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Abstract

In this paper, we propose and analyze a novel stabilized finite element method (FEM) for the system of generalized
Stokes equations arising from the time-discretization of transient Stokes problem. The system involves a small viscos-
ity, which is proportional to the inverse of large Reynolds number, and a large reaction coefficient, which is the inverse
of small time step. The proposed stabilized FEM employs the C0 piecewise linear elements for both velocity field
and pressure on the same mesh and uses the residuals of the momentum equation and the divergence-free equation to
define the stabilization terms. The stabilization parameters are fixed and element-independent, without a comparison
of the viscosity, the reaction coefficient and the mesh size. Using the finite element solution of an auxiliary boundary
value problem as the interpolating function for velocity and the H1-seminorm projection for pressure, instead of the
usual nodal interpolants, we derive error estimates for the stabilized finite element approximations to velocity and
pressure in the L2 and H1 norms and most importantly, we explicitly establish the dependence of error bounds on
the viscosity, the reaction coefficient and the mesh size. Our analysis reveals that this stabilized FEM is particularly
suitable for the generalized Stokes system with a small viscosity and a large reaction coefficient, which has never been
achieved before in the error analysis of other stabilization methods in the literature. We then numerically confirm the
effectiveness of the proposed stabilized FEM. Comparisons made with other existing stabilization methods show that
the newly proposed method can attain better accuracy and stability.
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1. Introduction

Let Ω ⊂ R2 be a bounded open convex polygonal domain with boundary ∂Ω. In this paper, we propose and analyze

a novel stabilized finite element method (FEM) for solving the following system of generalized Stokes equations with

no-slip boundary condition: 
σu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,
u = 0 on ∂Ω,

(1)
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where u = (u1, u2)> is the velocity field and p is the pressure; 0 < ν ≤ 1 is the kinematic viscosity which is

proportional to the inverse of Reynolds number Re; σ ≥ 1 is the reaction coefficient; and f = ( f1, f2)> ∈ (L2(Ω))2 is

a given source-like function. In principle, one of the parameters σ and ν in the generalized Stokes system (1) can be

normalized as unity if we replace the velocity field with either σu or νu. However, in order to explicitly display the

parameters σ and ν in our finite element error estimates and to serve as a base for the future study of more advanced

incompressible Navier-Stokes system which contains an additional nonlinear velocity convection term and therefore

the normalization cannot be applied, in this paper we keep the generalized Stokes system in its primitive form (1).

Typically, the generalized Stokes system (1) may arise from the time discretization of transient Stokes problem,

where the reaction coefficient σ is inversely proportional to the time step δt. For problems involving chemical re-

actions, a small time step, namely a large σ, is needed in order to account for the stiffness due to the fast reaction

[1, 2, 3]. In fact, the common finite element approach to the time-dependent PDEs is based on the so-called method

of lines. That is, a semi-discrete formulation is formed by first approximating the spatial dependence using a certain

finite element method, and the resulting ODE system is then discretized by applying implicit finite differences in time

domain, such as the first-order backward Euler scheme or the second-order Crank-Nicolson scheme, to obtain a fully

discrete problem [4, 5]. One can find that at each time level with an implicit time discretization, the resulting fully

discrete problem is analogue to the finite element method applied directly to the generalized Stokes system (1).

The usual mixed FEM for solving problem (1) is to discretize the following weak form by employing a pair of

finite element spaces (Vh,Qh) for the approximations of u and p: Find (u, p) ∈ (H1
0(Ω))2 × L2

0(Ω) such that

σ(u, v)0 + ν(∇u,∇v)0 − (p,∇ · v)0 + γ(∇ · u, q)0 = ( f , v)0, (2)

for all (v, q) ∈ (H1
0(Ω))2 × L2

0(Ω), where γ = ±1 correspond to a symmetric method and a non-symmetric method.

However, it is now well known that the pair (Vh,Qh) must satisfy the so-called inf-sup condition if stable and optimally

accurate approximations are desired; see [6, 7, 8, 9]. Unfortunately, this condition prevents the use of standard

equal order C0 interpolation spaces for velocity and pressure with respect to the same triangulation that are the most

attractive from the viewpoint of implementation, or low order element pairs such as piecewise linear elements for

velocity and piecewise constants for pressure.

In order to circumvent the inf-sup condition, a class of the so-called stabilized FEMs has been developed and

intensively studied for almost thirty years, see, e.g., [10, 11, 12, 13, 14, 15, 16]. The stabilized FEMs are formed by

adding to the discrete counterpart of the weak formulation (2) with the residuals of the partial differential equations.

An example for the derivation of such a stabilized FEM is based on the bubble condensation procedure (cf. [17, 18]).

This approach adopts a mixed finite element formulation but enriches the C0 piecewise P1 (or Q1) elements for

velocity field u with suitable bubble functions and then give an expression of the bubble part of velocity in terms of its

linear part, pressure p and source function f . Such a bubble condensation procedure eventually leads to a stabilization

method. A common feature for all stabilization methods is that some mesh-dependent stabilization parameters are

involved with. The stabilization parameters play key roles in the method, not only enhancing the numerical stability
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but also improving the accuracy in the finite element solutions. Nowadays, it is very popular to apply finite element

stabilization techniques to produce better accuracy and stability in the finite element solution of convection-dominated

convection-diffusion problems [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], or to circumvent the inf-sup condition in

solving saddle-point type problems such as the incompressible Stokes equations [1, 17, 30, 31, 32]; see also [2] and

many references cited therein. However, it has been observed that the pressure instabilities may be caused in time

step of the transient problems, as the time step δt ≈ 1/σ becomes small compared to the spatial grid size h; see

[1, 2, 3]. Therefore, in recent years, it has attracted a great deal of attention on the theoretical and computational

studies of small time-step instabilities when implicit, finite difference time integration is applied in combination with

finite element stabilization in the spatial semi-discretization.

In this paper, we will propose and analyze a new stabilized FEM for problem (1) with a small viscosity ν and a

large reaction coefficient σ. With novel stabilization parameters, we employ the C0 piecewise P1 (or Q1) elements for

both velocity field and pressure on the same mesh and use the residuals of the partial differential equations to define the

stabilization terms. These additional stabilization terms include not only the term related to the momentum equation

but also the divergence-free equation. Another feature, different from the stabilization methods, e.g., [17, 30], in the

literature is that our stabilization parameters are fixed and element-independent, without the comparison among the

viscosity ν, the reaction coefficient σ and the mesh size h. The third feature is that our error analysis is novel. We use

the finite element solution of an auxiliary boundary value problem as the interpolating function for velocity and the

H1-seminorm projection [9] for pressure, instead of the usual nodal interpolants Ihu and Ih p. This novel technique

enables us to show that the proposed stabilized FEM using C0 piecewise equal-order finite elements, such as P1-P1

and Q1-Q1 elements, is particularly suitable for problem (1) with a small ν and a large σ.

We will derive error estimates in the L2 and H1 norms for the proposed stabilized FEM using the C0 piecewise

P1-P1 (or Q1-Q1) elements. Most importantly, we will explicitly establish the dependence of the error bounds on the

parameters ν, σ and h. Roughly speaking, we prove that, leaving aside the term “‖u‖2 + ‖p‖1” of regularity norm of

the exact solution, the H1-norm error bound of the velocity is inversely proportional to the square root of the reaction

coefficient σ, the L2-norm error bound behaves like the multiplication of the H1-norm error bound by the mesh size

h, and that the L2-norm error bound of the pressure is in the same order of h +
√
ν if σh2 � ν. Moreover, we

will compare numerically the effectiveness of the newly proposed stabilized FEM with three existing stabilization

methods in the literature, including the Barrenechea-Blasco stabilized FEM [30], the Barrenechea-Valentin stabilized

FEM [17], and the Bochev-Gunzburger-Lehoucq stabilized FEM [1]. Through a series of numerical experiments, we

find that in addition to offer rather sharp error estimates, the proposed stabilized FEM can achieve better accuracy and

stability when compared with the Barrenechea-Blasco method and the Bochev-Gunzburger-Lehoucq method, while it

is comparable with the Barrenechea-Valentin method when σh2 � ν and 0 < ν � 1.

We remark that the div-div stabilization term related to the divergence-free equation in the finite element formu-

lation was first introduced in [33]; see also, e.g., [32, 34, 35]. It has been proved in [36] that the div-div stabilization

term results in better error bounds of finite element solutions for the generalized Stokes equations (1). However, in
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that method, the finite element pair (Vh,Qh) has to satisfy the inf-sup condition, the analysis focuses on the small

reaction coefficient σ ∈ [0, 1], and the error bounds for the velocity are measured in the viscosity
√
ν-weighted H1-

seminorm. Therefore, the use of equal order C0 finite element spaces for velocity and pressure is prevented and the

poor convergence may be caused by small viscosity ν and large reaction coefficient σ. In contrast, in this paper,

the newly proposed stabilized FEM is an unusual stabilization method inspired by the works of Franca-Farhat [22]

and Barrenechea-Valentin [17]. It employs the C0 piecewise equal-order finite elements aiming at dealing with small

viscosity and large reaction. Our analysis reveals that the viscosity ν and the reaction constant σ respectively act

in the numerator position and the denominator position in the error estimates of velocity and pressure in standard

norms without any weights; see Theorem 5 and Theorem 6 in Section 3. In other words, up to the regularity norm

“‖u‖2 + ‖p‖1” of the exact solution, the proposed method is particularly suitable for the generalized Stokes system

(1) with a small viscosity ν and a large reaction coefficient σ. Recently, it has also been shown in [37] that the finite

element formulation including the div-div stabilization term is more effective for convection-dominated problems,

such as the Oseen equations with a small viscosity.

In summary, the main goal of this paper are three aspects. The first is to develop a new unusual stabilization

method in order to obtain better error bounds. The second is to provide a new analysis to prove the robustness of the

unusual stabilization methods with respect to the small viscosity ν and the large reaction σ. The third is to provide

numerical experiments to further demonstrate the robustness of the unusual type stabilization methods, including the

proposed stabilized FEM and the Barrenechea-Valentin stabilized FEM, for the generalized Stokes equations with

small viscosity and large reaction. These three aspects will be successfully realized in this paper.

The remainder of this paper is organized as follows. In Section 2, we introduce the new stabilized FEM and

present three existing stabilized FEMs in the literature. In Section 3, error estimates of the newly proposed method

are derived. The dependence of error bounds on the parameters ν, σ and h are explicitly established. In Section 4,

several numerical examples are presented, including an example on the unstructured meshes and the time-dependent

lid-driven cavity problem. Finally, in Section 5, summary and conclusions are given.

2. The new stabilized finite element method

We use the standard notation and definitions for the Sobolev spaces Hm(Ω) for nonnegative integers m (cf. [7, 9,

38, 39]). The associated inner product and norm are denoted by (·, ·)m and ‖ · ‖m, respectively. As usual, we define

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q = 0},

H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

Let {Th}0<h≤1 be a family of triangulations of Ω. A triangulation Th of Ω into elements K consisting of triangles (or

quadrilaterals) is performed in the usual way; the intersection of any two elements is a vertex, or an edge or empty,

and Ω = ∪K∈Th K. For each triangulation the subscript h ∈ (0, 1] refers to the level of refinement of the triangulation.

In particular, the mesh size parameter h is defined as h = max{hK : K ∈ Th}, where hK denotes the diameter of element
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K. We always assume that the family {Th}0<h≤1 of triangulations is shape regular [6, 7, 38, 39]. As usual, (·, ·)m,K and

‖ · ‖m,K denote the associated inner product and norm in Hm(K), respectively, where K is a given element in Th.

Define the finite element spaceVh = V1 ×V1 for velocity u, where V1 ⊆ H1
0(Ω) denotes the space of C0 piecewise

linear (or bilinear) finite elements over the triangulation Th. The standard interpolation theory [7, 38] ensures that if

u ∈ (H2(Ω) ∩ H1
0(Ω))2, then there exists an interpolant Ihu ∈ Vh such that

‖u − Ihu‖s,K ≤ Ch2−s
K ‖u‖2,K ∀ 0 ≤ s ≤ 2, ∀ K ∈ Th, (3)

where C is a positive constant independent of K and hK . Also, we define the C0 piecewise linear (or bilinear) finite

element space Qh ⊆ H1(Ω) ∩ L2
0(Ω) for pressure p with the interpolation property: if p ∈ H2(Ω) ∩ L2

0(Ω), then there

exists an interpolation Ih p ∈ Qh such that

‖p − Ih p‖s,K ≤ Ch2−s
K ‖p‖2,K ∀ 0 ≤ s ≤ 2, ∀ K ∈ Th. (4)

We remark that in this paper we use C to denote a generic positive constant, possibly different at different occurrences,

which is always independent of h and other parameters introduced.

Since the pair of finite element spaces (Vh,Qh) does not verify the inf-sup condition, the corresponding discrete

counterpart of the weak formulation (2) is generally unstable. Next, we are going to design a stabilization method for

solving the generalized Stoke system (1). In what follows, for retaining the property of symmetry of the associated

bilinear form, we only consider the case of γ = −1 in the weak form (2). We propose the following new stabilized

FEM for the generalized Stokes system (1): Find (uh, ph) ∈ Vh × Qh such that

B((uh, ph), (vh, qh)) = L((vh, qh)) ∀ (vh, qh) ∈ Vh × Qh, (5)

where the bilinear form B(·, ·) and the linear form L(·) are, respectively, defined as follows:

B((uh, ph), (vh, qh)) = σ(uh, vh)0 + ν(∇uh,∇vh)0 − (ph,∇ · vh)0 − (∇ · uh, qh)0

−
∑
K∈Th

h2

σh2 + 12ν
(σuh − ν∆uh + ∇ph, σvh − ν∆vh + ∇qh)0,K

+
∑
K∈Th

12ν
σh2 + 12ν

(∇ · uh,∇ · vh)0,K , (6)

L((vh, qh)) = ( f , vh)0 −
∑
K∈Th

h2

σh2 + 12ν
( f , σvh − ν∆vh + ∇qh)0,K . (7)

Note that in (6) and (7), we have ∆vh|K = 0 for all K ∈ Th and vh ∈ Vh. However, we still retain the terms therein for

the clarity of presentation.

Here we remark that the stabilization terms in (6) include not only the term related to the momentum equation

but also the continuity equation. This is quite different from the stabilization methods given in [1, 17, 30]; see also

(13), (17) and (21) below. Furthermore, the test function in the momentum stabilization includes the reaction term σvh

which is different again from that of [1, 30]. Secondly, the stabilization parameters h2/(σh2+12ν) and 12ν/(σh2+12ν)

in (6) are fixed and element-independent, without the comparison among ν, σ and h.
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We next define the induced energy norm denoted by ‖ · ‖h onVh × Qh, which is related to the bilinear form B(·, ·)

introduced in (6),

‖(vh, qh)‖2h = ν‖∇vh‖
2
0 +

12σν
σh2 + 12ν

‖vh‖
2
0 +

h2

σh2 + 12ν
‖∇qh‖

2
0 +

12ν
σh2 + 12ν

‖∇ · vh‖
2
0. (8)

Since
∫

Ω
qh = 0 for all qh ∈ Qh, one can easily verify that ‖ · ‖h is indeed a norm onVh × Qh. With this energy norm,

we immediately have the following estimates of the continuous bilinear form B(·, ·) on (Vh × Qh) × (Vh × Qh):

Lemma 1. The bilinear form B(·, ·) is weakly coercive on (Vh × Qh) × (Vh × Qh), that is,

inf
0,(vh,qh)∈Vh×Qh

sup
0,(χh,ϕh)∈Vh×Qh

B((vh, qh), (χh, ϕh))
‖(vh, qh)‖h‖(χh, ϕh)‖h

≥ 1, (9)

inf
0,(χh,ϕh)∈Vh×Qh

sup
0,(vh,qh)∈Vh×Qh

B((vh, qh), (χh, ϕh))
‖(vh, qh)‖h‖(χh, ϕh)‖h

≥ 1. (10)

Proof. Given (vh, qh) ∈ Vh × Qh, we have from (6) that

B((vh, qh), (vh,−qh)) = σ‖vh‖
2
0 + ν‖∇vh‖

2
0 −

h2

σh2 + 12ν
(σvh + ∇qh, σvh − ∇qh)0 +

12ν
σh2 + 12ν

‖∇ · vh‖
2
0

= ν‖∇vh‖
2
0 +

12σν
σh2 + 12ν

‖vh‖
2
0 +

h2

σh2 + 12ν
‖∇qh‖

2
0 +

12ν
σh2 + 12ν

‖∇ · vh‖
2
0

= ‖(vh, qh)‖2h,

which combining with the fact ‖(vh,−qh)‖h = ‖(vh, qh)‖h implies

sup
0,(χh,ϕh)∈Vh×Qh

B((vh, qh), (χh, ϕh))
‖(χh, ϕh)‖h

≥ ‖(vh, qh)‖h.

It clearly leads to (9). The estimate (10) holds by the symmetry property of the bilinear form B(·, ·). 2

Notice that the weak coercivity (9)-(10) of the bilinear form B(·, ·) ensures the unique solvability of the stabilized

FEM (5); see, e.g., [6, 7, 8]. We also remark that the stabilized FEM (5) is a consistent formulation, since (5) is

satisfied when the finite element solution (uh, ph) is replaced by the exact solution (u, p) of the generalized Stokes

system (1). As a consequence, we have the following orthogonality property:

B((u, p) − (uh, ph), (vh, qh)) = 0 ∀ (vh, qh) ∈ Vh × Qh. (11)

In the rest of this section, we give a brief review of three existing stabilized FEMs in the literature which are

particularly designed for the generalized Stokes system (1) with a large reaction coefficient σ.

• The Barrenechea-Blasco stabilized FEM: In [30], Barrenechea and Blasco developed the following stabilized

FEM: Find (uh, ph) ∈ Vh × Qh such that

BBB((uh, ph), (vh, qh)) = LBB((vh, qh)) ∀ (vh, qh) ∈ Vh × Qh, (12)
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where the bilinear form BBB(·, ·) and the linear form LBB(·) are, respectively, defined as follows:

BBB((uh, ph), (vh, qh)) = σ(uh, vh)0 + ν(∇uh,∇vh)0 − (∇ · vh, ph)0 + (∇ · uh, qh)0

−
∑
K∈Th

τK(σuh − ν∆uh + ∇ph,−ν∆vh − ∇qh)0,K , (13)

LBB((vh, qh)) = ( f , vh)0 −
∑
K∈Th

τK( f ,−ν∆vh − ∇qh)0,K , (14)

τK is an element-dependent stabilization parameter given by

τK = α
h2

K

ν
(15)

and α is a positive constant such that

τK < min
{

8
ν
,

3
4σ

}
and α <

1
4C2

inv

.

Here Cinv > 0 is the constant in the local inverse inequality [30]:

‖∆vh‖0,K ≤ Cinvh−1
K ‖∇vh‖0,K ∀ K ∈ Th, vh ∈ V1.

In practical computations, we can take Cinv being any positive constant since ‖∆vh‖0,K = 0 for vh ∈ V1.

• The Barrenechea-Valentin stabilized FEM: Inspired by the work of [22, 25], Barrenechea and Valentin [17]

introduced the following unusual stabilized FEM: Find (uh, ph) ∈ Vh × Qh such that

BBV((uh, ph), (vh, qh)) = LBV((vh, qh)) ∀ (vh, qh) ∈ Vh × Qh, (16)

where the bilinear form BBV(·, ·) and the linear form LBV(·) are, respectively, defined as follows:

BBV((uh, ph), (vh, qh)) = σ(uh, vh)0 + ν(∇uh,∇vh)0 − (∇ · vh, ph)0 + (∇ · uh, qh)0

−
∑
K∈Th

τK(σuh − ν∆uh + ∇ph, σvh − ν∆vh − ∇qh)0,K , (17)

LBV((vh, qh)) = ( f , vh)0 −
∑
K∈Th

τK( f , σvh − ν∆vh − ∇qh)0,K , (18)

τK is an element-dependent stabilization parameter given by

τK =
h2

K

σh2
Kξ(λK) + (4ν/m1)

(19)

and

λK =
4ν

m1σh2
K

, m1 = min{1/3,C1},

C1h2
K‖∆vh‖

2
0,K ≤ ‖∇vh‖

2
0,K ∀ vh ∈ V1, ξ(λ) = max{λ, 1}.

In practical computations, we take m1 = 1/3 since ‖∆vh‖0,K = 0 for vh ∈ V1. The “unusual” feature of this

stabilization method is the subtraction of a term
∑

K∈Th
τK(σuh, σvh)0,K from σ(uh, vh)0 of the standard mixed

FEM for the generalized Stokes system (1).
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• The Bochev-Gunzburger-Lehoucq stabilized FEM: In [1], the authors considered the following stabilized

FEM: Find (uh, ph) ∈ Vh × Qh such that

BBGL((uh, ph), (vh, qh)) = LBGL((vh, qh)) ∀ (vh, qh) ∈ Vh × Qh, (20)

where the bilinear form BBGL(·, ·) and the linear form LBGL(·) are, respectively, defined as follows:

BBGL((uh, ph), (vh, qh)) = σ(uh, vh)0 + ν(∇uh,∇vh)0 − (∇ · vh, ph)0 − (∇ · uh, qh)0

−
∑
K∈Th

τK(σuh − ν∆uh + ∇ph,−γν∆vh + ∇qh)0,K , (21)

LBGL((vh, qh)) = ( f , vh)0 −
∑
K∈Th

τK( f ,−γν∆vh + ∇qh)0,K , (22)

γ = −1, 0, 1 and τK is an element-dependent stabilization parameter given by

τK = δh2
K (23)

and δ > 0 is a parameter independent of hK that needs to be carefully chosen.

We conclude this section with the following two remarks.

Remark 1. The choice of the first stabilization parameter h2/(σh2 + 12ν) in the newly proposed stabilized FEM (5)

is inspired by our recent work [40] on the scalar reaction-convection-diffusion equation and the element stabilization

parameter τK described in (19). One can verify that if σh2
K � ν, then the element stabilization parameter τK in (19)

can be expressed as

τK =
h2

K

σh2
K + 12ν

,

which amounts to the first stabilization parameter h2/(σh2 + 12ν) in (6) provided hK ≥ Ch.

Remark 2. All the above three stabilization methods, (12), (16) and (20), produce a non-symmetric algebraic system.

The Barrenechea-Valentin method (16) also can be converted into a symmetric one by simply replacing qh in the

right-hand sides of (17) and (18) with −qh. Note that our stabilization method (5) is symmetrical.

3. Error estimates of the new stabilized finite element method

We now proceed to estimate the error of the finite element solution (uh, ph) of the newly proposed stabilized FEM

(5). Let g ∈ (L2(Ω))2 be a given source function. Consider the following auxiliary boundary value problem:{
σw − ν∆w = g in Ω,

w = 0 on ∂Ω.
(24)

The corresponding stabilized FEM on the spaceVh is defined as follows:

Find wh ∈ Vh such that Baux(wh, vh) = Laux(vh) ∀ vh ∈ Vh, (25)
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where the bilinear form Baux(·, ·) and the linear form Laux(·) are, respectively, given by

Baux(wh, vh) = σ(wh, vh)0 + ν(∇wh,∇vh)0 −
∑
K∈Th

h2

σh2 + 12ν
(σwh − ν∆wh, σvh − ν∆vh)0,K , (26)

Laux(vh) = (g, vh)0 −
∑
K∈Th

h2

σh2 + 12ν
(g, σvh − ν∆vh)0,K . (27)

The unique solvability of the stabilized FEM (25) is ensured by the strong coercivity of the bilinear form Baux(·, ·),

Baux(vh, vh) = ν‖∇vh‖
2
0 +

12νσ
σh2 + 12ν

‖vh‖
2
0 ∀ vh ∈ Vh. (28)

Moreover, the convergence of the stabilized finite element solution wh of (25) can be proved using the similar tech-

niques developed by Franca and Farhat in [22] for a scalar reaction-diffusion problem; see also [40]. We thus state

without proof the following lemma:

Lemma 2. Let w ∈ (H1
0(Ω) ∩ H2(Ω))2 be the solution of the auxiliary boundary value problem (24). Then the unique

stabilized C0 piecewise linear (or bilinear) finite element solution wh of (25) converges to w in the following way:

‖∇(w − wh)‖20 +
12σ

σh2 + 12ν
‖w − wh‖

2
0 ≤ Ch2‖w‖22. (29)

In what follows, we shall present and analyze two finite element solution-projections, respectively associated with

velocity u and pressure p. These finite element solution-projections will be used as the intermediate finite element

interpolations in the derivation of the error bounds of our stabilization method (5). First, let u ∈ (H1
0(Ω)∩ H2(Ω))2 be

the exact solution of problem (1). Then we define a source function g by

g := σu − ν∆u. (30)

Note that u obviously solves the auxiliary boundary value problem (24) with this given source function g. As a

consequence of Lemma 2, we have following results:

Lemma 3. Let u ∈ (H1
0(Ω)∩H2(Ω))2 be the solution of problem (1) and wh ∈ Vh the unique solution of (25) associated

with the source function g given in (30). Then there exists a constant C > 0 independent of ν, σ and h such that

‖u − wh‖1 ≤ Ch‖u‖2, (31)

‖u − wh‖0 ≤ Ch

√
h2

12
+
ν

σ
‖u‖2. (32)

Proof. Since u ∈ (H1
0(Ω)∩H2(Ω))2 and g := σu− ν∆u, the exact solution w of the auxiliary boundary value problem

(24) is then given by w = u. From Lemma 2, we have

‖∇(u − wh)‖20 +
12σ

σh2 + 12ν
‖u − wh‖

2
0 ≤ Ch2‖u‖22. (33)

Combining (33) with the following Poincaré-Friedrichs inequality [7, 9],

‖v‖0 ≤ Cp f ‖∇v‖0 ∀ v ∈ (H1
0(Ω))2,

9



we can easily obtain the estimate (31). The estimate (32) is a direct consequence of (33). 2

We remark that in Lemma 3, since wh is the stabilized finite element solution of problem (25) with the source

function g := σu − ν∆u, we have for all vh ∈ Vh that

σ(wh, vh)0 + ν(∇wh,∇vh)0 −
∑
K∈Th

h2

σh2 + 12ν
(σwh − ν∆wh, σvh − ν∆vh)0,K

= (g, vh)0 −
∑
K∈Th

h2

σh2 + 12ν
(g, σvh − ν∆vh)0,K

= (σu − ν∆u, vh)0 −
∑
K∈Th

h2

σh2 + 12ν
(σu − ν∆u, σvh − ν∆vh)0,K

= σ(u, vh)0 + ν(∇u,∇vh)0 −
∑
K∈Th

h2

σh2 + 12ν
(σu − ν∆u, σvh − ν∆vh)0,K . (34)

To give error estimates of the the newly proposed stabilized FEM (5), we also need the following result about the

pressure p. A more general form of the result can be found in [9] (see Theorem A.2 on pp. 101-102).

Lemma 4. Assume that p ∈ H1(Ω) ∩ L2
0(Ω). Let p̃h ∈ Qh be the H1-seminorm projection of p on the finite element

space Qh, that is,

(∇p̃h,∇qh)0 = (∇p,∇qh)0 ∀ qh ∈ Qh. (35)

Then there exists a constant C > 0 independent of h such that

‖p − p̃h‖0 ≤ Ch‖p‖1. (36)

Moreover, if p ∈ H2(Ω) ∩ L2
0(Ω) then we have

h‖∇(p − p̃h)‖0 + ‖p − p̃h‖0 ≤ Ch2‖p‖2. (37)

Now, we are in the position to derive the error estimates of the newly proposed stabilized FEM (5).

Theorem 5. Let (u, p) ∈ (H1
0(Ω)∩H2(Ω))2× (H1(Ω)∩L2

0(Ω)) be the solution of problem (1) and (uh, ph) ∈ Vh×Qh ⊆

(H1
0(Ω))2 × (H1(Ω) ∩ L2

0(Ω)) the corresponding stabilized C0 piecewise linear (or bilinear) finite element solution

given by (5). Then there exists a constant C > 0 independent of ν, σ and h such that

‖u − uh‖0 ≤ C
((

h
√

h2 +
ν

σ
+

√
ν

σ

√
h2 +

ν

σ
+ h

√
ν

σ
+

h
√
σ

)
‖u‖2 +

h
√
σ
‖p‖1

)
, (38)

‖u − uh‖1 ≤ C
((

h +

√
ν

σ
+

√
νh

√
σh2 + 12ν

+
h

√
σh2 + 12ν

)
‖u‖2 +

h
√
σh2 + 12ν

‖p‖1

)
, (39)

‖p − ph‖0 ≤ C
((
ν

√
1 +

ν

σh2 + ν +
√
ν
)
‖u‖2 + (h +

√
ν)‖p‖1

)
, (40)

‖∇(p − ph)‖0 ≤ C
(
‖∇(p − p̃h)‖0 +

(
ν

√
1 +

ν

σh2 + ν +
√
ν
)
‖u‖2 +

√
ν‖p‖1

)
, (41)
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where p̃h ∈ Qh is the H1-seminorm projection of p on Qh given by (35). Moreover, if p ∈ H2(Ω)∩ L2
0(Ω) then we have

‖p − ph‖0 ≤ C
((
ν

√
1 +

ν

σh2 + ν +
√
ν
)
‖u‖2 + (h2 +

√
ν)‖p‖2

)
, (42)

‖∇(p − ph)‖0 ≤ C
((
ν

√
1 +

ν

σh2 + ν +
√
ν
)
‖u‖2 + (h +

√
ν)‖p‖2

)
. (43)

Proof. Let wh ∈ Vh and p̃h ∈ Qh be the functions stated in Lemma 3 and Lemma 4, respectively. Utilizing the inf-sup

estimate (9) and the orthogonality property (11), we have

‖(uh − wh, ph − p̃h)‖h ≤ sup
0,(vh,qh)∈Vh×Qh

B((uh − wh, ph − p̃h), (vh, qh))
‖(vh, qh)‖h

(44)

= sup
0,(vh,qh)∈Vh×Qh

B((u − wh, p − p̃h), (vh, qh))
‖(vh, qh)‖h

.

Since ∆wh|K = 0 for all K ∈ Th and ∆vh|K = 0 for all vh ∈ Vh and K ∈ Th, we obtain from Green’s formula [9], (34)

and (35) that

B((u − wh, p − p̃h), (vh, qh))

= σ(u − wh, vh)0 + ν(∇(u − wh),∇vh)0 − (p − p̃h,∇ · vh)0 − (∇ · (u − wh), qh)0

−
∑
K∈Th

h2

σh2 + 12ν
(σ(u − wh) − ν∆u + ∇(p − p̃h), σvh + ∇qh)0,K

+
∑
K∈Th

12ν
σh2 + 12ν

(∇ · (u − wh),∇ · vh)0,K

= σ(u − wh, vh)0 + ν(∇(u − wh),∇vh)0 + (∇(p − p̃h), vh)0 + (u − wh,∇qh)0

−
∑
K∈Th

h2

σh2 + 12ν
(σ(u − wh) − ν∆u + ∇(p − p̃h), σvh + ∇qh)0,K

+
∑
K∈Th

12ν
σh2 + 12ν

(∇ · (u − wh),∇ · vh)0,K

=
12ν

σh2 + 12ν
(∇(p − p̃h), vh)0 +

12ν
σh2 + 12ν

(u − wh,∇qh)0 −
h2

σh2 + 12ν
(−ν∆u,∇qh)0

+
12ν

σh2 + 12ν
(∇ · (u − wh),∇ · vh)0

=
12ν

σh2 + 12ν
( p̃h − p,∇ · vh)0 +

12ν
σh2 + 12ν

(u − wh,∇qh)0 −
h2

σh2 + 12ν
(−ν∆u,∇qh)0

+
12ν

σh2 + 12ν
(∇ · (u − wh),∇ · vh)0.

Applying Hölder inequality on B((u − wh, p − p̃h), (vh, qh)) with (31), (32) and (36), we have

B((u − wh, p − p̃h), (vh, qh)) ≤ C

√ 12ν
σh2 + 12ν

‖p − p̃h‖0 +
12ν

h
√
σh2 + 12ν

‖u − wh‖0

+
νh

√
σh2 + 12ν

‖∆u‖0 +

√
12ν

σh2 + 12ν
‖∇ · (u − wh)‖0

 ‖(vh, qh)‖h

≤ C
((

ν
√
σ

+
νh

√
σh2 + 12ν

+

√
νh

√
σh2 + 12ν

)
‖u‖2 +

√
νh

√
σh2 + 12ν

‖p‖1

)
‖(vh, qh)‖h.

11



Therefore, form (44) and the above estimate, we get

‖(uh − wh, ph − p̃h)‖h ≤ C
((

ν
√
σ

+
νh

√
σh2 + 12ν

+

√
νh

√
σh2 + 12ν

)
‖u‖2 +

√
νh

√
σh2 + 12ν

‖p‖1

)
,

which combined with the definition of energy norm (8) implies

‖∇(uh − wh)‖0 ≤ C
((√

ν

σ
+

√
νh

√
σh2 + 12ν

+
h

√
σh2 + 12ν

)
‖u‖2 +

h
√
σh2 + 12ν

‖p‖1

)
, (45)

‖(uh − wh)‖0 ≤ C
((√

ν

σ

√
h2 +

ν

σ
+ h

√
ν

σ
+

h
√
σ

)
‖u‖2 +

h
√
σ
‖p‖1

)
, (46)

‖∇(ph − p̃h)‖0 ≤ C
((
ν

√
1 +

ν

σh2 + ν +
√
ν
)
‖u‖2 +

√
ν‖p‖1

)
. (47)

Now the Poincaré-Friedrichs inequality [7, 9] ensures that

‖uh − wh‖1 ≤ C
((√

ν

σ
+

√
νh

√
σh2 + 12ν

+
h

√
σh2 + 12ν

)
‖u‖2 +

h
√
σh2 + 12ν

‖p‖1

)
, (48)

‖ph − p̃h‖0 ≤ C
((
ν

√
1 +

ν

σh2 + ν +
√
ν
)
‖u‖2 +

√
ν‖p‖1

)
. (49)

Finally, combining the triangle inequality with (31), (32), (36), (37) and (45)-(49) yields the conclusion. 2

Note that if the family {Th} of triangulations is quasi-uniform [4, 38, 39], then the error estimates (38)-(40) can be

further improved as follows:

Theorem 6. Let (u, p) ∈ (H1
0(Ω)∩H2(Ω))2× (H1(Ω)∩L2

0(Ω)) be the solution of problem (1) and (uh, ph) ∈ Vh×Qh ⊆

(H1
0(Ω))2 × (H1(Ω) ∩ L2

0(Ω)) the corresponding stabilized C0 piecewise linear (or bilinear) finite element solution

given by (5). Assume that the family {Th} of triangulations is quasi-uniform. Then there exists a constant C > 0

independent of ν, σ and h such that

‖u − uh‖0 ≤ Ch
((

h +

√
ν

σ
+

1
√
σ

)
‖u‖2 +

1
√
σ
‖p‖1

)
, (50)

‖u − uh‖1 ≤ Ch
((

1 +
1

√
σh2 + 12ν

)
‖u‖2 +

1
√
σh2 + 12ν

‖p‖1

)
, (51)

‖p − ph‖0 ≤ C
(
(ν +

√
ν)‖u‖2 + (h +

√
ν)‖p‖1

)
. (52)

Proof. The proof is very similar to that of Theorem 5, except we replace the finite element solution-projection

wh ∈ Vh stated in Lemma 3 with the usual L2 projection of u ontoVh. That is, let wh be the solution of

(u − wh, vh)0 = 0 ∀ vh ∈ Vh.

Since the family {Th} of triangulations is quasi-uniform, we have (cf. [4, 38, 39])

‖u − wh‖0 ≤ Ch2‖u‖2 and ‖∇(u − wh)‖0 ≤ Ch‖u‖2.

12



With a suitable adjustment in the argument for proving Theorem 5, we obtain

‖(uh − wh, ph − p̃h)‖h ≤ C
((√

νh +
νh

√
σh2 + 12ν

+

√
νh

√
σh2 + 12ν

)
‖u‖2 +

√
νh

√
σh2 + 12ν

‖p‖1

)
. (53)

Similar to that in Theorem 5, estimates (50) and (51) can be immediately derived from (53). On the other hand,

combining the Poincaré-Friedrichs inequality with (8), (53) and (47), we get that

‖ph − p̃h‖0 ≤ C‖∇(ph − p̃h)‖0

≤ C

(ν +
√
ν)‖u‖2 + min

ν
√

1 +
ν

σh2 , ν

√
1 +

σh2

ν

 ‖u‖2 +
√
ν‖p‖1


≤ C

(
(ν +

√
ν)‖u‖2 +

√
ν‖p‖1

)
. (54)

Now, estimate (52) follows from (54) with the triangle inequality and (36). 2

From the error estimates (38)-(43) and (50)-(52), we can find that the proposed stabilized FEM (5) using C0 piece-

wise P1-P1 (or Q1-Q1) elements is particularly suitable for the generalized Stokes system (1) with a small viscosity

ν and a large reaction coefficient σ. To the best of our knowledge, they have never been achieved before in the error

analysis of other stabilization methods in the literature.

Remark 3. In practical computations, there usually holds ν ≤ 1 ≤ σh2 for a certain range of h or the time step δt = h2

(i.e., σ = δt−1 = h−2) for all h. With this assumption, (38) and (39) can be rewritten as

‖u − uh‖0 ≤ Ch2(‖u‖2 + ‖p‖1), (55)

‖u − uh‖1 ≤ Ch(‖u‖2 + ‖p‖1), (56)

where C > 0 is independent of ν, σ and h. Note that, in (55), it does not require the usual assumption of a convex

domain. Also, note that no quasi-uniform meshes are required in (55) and (56).

Remark 4. From the continuous inf-sup condition [7],

sup
0,v∈(H1

0 (Ω))2

(∇ · v, q)0

‖v‖1
≥ C‖q‖0 ∀ q ∈ L2

0(Ω),

and (50), (51) and (54), we can further prove that

‖ph − p̃h‖0 ≤ C
(
h‖u‖2 + h‖p‖1 + h(ν +

√
ν)‖u‖2 + h

√
ν‖p‖1

+h
( 1
√
σh2 + 12ν

+
√
σh2 + 12ν +

√
σh + σh +

√
σν

)
‖u‖2

+h
( 1
√
σh2 + 12ν

+
√
σh2 + 12ν +

√
σh

)
‖p‖1

)
,
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which combined with the triangle inequality and (36) leads to

‖p − ph‖0 ≤ Ch
(
‖u‖2 + ‖p‖1 + (ν +

√
ν)‖u‖2 +

√
ν‖p‖1

+
( 1
√
σh2 + 12ν

+
√
σh2 + 12ν +

√
σh + σh +

√
σν

)
‖u‖2

+
( 1
√
σh2 + 12ν

+
√
σh2 + 12ν +

√
σh

)
‖p‖1

)
. (57)

Note that, in (57), the reaction coefficient σ is controlled by a factor h or a factor ν. Also, note that ‖p − ph‖0 is

bounded by the minimum of the right-hand sides of (52) and (57).

Remark 5. We remark that if σh2 � ν and 0 < ν � 1 then it is reasonable to neglect the div-div stabilization term

in the stabilized FEM (5) and in such case, method (5) will be reduced to the Barrenechea-Valentin stabilized FEM

(16), provided the mesh size h is replaced by the element-dependent parameter hK . However, without the divergence-

free stabilization effect, we are only able to derive less sharp error estimates than those obtained in Theorem 5. For

example, with a suitable adjustment in the argument for proving Theorem 5, we can only obtain

‖u − uh‖1 ≤ C
(
h +

1
σh

+

√
ν

σ

)
(‖u‖2 + ‖p‖1), (58)

where the term 1/σh will dominate in some cases. That is why we need to keep the div-div stabilization term in

method (5) even if the associated stabilization parameter 12ν/(σh2 +12ν) is very small when σh2 � ν and 0 < ν � 1.

Finally, we like to emphasize that, with the div-div stabilization term in (5), the error estimates given in Theorem 5

are valid for the entire range of the viscosity 0 < ν ≤ 1 as well as the entire range of the reaction coefficient σ ≥ 1.

Note that σ is inversely proportional to the time step δt.

Remark 6. Note that the stabilization parameters of the proposed stabilized FEM (5) is only designed for the C0

piecewise P1-P1 (or Q1-Q1) elements. If the higher-order finite elements are used, the stabilization parameters in the

method need to be redesigned. Indeed, quite similar to (19), we may design the two stabilization parameters as

h2

σh2 + (4ν/Ck)
and

(4ν/Ck)
σh2 + (4ν/Ck)

, (59)

where constant Ck takes value according to the local inverse inequality,

Ckh2
K‖∆vh‖

2
0,K ≤ ‖∇vh‖

2
0,K ∀ vh ∈ Vk, k ≥ 2,

and Vk ⊆ H1
0(Ω) denotes the C0 piecewise Pk finite element space. For example of k = 2, from [15] for various orders

of finite elements, one can find that C2 = 1/48. Thus, if σh2 � ν and 0 < ν � 1 then our stabilization parameters in

method (5) should be replaced by
h2

σh2 + 192ν
and

192ν
σh2 + 192ν

.

In the Example 1 of Section 4 below, we will provide some numerical results of the proposed stabilized FEM (5) with

the above new stabilization parameters and using C0 piecewise P2-P2 elements to verify its validness.
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Remark 7. The stabilization parameters in our stabilized FEM (5) are fixed and element-independent. This somehow

prevents the use of adaptive meshes. Based on our recent numerical experiences, for an adaptive mesh, it should

be better to use element-dependent stabilization parameters, i.e., replacing h by hK in the parameters. However, as

is often seen in the literature of stabilized FEMs, adaptive mesh computation seems to be generally unnecessary

for an effective stabilized FEM because accurate results can be already obtained even for boundary or interior layer

problems; see also an example depicted in Figure 11 below.

4. Numerical experiments

This section is devoted to numerical experiments to illustrate the super performance of the proposed stabilized

FEM (5) for the generalized Stokes system (1) with a small viscosity and a large reaction coefficient. The performance

of the proposed stabilized FEM (5) will be also evaluated against the results from the Barrenechea-Blasco (BB) method

(12), the Barrenechea-Valentin (BV) method (16), and the Bochev-Gunzburger-Lehoucq (BGL) method (20). We will

consider four test problems that are used in [1, 17, 30]. The relative errors of numerical solutions of the first example

will be calculated and the convergence rates will be estimated. By comparing the accuracy and stability, we may

conclude that the present stabilized FEM (5) achieves better results than the Barrenechea-Blasco method and the

Bochev-Gunzburger-Lehoucq method while comparable with the Barrenechea-Valentin method when σh2 � ν and

0 < ν � 1.

Example 1. (P1-P1 and P2-P2 finite elements) This example is quoted from [17]. We will first study the detailed

convergence behavior of various stabilized FEMs with P1-P1 finite elements on the unit square domain Ω = (0, 1) ×

(0, 1). We assume that the smooth exact solution (u, p) of problem (1) is given by

u1(x, y) = −256x2(x − 1)2y(y − 1)(2y − 1),

u2(x, y) = −u1(y, x),

p(x, y) = 150(x − 1/2)(y − 1/2).

Substituting the solution (u, p) into problem (1), we obtain the source-like function f . Notice that u = 0 on ∂Ω and∫
Ω

p = 0. We concentrate on the uniform triangular meshes of Ω. Here, a uniform triangular mesh is formed by

dividing each square, with side-length h∗ in a uniform square mesh, into two triangles by drawing a diagonal line from

the left-down corner to the right-up corner. Thus, we have hK = h =
√

2h∗ for all K ∈ Th.

Numerical results for ν = 10−`, ` = 2, 3, 4, and σ = 10m, m = 2, 3, 4, 5, are reported in Table 1 - Table 8, where

the convergence orders are estimated. From the numerical results, we may observe the following:

• The newly proposed stabilized FEM (5) using P1-P1 finite elements displays optimal orders of convergence

in the L2 norm and H1 norm for both velocity field and pressure. Moreover, the convergence behavior are

independent of the small viscosity ν and the large reaction coefficient σ. These observations are consistent with

the theoretical analysis given in Theorem 5 and Theorem 6. More importantly, the proposed method (5) also
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presents a robust behavior in the sense that no pressure instabilities appear, even if we use a rather coarse mesh

with h∗ = 1/20; see Figure 1 for the contours of pressure approximations.

• The Barrenechea-Valentin method (16) can produce robust results. Their convergence behavior are very similar

to those of the newly proposed stabilized FEM (5) when σh2 � ν and 0 < ν � 1.

• On the contrast, the convergence behavior of the Barrenechea-Blasco method (12) and the Bochev-Gunzburger-

Lehoucq method (20) are obviously dependent on the reaction coefficient σ. The accuracy and stability of both

methods are deteriorated when the reaction coefficient σ is getting larger. Meanwhile, the pressure oscillations

appear; see Figure 1.

The results depicted in Figure 1 are using a uniform triangulation with h∗ = 1/20. For further testing the per-

formance of various stabilized FEMs, we next consider the P1-P1 finite elements on an unstructured triangular mesh

that is depicted in Figure 2. This mesh is constructed by dividing each side of the square Ω into equal segments with

length h∗ = 1/20 and then using the FreeFem++ (see [42]) to generate an unstructured quasi-uniform mesh. In the

numerical simulation of the present stabilized FEM, the mesh parameter h is taken as h = h∗ = 1/20. The contour

plots of pressure approximations produced by various stabilized FEMs are displayed in Figure 3. Again, one can find

that the present stabilized FEM (5) and the Barrenechea-Valentin method (16) generate more accurate results with a

better stability than the numerical results produced by the other two stabilized FEMs when 0 < ν � 1 and σ � 1.

We now consider the proposed stabilized FEM (5) with the new stabilization parameters described in Remark 6

and using C0 piecewise P2-P2 finite elements on the uniform triangular meshes. The numerical results are reported

in Table 9 and Table 10. In this case, our stabilization method still shows superior accuracy and stability. We remark

that the Barrenechea-Valentin stabilized method using P2-P2 finite elements exhibits the similar behavior.
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Table 1. L2 relative errors of uh and ph produced by the proposed stabilized FEM (5) using P1-P1 finite elements for Example 1
with various viscosity ν and reaction coefficient σ.

L2 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 2.8661e-2 7.3342e-3 3.2841e-3 1.8549e-3 1.1904e-3 1.98

uh 10−2 103 2.6070e-2 6.6626e-3 2.9812e-3 1.6828e-3 1.0794e-3 1.98
104 2.5901e-2 6.6352e-3 2.9711e-3 1.6772e-3 1.0757e-3 1.98
105 2.5889e-2 6.6367e-3 2.9734e-3 1.6791e-3 1.0771e-3 1.98
102 2.8738e-2 7.3559e-3 3.2918e-3 1.8578e-3 1.1916e-3 1.98

uh 10−3 103 2.6073e-2 6.6626e-3 2.9803e-3 1.6816e-3 1.0782e-3 1.98
104 2.5902e-2 6.6353e-3 2.9711e-3 1.6772e-3 1.0756e-3 1.98
105 2.5889e-2 6.6367e-3 2.9734e-3 1.6791e-3 1.0771e-3 1.98
102 2.8746e-2 7.3587e-3 3.2931e-3 1.8584e-3 1.1916e-3 1.98

uh 10−4 103 2.6074e-2 6.6626e-3 2.9802e-3 1.6815e-3 1.0780e-3 1.98
104 2.5902e-2 6.6353e-3 2.9711e-3 1.6772e-3 1.0756e-3 1.98
105 2.5889e-2 6.6367e-3 2.9734e-3 1.6791e-3 1.0771e-3 1.98
102 4.1816e-3 8.3636e-4 3.3515e-4 1.9508e-4 1.3661e-4 2.01

ph 10−2 103 4.6320e-3 1.1110e-3 4.6547e-4 2.4804e-4 1.5393e-4 2.13
104 4.6973e-3 1.1755e-3 5.2090e-4 2.9182e-4 1.8604e-4 2.01
105 4.7042e-3 1.1829e-3 5.2810e-4 2.9870e-4 1.9248e-4 1.98
102 4.6380e-3 1.1155e-3 4.6547e-4 2.4273e-4 1.4367e-4 2.21

ph 10−3 103 4.6931e-3 1.1710e-3 5.1619e-4 2.8689e-4 1.8085e-4 2.03
104 4.6998e-3 1.1784e-3 5.2365e-4 2.9426e-4 1.8805e-4 2.00
105 4.7005e-3 1.1792e-3 5.2444e-4 2.9506e-4 1.8884e-4 2.00
102 4.6942e-3 1.1723e-3 5.1751e-4 2.8816e-4 1.8204e-4 2.03

ph 10−4 103 4.6998e-3 1.1784e-3 5.2362e-4 2.9423e-4 1.8802e-4 2.00
104 4.7005e-3 1.1791e-3 5.2439e-4 2.9501e-4 1.8880e-4 2.00
105 4.7005e-3 1.1792e-3 5.2447e-4 2.9509e-4 1.8888e-4 2.00
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Table 2. H1 relative errors of uh and ph produced by the proposed stabilized FEM (5) using P1-P1 finite elements for Example 1
with various viscosity ν and reaction coefficient σ.

H1 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 1.3861e-1 6.9221e-2 4.6113e-2 3.4571e-2 2.7650e-2 1.00

uh 10−2 103 1.3872e-1 6.9284e-2 4.6150e-2 3.4595e-2 2.7666e-2 1.00
104 1.3884e-1 6.9334e-2 4.6176e-2 3.4611e-2 2.7678e-2 1.00
105 1.3886e-1 6.9349e-2 4.6186e-2 3.4619e-2 2.7684e-2 1.00
102 1.3866e-1 6.9257e-2 4.6138e-2 3.4588e-2 2.7663e-2 1.00

uh 10−3 103 1.3872e-1 6.9289e-2 4.6155e-2 3.4599e-2 2.7671e-2 1.00
104 1.3884e-1 6.9334e-2 4.6176e-2 3.4612e-2 2.7679e-2 1.00
105 1.3886e-1 6.9349e-2 4.6187e-2 3.4619e-2 2.7684e-2 1.00
102 1.3866e-1 6.9263e-2 4.6143e-2 3.4593e-2 2.7667e-2 1.00

uh 10−4 103 1.3872e-1 6.9289e-2 4.6155e-2 3.4600e-2 2.7671e-2 1.00
104 1.3884e-1 6.9334e-2 4.6176e-2 3.4612e-2 2.7679e-2 1.00
105 1.3886e-1 6.9349e-2 4.6187e-2 3.4619e-2 2.7684e-2 1.00
102 6.9005e-2 3.4616e-2 2.3100e-2 1.7335e-2 1.3875e-2 1.00

ph 10−2 103 6.9000e-2 3.4607e-2 2.3091e-2 1.7327e-2 1.3868e-2 1.00
104 6.8999e-2 3.4603e-2 2.3086e-2 1.7320e-2 1.3860e-2 1.00
105 6.8999e-2 3.4603e-2 2.3084e-2 1.7318e-2 1.3857e-2 1.00
102 6.8994e-2 3.4599e-2 2.3081e-2 1.7315e-2 1.3854e-2 1.00

ph 10−3 103 6.8994e-2 3.4599e-2 2.3080e-2 1.7315e-2 1.3853e-2 1.00
104 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
105 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
102 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00

ph 10−4 103 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
104 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
105 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
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Table 3. L2 relative errors of uh and ph produced by the Barrenechea-Blasco stabilized FEM (12) using P1-P1 finite elements for
Example 1 with various viscosity ν and reaction coefficient σ, where we take α = 0.0125ν in (15).

L2 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 8.6701e-3 1.9436e-3 8.2304e-4 4.5120e-4 2.8416e-4 2.11

uh 10−2 103 7.7031e-3 1.8012e-3 7.7896e-4 4.3105e-4 2.7273e-4 2.07
104 7.4258e-3 1.7339e-3 7.5176e-4 4.1744e-4 2.6502e-4 2.06
105 7.7614e-3 1.7195e-3 7.4236e-4 4.1180e-4 2.6137e-4 2.08
102 8.9676e-3 2.0836e-3 8.8730e-4 4.8297e-4 3.0112e-4 2.11

uh 10−3 103 7.7121e-3 1.8082e-3 7.8481e-4 4.3587e-4 2.7665e-4 2.06
104 7.4265e-3 1.7344e-3 7.5215e-4 4.1778e-4 2.6533e-4 2.06
105 7.7595e-3 1.7194e-3 7.4238e-4 4.1182e-4 2.6139e-4 2.08
102 9.0125e-3 2.1243e-3 9.2142e-4 5.1045e-4 3.2281e-4 2.06

uh 10−4 103 7.7130e-3 1.8090e-3 7.8562e-4 4.3667e-4 2.7742e-4 2.06
104 7.4265e-3 1.7345e-3 7.5219e-4 4.1782e-4 2.6537e-4 2.06
105 7.7593e-3 1.7194e-3 7.4238e-4 4.1182e-4 2.6139e-4 2.08
102 9.1507e-3 2.5278e-3 1.2432e-3 7.6091e-4 5.2473e-4 1.74

ph 10−2 103 1.4595e-2 3.4338e-3 1.5381e-3 8.9108e-4 5.9263e-4 1.95
104 2.1717e-2 7.3508e-3 2.9011e-3 1.5246e-3 9.4269e-4 2.06
105 1.8790e+0 3.6349e-2 5.2678e-3 4.7110e-3 3.0482e-3 3.20
102 8.3593e-3 2.0200e-3 9.2813e-4 5.4874e-4 3.6966e-4 1.89

ph 10−3 103 1.4519e-2 3.3460e-3 1.4535e-3 8.1192e-4 5.1963e-4 2.05
104 2.2280e-2 7.4249e-3 2.9074e-3 1.5139e-3 9.2639e-4 2.09
105 1.8750e+0 3.4888e-2 5.8043e-3 5.0084e-3 3.2260e-3 3.16
102 8.2566e-3 1.9187e-3 8.3728e-4 4.7009e-4 3.0272e-4 2.03

ph 10−4 103 1.4512e-2 3.3368e-3 1.4440e-3 8.0237e-4 5.1012e-4 2.06
104 2.2338e-2 7.4325e-3 2.9081e-3 1.5128e-3 9.2470e-4 2.09
105 1.8746e+0 3.4746e-2 5.8645e-3 5.0405e-3 3.2453e-3 3.16
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Table 4. H1 relative errors of uh and ph produced by the Barrenechea-Blasco stabilized FEM (12) using P1-P1 finite elements for
Example 1 with various viscosity ν and reaction coefficient σ, where we take α = 0.0125ν in (15).

H1 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 1.4534e-1 7.1145e-2 4.7005e-2 3.5090e-2 2.7991e-2 1.02

uh 10−2 103 1.4236e-1 7.0451e-2 4.6783e-2 3.5001e-2 2.7950e-2 1.01
104 1.4111e-1 6.9950e-2 4.6497e-2 3.4821e-2 2.7831e-2 1.01
105 1.4019e-1 6.9708e-2 4.6358e-2 3.4723e-2 2.7757e-2 1.01
102 1.4728e-1 7.2780e-2 4.8127e-2 3.5853e-2 2.8528e-2 1.02

uh 10−3 103 1.4245e-1 7.0552e-2 4.6896e-2 3.5119e-2 2.8066e-2 1.01
104 1.4113e-1 6.9959e-2 4.6506e-2 3.4831e-2 2.7842e-2 1.01
105 1.4019e-1 6.9710e-2 4.6359e-2 3.4724e-2 2.7758e-2 1.01
102 1.4756e-1 7.3231e-2 4.8665e-2 3.6414e-2 2.9071e-2 1.01

uh 10−4 103 1.4246e-1 7.0564e-2 4.6911e-2 3.5136e-2 2.8087e-2 1.01
104 1.4113e-1 6.9960e-2 4.6507e-2 3.4832e-2 2.7843e-2 1.01
105 1.4019e-1 6.9710e-2 4.6359e-2 3.4724e-2 2.7758e-2 1.01
102 1.4161e-1 7.6863e-2 5.5806e-2 4.5025e-2 3.8473e-2 0.78

ph 10−2 103 1.9289e-1 9.7568e-2 6.6418e-2 5.1413e-2 4.2693e-2 0.91
104 1.4308e-1 1.3227e-1 9.5099e-2 7.3367e-2 5.9728e-2 0.69
105 4.3665e+0 1.7521e-1 5.8779e-2 8.1402e-2 7.8860e-2 1.59
102 1.3210e-1 6.4421e-2 4.4056e-2 3.4345e-2 2.8616e-2 0.91

ph 10−3 103 1.9239e-1 9.5588e-2 6.3313e-2 4.7427e-2 3.8029e-2 1.00
104 1.4434e-1 1.3227e-1 9.4602e-2 7.2506e-2 5.8554e-2 0.71
105 4.3565e+0 1.7227e-1 5.9684e-2 8.1834e-2 7.9040e-2 1.58
102 1.3087e-1 6.2004e-2 4.0794e-2 3.0556e-2 2.4556e-2 1.02

ph 10−4 103 1.9234e-1 9.5378e-2 6.2963e-2 4.6946e-2 3.7423e-2 1.02
104 1.4447e-1 1.3227e-1 9.4551e-2 7.2417e-2 5.8431e-2 0.71
105 4.3555e+0 1.7198e-1 5.9780e-2 8.1878e-2 7.9058e-2 1.58
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Table 5. L2 relative errors of uh and ph produced by the Barrenechea-Valentin stabilized FEM (16) using P1-P1 finite elements for
Example 1 with various viscosity ν and reaction coefficient σ.

L2 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 2.5919e-2 6.6300e-3 2.0264e-3 1.0281e-3 6.3035e-4 2.36

uh 10−2 103 2.5884e-2 6.6360e-3 2.9731e-3 1.6789e-3 1.0770e-3 1.98
104 2.5887e-2 6.6369e-3 2.9737e-3 1.6794e-3 1.0774e-3 1.98
105 2.5888e-2 6.6371e-3 2.9738e-3 1.6795e-3 1.0774e-3 1.98
102 2.5997e-2 6.6707e-3 2.9880e-3 1.6862e-3 1.0807e-3 1.98

uh 10−3 103 2.5888e-2 6.6373e-3 2.9739e-3 1.6796e-3 1.0775e-3 1.98
104 2.5888e-2 6.6371e-3 2.9738e-3 1.6795e-3 1.0774e-3 1.98
105 2.5888e-2 6.6371e-3 2.9738e-3 1.6795e-3 1.0774e-3 1.98
102 2.6006e-2 6.6777e-3 2.9945e-3 1.6919e-3 1.0857e-3 1.98

uh 10−4 103 2.5889e-2 6.6375e-3 2.9740e-3 1.6796e-3 1.0775e-3 1.98
104 2.5888e-2 6.6371e-3 2.9738e-3 1.6795e-3 1.0774e-3 1.98
105 2.5888e-2 6.6371e-3 2.9738e-3 1.6795e-3 1.0774e-3 1.98
102 4.0837e-3 7.6276e-4 2.4838e-4 1.2803e-4 7.9730e-5 2.40

ph 10−2 103 4.6297e-3 1.1057e-3 4.5659e-4 2.3535e-4 1.3768e-4 2.24
104 4.6972e-3 1.1752e-3 5.2024e-4 2.9080e-4 1.8463e-4 2.02
105 4.7042e-3 1.1828e-3 5.2804e-4 2.9862e-4 1.9236e-4 1.98
102 4.6254e-3 1.1014e-3 4.5253e-4 2.3156e-4 1.3419e-4 2.26

ph 10−3 103 4.6929e-3 1.1708e-3 5.1587e-4 2.8650e-4 1.8040e-4 2.04
104 4.6998e-3 1.1784e-3 5.2364e-4 2.9425e-4 1.8803e-4 2.00
105 4.7005e-3 1.1792e-3 5.2444e-4 2.9506e-4 1.8884e-4 2.00
102 4.6929e-3 1.1708e-3 5.1583e-4 2.8646e-4 1.8035e-4 2.04

ph 10−4 103 4.6998e-3 1.1784e-3 5.2360e-4 2.9421e-4 1.8799e-4 2.00
104 4.7005e-3 1.1791e-3 5.2439e-4 2.9501e-4 1.8880e-4 2.00
105 4.7005e-3 1.1792e-3 5.2447e-4 2.9509e-4 1.8888e-4 2.00
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Table 6. H1 relative errors of uh and ph produced by the Barrenechea-Valentin stabilized FEM (16) using P1-P1 finite elements for
Example 1 with various viscosity ν and reaction coefficient σ.

H1 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 1.3891e-1 6.9326e-2 4.6071e-2 3.4547e-2 2.7636e-2 1.00

uh 10−2 103 1.3886e-1 6.9345e-2 4.6183e-2 3.4615e-2 2.7680e-2 1.00
104 1.3886e-1 6.9350e-2 4.6188e-2 3.4612e-2 2.7685e-2 1.00
105 1.3886e-1 6.9351e-2 4.6189e-2 3.4621e-2 2.7685e-2 1.00
102 1.3900e-1 6.9412e-2 4.6220e-2 3.4637e-2 2.7694e-2 1.00

uh 10−3 103 1.3886e-1 6.9351e-2 4.6188e-2 3.4620e-2 2.7685e-2 1.00
104 1.3886e-1 6.9351e-2 4.6189e-2 3.4621e-2 2.7685e-2 1.00
105 1.3886e-1 6.9351e-2 4.6189e-2 3.4621e-2 2.7686e-2 1.00
102 1.3901e-1 6.9428e-2 4.6239e-2 3.4658e-2 2.7714e-2 1.00

uh 10−4 103 1.3886e-1 6.9352e-2 4.6189e-2 3.4621e-2 2.7686e-2 1.00
104 1.3886e-1 6.9351e-2 4.6189e-2 3.4621e-2 2.7686e-2 1.00
105 1.3886e-1 6.9351e-2 4.6189e-2 3.4621e-2 2.7686e-2 1.00
102 6.9001e-2 3.4606e-2 2.3085e-2 1.7317e-2 1.3855e-2 1.00

ph 10−2 103 6.8998e-2 3.4602e-2 2.3084e-2 1.7318e-2 1.3856e-2 1.00
104 6.8999e-2 3.4603e-2 2.3084e-2 1.7318e-2 1.3856e-2 1.00
105 6.8999e-2 3.4603e-2 2.3084e-2 1.7318e-2 1.3856e-2 1.00
102 6.8994e-2 3.4599e-2 2.3081e-2 1.7315e-2 1.3853e-2 1.00

ph 10−3 103 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
104 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
105 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
102 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00

ph 10−4 103 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
104 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
105 6.8994e-2 3.4599e-2 2.3080e-2 1.7314e-2 1.3853e-2 1.00
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Table 7. L2 relative errors of uh and ph produced by the Bochev-Gunzburger-Lehoucq stabilized FEM (20) using P1-P1 finite
elements for Example 1 with various viscosity ν and reaction coefficient σ, where we take δ = 0.05 in (23).

L2 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 7.8793e-3 1.8241e-3 7.8577e-4 4.3469e-4 2.7537e-4 2.07

uh 10−2 103 7.4884e-3 1.7497e-3 7.5763e-4 4.2005e-4 2.6631e-4 2.06
104 7.4842e-3 1.7189e-3 7.4412e-4 4.1301e-4 2.6218e-4 2.07
105 8.9021e-3 1.7630e-3 7.4492e-4 4.1153e-4 2.6086e-4 2.14
102 7.9561e-3 1.8599e-3 8.0257e-4 4.4301e-4 2.7966e-4 2.07

uh 10−3 103 7.4971e-3 1.7544e-3 7.6102e-4 4.2264e-4 2.6831e-4 2.06
104 7.4795e-3 1.7192e-3 7.4442e-4 4.1324e-4 2.6237e-4 2.07
105 8.8961e-3 1.7613e-3 7.4460e-4 4.1147e-4 2.6085e-4 2.14
102 7.9685e-3 1.8716e-3 8.1251e-4 4.5112e-4 2.8617e-4 2.06

uh 10−4 103 7.4980e-3 1.7550e-3 7.6152e-4 4.2310e-4 2.6875e-4 2.06
104 7.4791e-3 1.7192e-3 7.4445e-4 4.1327e-4 2.6239e-4 2.07
105 8.8955e-3 1.7611e-3 7.4457e-4 4.1146e-4 2.6085e-4 2.14
102 3.6430e-3 9.5152e-4 4.5788e-4 2.7916e-4 1.9248e-4 1.78

ph 10−2 103 5.9406e-3 1.3442e-3 5.8378e-4 3.3392e-4 2.2065e-4 2.00
104 7.0683e-2 2.2240e-3 1.3530e-3 7.1754e-4 4.2669e-4 2.69
105 4.9228e+0 2.7612e-1 3.3948e-2 6.1624e-3 1.5979e-3 5.33
102 3.5251e-3 8.5488e-4 3.8281e-4 2.1957e-4 1.4404e-4 1.96

ph 10−3 103 6.0700e-3 1.3255e-3 5.5430e-4 3.0473e-4 1.9354e-4 2.11
104 6.8462e-2 2.6044e-3 1.5157e-3 7.8883e-4 4.5951e-4 2.69
105 4.9156e+0 2.7142e-1 3.1402e-2 4.4906e-3 2.4669e-4 7.32
102 3.5111e-3 8.3979e-4 3.6855e-4 2.0655e-4 1.3225e-4 2.03

ph 10−4 103 6.0834e-3 1.3234e-3 5.5093e-4 3.0115e-4 1.8995e-4 2.13
104 6.8244e-2 2.6558e-3 1.5363e-3 7.9862e-4 4.6466e-4 2.68
105 4.9148e+0 2.7096e-1 3.1162e-2 4.3503e-3 1.8956e-4 7.60
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Table 8. H1 relative errors of uh and ph produced by the Bochev-Gunzburger-Lehoucq stabilized FEM (20) using P1-P1 finite
elements for Example 1 with various viscosity ν and reaction coefficient σ, where we take δ = 0.05 in (23).

H1 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 1.4249e-1 7.0283e-2 4.6601e-2 3.4849e-2 2.7829e-2 1.01

uh 10−2 103 1.4147e-1 7.0043e-2 4.6528e-2 3.4826e-2 2.7822e-2 1.01
104 1.4052e-1 6.9777e-2 4.6391e-2 3.4744e-2 2.7771e-2 1.01
105 1.3981e-1 6.9596e-2 4.6311e-2 3.4694e-2 2.7735e-2 1.00
102 1.4324e-1 7.0898e-2 4.7059e-2 3.5189e-2 2.8087e-2 1.01

uh 10−3 103 1.4156e-1 7.0126e-2 4.6611e-2 3.4906e-2 2.7898e-2 1.01
104 1.4054e-1 6.9788e-2 4.6400e-2 3.4753e-2 2.7780e-2 1.01
105 1.3982e-1 6.9599e-2 4.6313e-2 3.4695e-2 2.7736e-2 1.00
102 1.4334e-1 7.1042e-2 4.7228e-2 3.5366e-2 2.8261e-2 1.01

uh 10−4 103 1.4157e-1 7.0136e-2 4.6622e-2 3.4918e-2 2.7912e-2 1.01
104 1.4054e-1 6.9789e-2 4.6401e-2 3.4754e-2 2.7781e-2 1.01
105 1.3982e-1 6.9599e-2 4.6313e-2 3.4696e-2 2.7736e-2 1.00
102 8.0403e-2 4.1180e-2 2.8426e-2 2.2137e-2 1.8386e-2 0.90

ph 10−2 103 8.4342e-2 4.5200e-2 3.0908e-2 2.3746e-2 1.9487e-2 0.91
104 2.2742e-1 3.9764e-2 3.4014e-2 2.7873e-2 2.3290e-2 1.10
105 8.5961e+0 7.3717e-1 1.3700e-1 3.5321e-2 1.4398e-2 4.11
102 7.9687e-2 3.9673e-2 2.6550e-2 2.0061e-2 1.6200e-2 0.98

ph 10−3 103 8.4605e-2 4.4822e-2 3.0151e-2 2.2709e-2 1.8237e-2 0.97
104 2.2241e-1 4.0260e-2 3.4228e-2 2.7864e-2 2.3125e-2 1.10
105 8.5782e+0 7.2564e-1 1.3188e-1 3.2910e-2 1.3859e-2 4.12
102 7.9597e-2 3.9438e-2 2.6207e-2 1.9638e-2 1.5716e-2 1.01

ph 10−4 103 8.4631e-2 4.4780e-2 3.0065e-2 2.2583e-2 1.8075e-2 0.97
104 2.2192e-1 4.0316e-2 3.4251e-2 2.7862e-2 2.3107e-2 1.10
105 8.5764e+0 7.2450e-1 1.3140e-1 3.2708e-2 1.3853e-2 4.11
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Figure 1. Contours of P1 pressure approximations produced by various stabilized FEMs on a uniform triangular mesh with h∗ =

1/20 for Example 1, where ν = 10−3 and σ = 10m for m = 2, 3, 4, 5.
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Figure 2. An unstructured triangular mesh with h∗ = 1/20.
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Figure 3. Contours of P1 pressure approximations produced by various stabilized FEMs on an unstructured triangular mesh with
h∗ = 1/20 for Example 1, where ν = 10−3 and σ = 10m for m = 2, 3, 4, 5.
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Table 9. L2 relative errors of uh and ph produced by the proposed stabilized FEM (5) with new stabilization parameters given in
Remark 6 and using P2-P2 finite elements for Example 1 with various viscosity ν and reaction coefficient σ.

L2 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 9.4692e-4 1.1085e-4 2.7520e-5 9.9262e-6 4.4804e-6 3.41

uh 10−2 103 3.8520e-4 5.9588e-5 1.8569e-5 7.6618e-6 3.7458e-6 2.96
104 3.0629e-4 3.9170e-5 1.1832e-5 5.0837e-6 2.6429e-6 2.95
105 3.0413e-4 3.8400e-5 1.1405e-5 4.8169e-6 2.4683e-6 2.99
102 1.4338e-3 2.8902e-4 9.9812e-5 4.3261e-5 2.1534e-5 2.74

uh 10−3 103 3.9789e-4 7.3201e-5 2.8667e-5 1.4615e-5 8.4921e-6 2.38
104 3.0630e-4 3.9222e-5 1.1911e-5 5.1781e-6 2.7437e-6 2.91
105 3.0413e-4 3.8400e-5 1.1405e-5 4.8170e-6 2.4684e-6 2.99
102 1.5252e-3 3.6341e-4 1.5454e-4 8.2463e-5 4.9626e-5 2.16

uh 10−4 103 3.9935e-4 7.5310e-5 3.0868e-5 1.6729e-5 1.0450e-5 2.21
104 3.0630e-4 3.9228e-5 1.1921e-5 5.1903e-6 2.7585e-6 2.91
105 3.0413e-4 3.8400e-5 1.1405e-5 4.8170e-6 2.4684e-6 2.99
102 6.8153e-5 1.2327e-5 4.2006e-6 1.9737e-6 1.1261e-6 2.57

ph 10−2 103 5.6732e-5 1.3429e-5 4.8216e-6 2.2373e-6 1.2410e-6 2.48
104 3.5619e-5 9.4945e-6 4.2398e-6 2.3070e-6 1.3993e-6 2.06
105 3.2941e-5 8.3672e-6 3.7302e-6 2.0944e-6 1.3328e-6 2.00
102 2.0044e-5 8.5588e-6 4.7962e-6 2.8754e-6 1.8012e-6 1.63

ph 10−3 103 7.3820e-6 2.9967e-6 1.7227e-6 1.1271e-6 7.8846e-7 1.44
104 3.6352e-6 1.0378e-6 5.1707e-7 3.2105e-7 2.2333e-7 1.70
105 3.3001e-6 8.4290e-7 3.7933e-7 2.1579e-7 1.3961e-7 1.96
102 2.4374e-6 1.4520e-6 1.1811e-6 1.0241e-6 8.9359e-7 0.59

ph 10−4 103 7.6179e-7 3.4101e-7 2.2616e-7 1.7528e-7 1.4718e-7 0.96
104 3.6429e-7 1.0482e-7 5.3006e-8 3.3645e-8 2.4091e-8 1.64
105 3.3007e-7 8.4353e-8 3.7998e-8 2.1648e-8 1.4031e-8 1.96
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Table 10. H1 relative errors of uh and ph produced by the proposed stabilized FEM (5) with new stabilization parameters given in
Remark 6 and using P2-P2 finite elements for Example 1 with various viscosity ν and reaction coefficient σ.

H1 error ν σ h∗ = 1/20 1/40 1/60 1/80 1/100 order
102 1.7633e-2 4.2320e-3 1.6024e-3 7.8450e-4 4.5086e-4 2.35

uh 10−2 103 8.4195e-3 2.5229e-3 1.1765e-3 6.5096e-4 4.0123e-4 1.96
104 7.2907e-3 1.8475e-3 8.3219e-4 4.7437e-4 3.0707e-4 1.96
105 7.2700e-3 1.8255e-3 8.1215e-4 4.5709e-4 2.9267e-4 2.00
102 2.7077e-2 1.1251e-2 5.8745e-3 3.4048e-3 2.1212e-3 1.72

uh 10−3 103 8.6306e-3 3.0273e-3 1.7537e-3 1.1864e-3 8.6003e-4 1.41
104 7.2908e-3 1.8492e-3 8.3617e-4 4.8082e-4 3.1579e-4 1.94
105 7.2700e-3 1.8255e-3 8.1215e-4 4.5710e-4 2.9269e-4 2.00
102 2.8886e-2 1.4241e-2 9.1776e-3 6.5602e-3 4.9476e-3 1.13

uh 10−4 103 8.6551e-3 3.1072e-3 1.8831e-3 1.3544e-3 1.0558e-3 1.24
104 7.2908e-3 1.8494e-3 8.3663e-4 4.8166e-4 3.1709e-4 1.93
105 7.2700e-3 1.8255e-3 8.1215e-4 4.5710e-4 2.9269e-4 2.00
102 5.1157e-4 2.9735e-4 2.1264e-4 1.6491e-4 1.3433e-4 0.85

ph 10−2 103 6.2157e-4 3.2211e-4 2.1964e-4 1.6734e-4 1.3531e-4 0.95
104 6.6167e-4 3.4092e-4 2.2877e-4 1.7208e-4 1.3793e-4 0.98
105 6.6603e-4 3.4413e-4 2.3102e-4 1.7370e-4 1.3913e-4 0.98
102 6.2239e-5 3.6364e-5 2.4296e-5 1.7634e-5 1.3716e-5 1.00

ph 10−3 103 6.2189e-5 3.1916e-5 2.1620e-5 1.6417e-5 1.3250e-5 0.96
104 6.6193e-5 3.4089e-5 2.2860e-5 1.7182e-5 1.3761e-5 0.98
105 6.6608e-5 3.4416e-5 2.3103e-5 1.7371e-5 1.3913e-5 0.98
102 6.8364e-6 5.0213e-6 4.2581e-6 3.7151e-6 3.2564e-6 0.48

ph 10−4 103 6.2212e-6 3.1977e-6 2.1807e-6 1.6779e-6 1.3796e-6 0.92
104 6.6196e-6 3.4089e-6 2.2858e-6 1.7179e-6 1.3758e-6 0.98
105 6.6609e-6 3.4416e-6 2.3103e-6 1.7371e-6 1.3913e-6 0.98
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Example 2. (Q1-Q1 finite elements) This example is taken from [30] with a slight modification to keep
∫

Ω
p = 0. We

consider problem (1) on the unit square domain Ω = (0, 1) × (0, 1) with the following smooth exact solution:

u1(x, y) = 100x2(1 − x)2(2y − 6y2 + 4y3),

u2(x, y) = −u1(y, x),

p(x, y) = 100(x − x2) −
100

6
.

Then u = 0 on ∂Ω and
∫

Ω
p = 0. In this example, we verify the convergence behavior of various stabilized FEMs using

Q1-Q1 finite elements. It is no surprise that we reach conclusions similar to those obtained in Example 1. In summary,

by examining the accuracy and stability, we find that the present stabilized FEM and the Barrenechea-Valentin method

can achieve better convergence behavior than the Barrenechea-Blasco method and the Bochev-Gunzburger-Lehoucq

method when 0 < ν � 1 andσ � 1. In Figure 4, we display the contour plots of Q1 pressure approximations produced

by various stabilized FEMs on a uniform square mesh with h∗ = 1/20 for ν = 10−3 and σ = 10m, m = 2, 3, 4, 5. Again,

we may observe that the pressure instabilities appear in the Barrenechea-Blasco method and the Bochev-Gunzburger-

Lehoucq method when the reaction coefficient σ is sufficiently large.

Example 3. (P1-P1 finite elements) We study another example that is tested in [1]. Consider the generalized Stokes

system (1) on the domain Ω = (0, 1) × (0, 1) with the following smooth exact solution:

u1(x, y) = 2πx2(1 − x)2 cos(πy) sin(πy),

u2(x, y) = 2(1 − x)(2x2 − x) sin2(πy),

p(x, y) = sin(x) cos(y) + (cos(1) − 1) sin(1).

One can check that u = 0 on ∂Ω and
∫

Ω
p = 0. We perform the numerical simulations using P1-P1 finite elements

on the uniform triangular meshes as that described in Example 1. Once again, we find that the pressure instabilities

appear in the Barrenechea-Blasco and the Bochev-Gunzburger-Lehoucq methods when the reaction coefficient σ is

large enough; see Figure 5.

Example 4. (The lid-driven cavity problem using P1-P1 finite elements) Let I = (0,T ) denote the time interval under

consideration and Ω = (0, 1) × (0, 1) the given spatial domain. In this example, we first study the time-dependent

lid-driven cavity problem governed by the following time-dependent, incompressible Stokes equations (cf. [30]):

∂u
∂t
− ν∆u + ∇p = f in I ×Ω,

∇ · u = 0 in I ×Ω,

u = 0 on I × (∂Ω \ ([0, 1] × {1})),
u = (1, 0)> on I × ([0, 1] × {1}),
u = u0 on {0} ×Ω,

(60)

where we set the source function f = 0 in I × Ω and the initial condition u0 = 0 in {0} × Ω. See Figure 6 for the

statement of the boundary conditions.
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Figure 4. Contours of Q1 pressure approximations produced by various stabilized FEMs on a uniform square mesh with h∗ = 1/20
for Example 2, where ν = 10−3 and σ = 10m for m = 2, 3, 4, 5.
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Figure 5. Contours of P1 pressure approximations produced by various stabilized FEMs on a uniform triangular mesh with h∗ =

1/20 for Example 3, where ν = 10−3 and σ = 10m for m = 2, 3, 4, 5.
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Let 0 = t0 < t1 < · · · < t`−1 < t` = T be a a subdivision of the time interval (0,T ) with a constant time step

δt = tn − tn−1 for n = 1, 2, · · · , `. Then we set σ = 1/δt. For any n ≥ 1, the unknowns un
h and pn

h at time step n

are computed by induction, using values at the previous time step. The time discretization is performed by using,

for example, the first-order backward Euler scheme and the spatial discretization is carried out by employing, for

example, the newly proposed stabilized FEM (5), then we have the following fully discrete problem at time step n:

σ(un
h, vh)0 + ν(∇un

h,∇vh)0 − (pn
h,∇ · vh)0 − (∇ · un

h, qh)0

−
∑
K∈Th

h2

σh2 + 12ν
(σun

h − ν∆un
h + ∇pn

h, σvh − ν∆vh + ∇qh)0,K +
∑
K∈Th

12ν
σh2 + 12ν

(∇ · un
h,∇ · vh)0,K

= ( f n + σun−1
h , vh)0 −

∑
K∈Th

h2

σh2 + 12ν
( f n + σun−1

h , σvh − ν∆vh + ∇qh)0,K ∀ (vh, qh) ∈ Vh × Qh, (61)

where un
h is required to satisfy the prescribed boundary conditions. In the following simulations, we will consider

various stabilized FEMs with P1-P1 finite elements on a uniform triangular mesh, as that described in Example 1.

We first consider the case of ν = 10−4, δt = 10−4 and h∗ = 1/40. In such case, we have δt � h =
√

2h∗ and

ν � σh2 = 12.5. The pressure contours at the first, 5th, 10th and the 100th time steps produced by various stabilized

FEMs are depicted in Figure 7. From Figure 7, we may observe that all methods display comparable results at the

first time step. However, we also find that a large instability occurs at the regions near two top corners in both the

Barrenechea-Blasco method (12) and the Bochev-Gunzburger-Lehoucq method (20) as the time evolves, while the

other two methods still retain high robustness.

Next, we study the case of ν = 10−2, δt = 2/100 and h∗ = 1/100. Notice that in this case, we have δt > h =
√

2h∗

and ν = σh2 = 10−2. The pressure contours are depicted in Figure 8. Again, we find that the proposed stabilized

FEM (5) and the Barrenechea-Valentin method (16) still retain their high stability as the time evolves. However, the

stability of the pressure approximations produced by the other two stabilization methods are completely lost.

We now perform the simulations of the present stabilized FEM (5) and the Barrenechea-Valentin method (16) to

reach a steady state. The stopping criterion for the time advancing is given by

‖un
h − un−1

h ‖0

‖un
h‖0

< 10−5.

The contours of stream function and pressure at the steady state are depicted in Figure 9 and Figure 10, where the

time T reaching the steady state is also indicated in each figure. As we have seen before, these two stabilized FEMs

show a very similar behavior.

Finally, we consider a time-independent lid-driven cavity problem. We solve the generalized Stokes equations (1),

but with the boundary condition described in Figure 6, using P1-P1 finite elements on a uniform triangular mesh of

mesh size h∗ = 1/20. In Figure 11, we show a vertical cross section of the velocity component u1 of the lid-driven

cavity problem with ν = 10−3 and σ = 103, comparing the solutions of the present method (5) and the Barrenechea-

Valentin method (16). One can observe the presence of a boundary layer on the velocity that is well recovered by both

stabilization methods, even we use a rather coarse mesh.
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u1 = 0,  u2 = 0

u1=0
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u1 = 1,  u2 = 0

 

Figure 6. Statement of the boundary conditions of the lid-driven cavity problem for t ∈ [0,T ].
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Figure 7. Contours of P1 pressure approximations at the first, 5th, 10th and 100th time steps produced by various stabilized FEMs
on a uniform triangular mesh with h∗ = 1/40 for the time-dependent lid-driven cavity problem, where ν = 10−4 and δt = 10−4

(σ = 104).
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Figure 8. Contours of P1 pressure approximations at the first, 5th, 10th and 100th time steps produced by various stabilized FEMs
on a uniform triangular mesh with h∗ = 1/100 for the time-dependent lid-driven cavity problem, where ν = 10−2 and δt = 2/100
(σ = 50).
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Figure 9. Contours of stream function and pressure at the steady state produced by the present stabilized FEM and the Barrenechea-
Valentin method on a uniform triangular mesh with h∗ = 1/40 for the time-dependent lid-driven cavity problem, where ν = 10−4

and δt = 10−4 (σ = 104).
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Figure 10. Contours of stream function and pressure at the steady state produced by the present stabilized FEM and the
Barrenechea-Valentin method on a uniform triangular mesh with h∗ = 1/100 for the time-dependent lid-driven cavity problem,
where ν = 10−2 and δt = 2/100 (σ = 50).
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Figure 11. Vertical cross section of the velocity component u1 at x = 0.5 of the time-independent lid-driven cavity problem with
ν = 10−3 and σ = 103.
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5. Summary and conclusions

In this paper, we have proposed a novel stabilized FEM for the generalized Stokes system with a small viscosity

and a large reaction coefficient. This system arises from the time-discretization of transient Stokes problem with

a small time step, as discretized in practical problems of fast reaction. The unstable and inaccurate finite element

pressure solutions may be caused when the finite element inf-sup stabilization is applied to solve the system. More

precisely, when the magnitude of the viscosity, the reaction coefficient, and the mesh size are not balanced suitably,

pressure instability and less accuracy would happen. The proposed stabilized FEM employs the C0 piecewise P1 (or

Q1) elements for both velocity field and pressure on the same mesh and uses the residuals of the momentum equation

and the divergence-free equation to define the stabilization terms, in which the stabilization parameters are fixed and

element-independent, without a comparison of the viscosity, the reaction coefficient and the mesh size.

We have used the finite element solution of an auxiliary boundary value problem as the interpolating function

for velocity and the H1-seminorm projection for pressure, instead of the usual nodal interpolants, to derive the error

estimates of the stabilized finite element solutions in the L2 and H1 norms. Moreover, we have explicitly established

the dependence of error bounds on the viscosity, the reaction coefficient and the mesh size. Based on the error analysis,

we have found that the proposed stabilized FEM is particularly suitable for generalized Stokes systems with a small

viscosity and a large reaction coefficient. To the best of our knowledge, it has never been achieved before in the error

analysis of other stabilization methods in the literature. We have also compared numerically the effectiveness of the

proposed method with three existing stabilization methods, including the Barrenechea-Blasco stabilized FEM [30],

the Barrenechea-Valentin stabilized FEM [17], and the Bochev-Gunzburger-Lehoucq stabilized FEM [1]. We have

found that in addition to its theoretical suitability for problems with a small viscosity and a large reaction coefficient,

the proposed stabilized FEM can achieve better accuracy and stability when compared with the Barrenechea-Blasco

and the Bochev-Gunzburger-Lehoucq methods, while it is comparable with the Barrenechea-Valentin method in the

case of σh2 � ν and ν � 1.

Finally, we conclude this paper with the following two remarks:

• By a close inspection, one can find that the Barrenechea-Valentin stabilized FEM (16) is essentially similar to

the newly proposed stabilized FEM (5) when σh2 � ν and ν � 1, except it does not contain the divergence-

free stabilization term and its stabilization parameter is element-dependent. The numerical results reported in

Section 4 also show that these two methods exhibit a very similar convergence behavior. Unfortunately, in

[17], the authors did not give sharp error estimates with respect to ν and σ. We believe that using the same

techniques developed in this paper with some additional assumption on the triangulations, such as the quasi-

uniformity [4, 7, 38], one can improve largely the error estimates given in [17].

• In our recent work [40], we have provided some sharp error estimates for the scalar reaction-convection-

diffusion equation with a small diffusivity and a large reaction coefficient. Combining the results derived in
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[40] with the similar idea given in this paper, one may give some sharp error estimates of the incompressible

Oseen-type problem for 0 < ν � 1 and σ � 1, where finite element stabilization serves the dual purpose of

avoiding the inf-sup condition and providing the upwinding necessary for the convection terms.

For these two issues, the efforts are in progress and we will report the results in the near future.
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