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Abstract. By constructing an infinite graph-directed iterated iterated function system
associated with a finite iterated function system, we develop a new approach for proving the
differentiability of the Lq-spectrum and establishing the multifractal formalism of certain
self-similar measures with overlaps, especially those defined by similitudes with different
contraction ratios. We apply our technique to a well-known class of self-similar measures of
generalized finite type.

1. Introduction

The idea and physical significance of multifractal measures have their origins in the work

of Mandelbrot [20] in the 1970’s. In the 1980’s physicists (see [8–10] and references therein)

proposed the so-called multifractal formalism, which allows one to obtain the dimension of

the multifractal components of the support of a measure by taking the Legendre transform

of its Lq-spectrum.

Let µ be a finite Borel measure on Rn with compact support. For q ∈ R, the Lq-spectrum

of µ is defined as

τ(q) = τµ(q) := lim inf
δ→0+

log
(

sup
∑

i µ(Bδ(xi))
q
)

log δ
, (1.1)

where the supremum is taken over all families of disjoint balls Bδ(xi) of radius δ and center

xi ∈ supp(µ).

The Lq-spectrum is one of the basic ingredients in studying multifractal phenomena.

Heuristically, if τ(q) is differentiable, then by varying q, one might be able to extract different
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multifractal components

K(α) :=
{
x ∈ supp(µ) : lim

δ→0+

log µ(Bδ(x))

log δ
= α

}
, α = τ ′(q),

that dominate the sum
∑

i µ(Bδ(xi))
q in (1.1). More precisely, we say that the multifractal

formalism holds if the Legendre transform of τ(q), defined as τ ∗(α) := inf{qα−τ(q) : q ∈ R},
equals the Hausdorff dimension of K(α), i.e.,

dimHK
(α) = τ ∗(α). (1.2)

It is well known that if µ is a self-similar measure defined by an iterated function system

(IFS) of contractive similitudes {Si}mi=1 satisfying the open set condition (OSC) [12], τ(q)

can be calculated by an explicit formula and is differentiable on R [1,3]. We refer the reader

to [1,3,7,15,25] for some further properties and results concerning the Lq-spectrum and the

multifractal formalism.

We say that an IFS has overlaps if it does not satisfy the open set condition. In this case,

it is much harder to obtain a formula for τ(q) and it is not known whether the multifractal

formalism holds in general. Nevertheless, Lau and Ngai [15] proved that (1.2) holds if the

IFS satisfies the weak separation condition (WSC) and α = τ ′(q) where q ≥ 0. (WSC) is

strictly weaker than (OSC) and is satisfied by many interesting IFSs with overlaps. Feng

and Lau [7] proved that for IFSs of contractive similitudes satisfying (WSC) there exists

an open ball such that the Lq-spectrum obtained by restricting the measure to it behaves

more nicely, and using this they proved the multifractal formalism for the original measure

in the range q ≥ 0. It is also worth mentioning that Feng [6] showed, without assuming any

separation condition, that if α = τ ′(q) is differentiable at some q > 1, then the multifractal

formalism holds for the corresponding α.

For iterated function systems with overlaps, the differentiability of τ(q) remains an inter-

esting and largely unsolved problem. Lau and Ngai showed that for the infinite Bernoulli

convolution associated with the golden ratio [14] and a class of convolutions of the Cantor

measure [16], τ(q) is differentiable in the region q > 0. Feng [5] showed that for a class of

Pisot numbers, τ(q) is differentiable for all q ∈ R. The existence of a nondifferentiable point

q0 < 0 was proved for the infinite Bernoulli convolution associated by the golden ratio by

Feng [5] and for the three-fold convolution of the Cantor measure by Lau and Wang [18].

Feng [4] proved that for equicontractive IFSs on R satisfying the finite type condition [23],

τ(q) is differentiable on (0,∞).
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In this paper we study the differentiability of τ(q) for IFSs with overlaps without assuming

that the contraction ratios of the IFSs maps are the same. We will assume the generalized

finite type condition [13,17]. Our basic idea is to convert a finite IFS into an infinite graph-

directed iterated function system (GIFS).

Consider the following multifractal decomposition problem. Let (V,E,M, P ) be a GIFS

and assume that there exists a unique family of graph-directed sets (also called the at-

tractor) K = (Ku)u∈V and a unique family of graph-directed measures µ = (µu)u∈V (see

Theorem 2.1), where P is a transition probability matrix and M is the associated M -matrix;

see Section 2 for more details about GIFSs. Let Bδ(x) be the ball in Rn with center x and

radius δ, E∞u be the set of all infinite paths associated to the graph (V,E), and p(e|k) be

the weight associated to the prefix e|k of the infinite path e (see definitions in Section 2).

Define

K(α)
u :=

{
x ∈ Ku : lim

δ→0+

log µu(Bδ(x))

log δ
= α

}
,

K̂(α)
u :=

{
e ∈ E∞u : lim

k→∞

log p(e|k)

log r(e|k)
= α

}
.

(1.3)

Let B(q, τ̂ , P ) = (buv) be the corresponding weighted incidence matrix with

buv = buv(q, τ̂) :=
∑
e∈Euv

p(e)qr(e)−τ̂ . (1.4)

For each q, let τ̂(q) be the unique number such that the spectral radius of B(q, τ̂(q), P ) is 1.

Clearly, this defines a differentiable function τ̂ when the vertex set V is finite. If V is finite

and (OSC) holds, Edgar and Mauldin [3] obtained the multifractal formula

dimH πu(K̂
(α)
u ) = dimP πu(K̂

(α)
u ) = τ̂ ∗(α),

where dimP F denotes the packing dimension of a set F ⊆ Rn and πu is the natural projection

from E∞u onto Ku.

In contrast to [3], we will consider GIFSs (V,E,M, P ) with V being countably infinite.

The following is one of our main results. We refer the reader to Section 3 for the definitions

of the matrix B(q, τ̂(q), P ), the degree deg(V ) of V , and the positive separation condition.

Let vt denote the transpose of a finite or infinite vector v.

Theorem 1.1. Let (V,E,M, P ) be an infinite GIFS that has a unique attractor K =

(Ku)
t
u∈V and a unique family of graph-directed measures µ = (µu)

t
u∈V . Assume that deg(V ) <

∞, B := B(q, τ̂(q), P ) is primitive, and (OSC) holds. Let xt = (xu)u∈V and y = (yu)
t
u∈V

be positive 1-invariant measure and vector of B, respectively, with xty < ∞. Assume, in

addition, that the following conditions hold:
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(1) the functions τ̂ , xt, y, and xty are differentiable;

(2) d
dq

∑
u xuyu =

∑
u

d
dq

(xuyu);

(3) for all q, 0 < infu{yu} ≤ supu{yu} <∞.

Then for all u ∈ V ,

dimH πu(K̂
(α)
u ) = dimP πu(K̂

(α)
u ) = τ̂ ∗(α).

Moreover, if (OSC) is replaced by the positive separation condition, then the above dimension

formula also holds when πu(K̂
(α)
u ) is replaced by K

(α)
u , i.e.,

f(α) = τ̂ ∗(α).

We will apply this theorem to the following class of IFSs with overlaps:

S1(x) = r1x, S2(x) = r2x+ r1(1− r2), S3(x) = r2x+ 1− r2, (1.5)

where the contraction ratios r1, r2 ∈ (0, 1) satisfy

r1 + 2r2 − r1r2 < 1, (1.6)

i.e., S2(1) < S3(0). Let K be the corresponding self-similar set (see Figure 1).

0 1

S1 S2
S3

Figure 1. The first iteration of {Si}3
i=1. The figure is drawn with r1 = 1/3

and r2 = 1/5.

This well-known class of IFSs appeared in the work of [13, 17, 19]. The IFSs satisfy the

generalized finite type condition but is not of finite type in the sense of [23], because the

contraction ratios are not necessarily exponentially commensurable. The dimension of the

self-similar set has been investigated in [13, 17, 19] using various methods; it is the unique

number d satisfying

rd1 + 2rd2 − (r1r2)d = 1.

One of our main objectives is to prove the differentiability of τ(q). As the contraction ratios

of the IFS maps are not equal, previous techniques such as those in [4, 5, 16] cannot be

applied. This is in fact a main motivation of this paper.
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Let µ be the self-similar measure defined by an IFS in (1.5) and a probability vector

(p1, p2, p3). Define

K(α) =

{
x ∈ K : lim

δ→0+

log µ(Bδ(x))

log δ
= α

}
, α ∈ [0,∞). (1.7)

From the structure of the self-similar set K, we will construct an infinite GIFS (V,E,M, P )

such that K,µ are the first components of the attractor K and the family of graph-directed

measures µ respectively. This infinite GIFS defines a unique τ̂(q). Concerning this τ̂(q) we

have the following result.

Theorem 1.2. Let µ be the self-similar measure defined by the IFS (1.5) with probability

weights p1, p2, p3. Assume that (1.6) holds. If p2 > p3 or q ≥ 0, then τ̂(q) is differentiable

and

dimH K
(α) = dimP K

(α) = qα− τ̂(q).

In the case p2 ≤ p3, it is likely that τ(q) may have a nondifferentiable point in the region

q < 0. See Section 9 for additional discussions.

As a consequence of Theorem 1.2 and [11,22], we have

Corollary 1.3. Assume the same hypotheses of Theorem 1.2. Then τ(q) = τ̂(q) if q ≥ 0.

Moreover,

dimH(µ) = τ̂ ′(1).

As the proof of Theorem 1.2 is long and complicated, we outline the main steps here. A key

in the proof is to show the differentiability of τ̂(q). First, we use quasi-extension and quasi-

truncation techniques to define a sequence of infinite GIFSs (V,E,M, Pn) which converges

to (V,E,M, P ) in some sense. Each of these infinite GIFSs defines a differentiable function

τ̂n(q). Second, for a fixed q, we use the boundedness of {τ̂n(q)} to choose a subsequence τ̂nk(q)

that converges to τ̂(q). Let xtnk ,ynk be the 1-invariant measure and 1-invariant vector of the

incidence matrix Bnk(q, τ̂) = B(q, τ̂nk(q), Pnk) of (V,E,M, Pnk). By showing that xtnk ,ynk

converge to xt,y, the 1-invariant measure and 1-invariant vector of B(q, τ̂ , P ) respectively,

we conclude that the spectral radius of B(q, τ̂(q)) is 1. This implies, by the monotonicity

of ρ(B(q, τ̂ , P )) as a function of τ̂ , that τ̂n(q) converges to τ̂(q). Third, we use the implicit

function theorem to obtain the differentiability of τ̂(q). Finally, we show that xty <∞ and

d

dq
(xty) =

∑
k≥1

d

dq
(xkyk).
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Now all the conditions in Theorem 1.1 are satisfied, and the conclusion follows.

This paper is organized as follows. In Section 2, we recall the definition of an M -matrix

and introduce infinite GIFSs. In Section 3, we present the proof of Theorem 1.1. The

definitions of quasi-extension and quasi-truncation are stated in Section 4. We also define a

sequence of infinite GIFSs induced by any IFS of generalized finite type in the family (1.5).

We prove the convergence of τ̂n(q) in Section 5 and the differentiability of the limit function

τ̂(q) = limn→∞ τ̂n(q) in Section 6. The proof of Theorem 1.2 is given in Section 7. Finally,

we state some comments in Section 9.

2. M-matrices and GIFSs

Let us first recall the definition of an M -matrix and refer the reader to [13] for more

details. An M-matrix is a matrix each of its entries is a collection of mappings on Rn. We

use M = M(m) (m is finite or ∞) to denote the collection of all m ×m M -matrices. For

M ∈ M, let M2 be the M -matrix whose (i, j) entry is
⋃
k≥1MikMkj, where the product of

two sets of mappings Φ and Ψ is defined by

ΦΨ := {ϕ ◦ ψ : ϕ ∈ Φ, ψ ∈ Ψ}.

If ϕ = ∅, we define ϕ ◦ ψ = ψ ◦ ϕ = ∅. Inductively, we can define Mk for all k ≥ 1.

For a set of mappings Φ and a subset F ⊂ Rn, define Φ(F ) :=
⋃
ϕ∈Φ ϕ(F ), where if ϕ = ∅,

we define ϕ(F ) := ∅. Let M ∈ M(m) be an M -matrix, where m is finite or ∞, and let

F = (F1, F2, . . .)
t be a vector of sets with m components, where Fi ⊂ Rn. Denote

MF :=
( m⋃
j=1

M1j(Fj),
m⋃
j=1

M2j(Fj), . . .
)t
.

Let G = (V,E) be a directed graph with a finite or countably infinite vertex set V and

edge set E. To each vertex v, we associate a metric space Xv. Throughout this paper, we

assume Xv = Rn. Let Euv be the set of all edges from u to v. For e = (u, v) ∈ Euv, we

let ι(e) := u and κ(e) := v denote the initial and terminal vertices of e, respectively. Let

Eu :=
⋃
v∈V Euv be the set of all edges with initial vertex u. Then E =

⋃
uEu. To avoid

redundancy, we assume Eu 6= ∅ for any u ∈ V . We call e = e1 · · · ek a path with length k,

and denote its length by |e|, if the terminal vertex of each edge ei (1 ≤ i ≤ k− 1) equals the

initial vertex of the edge ei+1. Infinite paths are defined similarly. We denote by Ek
uv the set

of all paths of length k from vertex u to vertex v. Let E∗uv :=
⋃
k≥0E

k
uv, where E0

uv := {∅}



DIFFERENTIABILITY OF THE Lq-SPECTRUM AND MULTIFRACTAL DECOMPOSITION 7

and let

Ek
u :=

⋃
v∈V

Ek
uv, Ek :=

⋃
u∈V

Ek
u, E∗u :=

⋃
k≥0

Ek
u, E∗ :=

⋃
k≥0

Ek.

Let E∞u be the set of all infinite paths which begin at u and E∞ :=
⋃
u∈V E

∞
u be the set of

all infinite paths. We say that a graph G = (V,E) is strongly connected if for any u, v ∈ V ,

there is a path from u to v. For e ∈ En
⋃
E∞ and k ≤ n, let e|k := e1 · · · ek. For e ∈ Ek,

define the cylinder with prefix e as [e] := {e′ ∈ E∞ : e′|k = e}.

To each edge e ∈ Euv, we associate a weight p(e) and a contractive similitude Se : Xv → Xu

with contraction ratio r(e) ∈ (0, 1). This defines an M -matrix M := (Muv) with Muv :=

{Se : e ∈ Euv} and a matrix P = (p(e)). For each e = e1 · · · ek ∈ Ek, use the notation

p(e) := p(e1) · · · p(ek), Se := Se1 ◦ · · · ◦ Sek , ι(e) := ι(e1), κ(e) := κ(ek).

If p(e) ∈ (0, 1) for all e ∈ E, and the weights of all edges leaving a given vertex u sum to

1, namely, ∑
v∈V

∑
e∈Euv

p(e) = 1, (2.1)

we call p(e) is a transition probability and P a probability matrix. Unless stated otherwise,

we always assume that P is a probability matrix. We remark that M is indexed by the

vertices u ∈ V , while P is indexed by the edges e ∈ E. If the cardinality of the Euv does not

exceed 1, then P is also indexed by u ∈ V ; this is indeed the case when we study the family

of IFSs in (1.5). We call (V,E,M), or more broadly, (V,E,M, P ) a graph-directed iterated

function system (GIFS). If V is countably infinite, we also call (V,E,M) an infinite GIFS.

If there exists a finite or countably infinite sequence of nonempty compact sets K =

(Ku)
t
u∈V such that MK = K, namely

Ku =
⋃
v∈V

⋃
e∈Euv

Se(Kv), u ∈ V, (2.2)

we call K a family of graph-directed sets (or an attractor). We remark that an attractor

need not exist, and even if one exists, it may not be unique. In fact, if we let V = {1, 2, . . .},
assume that for each n ∈ V , there is exactly one edge from n to n+1, and define fe(x) := x/2

for all e ∈ E, then K is not unique since K1 can be any nonempty compact set.

Definition 2.1. We say that a finite or infinite GIFS (V,E,M) that has a unique attractor

K = (Ku)
t
u∈V satisfies
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(a) the open set condition (OSC) if there exists a sequence of nonempty bounded open

sets {Uu : u ∈ V } such that

(1) for each u ∈ V ,
⋃
v∈V

⋃
e∈Euv Se(Uv) ⊂ Uu, and

(2) Se(Uv) ∩ Se′(Uv′) = ∅ for all e ∈ Euv and e′ ∈ Euv′ with e 6= e′;

(b) the strong separation condition (SSC) if, for any u ∈ V , the union on the right side

of (2.2) is disjoint;

(c) the positive separation condition (PSC) if

d(V ) := inf
u

inf
{
d(Se(Kv), Se′(Kv′)) : e 6= e′, e ∈ Euv, e′ ∈ Euv′ , v, v′ ∈ V

}
> 0,

where d(X, Y ) := inf{|x − y| : x ∈ X, y ∈ Y } denotes the distance between two sets

X, Y ⊆ Rn.

We remark that (PSC) is stronger than (SSC) in general. However, they are equivalent if

V is finite.

For an attractor K and a probability matrix P = (p(e)), we define a vector probability

measure µ supported on K as follows. For each u ∈ V , (2.1) implies that there exists a

unique Borel probability measure µ̂u supported on E∞u such that

µ̂u([e]) = p(e) = p(e1) · · · p(ek), e = e1 · · · ek ∈ E∗u, k ≥ 0.

Now we let µu = µ̂u ◦ π−1
u , where πu : E∞u → Ku is the natural surjection, i.e., for each

infinite path e ∈ E∞u , πu(e) is the unique element in the intersection⋂
k

Se|k(Kκ(e|k)).

Finally, let µ := (µu)
t
u∈V and call it the family of graph-directed measures.

Let deg(u) := #Eu be the number of edges starting from the vertex u, and define the

degree of V as

deg(V ) := sup
u

deg(u).

In order to prove the existence and uniqueness of the attractor K of (V,E,M), we assume

that

deg(V ) <∞. (2.3)

Similar to the proof of the existence and uniqueness of self-similar sets and measures, we

have
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Theorem 2.1. Let (V,E,M, P ) be a GIFS with G = (V,E) being strongly connected. As-

sume

(1) deg(V ) <∞;

(2) {S(0) : S ∈Muv, u, v ∈ E} is a bounded set;

(3) there exists a positive constant C < 1 such that sup{r(e) : e ∈ E} ≤ C.

Then there eixst a unique attractor K and a unique family of graph-directed measures µ.

The theorem follows from Banach’s fixed point theorem. Condition (1) allows one to use

the fact that a finite union of compact sets is compact. We omit the details.

3. Proof of Theorem 1.1

Let (V,E,M, P ) be a GIFS with a unique attractor K = (Ku)
t
u∈V , a unique family of

graph-directed measures µ = (µu)
t
u∈V , and a primitive probability matrix P . Throughout

this section, we assume that condition (2.3) holds.

For any α ∈ R and u ∈ V , let K
(α)
u and K̂

(α)
u be defined as in (1.3). We point out that

K
(α)
u = πu(K̂

(α)
u ) if (PSC) holds. Let B(q, τ̂) = B(q, τ̂ , P ) denote the matrix whose (u, v)

entry is given by (1.4), and let ρ(B(q, τ̂)) denote the spectral radius of B(q, τ̂).

Define the norm of a matrix A = (auv) as

‖A‖ := sup
u

∑
v∈Euv

|auv|. (3.1)

Let B(`∞, `∞) be the space of all bounded linear operators on `∞. For any A ∈ B(`∞, `∞), Ak

is well-defined for any k ≥ 1. Note that the operator norm of A ∈ B(`∞, `∞) coincides with

the norm defined in (3.1). We also recall that the spectral radius of a matrix A ∈ B(`∞, `∞)

can be computed by

ρ(A) = lim
k→∞
‖Ak‖1/k. (3.2)

We need two mild conditions.

(i) The contraction ratios have a common positive lower bound and a common upper

bound less than 1, i.e.,

rinf := inf
{
r(e) : e ∈ E

}
> 0, rsup := sup

{
r(e) : e ∈ E

}
< 1. (3.3)

(ii) B(q, τ̂) is an operator from `∞ to `∞. If rinf > 0, this is equivalent to B(q, 0) having

a finite norm which is defined by (3.1).
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By the assumptions By = y and infu yu > 0 of Theorem 1.1, condition (ii) holds when

τ̂ = τ̂(q). Condition (i) is used to ensure the differentiability of xt,y,xty, τ̂ and the existence

of the attractor K.

The following proposition shows that these conditions imply that the spectral radius

ρ(B(q, τ̂)) is also a continuous function of τ̂ , as when B(q, τ̂) is a finite matrix.

Proposition 3.1. Assume that conditions (i) and (ii) above hold. For a given q, if B(q, 0)

has a finite norm, then ρq(τ̂) = ρ(B(q, τ̂)) is a continuous function of τ̂ , which is strictly

increasing; moreover,

ρq(−∞) := lim
τ̂→−∞

ρq(τ̂) = 0, ρq(∞) := lim
τ̂→∞

ρq(τ̂) =∞.

Proof. As B(q, 0) has a finite norm and rinf > 0, for any τ̂ , B(q, τ̂) also has a finite norm.

Hence

ρq(τ̂) = lim
k→∞
‖B(q, τ̂)k‖1/k

is well-defined. For any h > 0,

ρq(τ̂ + h) = lim
k→∞
‖B(q, τ̂ + h)k‖1/k

= lim
k→∞

(
sup
u

∑
v

∑
e∈Ekuv

p(e)qr(e)−τ̂−h
)1/k

≤ lim
k→∞

(
sup
u

∑
v

∑
e∈Ekuv

r−khinf p(e)qr(e)−τ̂
)1/k

= r−hinf ρq(τ̂).

Similarly, ρq(τ̂+h) ≥ r−hsupρq(τ̂) ≥ ρq(τ̂) for any h < 0. This proves that ρq is strict increasing

and continuous.

Owing again to the fact that B(q, 0) has a finite norm, p(e)qr(e)−τ̂ converges uniformly to

zero as τ̂ → −∞. So B(q,−∞) := limτ̂→−∞B(q, τ̂) is the zero matrix and hence ρq(−∞) =

0. Since P is primitive by our assumption, we assume, without loss of generality, that Euu

is not empty. Choose e ∈ Euu. Then

ρq(∞) = lim
τ̂→∞

lim
k→∞
‖B(q, τ̂)k‖1/k ≥ lim

τ̂→∞
p(e)qr(e)−τ̂ =∞. 2

Assume the hypotheses of Proposition 3.1, then for all q ∈ R, there is a unique number τ̂

such that B(q, τ̂) has spectral radius 1. This defines a function τ̂P (q), also denoted by τ̂(q)
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or τ̂ . Notice that ρq1(τ̂) > ρq2(τ̂) if q1 < q2. This implies that τ̂(q) is increasing with respect

to q. We now give the proof of Theorem 1.1 under the condition τ̂(q) is differentiable.

For any vector y = (y1, y2, . . . ), we let

yinf := inf
i
yi and ysup := sup

i
yi.

Also, for any F ⊆ Rn, s ≥ 0, and ε > 0, let

Psε (F ) : = sup
{∑

i

(2ri)
s : {Bri(xi)} is a countable collection of disjoint

balls with centers xi ∈ F and radius ri ≤ ε
}
.

Proof of Theorem 1.1. The proof is similar to that of [3, Theorem 1.6]; we only give a sketch.

Let α = α(q) := τ̂ ′(q). We normalize xt and y so that
∑

u xu = 1 and
∑

u xuyu = 1 for

all q. Conditions (1) and (2) imply that the series xty =
∑

u xuyu is differentiable and

differentiable termwise. Denote S := xty = xtBy =
∑

u

∑
v

∑
e∈Euv xup(e)

qr(e)−τ̂(q)yv,

which is also differentiable termwise since the cardinality of {e ∈ Euv : v ∈ V } has a

common upper bound, a consequence of the assumption deg(V ) <∞. Differentiating S = 1

and solving for τ̂ ′(q) yields

α =

∑
u

∑
v

∑
e∈Euv(xup(e)

qr(e)−τ̂(q)yv) log p(e)∑
u

∑
v

∑
e∈Euv(xup(e)

qr(e)−τ̂(q)yv) log r(e)
.

For e ∈ Euv, define p̂(e) := y−1
u p(e)qr(e)−τ̂(q)yv. For e = e1 · · · ek ∈ Ek

uv with ι(ei) = vi and

κ(ei) = vi+1, define the measure of the cylinder [e] by

µ̂(q)
u ([e]) :=

k∏
i=1

p̂(ei) =
k∏
i=1

y−1
vi
p̂(ei)

qr(ei)
−τ̂(q)yvi+1

= y−1
u p(e)qr(e)−τ̂(q)yv.

Using a similar argument as [3, Lemma 4.1], and using Lemma 4.1 instead of [26, Theorems

4.1, 4.2] for a countable Markov chain, it can be shown that µ̂
(q)
u (K̂

(α)
u ) = 1; we omit the

details.

First, we compute the upper packing dimension of πu(K̂
(α)
u ). By virtue of condition (3.3),

packing dimension can be computed as in the case of a finite GIFS. For each integer k ≥ 1

and each δ > 0, define

Ŝ(k)
u = Ŝ(k)

u (α, δ) :=


{

e ∈ E∗u :
log p(e|k)

log r(e|k)
≤ α +

δ

q

}
, q > 0,{

e ∈ E∗u :
log p(e|k)

log r(e|k)
≥ α +

δ

q

}
, q < 0.
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Denote

K̂(N)
u = K̂(N)

u (α, δ) :=
⋂
k≥N

Ŝ(k)
u , K(N)

u = K(N)
u (α, δ) := πuK̂

(N)
u .

Then K̂
(α)
u ⊂

⋃
N≥1 K̂

(N)
u and K

(α)
u ⊂

⋃
N≥1K

(N)
u . Fix N ∈ N and fix ε > 0 small enough

so that r(e) > ε for all e ∈ EN
u . Let Bεi(xi) be a countable disjoint collection of balls with

centers xi ∈ K(N)
u and radii εi < ε. Let ei satisfy πu(ei) = xi and choose ki ∈ N such that

r(ei|ki) < εi ≤ r(ei|(ki − 1)). The choice of ε implies ei ∈ Ŝ(N)
u and hence

p(ei|ki)qr(ei|ki)−τ̂(q) ≥ r(ei|ki)qα−τ̂(q)+δ,

which holds for all q ∈ R. Since εi ≤ r(ei|ki)/rinf ,∑
i

(rinfεi)
τ̂∗(α)+δ ≤

∑
i

r(ei|ki)τ̂
∗(α)+δ ≤

∑
i

p(ei|ki)qr(ei|ki)−τ̂(q)

≤ ysup

yinf

∑
i

µ̂(q)
u ([ei|ki]) ≤

ysup

yinf

,

where the last inequality holds since the cylinders [ei|ki] are disjoint and µ̂
(q)
u (K̂

(α)
u ) = 1. So

P τ̂
∗(α)+δ

ε (K
(N)
u ) ≤ C(2/rinf)

τ̂∗(α)+δ, where C := ysup/yinf . This, together with the arbitrari-

ness of δ, implies that the packing dimension of πu(K̂
(α)
u ) is bounded above by τ̂ ∗(α).

Next, we prove the desired lower bound for the Hausdorff dimension of πu(K̂
(α)
u ). We take

a Borel set F ⊂ Rn such that 2a := µ̂
(q)
u (π−1

u F ) > 0. Define

Ŝ(k)
u = Ŝ(k)

u (α, δ) :=


{

e ∈ π−1
u (F ) :

log p(e|k)

log r(e|k)
≥ α− δ

q

}
, q > 0,{

e ∈ π−1
u (F ) :

log p(e|k)

log r(e|k)
≤ α− δ

q

}
, q < 0.

Denote K̂
(N)
u := ∩k≥N Ŝ(k)

u andK
(N)
u := πu(K̂

(N)
u ). ChooseN large enough so that µ̂

(q)
u (K̂

(N)
u ) >

a, and take ε > 0 small enough such that ε < r(e) for all e ∈ EN
u . Let {Ai} be any countable

cover of F with diamAi < ε. For each Ai, let

Hi =
{
e ∈ E∗u : r(e) < diamAi ≤ r(e

∣∣|e| − 1), πu([e]) ∩ Ai ∩ F ∩ πu(K̂(N)
u ) 6= ∅

}
.

Then [e1] ∩ [e2] = ∅ for any distinct e1, e2 ∈ Hi. Denote H :=
⋃
iHi. Then {[e] : e ∈ H}

forms a cover of K̂
(N)
u . Now for each e ∈ H, we see that

p(e)qr(e)−τ̂(q) ≤ r(e)τ̂
∗(α)−δ,

which holds for all q ∈ R. This implies

a ≤ µ̂u(K̂
(N)
u ) ≤

∑
e∈H

µ̂(q)
u ([e]) ≤ ysup

yinf

∑
e∈H

r(e)τ̂
∗(α)−δ ≤ C

∑
i

(diamAi)
τ̂∗(α)−δ.
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The last inequality can be obtained from [21, Lemma V]. It follows that dimH π
−1
u (F ) ≥

τ̂ ∗(α). Hence dimH πu(K̂
(α)
u ) ≥ τ̂ ∗(α).

When (PSC) holds, K
(α)
u = πu(K̂

(α)
u ), and this completes the proof of the theorem. �

4. infinite matrices and self-similar sets

4.1. Infinite matrices. Let A = (aij) be a non-negative infinite matrix. We assume that

A ∈ B(`∞, `∞), the space of all bounded linear operators on `∞, and consequently Ak is

well-defined for any k ≥ 1. Note that the operator norm of A coincides with the one defined

in (3.1). Denote the maximal real eigenvalue of A, if it exists, by λ(A). It is well known that

λ(A) ≤ ρ(A).

We denote the (i, j) entry of the infinite matrix Ak by a
(k)
ij . If for each pair (i, j), there

exists k such that a
(k)
ij > 0, we call A irreducible. Let di be the greatest common divisor of

those k for which a
(k)
ii > 0. An irreducible matrix A is said to be primitive if di = 1 for some

(and hence all) i.

Let β > 0. A non-negative row vector xt 6= 0 is called a β-invariant measure if βxtA = xt.

A non-negative column vector y 6= 0 is called a β-invariant vector if βAy = y.

The following lemma is a combination of Theorems 5.5 and 6.4 in [26].

Lemma 4.1 (General Ergodic Theorem). Let A = (aij) be a primitive (row) stochastic

matrix, i.e.,
∑∞

j=1 aij = 1 for each i. Suppose xt is a 1-invariant measure and y a 1-invariant

vector of A. If

xty =
∞∑
i=1

xiyi <∞,

then for each j,

lim
k→∞

a
(k)
ij = c−1xj,

where c =
∑

n≥1 xn. Thus c−1xt is the unique stationary distribution of A.



14 G.T. DENG AND S.-M. NGAI

Let us introduce some “extensions” of vectors and matrices; they will play a key role in

our theory. Let B̄n be an n× n matrix and B be an infinite matrix defined as

B̄n =

(
B11 b1

b2 bnn;n

)
and B =


B11 b1

b2 bn,n+1

b3 bn+1,n+2
...

. . .

 , (4.1)

where bnn;n ∈ R and the undisplayed entries are zero. We denote the (i, j) entry of B̄n by

bij;n and that of B by bij. We call B̄n the n-th quasi-truncation of B if bnn;n = bn,n+1 and

B the quasi-extension of B̄n if b2+j = b2, bn+j,n+j+1 = bnn;n for any j ≥ 0. If B̄n is the

n-th quasi-truncation of B and Bn is the quasi-extension of B̄n, we call Bn the extended n-th

quasi-truncation of B.

For a column vector ȳn = (y1, . . . , yn)t, we call y = (y1, . . . , yn, yn, yn, . . .)
t the column

extension of ȳn. For a row vector x̄tn = (x1, . . . , xn)t and a number ζ ∈ [0, 1), we call

xt(ζ) =
(
ζ1, . . . , ζn−1, (1− ζ)xn, (1− ζ)ζxn, (1− ζ)ζ2xn, . . .

)
the row extension of x̄tn with respect to ζ. Note that

∞∑
k=0

(1− ζ)ζkxn = xn and xty <∞.

It is clear that for any x̄tn and ȳn, the extensions xt and y belong to `∞.

The following three lemmas provide some information on the spectral radius of an infinite

matrix. Lemma 4.4 will play a key role in defining τ̂(q).

Lemma 4.2. Let A ∈ B(`∞, `∞) be a nonnegative infinite matrix and assume that there

exists a 1-invariant vector y = (y1, y2, . . .)
t of A satisfying 0 < yinf ≤ ysup < ∞. Then

ρ(A) = 1.

Proof. Let c := ysup/yinf <∞. Since Aky = y for any k, we have

‖Ak‖ = sup
i

∑
j≥1

a
(k)
ij ≤ sup

i

∑
j≥1 a

(k)
ij yj

yinf

= sup
i

yi
yinf

= c <∞.

It follows that ‖Ak‖1/k ≤ c1/k → 1 as k → ∞. An similar argument yields ‖Ak‖1/k ≥
c−1/k → 1 as k →∞. Hence ρ(A) = 1 by (3.2). �

Lemma 4.3. Let B = (bij) be a non-negative infinite matrix as in (4.1) with {bn,2}, {bn,n+1}
being positive for any n ≥ 2 and bij = 0 for other i, j. Denote

s := inf{bn,2 : n ≥ 2} and t := inf{bn,n+1 : n ≥ 2}.
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Then s+ t ≤ ρ(B).

Proof. By using induction, we see that the sum of the second row of Bk is no less than

(s+ t)k, which implies ρ(B) ≥ s+ t. �

1 2 3 1 2 3 4 5 · · ·

Figure 2. Figure for Lemma 4.4 for the case n = 3. The left one is for (V̄ , Ē)
and the right one is for (V,E).

Lemma 4.4. Let B̄n be a finite irreducible non-negative matrix with a positive invariant

measure and Bn be its quasi-extension. Then

ρ(Bn) = λ(Bn) = λ(B̄n). (4.2)

Furthermore, if λ(B̄n) = 1, x̄tn > 0 is a corresponding positive 1-invariant measure, bnn;n > 0,

and xt is the row extension of x̄tn with respect to ζ = bnn;n, then

xtBn = xt.

Proof. Since B̄n is a finite irreducible matrix, λ = λ(B̄n) is the unique maximal eigenvalue,

which is positive by the Perron-Frobenius theorem. Let ȳn = (1, y2, . . . , yn)t be a positive

λ-eigenvector and y be its column extension. Then by definition, Bny = λy, i.e., λ is a

positive eigenvalue of Bn.

Next, we show ρ(Bn) = ρ(B̄n). We regard B̄n and Bn as two weighted incidence matrices

(not necessarily stochastic) for two directed graphs Ḡ = (V̄ , Ē) and G = (V,E) respectively,

with V, V̄ ⊆ N (see Figure 2). For ē := ē1 · · · ēk ∈ Ē∗, denote bē;n :=
∏k

j=1 bēj ;n. Similarly,

we define be for e ∈ E∗. For u ∈ V and v ∈ V̄ , let

Au(k) :=
∑
e∈Eku

be and Āv(k) :=
∑
ē∈Ēkv

bē;n, (4.3)

where we define Au(0) := Āv(0) := 1. Define a map ϕ from V onto V̄ as:

ϕ(v) :=

{
v, if v < n,

n, if v ≥ n.

This map induces a surjection, also denoted by ϕ, from E∗ onto Ē∗. The definition of Bn

implies that be = bϕ(e);n.
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Claim: For u < n, the map ϕ is a bijection from E∗u onto Ē∗u .

To prove the claim, note that for u, v ≥ n, buv > 0 if and only if (u, v) = (p, p + 1) for

some p ≥ n. This implies the following:

Observation 1: For each k ≥ 1, there exists a unique path in Ek
n that does not pass through

any vertex v if v < n, but passes through the vertices n, n + 1, . . . , n + k − 1 in the given

order. (See Figure 2.)

Let e = e1 · · · ek and f = f1 · · · fk be two paths in E∗u satisfying ϕ(e) = ϕ(f). Let vi, ui be

the i-th vertex in the paths e, f , respectively. We will show ui = vi for each i, which implies

ϕ is bijective. Fix i ∈ {1, . . . , k}. By the definition of ϕ, we see vi = ui if vi < n or ui < n.

When vi ≥ n (and hence ui ≥ n), denote

c0 := min{j : vp ≥ n, j ≤ p ≤ i}, c1 := max{j : vp ≥ n, i ≤ p ≤ j},

d0 := min{j : up ≥ n, j ≤ p ≤ i}, d1 := max{j : up ≥ n, i ≤ p ≤ j}.

It follows from u < n that c0, d0 ≥ 2. The definition of ϕ again yields ci = di, i = 0, 1. Then

from Observation 1, we know vj = uj = n + c1 − c0 for c0 ≤ j ≤ c1. Hence, vi = ui, which

completes the proof of the claim.

From the claim above and (4.3), we know for each u < n,

Au(k) = Āu(k) for all k ≥ 1. (4.4)

On the other hand, by the definition of Au(k) and Observation 1,

Au−1(k + 1) =
∑
v∈V

∑
e∈Eu−1,v

beAv(k) =
∑

1≤v<n

∑
e∈Eu−1,v

beAv(k) + bu−1,uAu(k)

=
∑

1≤v<n

bu−1,vAv(k) + bu−1,uAu(k), u ≥ n. (4.5)

The first equality holds by the definition of Av(k). The second one holds since the vertex set

V is divided into two parts, one satisfying v < n and the other satisfying v ≥ n; however,

the second part contains a unique vertex u by Observation 1 since u ≥ n. Rewriting (4.5)

gives

Au(k) = b−1
u−1,u

(
Au−1(k + 1)−

∑
1≤v<n

bu−1,vAv(k)
)
, u ≥ n. (4.6)

Applying the above argument to (V̄ , Ē) and B̄n yields

Ān(k) = b−1
n−1,n;n

(
Ān−1(k + 1)−

∑
1≤v<n

bn−1,v;nĀv(k)
)
. (4.7)
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Substituting u = n into (4.6) and comparing it with (4.7), we conclude from (4.4) and the

equality bn−1,n;n = bn−1,n that

An(k) = Ān(k). (4.8)

The definition of Ān(k + 1) yields

Ān(k + 1) =
∑

1≤v<n

bn,v;nĀv(k) + b̄n,n;nAn(k). (4.9)

Now we compare (4.9) with (4.5) with u substituted by n+ 1, i.e.,

An(k + 1) =
∑

1≤v<n

bn,vAv(k) + bn,n+1An+1(k).

Note that we have bn,v;n = bn,v for v < n, bn,n;n = bn,n+1, and Av(k) = Āv(k) for v ≤ n. It

follows that An+1(k) = Ān(k). Using (4.6) and induction, we get

Au(k) = Ān(k), u > n. (4.10)

Notice that ‖Bk
n‖ = supu∈V

∑
v≥1 b

(k)
uv = supu∈V Au(k) and ‖B̄k

n‖ = supu∈V̄ Āu(k). By

combining (4.4), (4.8), and (4.10), we get ‖Bk
n‖ = ‖B̄k

n‖ for all k ≥ 1. Thus by (3.2),

ρ(Bn) = ρ(B̄n). Finally, (4.2) follows from the fact that the spectral radius of a finite

non-negative matrix is equal to its maximal real eigenvalue.

Now suppose x̄tn = [x1, . . . , xn]t is a positive 1-invariant measure of B̄n. Then ζ := bnn;n ∈
[0, 1), as λ(B̄n) = 1. Denote the j-th component of xt by zj. By the definition of xt, zj = xj

for j < n and zj = (1 − ζ)ζj−nxn for j ≥ n. Notice that
∑

j≥0 zn+j = xn. Hence by using

the definitions of B̄n and Bn, we get

∞∑
i=1

zibij =



n−1∑
i=1

xibij;n +
∑
i≥0

zn+ibnj;n =
n∑
i=1

xibij;n = xj = zj, if 1 ≤ j < n,

zj−1bj−1,j = (1− ζ)ζj−n−1xnbnn;n = (1− ζ)ζj−nxn = zj, if j > n,
n∑
i=1

xibij;n − xjbnn;n = xj(1− bjj;n) = zj, if j = n.

These equalities yield xtBn = xt, which completes the proof. �

Remark 4.5. Under the same conditions as in Lemma 4.4, the invariant measure xt is

positive if bn,n;n > 0.
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4.2. An infinite GIFS induced by an IFS with overlaps. Let {Si(x) = riOix+ di}Ni=1

be an IFS of contractive similitudes, where ri ∈ (0, 1), Oi is an orthogonal matrix and

di ∈ Rn. Then there exists a unique nonempty compact set K satisfying

K =
N⋃
i=1

Si(K).

We call K the self-similar set generated by the IFS. For a probability vector (p1, . . . , pN)

(i.e.,
∑N

i=1 pi = 1 and pi > 0 for all i), there is a unique probability measure µ, called a

self-similar measure, such that

µ =
N∑
i=1

piµ ◦ S−1
i . (4.11)

Moreover, the support of µ is K. For α ∈ [0,∞), let K(α) be defined as in (1.7).

Now we consider the special IFS {Si}3
i=1 given as in (1.5) with contraction ratios satisfying

(1.6). Let µ be the self-similar measure with respect to the probability vector (p1, p2, p3). To

avoid confusion, we denote, in the rest of this section,

Sa := S1, Sb := S2, Sc := S3, pa := p1, pb := p2, pc := p3, Σ3 := {a, b, c}.

We list some properties of K and µ. They are based on the structure of K and will play

a key role in the construction of a desired infinite GIFS. Let v1 := 1 and

vn := 1 +
pa
pb

(
1 +

pc
pb

+ · · ·+
(pc
pb

)n−2
)
, n ≥ 2. (4.12)

Denote p1,1 := pc, p1,2 := 1− pc, and

pn,1 :=
pc
vn
, pn,2 = 1− pc

vn
− pbvn+1

vn
, pn,n+1 :=

pbvn+1

vn
, n ≥ 2. (4.13)

Then P = (pij) is a primitive infinite stochastic matrix if we set all other pij := 0. Let

Q1 := K and Qn := Sbn−2

(
Sa(K)

⋃
Sb(K)

)
for n ≥ 2

(see Figure 3). Then Q1 = Q2

⋃
Sc(Q1) and Qn+1 = Sb(Qn) for all n ≥ 2. Also, by using

these relations and the equality Sac = Sba, we conclude by induction that

Qn = Sbn−2a(Q2)
⋃

Qn+1

⋃
Sbn−1c(Q1) for n ≥ 2. (4.14)

Lemma 4.6. Using the notation above, we have µ(Qn) = pn−1
b vn for all n ≥ 1. Consequently,

µ(Sbn−1c(Q1))

µ(Qn)
= pn,1,

µ(Sbn−2a(Q2))

µ(Qn)
= pn,2,

µ(Qn+1)

µ(Qn)
= pn,n+1. (4.15)



DIFFERENTIABILITY OF THE Lq-SPECTRUM AND MULTIFRACTAL DECOMPOSITION 19

Q2

Q3

Q4

0 Q1 1

Figure 3. The first 4 intervals containing {Qn}, drawn with r1 = 3−1 and
r2 = 2/7.

Proof. Since v1 = 1 and pb > 0, µ(Q1) = µ(K) = 1. For n ≥ 2, we let In−1 := {γ ∈ Σn−1
3 :

Sγ(K) ∩Qn 6= ∅}. Then

In−1 = {acn−2, bacn−3, . . . , bn−3ac, bn−2a, bn−1}.

Clearly, S−1
γ (Qn) ∩K = K for each γ ∈ In−1. As Qn = Sbn−2a(K)

⋃
Sbn−1(K),

S−1
γ (Qn) ⊃

{
S−1
γ (Sbn−2a(K)) = K, if Sγ = Sbn−2a,

S−1
γ (Sbn−1(K)) = K, if Sγ = Sbn−1 .

Therefore, by the definition of vn,

µ(Qn) =
∑

γ∈In−1

pγµ(S−1
γ (Qn))

=
(
pap

n−2
c + pbpap

n−3
c + · · ·+ pn−3

b papc + pn−2
b pa + pn−1

b

)
µ(K)

= pn−1
b vn.

Now we show (4.15). The third term follows directly from the equality µ(Qn) = pn−1
b vn

and the definition of pn,n+1 in (4.13). Notice that there is only one index γ ∈ Σn
3 satisfying

Sγ(K) ∩ Sbn−1c(Q1) 6= ∅. So, µ(Sbn−1c(Q1)) = pn−1
b pc. This, together with the definition of

pn,1, yields the first equality in (4.15). Finally, since the union on the right side of (4.14) is

disjoint, and pn,1 + pn,2 + pn,n+1 = 1, we get

µ(Sbn−2a(Q2))

µ(Qn)
= 1− µ(Qn+1) + µ(Sbn−1c(Q1))

µ(Qn)
= 1− pn,n+1 − pn,1 = pn,2.

This completes the proof. �

Lemma 4.7. Let θ ∈ Σ∗3.



20 G.T. DENG AND S.-M. NGAI

S5(K2)

S5(K2)

S5(K2)

S3(K1)

S3(K1)

S3(K1)

K1
S2(K2)

K2
S2(K3)

K3
S2(K4)

K4
S2(K5)

S3(K1)

Figure 4. The sets Ki, i = 1, 2, 3, 4, where S5 := S−1
2 S1S2.

(a) For any µ-measurable set F ⊂ Q2,

µ(Sθa(F )) =
µ(Sθa(Q2))µ(F )

µ(Q2)
=
µ(Sθa(Q2))µ(F )

1− pc
. (4.16)

(b) For any µ-measurable set F ⊂ Q1,

µ(Sθθ′(F )) =
µ(Sθθ′(Q1))µ(F )

µ(Q1)
= µ(Sθθ′(Q1))µ(F ), (4.17)

where θ′ = bc or θ′ = cc. Furthermore, (4.17) also holds if θθ′ = c.

Proof. (a) Assume |θ| = n and let F ⊆ Q2. Let Jn+1 := {γ ∈ Σn+1
3 : Sγ(K) ∩ Sθa(Q2) 6=

∅}. Then it follows from the structure of K that
⋃
γ∈Jn+1

Sγ(K) = Sθa(K). Notice that

Sθa(Q2) ⊂ Sθ(K). So

µ(Sθa(F ))

µ(Sθa(Q2))
=

∑
γ∈Jn+1

pγµ(S−1
γ Sθa(F ))∑

γ∈Jn+1
pγµ(S−1

γ Sθa(Q2))
=

µ(F )

µ(Q2)
.

We get (4.16).

(b) A similar argument yields (4.17). The last conclusion is clear since Sc(K) does not

intersect Sa(K)
⋃
Sb(K). �

Now we construct an infinite GIFS such that K and µ are, respectively, the first compo-

nents of the attractor and the family of graph-directed measures. First, let

K1 := K and Kn := S−n+1
2 (Qn) = S−1

2 S1(K)
⋃

K, n ≥ 2.

Then, by (4.14) (see Figure 4),

K1 = S3(K1)
⋃

S2(K2), Kn = S3(K1)
⋃

S−1
2 S1S2(K2)

⋃
S2(Kn+1), n ≥ 2. (4.18)

The above recurrent equations, together with P = (pij) defined as in (4.13), form an infinite

GIFS (V,E,M, P ) with attractor K = (K1, K2, . . .)
t, where the (i, j) entry of M is defined
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as

Mij := Sij =


Sc, j = 1,

Sb, j = i+ 1, i ≥ 1,

S−1
b SaSb, j = 2, i ≥ 2,

∅, otherwise.

That is,

M =


S3 S2 ∅ ∅ ∅ · · ·
S3 S−1

2 S1S2 S2 ∅ ∅ · · ·
S3 S−1

2 S1S2 ∅ S2 ∅ · · ·
...

...
...

...
. . .

 .

By (1.6), we know (V,E,M) satisfies (PSC). For (V,E,M), (3.3) becomes

rinf = min{ra, rb}, rsup = max{ra, rb}. (4.19)

For e = e1 · · · en ∈ En, we call ei · · · ej a quasi-circle of e if ι(em), i ≤ m ≤ j, are increasing

and ι(ei−1) ≥ ι(ei) (if ei−1 exists), κ(ej) ≤ ι(ej) (if j = |e|, we allow κ(ej) ≥ ι(ej)). We call

e ∈ E∗ an n-quasi-circle if e has n quasi-circles. For example, e = (1, 1) is a quasi-circle and

both (1, 1)(1, 2)(2, 1) and (1, 1)(1, 2) are 2-quasi-circles.

Theorem 4.8. Let µ = (µ1, µ2, . . .)
t be the family of graph-directed measures of (V,E,M, P ).

Then the first component of µ coincides with the self-similar measure µ, namely µ1 = µ.

Proof. The conclusion K = K1 is obvious. To show µ1 = µ, we first notice that the set

consisting of cylinders F = {Se(Ki) : e ∈ E∗1i, i ≥ 1} forms a subbase of K. Hence it

suffices to show µ1(Se(Kκ(e))) = µ(Se(Kκ(e))) for each e ∈ E∗1 . We use induction. First, we

show that the conclusion is true when e = e1 · · · en ∈ E∗1 is a quasi-circle by considering the

following three cases.

Case 1. e = (1, 1). In this case µ1(Se(K1)) = µ̂1([e]) = p1,1 = pc. On the other hand, from

Se(K1) = Sc(K), we see µ(Se(K1)) = pc. So, µ1(Se(K1)) = µ(Se(K)).

Case 2. e ends with n + 1. In this case, from the structure of the infinite directed

graph (V,E,M, P ) and the definition of quasi-circle, we know the path e has the form

e = (1, 2)(2, 3) · · · (n, n+ 1). This yields

µ1(Se(Kn+1)) = p1,2 · · · pn,n+1 = pnb vn+1.

The fact Se(Kn+1) = Snb (Kn+1) = Qn+1 implies

µ(Se(Kn+1)) = µ(Qn+1) = pnnvn+1. (4.20)

So, µ1(Se(Kn+1)) = µ(Se(Kn+1)).
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Case 3. e = (1, 2) · · · (n − 1, n)(n, i) with n ≥ 2, where i = 1 or i = 2. In this case

Se = Sbn−1Sγ, where γ = c if i = 1 and γ = b−1ab if i = 2. By using K2 = S−1
2 (Q2), equation

(4.20), and the first two equations in (4.15), we get

µ(Se(Ki)) = µ(Sbn−1γ(Ki)) = µ(Qn)pn,i = pn−1
b vnpn,i.

The definition of µ1 implies

µ1(Se(Ki)) = p1,2 · · · pn−1,npn,i = pn−1
b vnpn,i.

Thus we get µ1(Se(Ki)) = µ(Se(Ki)).

Next, we assume that the conclusion holds for any (k−1)-quasi-circle e ∈ E∗1 and consider

the case e = e1 · · · en ∈ E∗1 being a k-quasi-circle. We divide this into two cases. Let

e′ = e1 · · · ei be the first quasi-circle of e (i could be 1). Denote j = κ(e).

Case 1. The terminal vertex of e′ is 1. In this case, we choose the unique θ ∈ Σ∗3 satisfying

Sθ = Se1···ei . Since Sa is followed by Sb or Sa in {Se : e ∈ E∗}, θ must end with c and cannot

end with ac (since κ(e′) = 1). We conclude that Sei+1···en(Kj) is a subset of Q1 = K1. Since

θ ends with ac or cc, the path ei+1 · · · en starts with vertex 1 and Sei+1···en maps Kj into K1.

Denote F = Sei+1···en(Kj). Then F ⊂ K1. Now (4.17) implies

µ(Se(Kj)) = µ(Sθei+1···en(Kj)) = µ(Sθ(F )) = µ(Sθ(K1))µ(F ) = µ(Sθ(K1))µ(Sei+1···en(Kj)).

(where we have used the fact Q1 = K1). Applying the induction hypothesis and the fact

Se′ = Sθ, we get

µ(Se(Kj)) = µ(Se′(K1))µ1(Sei+1···en(Kj)) = µ1(Se′(K1))µ1(Sei+1···en(Kj))

= pe′pei+1···en = µ1(Se(Kj)).

Case 2. The terminal vertex of ei is 2. Note that e1 · · · ei is a quasi-circle in e and i < |e|,
which implies that 2 = κ(ei) ≤ ι(ei), and consequently, ei 6= (1, 2). Hence in this case

Sei = S−1
b SaSb. So SbSei+1···en(Kj) = S(1,2)ei+1···en(Kj) is a subset of Q2 and (1, 2)ei+1 · · · en

is a (k − 1)-quasi-circle. Notice that there exists θ ∈ Σ∗3 such that Sθ = Se1···ei−1
S−1
b . That



DIFFERENTIABILITY OF THE Lq-SPECTRUM AND MULTIFRACTAL DECOMPOSITION 23

K2 = S−1
b (Q2) implies Sθa(Q2) = Sθab(K2) = Se1···ei(K2). Hence (4.16) yields

µ(Se(Kj)) = µ(SθSaSbSei+1···en(Kj))

= µ(Sθa(Q2))
µ(SbSei+1···en(Kj))

µ(Q2)
(using ei 6= (1, 2))

= µ1(Se1···ei(K2))
µ1(S1,2Sei+1···en(Kj))

1− pc
= pe1···ei

p1,2pei+1···en

1− pc
= pe = µ1(Se(Kj)).

By induction, we see that µ1(Se(Kκ(e))) = µ(Se(Kκ(e))) for each e ∈ E∗1 . The proof is

complete. �

Let Pn = (pij;n) be the extended n-th quasi-truncation of P . Then Pn converges to P in

the `∞ norm and Pn is another transition probability matrix of the GIFS (V,E,M).

Next, we establish some properties of the matrices Pn and P . Denote

σ1 :=
pc
pb
, σ2 :=

pa + pb − pc
pa

.

Lemma 4.9. Let P and Pn be defined as above. Then the following hold.

(a) The sequence {pn,1 = pc/vn} is decreasing for each pc > 0, and

lim
n→∞

pn1 =

0, σ1 ≥ 1,
pc(pb − pc)
pa + pb − pc

, σ1 < 1.

(b) For each n ≥ 1,

pn,n+1 =


pb(σ2 − σn1 )

σ2 − σn−1
1

, σ1 6= 1,

pb(pb + np1)

pb + (n− 1)pa
, σ1 = 1.

The sequence {pn,n+1}n≥1 is increasing when pc > 1/2, decreasing when pc < 1/2,

and constant when pc = 1/2. Moreover,

lim
n→∞

pn,n+1 = max{pb, pc}.

(c) The sequence {pn,2}n≥2 is increasing and

lim
n→∞

pn,2 =

1− pc, σ1 ≥ 1,
pa(pa + pb)

2(pa + pb)− 1
, σ1 < 1.

(d) limn→∞ Pn = P in `∞ norm.
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Proof. Before giving the proof, we observe that vn can be written as

vn =


1 +

pa(1− σn−1
1 )

pb − pc
, σ1 6= 1,

1 + (n− 1)
pa
pb
, σ1 = 1.

(4.21)

(a) Since the sequence {vn} is increasing as n increases, {pn,1 = pc/vn} is decreasing. The

limit of pn,1 follows directly from (4.21).

(b) First, suppose n ≥ 2. When σ1 6= 1, the definitions of σ1 and σ2 imply that

pn,n+1 =
pbvn+1

vn
= pb ·

σ2 − σn1
σ2 − σn−1

1

.

When σ1 = 1,

pn,n+1 = pb ·
pb + np1

pb + (n− 1)pa
.

Notice that when n = 1, p1,2 = pa + pb, i.e., the expression for pn,n+1 also holds for n = 1.

So the formula of pn,n+1 holds for each n ≥ 1.

It is clear that {pn,n+1} is increasing to pb when σ1 = 1. Now we show the other cases.

Notice that if σ1 6= 1 then

pn+1,n+2

pn,n+1

=
(σ2 − σn−1

1 )(σ2 − σn+1
1 )

(σ2 − σn1 )2
=
σ2

2 + σ2n
1 − σ2σ

n−1
1 − σ2a

n+1

σ2
2 + σ2n

1 − 2σ2σn1
.

The difference of the numerator and the denominator is

σ2σ
n−1
1 (2σ1 − σ2

1 − 1) = −σ2σ
n−1
1 (σ1 − 1)2,

which is positive if σ2 < 0 and negative if σ2 > 0. Since pc > 1/2, pc = 1/2 and pc < 1/2

are equivalent to σ2 < 0, σ2 = 0 and σ2 > 0 respectively, pn,n+1 is decreasing if pc < 1/2, a

constant if pc = 1/2, and increasing if pc > 1/2.

The conclusion of the limit of {pn,n+1} is obvious in view of the formula for pn,1.

(c) Notice that pn,2 = 1 − pn,1 − pn,n+1 and is thus increasing when pc ≤ 1/2. To show

the monotonicity of {pn,2} for pc > 1/2, we consider tn = pn,1 + pn,n+1. Now σ1 = pc/pb ≥
pc/(1− pc) > 1. Thus,

tn
tn+1

=

pc

1 +
pa(1−σn−1

1 )

pb−pc

+
pb(σ2 − σn1 )

σ2 − σn−1
1

pc

1 +
pa(1−σn1 )

pb−pc

+
pb(σ2 − σn+1

1 )

σ2 − σn1

=
pc(σ

n
1 − σ2)(p2

c − pb(pa + pb − paσn1 ))

(pbσn1 − pcσ2)(p2
c − pb(pa + pb) + papcσn1 )

.
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Since pb 6= pc,

tn − tn+1 = σn1 pa(pa + pb)(pb − pc)2 > 0

and hence pn,2 is increasing.

Finally, the formula for the limit of {pn,2} follows from those for {pn,1} and {pn,n+1}.

(d) Notice that the first n rows of Pn and P are the same. Hence the structure of E implies

‖Pn − P‖ = sup
i>n

(
|pi,1 − pn,1|+ |pi,2 − pn,2|+ |pi,i+1 − pn,n+1|

)
. (4.22)

Parts (a)–(c) imply that the sequences {pn,1}, {pn,2}, and {pn,n+1} converge. Thus the right

side of (4.22) converges to zero as n→∞, completing the proof. �

5. Convergence

Suppose (V,E,M, P ) and (V,E,M, Pn) are given as in Subsection 4.2, and B(q, τ̂ , P ),

Bn(q, τ̂) := B(q, τ̂ , Pn) are defined by (1.4). Bn(q, τ̂) is the extended n-th quasi-truncation

of B(q, τ̂ , P ). The matrices P and B(q, τ̂ , P ) are, respectively,
p11 p12 0 · · ·
p21 p22 p23 0 · · ·
p31 p32 0 p34 0 · · ·
...

...
...

...
. . . . . .

 ,


pq11r

−τ̂
2 pq12r

−τ̂
2 0 · · ·

pq21r
−τ̂
2 pq22r

−τ̂
1 pq23r

−τ̂
2 0 · · ·

pq31r
−τ̂
2 pq32r

−τ̂
1 0 pq34r

−τ̂
2 0 · · ·

...
...

...
...

. . . . . .

 . (5.1)

Note that B̄n(q, τ̂ , P ) = B̄n(q, τ̂ , Pn) and hence we can denote the common value unam-

biguously by B̄n(q, τ̂). For each q, we denote by τ̂n(q) the unique number τ̂ such that

ρ(Bn(q, τ̂)) = 1. Since B̄n(q, τ̂) is an n× n primitive matrix, τ̂n(q) is a well-defined differen-

tiable function of the variable q. Moreover, ρ(Bn(q, τ̂n(q))) = 1 by [3, Proposition 3.2] and

Lemma 4.4. Denote

p := max{pb, pc}. (5.2)

Lemma 5.1. For any fixed q ≥ 0, the sequence {τ̂n(q)}n is bounded. If p2 > p3, the same

result holds for any fixed q ∈ R.

Proof. If q = 0, all Bn(0, τ̂)’s (n ≥ 3) are the same and ρ(B3(0, τ̂)) = ρ(B̄3(0, τ̂)) by (4.2) in

Lemma 4.4. If q = 1, the fact ρ(Pn) = 1 = ρ(Bn(1, τ̂n(1))) implies that Bn(1, τ̂n(1)) = Pn

and τ̂n(1) = 0. Hence {τ̂n(0)} and {τ̂n(1)} are bounded. Next, we divide the proof into

several cases. Fix q ∈ R \ {0, 1}.
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Case 1. q > 1. In this case we know Bn(q, 0) ≤ Pn and hence τ̂n(q) > 0. Denote

τ̃ :=
q ln p22 − ln 2

ln r2

.

The (2, 2) entry of Bn(q, τ̃) is 2, which implies ρ(Bn(q, τ̃)) > 1. Thus the conclusion τ̂n(q) ≤ τ̃

follows from Proposition 3.1.

Case 2. 0 < q < 1. By Proposition 3.1 again, the inequality ρ(Bn(q, 0)) ≥ ρ(Bn(1, 0)) = 1

implies τ̂n(q) ≤ 0. Denote

τ̃ :=
ln 4

ln rinf

.

So for each e ∈ E, pn(e)qr(e)−τ̃ < r−τ̃inf = 1/4. Therefore, as deg(V ) = 3 we have

sup
u

∑
e∈Eu

pn(e)qr(e)−τ̃ < 1,

which implies that ρ(Bn(q, τ̃)) ≤ 1. Hence τ̃ ≤ τ̂n(q) ≤ 0.

Case 3. q < 0. As in Case 2, we get τ̂n(q) ≤ 0. By Lemma 4.9, the assumption p2 > p3

implies

pinf := inf
{
p(e) : e ∈ E

}
> 0.

Since Pn → P in B(`∞, `∞) as n→∞, for large n, we get pn(e) > pinf/2 for any edge e ∈ E.

Let

τ̃ :=
(q − 1) log(pinf/2)

log rsup

.

Then for all e ∈ E,

pn(e)qr(e)−τ̃ = pn(e)q exp

(
− (q − 1) log(pinf/2)

log rsup

log r(e)

)
< pn(e)q exp

(
(1− q) log pn(e)

)
= pn(e)qpn(e)1−q = pn(e).

So ρ(Bn(q, τ̃)) ≤ ρ(Pn) = 1. Proposition 3.1 implies τ̂n(q) ≥ τ̃ , completing the proof. �

In the following lemmas, we let τ̂∞(q) be a limit point of {τ̂n(q)} at q, where q 6= 0, 1.

Let {τ̂nk(q)} be a subsequence converging to τ̂∞(q). Denote Bnk := Bnk(q, τ̂nk(q), P ) and

B∞ := B(q, τ̂∞(q), P ) =: (bij). Clearly, B∞ belongs to B(`∞, `∞) if and only if q ≥ 0 or

p2 > p3.

We will study the following limits:

a1 := lim
i→∞

bi1, a2 := lim
i→∞

bi2, a3 := lim
i→∞

bi,i+1. (5.3)
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Lemma 5.2. Assume p2 > p3 or q ≥ 0. Let p be defined as in (5.2) and a1, a2, a3 be defined

as in (5.3). The following hold.

(a) {Bnk} converges to B∞ in B(`∞, `∞);

(b) the limits defining a1, a2, a3 exist;

(c) b11 < 1 and b22 < 1;

(d) a3 = pqr
−τ̂∞(q)
2 < 1.

Proof. (a) Recall that deg(V ) = 3 and pij;n = pnj;n if i ≥ n. Note that

‖Bnk −B∞‖ ≤ ‖Bnk −B(q, τ̂nk(q), P )‖+ ‖B(q, τ̂nk(q), P )−B∞‖. (5.4)

The second term on the right side is equal to

sup
u

∑
v

∑
e∈Euv

p(e)q
∣∣r(e)−τ̂nk (q) − r(e)−τ̂∞(q)

∣∣
By the mean-value theorem,

sup
e∈E

p(e)q
∣∣r(e)−τ̂nk (q) − r(e)−τ̂∞(q)

∣∣ ≤ Cq
∣∣τ̂nk(q)− τ̂∞(q)

∣∣, (5.5)

where

Cq :=

sup
e∈E
{p(e)q| ln rinf |}, if q < 1,

r
−2τ̂∞(q)
inf | ln rinf |, if q > 1,

which is finite for each q. It follows that

‖B(q, τ̂nk(q), P )−B∞‖ ≤ 3Cq|τ̂nk(q)− τ̂∞(q)|. (5.6)

Now we estimate the first term on the right side of (5.4), which is equal to

sup
u

∑
v

∑
e∈Euv

r(e)−τ̂nk (q)
∣∣pnk(e)q − p(e)q∣∣ < Mq sup

u

∑
v

∑
e∈Euv

∣∣pnk(e)q − p(e)q∣∣,
where, by the convergence of {τ̂nk(q)},

Mq := sup
{
r(e)−τ̂nk (q) : e ∈ E, nk ≥ 1

}
<∞.

We first consider the case q ≤ 0 or q > 1. By letting

cq :=

{
|q|(pinf/2)q−1 if q ≤ 0,

q if q > 1

and applying the mean-value theorem to pnk(e)
q − p(e)q, we see that∣∣pnk(e)q − p(e)q∣∣ ≤ cq

∣∣pnk(e)− p(e)∣∣ for all e ∈ E.

It follows that

‖Bnk −B(q, τ̂nk(q), P )‖ ≤Mqcq‖Pnk − P‖. (5.7)
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Next, we consider the remaining case 0 < q < 1. Fix ε > 0 and choose k0 large enough

such that ‖Pnk − P‖ < ε for all k > k0. Then for such k,

∣∣pnk(e)q − p(e)q∣∣ ≤
{

(3ε)q, if p(e) < 2ε,

qεq−1|pnk(e)− p(e)| < εq, if p(e) ≥ 2ε.

(Note that q − 1 < 0, and hence max{p(e)q−1, pnk(e)
q−1} < εq−1 for p(e) ≥ 2ε.) Thus

|pnk(e)q − p(e)q| < 3q. The fact deg(V ) = 3 implies that

‖Bnk −B(q, τ̂nk(q), P )‖ ≤ 9Mqε
q. (5.8)

Then, combining (5.6), (5.7) and (5.8), we obtain

‖Bnk −B∞‖ → 0 as k →∞.

(b) The existence of the limits defining a1, a2, a3 is guaranteed by the monotonicity and

boundedness of {pi1}i≥1, {pi2}i≥2 and {pi,i+1} (Lemma 4.9).

(c) First, we see that c0 := b12b21 = (p12p21)qr
−2τ̂∞(q)
2 > 0. For 0 < ε < c0/4, by the

convergence of Bnk , we choose k0 sufficiently large so that k > k0 implies bij;nk > bij − ε and

b12;nkb21;nk > c2
0/4. Let B̄nk,2 be the positive matrix (bij;nk)1≤i,j≤2. The spectral radius of

B̄nk,2 is

ρ(B̄nk,2) =
b11;nk + b22;nk +

√
(b11;nk − b22;nk)

2 + 4b12;nkb21;nk

2
, (5.9)

which is no more than ρ(Bnk) = 1. This implies b11;nk < 1 or b22;nk < 1, which in turn

implies b11 ≤ 1 or b22 ≤ 1. If b11 = 1 and b22 = 1, then for ε and k0 given as above,

ρ(Bnk,2) >
1− ε+ 1− ε+ c0

2
> 1,

a contradiction. Thus b11 < 1 or b22 < 1. Without loss of generality, we assume b22 < 1.

Then (5.9) implies

b11;nk ≤ 1− (1− b22;nk)
−1b12;nkb21;nk .

By letting k →∞, we see that b11 ≤ 1− (1− b22)−1b12b21 < 1.

(d) Since bi,i+1 = pqi,i+1r
−τ̂∞(q)
2 and the limit of pi,i+1 is p (Lemma 4.9), we obtain a3 =

pqr
−τ̂∞(q)
2 , where p is defined as in (5.2). If {pn,n+1}n≥2 is increasing, then by Lemma 4.9,

p3 > p2. So a3 = pq3r
−τ̂∞(q)
2 = b11 < 1. In the remaining case when {pn,n+1}n≥2 is not

increasing, we replace each entry lying in the first row and the first column of Bnk by zero

and denote the resulting matrix by B0,0
nk

. Clearly Bnk ≥ B0,0
nk

, and thus ρ(Bnk) ≥ ρ(B0,0
nk

).

Assume ε and k0 are given as in the proof of (c). Since for k > k0, B0,0
nk

satisfies the condition
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of Lemma 4.3 with respect to

s := inf
k≥2
{bnk,2;nk} = b22;nk > b22 − ε and t := inf

k≥2
{bnk,nk+1;nk} > a3 − ε,

we get a3 + b22 ≤ 1 + 2ε. As b22 > 0, it follows that a3 < 1. �

Lemma 5.3. Suppose q > 0 or p2 > p3. Let xtnk and ynk be 1-invariant measure and 1-

invariant vector of Bnk respectively, with the first component of ynk being 1. Then {xtnk}
and {ynk} converge in `∞.

Proof. Recall that B̄nk is the nk-th quasi-truncation of Bnk and Bnk is the quasi-extension

of B̄nk . We divide the proof into five steps.

Step 1. Existence of xnk and ynk . By the structure of Bnk , we know that B̄nk is primitive and

bnknk;nk ∈ (0, 1). Theorem 4.4 says that ρ(Bnk) = λ(Bnk) = λ(B̄nk) = 1. Let x̄tnk and ȳnk be

1-invariant measure and 1-invariant vector of B̄nk , respectively. Let xtnk be the row extension

of x̄tnk with respect to bnknk;nk and ynk be the column extension of ȳnk . By Theorem 4.4 and

its proof, xtnk and ynk are 1-invariant measure and 1-invariant vector of Bnk , respectively.

This establishes the existence.

Step 2. Convergence of {xi;nk}, the i-th component of xnk . Before proving this, we see that

for any ε > 0, there exists N = N(ε) such that for each i and k > N with i ≥ nk, we have
(1− ε)a1 ≤ bi1;nk ≤ max{ε, (1 + ε)a1},
(1− ε)a2 ≤ bi2;nk ≤ (1 + ε)a2,

(1− ε)a3 ≤ bi,i+1;nk ≤ (1 + ε)a3,

(5.10)

where a1, a2, a3 are defined in (5.3). Equation (5.10) holds because {Bnk} and the three

sequences {bnk,1}k≥1, {bnk,2}k≥2, {bnk,nk+1}k≥1 converge.

For convenience, we consider a multiple of the 1-invariant measure

ztnk = (z1;nk , z2;nk , . . .) =
1

x2;nk

xtnk

instead of the invariant measure itself, where we have used the fact that B̄nk is irreducible

and thus xtnk is strictly positive (Remark 4.5). Then, by the convergence of Bnk , for i ≥ 3,

zi;nk = zi−1;nkbi−1,i;nk =
i−1∏
j=2

bj,j+1;nk →
i−1∏
j=2

bj,j+1 =: zi (k →∞). (5.11)

Since a3 < 1, the series
∑

i≥2 zi converges and we let c1 denote the limit. Let

0 < ε < min
{

(1− b11)/4, (1− a3)/2
}
. (5.12)
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Then there exists N1(> N) sufficiently large so that

N1∏
j=2

bj,j+1 < (1 + ε)−1ε (5.13)

and (5.10) holds. We also take N2 sufficiently large so that nk > N2 implies

(1− ε)1/N1bj,j+1 ≤ bj,j+1;nk ≤ (1 + ε)1/N1bj,j+1, j ≥ 1, (5.14)

and thus by (5.10), (5.12), and (5.14)

zm+1;nk =
m∏
j=2

bj,j+1;nk <

N1∏
j=2

bj,j+1

m∏
j=N1+1

((1 + ε)a3),

≤ ε
(
(1 + ε)a3

)m−N1 ≤ c
(
(1 + ε)a3

)m
, m ≥ N1,

(5.15)

where c is some positive constant.

Denote

ε′ :=
2ε

1− b11

, a(ε) :=
1 + ε

1− ε′
, b(ε) :=

1− ε
1 + ε′

.

Then a(ε) < 4 by the choice of ε. Since ztnkBnk = ztnk ,∑
j≥2 bj1zj;nk
1− b11

b(ε) ≤ z1;nk =

∑
j≥2 bj1;nkzj;nk
1− b11;nk

≤
∑

j≥2 bj1zj;nk
1− b11

a(ε).

Let M := supj≥2 bj1 <∞. The for all nk, nl > N2,

(1− b11)|z1;nk − z1;nl |
M

≤ 1

M

∣∣∣∑
j≥2

bj1zj;nka(ε)−
∑
j≥2

bj1zj;nlb(ε)
∣∣∣

≤
( ∑

2≤j≤N1

+
∑
j>N1

)∣∣∣zj;nka(ε)− zj;nlb(ε)
∣∣∣

≤
(
a(ε)(1 + ε)− b(ε)(1− ε)

) ∑
2≤j≤N1

zj + a(ε)
∑
j>N1

(zj;nk + zj;nl)

≤ 16c1ε

1− b11

+ 8ε
∑
j>N1

j−1∏
k=N1+1

(1 + ε)a3

≤ 16c1ε

1− b11

+ 8ε · 1

1− (1 + ε)a3

≤
( 16c1

1− b11

+
16

1− a3

)
ε.

The fourth inequality holds by using the inequality a(ε) < 4 and equation (5.15) for m = N1.

This implies the convergence of {z1;nk}k≥1. In view of (5.11) and the fact that z2;nk = 1, we

obtain

lim
k→∞

zi;nk = zi for all i. (5.16)
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Let ε and N1 be given as above. Choose N3 > N1 sufficiently large so that
∑

i>N3
zi < ε.

Take N4 > N3 such that |zi;nk − zi| < N−1
3 ε for nk > N4. Now (5.15) yields∣∣∣∑

i≥1

zi;nk −
∑
i≥1

zi

∣∣∣ ≤ ∑
1≤i≤N3

|zi;nk − zi|+
∑
i>N3

(zi;nk + zi)

≤ ε+ ε+
ε

1− (1 + ε)a3

.

Therefore,

lim
k→∞

∑
i≥1

zi;nk =
∑
i≥1

zi. (5.17)

So the sequence {
∑

i≥1 zi;nk}k converges to z1 + c1 ∈ (0,∞), and consequently, x2;nk =

(
∑

i≥1 zi;nk)
−1 converges to (z1 + c1)−1 > 0. It follows that {xi;nk = zi;nkx2;nk}k≥1 converges

for each i.

Step 3. Convergence of {xtnk}. Denote

xt = (
∑

j≥1zj)
−1(z1, z2, . . .).

Then

‖xtnk − xt‖ = sup
i≥1

∣∣∣ zi;nk∑
j zj;nk

− zi∑
j zj

∣∣∣
≤ sup

i≥1

(∣∣∣ zi;nk∑
j zj;nk

− zi;nk∑
j zj

∣∣∣+
∣∣∣ zi;nk∑

j zj
− zi∑

j zj

∣∣∣),
which, in view of (5.15), (5.16), and (5.17), tends to zero as k → ∞. This implies the

convergence of {xnk}k≥1.

Step 4. Convergence of each sequence {yi;nk}k≥1, the i-th component of ynk . From the

construction of Bnk , we know yi;nk = ynk;nk for any i > nk. For i = 2,

y2;nk =
1− b11;nk

b12;nk

=
1− pq3r

−τ̂nk (q)

2

(1− p3)qr
−τ̂nk (q)

2

→ 1− pq3r
−τ̂∞(q)
2

(1− p3)qr
−τ̂∞(q)
2

as k →∞.

Assuming {yi;nk}k≥1 converges for some i ≥ 2, we now consider the case i+ 1. Equating the

i-th components on both sides of the equation Bnkynk = ynk , we get

yi+1;nk =
yi;nk − bi+1,1;nk − bi+1,2;nky2;nk

bi,i+1;nk

.

Each term on the right side of the equation is convergent, and therefore the left side converges.

By induction, each sequence {yi;nk}k≥1 converges, and we denoted the limit by yi.

Step 5. Convergence of {ynk}. Choose ε > 0 small enough such that

ε < min
{
a
−1/2
3 − 1, (2a3)−1 − 1

}
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and thus (1 + ε)2a3 < 1. Let N = N(ε) be sufficiently large so that (5.10) holds and

(1− ε)y2 < y2,nk < (1 + ε)y2 for any k > N . Denote

ξ := max{ε, (1 + ε)a1}+ (1 + ε)2a2y2 and η := (1 + ε)a3.

Then η < (1 + ε)2a3 < 1. Fix any pair (i, nk) with i, k > N . Since ynk is a 1-invariant vector

of Bnk ,

yi;nk = bi1;nk + bi2;nky2;nk + bi,i+1;nkyi+1;nk

≤ max{ε, (1 + ε)a1}+ (1 + ε)2a2y2 + (1 + ε)a3ynk+1;nk (by (5.10))

< ξ + ηyi+1;nk < ξ + ξη + η2yi+2;nk < · · ·

<
ξ

1− η
+ ηmyi+m;nk .

This implies that yi;nk < ξ/(1 − η) since yi+m;nk is constant for large m and ηm → 0 as

m→∞. Similarly, we get yi;nk > ξ′/(1− η′), where

ξ′ = (1− ε)a1 + (1− ε)2a2y2 and η′ = (1− ε)a3.

Now in view of Step 4, let N5 > N be sufficiently large so that |yi;nk − yi;nl | < ε for any

1 ≤ i ≤ N and k, l > N5. It follows that if k, l > N5, then

‖ynk − ynl‖ = sup
i≥1
|yi;nk − yi;nl |

= max
{

max
1≤i≤N

{
|yi;nk − yi;nl |

}
, sup
i>N

{
|yi;nk − yi;nl |

}}
≤ max

{
ε,

c

1− d
− c′

1− d′
}
.

Let c0 := max{1, a1, a2, y2}. Then the choice of ε yields

c

1− d
− c′

1− d′
≤ 2c2

0(4− a3 + a3ε
2)ε

(1− a3)2 − (a3ε)2
≤ 16c2

0ε

(1− a3)2
.

Hence {ynk}n≥1 converges by the completeness of `∞. �

Lemma 5.4. Suppose p2 > p3 or q ≥ 0. Let xt, y be the limits of {xtnk}, {ynk} respec-

tively. Then xt and y are respectively the 1-invariant measure and 1-invariant vector of B∞;

moreover, xty < ∞ and 0 < infi yi ≤ supi yi < ∞, where yi is the i-th component of y. In

particular, ρ(B∞) = 1.

Proof. Note that Bnkynk = ynk , i.e.,

∞∑
j=1

bij;nkyj;nk = yi;nk , i ≥ 1.
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Since deg(V ) = 3, the left sum consists of three terms. By letting k →∞, we see that

∞∑
j=1

bijyi = yj, i ≥ 1,

i.e., B∞y = y. Clearly, all yi ≥ 0, y1 = 1 > 0 and

0 <
c′

1− d′
≤ yi ≤

c

1− d
<∞

for i large enough, where c, d, c′ and d′ are given as in the proof of Lemma 5.3. This and

the convergence of each sequence {yi;nk}k≥1 show that supi yi <∞. If infi yi = 0, then there

would exist some i such that yi = 0. From B∞y = y, we see that

yi = bi1 + bi2y2 + yi+1 = 0.

This is impossible since, by the definition of B∞, bi1 = pqi1r
−τ̂∞(q)
2 > 0. So infi yi > 0.

Denote xt = (x1, x2, . . .). We have the following estimate∣∣∣∑
i≥1

bijxi − xj
∣∣∣ ≤ ∑

i≥1

xi|bij − bij;nk |+
∑
i≥1

bij;nk |xi − xi;nk |

+
∣∣∣∑
i≥1

bij;nkxi;nk − xj;nk
∣∣∣+ |xj;nk − xj|.

The third term on the right side of the above inequality is zero since xtnk is a 1-invariant

measure of Bnk . That Bnk converges to B∞ and
∑

i≥1 xi <∞ imply that the first term tends

to zero as k →∞. The convergence of {xj;nk} implies that the fourth term tends to zero as

k → ∞. Now we consider the second term. The assumption p2 > p3 or q ≥ 0 implies B∞

has a finite norm. Since Bnk converges to B∞, bij;nk < 2‖B∞‖ for large k and all i, j. So∑
i≥1

bij;nk |xi − xi;nk | ≤ 2‖B∞‖
∑
i≥1

|xi − xi;nk |.

An similar argument as in Step 2 of the proof of Lemma 5.3 yields
∑

i≥1 |xi − xi;nk | → 0 as

k → ∞. This implies
∑

i≥1 bijxi = xj for all j, i.e., xtB∞ = xt. The conclusion
∑

i xi = 1

follows from the convergence of {
∑

i≥1 xi;nk}k≥1. If xi = 0 for some i ≥ 2, then the equality

xtB∞ = x implies that xi = 0 for all i ≥ 2, and hence x1b11 = x1. However, by Lemma 5.2(c),

the fact b11 < 1 implies that x1 = 0 as well, which is impossible. Thus all xi are positive.

Therefore, xt is a 1-invariant measure of B∞.

Now,

xty ≤ ‖y‖
∑
i

xi = ‖y‖ <∞.

So, the last conclusion ρ(B∞) = 1 follows from Lemma 4.2. �



34 G.T. DENG AND S.-M. NGAI

Theorem 5.5. Suppose p2 > p3 or q ≥ 0. Then τ̂n(q) converges.

Proof. Fix q ∈ R. From Lemma 5.1, τ̂n(q) is bounded. Suppose τ̂ (0)(q) and τ̂ (1)(q) are two

distinct limits of {τ̂n(q)}. Then Lemma 5.4 yields ρ(B∞(q, τ̂ (0)(q))) = ρ(B∞(q, τ̂ (1)(q))) = 1.

This contradicts the strict monotonicity of ρq(τ̂) (Proposition 3.1). So τ̂n(q) converges. �

Remark 5.6. Since τ̂n converges, all results in Lemmas 5.2, (5.3) and (5.4) still hold if we

replace nk by n.

6. Differentiability of τ̂(q)

Recall that τ̂∞(q) := limq→∞ τ̂n(q). For convenience, we denote τ̂∞(q) by τ̂(q) and B∞ by

B. That is, for each q, τ̂(q) is the unique number such that ρ(B) = ρ(B(q, τ̂(q), P )) = 1.

Our goal in this section is to show the differentiability of τ̂(q). We do this by showing τ̂(q)

is differentiable on any symmetric interval [−L,L], where L is a fixed positive number. We

remark that if q is negative, the condition p2 > p3 is necessary, as before.

Recall that Bn(q, τ̂) = B(q, τ̂ , Pn) is the extended n-th quasi-truncation of B(q, τ̂) =

B(q, τ̂ , P ) and B̄n(q, τ̂) = (b̄ij;n) is the n-th quasi-truncation of B(q, τ̂). To avoid confusion,

we denote the (i, j) entry of B(q, τ̂), where q and τ̂ are independent, by bij and that of B

by b0
ij. We emphasize that bij is a function of the variables q and τ̂ , while b0

ij is a function of

the single variable q.

For any e = (i, j) ∈ E, bij = pqijr
−τ̂
ij , and rij, pij being positive constants. These yield the

following facts.

Fact 1. bij is continuous on the (q, τ̂) plane, and hence attains its maximum and minimum

on any compact set.

Fact 2. ∂bij/∂q < 0, ∂bij/∂τ̂ > 0 for all q and τ̂ , and hence, bij is monotonically decreasing

with respect to q and monotonically increasing with respect to τ̂ .

In order to prove the differentiability of τ̂(q), we will first establish several lemmas. For

any fixed positive number L, let

kτ̂ = kτ̂ (L) := max
{∣∣∣ inf
|q|≤L

τ̂(q)
∣∣∣, ∣∣∣ sup
|q|≤L

τ̂(q)
∣∣∣}+ 1. (6.1)

By the monotonicity of τ̂(q) and a similar proof as that of Lemma 5.1, we see kτ̂ <∞.
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Lemma 6.1. Assume p2 > p3 or q ≥ 0. Then sup|q|≤L b
0
ii < 1 for i = 1, 2.

Proof. The definition of kτ̂ yields inf |q|≤L b
0
ij ≥ pLijr

kτ̂
ij > 0 for any (i, j) ∈ E. So c1 :=

inf |q|≤L b
0
12b

0
21 > 0. The spectral radius of the positive matrix B̄0

2 := (b0
ij)1≤i,j≤2 satisfies

1 ≥ ρ(B̄0
2) ≥ b0

11 + b0
22 +

√
(b0

11 − b0
22)2 + 4c1

2
, (6.2)

because ρ(B̄0
2) ≤ ρ(B) = 1. This implies that b0

11, b
0
22 < 1 and that

b0
11 ≤ 1− (1− b0

22)−1c1 < 1. (6.3)

If sup|q|≤L b
0
11 = 1, there exists a convergent sequence {qi} such that limi→∞ b

0
11(qi) = 1. So

limi→∞ b
0
22(qi) = 1 by (6.3). Now by (6.2), we obtain

lim
i→∞

ρ(B0
2) ≥ lim

i→∞

b0
11(qi) + b0

22(qi) +
√
c1

2
> 1,

which contradicts ρ(B0
2) ≤ 1. Thus sup|q|≤L b

0
11 < 1. The conclusion sup|q|≤L b

0
22 < 1 follows

from b0
22 ≤ 1− (1− b0

11)−1c1. �

Recall that p = max{pb, pc}. Define

a3 := inf
|q|≤L

a3 and a3 := sup
|q|≤L

a3.

Corollary 6.2. Assume the hypotheses of Lemma 6.1 and let a3 := limi→∞ b
0
i,i+1 be defined

as in (5.3). Then 0 < a3 ≤ a3 < 1.

Proof. That a3 > 0 follows from the inequality a3 ≥ pLrkτ̂2 , where kτ̂ is defined in (6.1). If

{pn,n+1}n≥2 is increasing, then p3 ≥ p2 (Lemma 4.9(b)) and hence a3 = b0
11 (Lemma 5.3). The

supremum of a3 is less than 1 by Lemma 6.1. If {pn,n+1}n≥2 is not increasing, then from the

proof of Lemma 5.2(d), we get a3 + b0
22 ≤ 1. The assertion follows since inf |q|≤L b

0
22 > 0. �

From B̄n(q, τ̂), we replace b̄nn;n by zero and denote the resulting matrix by B̄0
n(q, τ̂). Define

Dn := det
(
In − B̄0

n(q, τ̂)
)

and Fn := Dn − bn,n+1Dn−1,

where In is the n× n identity matrix, and let

U :=

{
(q, τ̂) :

q ln p− ln(a3/2)

ln r2

≤ τ̂ ≤ q ln p− ln((1 + a3)/2)

ln r2

, |q| ≤ L

}
,

where a3, a3 are given as in Corollary 6.2. Clearly, for each pair (q, τ̂) ∈ U , we have

a3

2
< pqr−τ̂2 <

1 + a3

2
. (6.4)

It follows from this that the compact region U contains the curve {(q, τ̂(q)) : |q| ≤ L}.
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Lemma 6.3. Assume the hypotheses of Lemma 6.1. Then there exists a constant γ (inde-

pendent of n) such that |∂Dn/∂τ̂ | < γ and |Dn| < γ for all (q, τ̂) ∈ U .

Proof. By using definition and induction, we have

Dn = (b11 − 1)
n∑
i=1

si2 − b12

n∑
i=1

si1,

where s11 = 0, s12 = −1, and

sij := bi,j

i−1∏
k=2

bk,k+1 =
(
pi,j

i−1∏
k=2

pk,k+1

)q
· r−(i−1)τ̂

2

(rj
r2

)−τ̂
, i ≥ 2, j = 1, 2. (6.5)

Notice that b11, b21 are continuous on the compact region U . We claim that the series with

non-negative terms
∑

i≥2 sij converges uniformly on U for j = 1, 2. If so, we can find a

constant γ1 such that |Dn| < γ1 for all (q, τ̂) ∈ U and all n ≥ 3.

To show the claim, we first fix j ∈ {1, 2}. From Lemma 4.9, the three sequences {pn,n+1},
{pn,1} and {pn,2} are convergent. For any ε > 0 satisfying (1 + ε)2L(1 + a3)/2 < 1, there

exists N > 0 such that n > N implies pn+1,j/pn,j < 1 + ε and pn,n+1/p ≤ 1 + ε. Therefore,

if i > N , then for each pair (q, τ̂) ∈ U , by (6.4) and (6.5),

si+1,j

sij
=
pqi+1,j

pqi,j

pqi,i+1

pq
pqr−τ̂2 ≤ (1 + ε)2L1 + a3

2
< 1. (6.6)

Thus the series
∑∞

i=2 sij converges uniformly on the compact region U , as claimed.

Differentiating sij with respect to τ̂ for i > 2,

∂sij
∂τ̂

=

{
sij · (i− 1)| ln r2|, j = 2,

sij · ((i− 2)| ln r2|+ | ln r1|), j = 1.
(6.7)

Then

lim
i→∞

∂si+1,j/∂τ̂

∂sij/∂τ̂
= lim

i→∞

si+1,j

sij
< 1.

This also proves that the series with non-negative terms
∑∞

i=2 ∂sij/∂τ̂ converges uniformly

on the region U . So ∂
∂τ̂

∑
i≥1 sij =

∑
i≥1

∂sij
∂τ̂

. Let c satisfy

max
(q,τ̂)∈U

{ 2∑
j=1

(
1 +

∑
i≥2

sij +
∑
i≥2

∂sij
∂τ̂

)}
< c. (6.8)
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From the expression bij = pqijr
−τ̂
ij for e = (i, j) ∈ E, we know ∂bij/∂τ̂ is continuous on the

compact set U , i, j ∈ {1, 2}. Differentiating Dn with respect to τ̂ yields∣∣∣∂Dn

∂τ̂

∣∣∣ =
∣∣∣∂b11

∂τ̂

n∑
i=1

si2 + (b11 − 1)
n∑
i=1

∂si2
∂τ̂
− ∂b12

∂τ̂

n∑
i=1

si1 − b12

n∑
i=1

∂si1
∂τ̂

∣∣∣
≤ c1

2∑
j=1

(
1 +

∑
i≥2

sij +
∑
i≥2

∂sij
∂τ̂

)
< c1c =: γ2,

where c1 := max(q,τ̂)∈U{max{|b11 − 1|, |∂b11/∂τ̂ |, |b12|, |∂b12/∂τ̂ |}}. The conclusion now fol-

lows by letting γ := max{γ1, γ2}. �

Corollary 6.4. There exists a constant γ (independent of n) such that both |Fn| and |∂Fn/∂τ̂ |
are less than γ for any pair (q, τ̂) ∈ U .

Proof. The conclusion follows from Lemma 6.3 and the fact that bn,n+1 and ∂bn,n+1/∂τ̂ are

continuous on U . �

Now we consider the differentiability of τ̂(q).

Theorem 6.5. Assume p2 > p3 or q ≥ 0. Then the function τ̂(q) is differentiable on

(−L,L).

Proof. We use the implicit function theorem. Let

D := (b11 − 1)
∑
i≥1

si2 − b12

∑
i≥1

si1, (6.9)

where sij is defined as in the proof of Lemma 6.3. Next, we verify the conditions in the

implicit function theorem in several steps.

Step 1. τ̂(q) is a solution of the functional equation D(q, τ̂(q)) = 0. From the proof of

Lemma 6.3, we see that Dn converges uniformly to D on U , and thus Fn converges uniformly

to F = D(1 − pqr−τ̂2 ) on U . For any ε > 0 and q ∈ [−L,L], choose N sufficiently large so

that n > N implies |F − Fn| < ε and |τ̂n(q)− τ̂(q)| < ε. Note that λ(B̄n(q, τ̂n(q))) = 1. So

Fn(q, τ̂n(q)) = 0. Now the mean-value theorem yields∣∣F (q, τ̂(q))
∣∣ ≤ ∣∣F (q, τ̂(q))− Fn(q, τ̂(q))

∣∣+
∣∣Fn(q, τ̂(q))− Fn(q, τ̂n(q))

∣∣
≤ ε+

∣∣∣∂Fn
∂τ̂

∣∣∣∣∣τ̂n(q)− τ̂(q)
∣∣

≤ (1 + γ)ε.
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The last inequality holds by Corollary 6.4. Therefore F (q, τ̂(q)) = 0 for all q ∈ [−L,L]. It

follows from 1− pqr−τ̂2 6= 0 that D(q, τ̂(q)) = 0.

Step 2. ∂D/∂τ̂ is continuous in the interior of U , denoted by U o, and ∂D/∂τ̂ 6= 0 at

(q, τ̂(q)) for −L < q < L. Using (6.9), together with the uniform convergence of
∑

i≥1 sij

and
∑

i≥1 ∂sij/∂τ̂ , j = 1, 2, we obtain the continuity of ∂D/∂τ̂ on U .

Let q ∈ (−L,L). We state three obvious observations:

(O1) It follows from Lemma 6.1 that b0
11(q) = b11(q, τ̂(q)) < 1.

(O2) The proof of Lemma 6.3 implies that the series
∑

i≥1 si1 converges to a positive

number. (Note that s11 = 0, si1 > 0 for i ≥ 2, by the definition of si1 at the point

(q, τ̂(q)));

(O3) The equality D(q, τ̂(q)) = 0 and (6.9) imply that the series
∑

i≥1 si2 is negative at

(q, τ̂(q)).

The partial derivative of D with respect to τ̂ can be written as

∂D

∂τ̂
=
∂b11

∂τ̂

∑
i≥1

si2 + (b11 − 1)
∑
i≥1

∂si2
∂τ̂

+
∂

∂τ̂

(
− b12

∑
i≥1

si1

)
. (6.10)

The first term on the right side of (6.10) is negative at (q, τ̂(q)) from Fact 2 and observation

(O3). The second term is non-positive from the monotonicity of the series
∑

i≥1 si2 with

respect to τ̂ and observation (O1). The monotonicity of the series b12

∑
i≥1 si1 with respect

to τ̂ shows that the last term is non-positive. Hence ∂D/∂τ̂ |(q,τ̂(q)) 6= 0.

Step 3. ∂D/∂q is continuous on U◦. First, by (4.13), pi,1 = pc/vi for i ≥ 2, where vi is

defined as in (4.12). By Lemma 4.9(a,b), we know

pi,1

i−1∏
k=2

pk,k+1 =
pi−1
b pc

pa + pb
. (6.11)

Then
∂si1
∂q

= si1 ·
(
(i− 1) ln pb + ln pc − ln(pa + pb)

)
.

As for si2, we have

∂si2
∂q

= si2 ·
(

ln pi,2 +
i−1∑
k=2

ln pk,k+1

)
.

As both {pi,2} and {pi,i+1} converge to positive numbers, we have

lim
i→∞

∂si+1,j/∂q

∂sij/∂q
= lim

i→∞

si+1,j

sij
< 1. (6.12)
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Thus the series
∑∞

i=1 ∂sij/∂q converges uniformly on the region U , and hence ∂
∂q

∑
i≥1 sij =∑

i≥1
∂sij
∂q

is continuous on U o. Now the continuity of ∂D/∂q follows from the equation

∂D

∂q
=
∂b11

∂q

∑
i≥1

si2 + (b11 − 1)
∑
i≥1

∂si2
∂q
− ∂b12

∂q

∑
i≥1

si1 − b12

∑
i≥1

∂si1
∂q

.

By the three steps above, the three conditions in the implicit function theorem for D(q, τ̂)

hold. Hence τ̂(q) is differentiable on (−L,L), and

τ̂ ′(q) = −∂D/∂q
∂D/∂τ̂

.

This completes the proof. �

7. Proof of Theorem 1.2

In this section, we denote the (i, j) entry of B = B(q, τ̂(q), P ) again by b0
ij, which is a

function of q. Clearly, for each (i, j) ∈ E, b0
ij is differentiable. To prove Theorem 1.2, we

need some notation and lemmas. For j = 1, 2 and i ≥ 2, denote

s0
ij := b0

ij

i−1∏
k=2

b0
k,k+1. (7.1)

We remark that s0
ij(q) = sij(q, τ̂(q)), where sij is given in the proof of Lemma 6.3.

Lemma 7.1. If p2 > p3 or q ≥ 0, then the following series∑
i≥2

i
(
s0
i1 + s0

i2 +
∣∣∣ ds0

i1

dq

∣∣∣+
∣∣∣ ds0

i2

dq

∣∣∣), ∑
i≥2

s0
i2

b0
i,2

,
∑
i≥2

d

dq

( s0
i2

b0
i,2

)
(7.2)

converge uniformly on [−L,L]. Consequently, the functions∑
i≥2

s0
i1,

∑
i≥2

s0
i2,

∑
i≥2

s0
i2

b0
i,2

are differentiable.

Proof. We first observe that for each q ∈ [−L,L], the limit of b0
i,2 is positive. From the proof

of Lemma 6.3, there exists a constant 0 < c < 1 such that for all q ∈ [−L,L],

lim
i→∞

(i+ 1)s0
i+1,2/b

0
i+1,2

i · s0
i2/b

0
i,2

= lim
i→∞

s0
i+1,2

s0
i2

< c, lim
i→∞

(i+ 1)s0
i+1,1

i · s0
i1

= lim
i→∞

s0
i+1,1

s0
i1

< c.
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The ratio test implies the uniform convergence of
∑

i≥2 is
0
i1,
∑

i≥2 is
0
i2 and

∑
i≥2 s

0
i2/b

0
i,2.

Differentiating s0
ij, j = 1, 2, with respect to q and using (6.7), we get

ds0
i1

dq
=
∂si1
∂τ̂

dτ

dq
+
∂si1
∂q

= s0
i1ti1,

ds0
i2

dq
=
∂si2
∂τ̂

dτ

dq
+
∂si2
∂q

= s0
i2ti2,

where

ti1 :=
(
(2− i) ln r2 − ln r1

) dτ

dq
+ (i− 1) ln p2 + ln

pc
pa + pb

, and

ti2 :=
(
(1− i) ln r2

) dτ

dq
+ ln pi,2 +

i−1∑
k=2

ln pk,k+1.

Note that pk,k+1 → p ∈ (0, 1) as k →∞. A simple computation yields

lim
i→∞

ti+1,j

tij
= 1, j = 1, 2.

It follows that

lim
i→∞

(i+ 1)| ds0
i+1,j/ dq|

i · | ds0
ij/ dq|

= lim
i→∞

s0
i+1,j|ti+1,j|
s0
i,j|tij|

= lim
i→∞

s0
i+1,j

s0
i,j

< c < 1.

This, together with the uniform convergence of
∑

i≥2 i·s0
i1 and

∑
i≥2 i·s0

i2, implies the uniform

convergence of the first series in (7.2) on the interval [−L,L].

Now we show the convergence of the second series in (7.2). Since s0
ij/b

0
i,2 =

∏i−1
k=2 pk,k+1, it

follows that the derivative of s0
ij/b

0
i,2 at q is (s0

ij/b
0
i,2)ti, where

ti :=
(
(2− i) ln r2

) dτ

dq
+

i−1∑
k=2

ln pk,k+1.

Also, a simple computation shows that ti+1/ti → 1 as i→∞. So

lim
i→∞

d(s0
i+1,2/b

0
i+1,2)/ dq

d(s0
i2/b

0
i,2)/ dq

= lim
i→∞

s0
i+1,2/b

0
i+1,2

s0
i2/b

0
i,2

· ti+1

ti
< c.

The ratio test implies the uniform convergence of the second series in (7.2). The last part

of the conclusion follows from the uniform convergence of the two corresponding series. �

Lemma 7.2. If p2 > p3 or q ≥ 0, then xt and y are differentiable. Moreover,

d

dq

∑
i≥1

xiyi =
∑
i≥1

d

dq
(xiyi). (7.3)

Proof. Since xt is a 1-invariant measure of B, xtB = xt. Notice that x2 6= 0 for any q. By

letting zt = x−1
2 xt, we get ztB = zt. This implies that for i ≥ 2,

zi+1 = b0
i,i+1zi =

∏
2≤k≤i

b0
k,k+1.
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It follows that zi is differentiable for all i ≥ 2. Equating the second components of ztB and

zt yields

1− b0
12z1 =

∑
i≥2

zib
0
i2 =

∑
i≥2

s0
i2,

which is differentiable by Lemma 7.1. As b0
12 > 0 is differentiable, so is z1. An analogous

argument shows the differentiability of the sum∑
i≥1

zi = z1 +
∑
i≥2

s0
i2

b0
i,2

.

The formulas x2 = (
∑

i≥1 zi)
−1 and xi = x2zi now yield the differentiability of xt.

From By = y, we get y2 = (b0
12)−1(1− b0

11) and

yi+1 =
yi − b0

i1 − b0
i2y2

b0
i,i+1

, i ≥ 2. (7.4)

So each yi, i ≥ 1, is a differentiable function of q.

Notice that z2 = 1 and y1 = 1. The expressions for yi+1 and zi+1 imply, by iteration,

zi+1yi+1 = ziyi − (b0
i1y1 − b0

i2y2)zi = y2 − y2

i∑
k=2

s0
k2 −

i∑
k=2

s0
k1.

The above equation can be rewritten as

b0
12zi+1yi+1 = (b0

11 − 1)
( i∑
k=2

s0
k2 − 1

)
− b0

12

i∑
k=2

s0
k1.

Since τ̂(q) is the solution of D(q, τ̂(q)) = 0, we see that

−b0
12ziyi = (b0

11 − 1)
∑
k≥i

s0
k2 − b0

12

∑
k≥i

s0
k1.

By the uniform convergence of the first series in (7.2), we see that
∑

i≥2 b
0
12ziyi converges

(absolutely) on [−L,L]. Notice that∣∣∣ d

dq
(b0

12ziyi)
∣∣∣ =

∣∣∣ db11

dq

∑
k≥i

s0
k,2 + (b0

11 − 1)
∑
k≥i

ds0
k,2

dq
− db0

12

dq

∑
k≥i

sk,1 − b0
12

∑
k≥i

dsi1
dq

∣∣∣
≤ c0

∑
k≥i

(
s0
k,1 + s0

k,2 +
∣∣∣ ds0

k,1

dq

∣∣∣+
∣∣∣ ds0

k,2

dq

∣∣∣),
where c0 := max|q|≤L max{| db0

11/ dq|, b0
11 + 1, | db0

12/ dq|, b0
i2}. Since∑

i≥2

∣∣∣ d

dq
(b0

12ziyi)
∣∣∣ ≤ c0

∑
i≥2

i
(
s0
i1 + s0

i2 +
∣∣∣ ds0

i1

dq

∣∣∣+
∣∣∣ ds0

i2

dq

∣∣∣),
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i≥2

d
dq

(b0
12ziyi) converges uniformly by Lemma 7.1, and so does

∑
i≥2

d
dq

(x−1
2 ziyi) =

∑
i≥1

d
dq

(xiyi),

because x2 = (
∑

i≥1 zi)
−1 and b0

12 are positive. Hence
∑

i≥1 xiyi is differentiable and (7.3)

holds. �

Theorem 7.3. Let K(α) be given as above. If p2 > p3 or q ≥ 0, then

dimHK
(α) = dimP K

(α) = α− τ̂(q).

Proof. We apply Theorem 1.1. Theorem 6.5 guarantees the differentiability of τ̂ . Lemma

5.4 and Remark 5.6 show that xt and y are, respectively, the 1-invariant measure and 1-

invariant vector of B with 0 < infi yi ≤ supi yi < ∞ and xty < ∞. Lemma 7.2 implies

the differentiability of xt and y, as well as the termwise differentiability of xty. Finally, by

equation (1.6), d(V ) = 1− r1 − 2r2 + r1r2 > 0, and thus (PSC) holds. The conclusion now

follows from Theorem 1.1. �

Proof of Corollary 1.3. We first notice that the concavity of τ̂n(q) implies that of τ̂(q). It

follows from Theorem 1.2 and [7, Theorem 1.2] that τ̂ ∗(α(q)) = τ ∗(α(q)). Now, by concavity,

τ̂(q) = τ̂ ∗∗(q) = τ ∗∗(q) = τ(q).

Finally, the equality dimH(µ) = τ ′(1) follows from the differentiability of τ and results

in [11,22] concerning this equality. �

8. Extensions to other IFSs

The technique developed in this paper can be applied to other classes of IFS of generalized

finite type. We briefly discuss several families of examples without going into details. In each

case, the probability weights defining the self-similar measure must be chosen appropriately

as in Theorem 1.2. All of these IFSs can be represented by an infinite graph-directed IFS

satisfying (PSC). It is of interest to investigate the extend to which the method in this paper

can be generalized.

We first note that the self-similar set K generated by the IFS in (1.5) is of generalized

finite type. A graph-directed system satisfying (OSC) is given below (see Fig 5):{
K := T1 = S3(T1) ∪ S2(T2);

T2 = S5(T2) ∪ S2(T2) ∪ S3(T1).
(8.1)

We point out that, although T1 and K have the same Hausdorff dimension and the same

Hausdorff measure, the first component of the invariant vector measure µ = (µ1, µ2) (for
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0 1T1 r1 − r1/r2 1T2

S2(T2) S3(T1) S5(T2) S2(T2) S3(T1)

Figure 5. A graph-directed system satisfying (OSC) that generates K, where
T1 = K and S5 = S−1

2 S1S2. The mappings are represented by thin or thick
lines depending on whether they originate from T1 or T2. The figures are drawn
with r1 = 1/3 and r2 = 2/7. .

T1, T2) of such graph-directed system does not coincide with the self-similar measure µ (for

K). In fact, they are singular to each other.

The graph in Fig 6(a) is the basic directed graph for the above graph-directed system.

Our method can be applied to the case when certain additional edges are added to such

directed graph (see Fig. 6(b)) so that we can consider a class of IFSs obtained by adding

more maps to the IFS in (1.5). The difference between the matrices P and B = B(q, τ̂ , P )

for the new graph-directed system and the ones in (5.1) is in the first columns. The m-th

components of the first columns of new matrices P and B(q, τ̂ , P ) are

n∑
i=0

pm1,i, and
n∑
i=0

pqm1,ir
−τ̂
uu,i, m = 1,

2n∑
j=0

pm1,j, and
2n∑
j=0

pqm1,jr
−τ̂
uv,j, m ≥ 2,

respectively, where ruu,i and ruv,j stand for the ratios of the mappings on the edges euu,i and

euv,j respectively. Moreover, p11,i and pm1,j (m ≥ 2) can be obtained using the same method

for p11 and pm1 (m ≥ 2).

The following example is for n = 2, obtained by adding two mappings from T1 to T1 and

four mappings from T1 to T2.

Example 8.1. Add S4(x) = r2
1x + r2 + 0.9r1 and S5(x) = r1r2x + 1 − 1.5r2 to the IFS in

(1.5) to obtain a new IFS (see Fig. 6). To guarantee that the new IFS is of general finite

type, the conditions S2(1) < S4(0), S4(1) < S5(0), S5(1) < S3(0) are required.

From Figure 6, we see that the new IFS is of generalized finite type. The attractor has

positive finite α-Hausdorff measure where α is the unique number satisfying rα1 +2rα2 +r2α
2 = 1.

We can also handle IFSs in higher dimensions. The following family of IFSs from [17] is

a two-dimensional extension of the family in (1.5).



44 G.T. DENG AND S.-M. NGAI

01n

0
1
2

2n

· · ·

...

u v

(a)

u v

(b)

0 1
k = 0

k = 1

k = 2

S1 S2 S4 S5 S3

Figure 6. An IFS with more added mappings. The figure is drawn with
r1 = 1/4, r2 = 2/7.

Example 8.2. Let {Si}4
i=1 be an IFS on R2 defined as

S1(x) = r1x, S2(x) = r2x+ (r1 − r1r2, 0),

S3(x) = r2x+ (1− r2, 0), S4(x) = r2x+ (0, 1− r2),

where 0 < r1 < 1, 0 < r2 < 1, and r1 + 2r2 − r1r2 ≤ 1. See Figure 7.

x

y

O 1

1

(a) k = 1

x

y

O 1

1

(b) k = 2 (c) The attractor

Figure 7. The first two iterations of the IFS in Example 8.2. The attractor
is shown in (c). The figures are drawn with r1 = 1/3 and r2 = 3/10.

It is shown in [17] that {Si}4
i=1 is of generalized finite type and it does not satisfy the open

set condition. Let F be the attractor of the IFS. Then dimB(F ) = dimH(F ) = α, where α is

the unique solution of the equation rα1 + 3rα2 − (r1r2)α = 1. Moreover, 0 < Hα(F ) <∞.

Example 8.2 has a three-dimensional extension as shown in the following example.
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x

y

z

1

1

1

Figure 8. The first iteration of the example in R3. The figure is drawn with
r1 = 1/3 and r2 = 2/9.

Example 8.3. Let {Si}5
i=1 be an IFS on R3 defined as

S1(x) = r1x, S2(x) = r2x+ (r1 − r1r2, 0, 0),

S3(x) = r2x+ (1− r2, 0, 0), S4(x) = r2x+ (0, 1− r2, 0), S5(x) = r2x+ (0, 0, 1− r2),

where 0 < r1 < 1, 0 < r2 < 1, and r1 + 2r2 − r1r2 ≤ 1. See Figure 8 for the first iteration.

It is easy to show that the attractor, denoted by G, given as in Example 8.3 is of generalized

finite type, although it does not satisfy (OSC). The attractorG shares some similar properties

with the attractor F ; for example, Hα(G) is positive finite, where α the unique number

satisfying the equation

rα1 + 4rα2 − (r1r2)α = 0.

Our results can also be extended to certain graph IFSs of generalized finite type. Such

IFSs are studied in [2, 24].

S3 S5 S6
S1 S2

S4

S7

0 T1 1 0 T2 1

Figure 9. The mappings are represented by thick or thin lines depending on
whether they originate from T1 or T2. The figure is drawn with r1 = 1/4 and
r2 = 1/5.
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T1

S2(T3)

S2
2(T3)

Figure 10. The graph-directed system satisfying (SSC).

Example 8.4. Let V = {1, 2}, E11 = {e1, e2, e3}, E12 = {e4}, E21 = {e5, e6}, and E22 =

{e7}. The corresponding graph-directed IFS is (after abbreviating Sei as Si):

S1(x) = S5(x) = r1x, S2(x) = S4(x) = r2x+ r1(1− r2),

S3(x) = S6(x) = r2x+ (1− r2), S7(x) = r2
2x+ 3r2,

where r1, r2 ∈ (0, 1), r1 + 2r2 − r1r2 and r1(1− r2) < 3r2 < 1− r2. The reader is referred to

Fig. 9 for the first iteration.

The graph-directed system (V,E, {Si}) for the vector attractor {T1, T2} stated above does

not satisfy (OSC). However, we can construct another graph-directed system satisfying

(OSC) as follows. Let T3 = S−1
2 S1(T1) ∪ T1 ∪ T2. Then {T1, T2, T3} is the vector attrac-

tor of a graph-directed system satisfying (OSC) (see Fig. 10). More precisely, denoting

S0 = S−1
2 S1S2, we have 

T1 = S2(T3) ∪ S3(T1),

T2 = S5(T1) ∪ S6(T1) ∪ S7(T2),

T3 = S0(T3) ∪ S2(T3) ∪ S3(T1) ∪ S4(T2).

By extending such graph-directed system to an infinite one, we can consider the measure for

T1.

With suitable modification, our method seems applicable to some other IFSs; however,

additional work may be needed. We illustrate this by the following family of IFSs.

Example 8.5. Let an IFS be defined as below{
S1(x) = r1x, S2(x) = r−1

1 r2
2x+ (1− r2)(r1 + r2),

S3(x) = r2x+ r1(1− r2), S4(x) = r2x+ 1− r2.
(8.2)

where r1, r2 satisfy r1, r2 ∈ (0, 1), and r1 + r2− r1r2 < 1 (see Figure 11 for the first two steps

of the iteration).
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Q1

Q2

Q3

Q4

S1 S2 S3 S4

Figure 11. Figure for Example 8.5. The figure is drawn with r1 = 1/3 and
r2 = 1/4.

It can be checked directly that the IFS above is of generalized finite type. The matrix

B(q, τ̂ , P ) for this IFS, shown below, can be obtained by using the method for the IFS in

(1.5).

B = B(q, τ̂ , P ) =


pq11r

−τ̂
2 pq12(r2

2/r1)−τ̂ 0 0 0 · · ·
pq21r

−τ̂
2 pq22r

−τ̂
1 pq23(r2

2/r1)−τ̂ pq24r
−τ̂
2 0 · · ·

pq31r
−τ̂
2 pq32r

−τ̂
1 pq33(r2

2/r1)−τ̂ 0 pq35r
−τ̂
2 0 · · ·

...
...

...
...

...
. . . . . .

 .

We refer the reader to Figure 11 for an illustration of the second row of B.

9. Comments and questions

In the case p2 < p3 in Theorem 1.2, it is likely that there is phase-transition in the region

q < 0; that is, τ(q) has a non-differentiable point. In this case there are points with very

small µ measure; in fact, limn→∞ pn,1 = 0.

It is of interest to study, under the assumption of Theorem 1.1, the equality τ̂(q) = τ(q).

We do not know whether the method developed in this paper can be applied to IFSs that

do not satisfy the generalized finite type condition.
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