 1.9349E-04 1.28
4 3.39884629080 3.8252E-02 −
8 3.49993848487 9.6470E-03 1.99

3.53403136678 16 3.52548553846 2.4182E-03 2.00
32 3.53189291161 6.0510E-04 2.00
64 3.53349654404 1.5134E-04 2.00

128 3.53389763603 3.7841E-05 2.00
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Table 5.7. Relative errors and rates of convergence of the first two nonzero finite element eigenvalues of
the eigenvalue problem on the cracked domain

ω2 1/h ω2
h |ω2 − ω2

h|/|ω2| Rate
4 1.09324290753 5.7219E-02 −
8 1.06617286421 3.1041E-02 0.88

1.03407400850 16 1.05070135673 1.6079E-02 0.95
32 1.04252667113 8.1741E-03 0.98
64 1.03833444080 4.1200E-03 0.99

128 1.03621265987 2.0682E-03 0.99
4 2.41156768316 2.2628E-02 −
8 2.45340321169 5.6731E-03 2.00

2.46740110027 16 2.46389719213 1.4201E-03 2.00
32 2.46652457342 3.5524E-04 2.00
64 2.46718189841 8.8839E-05 2.00

128 2.46734629070 2.2213E-05 2.00

Next, we consider the eigenvalue problem on the cracked domain defined by Ω = (−1, 1)2\{(x, y) ∈ R2| 0 ≤ x <
1, y = 0}. Again, we take the first two nonzero eigenvalues from Monique Dauge’s page as the benchmark as follows:

ω2
1 = 1.03407400850 and ω2

2 = 2.46740110027.

The corresponding eigenfunctions are given by u1 ∈ (H1/2−ε(Ω))2 for any ε > 0 and u2 ∈ (H1(Ω))2. So, the predicted
convergence rate of the nonzero finite element eigenvalue ω2

h to ω2 is as follows: for ω2
1, it is approximately 1, while,

for ω2
2, it is 2. The computed results are collected in Table 5.7, which confirm the predicted rates of convergence.

We remark that we can accurately approximate the other eight nonzero eigenvalues given by Monique Dauge with
convergence rates of second order.

5.2.2. Nonhomogeneous medium
We now consider the eigenvalue problem with the nonhomogeneous medium on the square domain Ω = (−1, 1)2. The
coefficients ε are given by

ε =

{
ε1, (x, y) ∈ [−1, 0]2 ⋃

[0, 1]2,
1, otherwise,

and µ = 1. For comparison with the benchmark results reported at Monique Dauge’s personal page mentioned
above, where the Maxwell’s eigenvalues coincide with the nonzero Neumann eigenvalues of the magnetic problem,
we consider the following various values of ε1: ε1 = 0.5, 0.1, 0.01, 10−8.

In Table 5.8, the computed results using h = 1/128 for each ε1 are compared with those ten nonzero eigenvalues
provided by Monique Dauge. We see that the approximations show good agreements, except for the third eigenvalue
ω2 = 15.536981653110 and the seventh eigenvalue ω2 = 29.646623662180 for the case of ε1 = 0.01. At her personal
page, Monique Dauge indicated that for these two eigenvalues, only three digits are expected to be correct, although
she used the adaptive Galerkin computations with high degree polynomials. Here, we study the convergence behavior
of these two eigenvalues in more details. The results are reported in Table 5.9, from which we can find that the rates
of convergence are approximately 0.2 and 0.4, respectively.

6. Concluding remarks

In this paper, we have proposed and analyzed a new nodal-continuous finite element method for numerically solving
the curlcurl-graddiv problem, with mass-lumping linear finite element L2 projections applied to the curl and the diver-
gence operators. The nodal-continuous Lagrange linear elements, enriched with one element bubble per element, are
employed. The method is designed for the general source and eigenvalue problems, and particularly the discontinuous
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Table 5.8. Comparison of the nonzero finite element eigenvalues ω2
h for h = 1/128 with the benchmark

values ω2 of the eigenvalue problem with a nonhomogeneous medium for various ε1

ω2 ω2
h |ω2 − ω2

h|/|ω2|
3.317548763415 3.317172554712 1.1340E-04
3.366324157260 3.365533633122 2.3483E-04
6.186389562488 6.186032830042 5.7664E-05
13.92632333103 13.92332332254 2.1542E-04

ε1 = 0.5 15.08299096123 15.07977426632 2.1327E-04
15.77886590819 15.77557882954 2.0832E-04
18.64329693686 18.64123058671 1.1084E-04
25.79753111031 25.78666659986 4.2115E-04
29.85240067684 29.84238360527 3.3555E-04
30.53785871253 30.52848014629 3.0711E-04
4.533851871670 4.533227774037 1.3765E-04
6.250332186603 6.269605774928 3.0836E-03
7.037074196012 7.036488154255 8.3279E-05
22.34193733540 22.33512948867 3.0471E-04

ε1 = 0.1 22.67919225111 22.67200297928 3.1700E-04
26.09520456863 26.09314572298 7.8897E-05
26.50900637498 26.50185477490 2.6978E-04
40.48783516243 40.45915477245 7.0837E-04
42.65069898070 42.63023003767 4.7992E-04
55.88227467094 55.84715453632 6.2847E-04
4.893193324891 4.892887406014 6.2519E-05
7.206675422492 7.206110018514 7.8456E-05
15.53698165311 18.91602088454 2.1748E-01
24.46225024727 24.45741961792 1.9747E-04

ε1 = 0.01 24.48745601340 24.48095713851 2.6540E-04
27.75724058215 27.74917832668 2.9046E-04
29.64662366218 32.57750242546 9.8860E-02
44.24890377211 44.23326910535 3.5333E-04
44.43521693426 44.41935154387 3.5705E-04
63.59570343398 63.55990887597 5.6285E-04
4.934802158785 4.934552567656 5.0578E-05
7.225211232692 7.224615002304 8.2521E-05
24.67400464789 24.66764161372 2.5788E-04
24.67401079360 24.66945695481 1.8456E-04

ε1 = 10−8 24.67401081785 24.66945935504 1.8446E-04
27.86885061384 27.86068446997 2.9302E-04
44.41321964155 44.39827958750 3.3639E-04
44.74562877982 44.73090364601 3.2909E-04
64.15240830542 64.11440151855 5.9245E-04
64.15242807291 64.11661006660 5.5833E-04
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Table 5.9. Relative errors and rates of convergence of the third and seventh nonzero eigenvalues of the
nonhomogeneous medium eigenvalue problem with ε1 = 0.01

ω2 1/h ω2
h |ω2 − ω2

h|/|ω2| Rate
8 21.11621041687 3.5909E-01 −

15.53698165311 16 20.87862629506 3.4380E-01 0.06
32 20.24432077557 3.0298E-01 0.18
64 19.56823511999 2.5946E-01 0.22

128 18.91602088454 2.1748E-01 0.25
8 38.79632947426 3.0863E-01 −

29.64662366218 16 36.72877705976 2.3889E-01 0.37
32 34.91920856254 1.7785E-01 0.43
64 33.57692913332 1.3257E-01 0.42

128 32.57750242546 9.8860E-02 0.42

and nonhomogeneous medium has been taken into account. Some error estimates are given and a number of numerical
examples have shown that the proposed method is suitable for problems with singular solution, which are typically
due to re-entrant corners of Ω and discontinuous media. For such a singular and non-H1 solution of Hr-regularity,
we have tested several values of the regularity exponent r in the interval (0, 1) for source and eigenvalue problems
in homogeneous and discontinuous nonhomogeneous media. We have seen that the proposed method produces cor-
rectly convergent nodal-continuous finite element solutions, at the convergence rate being optimal with respect to the
regularity of the true solution.

Appendix A

In this appendix, we show that the proposed method (3.10) is essentially a nodal-continuous linear finite element
method, since we can eliminate the element-bubbles in Uh from (3.10) using the static condensation procedure (cf.
[31]). Assume that uh = u1 + ub ∈ ((Vh)2 ∩ H0(curl ; Ω)) + Bh, where u1 is the linear part and ub is the bubble part.
Then ub can be expressed as ub =

∑
K∈Th

cu
KbK , where bK := λ1λ2λ3 ∈ Bh is the K-element bubble function with

compact support in K and cu
K is the corresponding coefficient vector. It is easily to verify that the nodal-continuous

finite element method (3.10) is equivalent to finding uh ∈ Uh such that{ Ah(uh, v1) = (εf, v1) ∀v1 ∈ (Vh)2 ∩ H0(curl ; Ω),
Ah(uh, cKbK) = (εf, cKbK) ∀cKbK ∈ Bh.

(A.1)

From the second equation in (A.1) with the properties of the projection operators Rh and R̆h, we have

(Rh(µ−1curl u1),Rh(µ−1curl cKbK))0,µ,h + (Rh(µ−1curl
∑

K∈Th

cu
KbK),Rh(µ−1curl cKbK))0,µ,h

+(R̆h(div εu1), R̆h(div εcKbK))0,h + (R̆h(div ε
∑

K∈Th

cu
KbK), R̆h(div εcKbK))0,h

−λ (εu1, cKbK) − λ (ε
∑

K∈Th

cu
KbK , cKbK) = (εf, cKbK) ∀cKbK ∈ Bh.

(A.2)

Since u1 is piecewise linear, from (3.8) and (3.9) we have

(Rh(µ−1curl u1),Rh(µ−1curl cKbK))0,µ,h = (µ−1curl u1,Rh(µ−1curl cKbK))0,µ,h

= (µ−1curl curl u1, cKbK) = 0 ∀cKbK ∈ Bh

and

(R̆h(div εu1), R̆h(div εcKbK))0,h = (div εu1, R̆h(div εcKbK))0,h

= −(ε∇ div εu1, cKbK) = 0 ∀cKbK ∈ Bh.
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Substituting the above identities into (A.2), we obtain

(Rh(µ−1curl
∑

K∈Th

cu
KbK),Rh(µ−1curl cKbK))0,µ,h + (R̆h(div ε

∑
K∈Th

cu
KbK), R̆h(div εcKbK))0,h

−λ (ε
∑

K∈Th

cu
KbK , cKbK) = (εf, cKbK) + λ (εu1, cKbK) ∀cKbK ∈ Bh.

(A.3)

Now, for each K ∈ Th, taking cK = (1, 0)> and cK = (0, 1)> in (A.3), one can solve the 2-component vector cu
K

by considering the resultant 2 × 2 linear system. We formally denote cu
K by cu

K = F (f,u1,K). Putting these bubble
coefficients {cu

K : K ∈ Th} into the first equation of (A.1), the nodal-continuous finite element method (3.10) becomes
to find u1 ∈ (Vh)2 ∩ H0(curl ; Ω) such that

(Rh(µ−1curl u1),Rh(µ−1curl v1))0,µ,h + (R̆h(div εu1), R̆h(div εv1))0,h − λ (εu1, v1)
+(Rh(µ−1curl

∑
K∈Th

F (f,u1,K)bK),Rh(µ−1curl v1))0,µ,h + (R̆h(div ε
∑

K∈Th

F (f,u1,K)bK), R̆h(div εv1))0,h

−λ(ε
∑

K∈Th

F (f,u1,K)bK , v1) = (εf, v1) ∀v1 ∈ (Vh)2 ∩ H0(curl ; Ω),
(A.4)

which is essentially a nodal-continuous linear finite element method.
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