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Abstract. For a fractal Schrödinger operator with a continuous potential and a coupling
parameter, we obtain an analog of a semi-classical asymptotic formula for the number
of bound states as the parameter tends to infinity. We also study Bohr’s formula for
Schrödinger operators on blowups of self-similar sets. For a Schrödinger operator defined by
a fractal measure and a locally bounded potential that tends to infinity, we derive an analog
of Bohr’s formula under various assumptions. We demonstrate how these results can be
applied to self-similar measures with overlaps, including the infinite Bernoulli convolution
associated with the golden ratio, a family of convolutions of Cantor-type measures, and a
family of measures that we call essentially of finite type.
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1. Introduction4

The eigenvalues of a Schrödinger operator are referred to by physicists as the bound5

state energies. Let ∆ be the Dirichlet Laplacian on Rn and let N−(V ) be the number of the6
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negative eigenvalues, also called bound states, of the Schrödinger operator −∆ + V , where1

V is a potential. In the early 1970’s, Birman and Borzov [1], Martin [24], and Tamura [36]2

proved the following semi-classical asymptotic formula for N−(βV ) :3

N−(βV ) ∼ ωn

(4π)n/2
βn/2

∫
D−n (V )

(
− V (x)

)n/2
dx, as β → +∞, (1.1)

where V is a continuous and compactly supported potential, β is called a coupling parameter,4

D−n (V ) := {x ∈ Rn : V (x) ≤ 0}, ωn is the volume of the unit ball in Rn, and throughout5

this paper, f ∼ g means limx→+∞ f(x)/g(x) = 1. The main ingredients are the Dirichlet-6

Neumann bracketing technique [30] and the Weyl law [37]. For fractal sets, Strichartz [34]7

studied the counting function for the negative eigenvalues of the Schrödinger operator ∆+V8

on the product of two copies of an infinite blowup of the Sierpiński gasket, where V is a9

Coulomb potential. He showed that the number of eigenvalues that are less than −ε is of10

the order ε−δ as ε → 0+, where δ =
(

ln(25/9) ln 9
)
/
(

ln(9/5) ln 5
)
. A main goal of this11

paper is to obtain a crude analogue of (1.1) for Schrödinger operators −∆µ + βV defined12

on domains by a measure µ (see Theorem 1.1).13

The classical one-dimensional Bohr’s formula states that, under suitable conditions,

N(λ,−∆ + V ) ∼ 1

π

∫ ∞
0

(λ− V (x))
1/2
+ dx, as λ→ +∞,

where ∆ is the Laplacian in L2([0,+∞), dx), and V (x) → +∞ as x → ∞(see [12]). In

the classical setting, various forms of Bohr’s formula have been studied extensively (see,

e.g., [30]). In the fractal setting, Bohr’s formula has been obtained by Chen et al. [2] for

some unbounded potentials V on several types of unbounded fractal spaces K∞ supporting

a measure µ∞ and having a well-defined Laplacian ∆µ∞ . K∞ is obtained by blowing up

some fractal K. In [2], sufficient conditions for the following Bohr’s formula to hold are

obtained:

N(λ,−∆µ∞ + V ) ∼ g(V, λ), as λ→ +∞,

where N(λ,−∆µ∞ + V ) := #
{
n : λn(−∆µ∞ + V ) ≤ λ

}
, and14

g(V, λ) :=

∫
K∞

((
λ− V (x)

)
+

)ds/2
G

(
1

2
ln
(
λ− V (x)

)
+

)
dµ∞(x), (1.2)

ds = ds(−∆µ∞), and G(·) is a periodic function. Moreover, these conditions are verified for15

fractalfolds and fractal fields based on nested fractals. A key condition they assume is16

N(λ,∆b
µ|K ) = λds/2

(
G
(1

2
lnλ

)
+R(λ)

)
for b ∈ {D,N}, (1.3)
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where N(λ,∆b
µ|K ) := #{n : λn(−∆b

µ|K ) ≤ λ}, Rb(λ) denotes the remainder term of order1

o(1), and −∆D
µ|K and −∆N

µ|K are Dirichlet and Neumann Laplacians in L2(K,µ), respec-2

tively. Unfortunately, fractals with overlaps usually do not, or not known to, satisfy this3

condition. Thus it is another main goal of this paper to derive an analog of Bohr’s formula4

for such fractals by modifying (1.3).5

Let A be a self-adjoint operator in a Hilbert space H that is semi-bounded below. If A6

has pure discrete spectrum, then we define the eigenvalue counting function as7

N(λ,A) := #{n : λn(A) ≤ λ}, (1.4)

where λn(A) is the n-th eigenvalue of A counted according to their multiplicities, and #E

denotes the cardinality of a finite set E. Furthermore, we define the lower and upper spectral

dimensions of A, respectively, as

ds(A) := lim
λ→∞

2 lnN(λ,A)

lnλ
and ds(A) := lim

λ→∞

2 lnN(λ,A)

lnλ
.

If ds(A) = ds(A), the common value, denoted by ds(A), is called the spectral dimension of8

A; it measures the asymptotic growth rate of the eigenvalue counting function.9

Let X ⊂ Rn be a compact subset and µ be a positive finite Borel measure on X with10

µ(X◦) > 0 and supp(µ) ⊆ X. It is known that µ defines a Dirichlet Laplace operator ∆µ, if11

the following Poincaré inequality for a measure (MPI) holds: There exists a constant C > 012

such that13 ∫
X◦
|u|2 dµ ≤ C

∫
X◦
|∇u|2 dx for all u ∈ C∞c (X◦) (1.5)

(see, e.g., [13, 26,27]). In the rest of this section, we assume that µ satisfies (MPI).14

The first part of this paper studies the Schrödinger operators −∆µ+βV in L2(X,µ) with15

a continuous potential V and a coupling parameter β, focusing on self-similar measures.16

Throughout this paper, we let D−(V ) := {x ∈ X : V (x) ≤ 0} and N−µ (V ) be the number17

of negative eigenvalues of −∆µ + V for a real-valued continuous function V on X.18

Before stating the main results, we introduce some definitions that will be used. A cell is19

a closed subset of X whose interior has positive µ measure. A µ-partition P of X is a finite20

family of interior disjoint cells such that µ(X) =
∑

B∈P µ(B). Under suitable assumptions,21

µ also defines a Neumann Laplacian −∆N
µ (see Subsection 2.3). Roughly speaking, we say22

a sequence of µ-partitions (Pk)k≥1 satisfies condition (N), if for each cell B ∈
⋃∞
k=1 Pk,23

the Neumann Laplacian −∆N
µ|B is well-defined and has compact resolvent. The precise24

statements are given in Definition 3.1. Let ν be a positive finite Borel measure on X. A25
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sequence of µ-partitions (Pk)k≥1 is said to be refining with respect to ν if each member of1

Pk+1 is a subset of some member of Pk, and max{ν(B) : B ∈ Pk} → 0 as k →∞.2

Theorem 1.1. Let X ⊆ Rn be a compact subset and µ be a positive finite Borel measure on3

Rn with supp(µ) ⊆ X and µ(X◦) > 0. Assume that µ satisfies (MPI) and V is a real-valued4

continuous function on X. Let ν be a positive Borel measure on X.5

(a) If there exist positive constants C and α, and a refining µ-partition (Pk)k≥1 of X6

with respect to ν such that for all B ∈
⋃∞
k=1 Pk,7

N(λ,−∆µ|B ) ≥ λα/2
(
Cν(A) + o(1)

)
, as λ→ +∞, (1.6)

then8

N−µ (βV ) ≥ βα/2
(
C

∫
D−(V )

(−V )α/2 dν + o(1)
)
, as β → +∞. (1.7)

(b) If there exist positive constants C and α, and a refining µ-partition (Pk)k≥1 of X9

with respect to ν satisfying condition (N), and for all B ∈
⋃∞
k=1 Pk,10

N(λ,−∆N
µ|B ) ≤ λα/2

(
Cν(A) + o(1)

)
, as λ→ +∞, (1.8)

then the reverse inequality in (1.7) holds.11

We remark that (1.6) and (1.8) are more general than the Weyl law. In the proof12

of Theorem 1.1, we use a similar method in [30, Theorem XIII.79] with (1.6) and (1.8)13

replacing the Weyl law. We illustrate Theorem 1.1 by a family of self-similar measures that14

are so-called essentially of finite type (EFT) (see Section 3). The spectral dimension of all15

these measures are known [29].16

The second part of this paper studies the Schrödinger operator for some non-negative,17

locally bounded, piecewise continuous potentials that tend to infinity, focusing on self-18

similar measures with overlaps. Let X ⊆ Rn be a compact subset and µ be a positive finite19

Borel measure on Rn with supp(µ) ⊆ X and µ(X◦) > 0. Assume that µ satisfies (MPI).20

We first state some Weyl asymptotic properties for ∆µ, which will be used in Section 4.21

Definition 1.2. Let µ,X and ∆µ be defined as above. Define the following two Weyl22

asymptotic properties.23

(a) We say that (W1) holds if there exist positive constants C1, C2, ds such that

C1λ
ds/2 ≤ N(λ,−∆µ) ≤ C2λ

ds/2, as λ→ +∞.



FRACTAL SCHRÖDINGER OPERATORS 5

(b) We say that (W2) holds if there exists a finite collection of closed subsets {Yj}j∈J1

of X with nonempty interiors satisfying the following conditions:2

(1) there exist positive constants C0 and (ξj,k)j∈J , k = 1, 2, such that for all λ > 0,3

4

∑
j∈J

N(ξj,1λ,−∆µ|Yj
)− C0 ≤ N(λ,−∆µ) ≤

∑
j∈J

N(ξj,2λ,−∆µ|Yj
) + C0; (1.9)

(2) for each j ∈ J , there exists a periodic or constant function Gj : R → R+ such

that 0 < inf Gj ≤ supGj <∞, and as λ→ +∞,

N(λ,−∆µ|Yj
) = λds/2

(
Gj
(

lnλ
)

+Rj(λ)
)
,

where ds is a positive constant independent of j, and Rj(λ) denotes the remain-5

der term of order o(1).6

We remark that (W1) implies that ds(−∆µ) = ds, and (W2) is stronger than (W1).7

Condition (2) of (W2) means that −∆µ|Yj
satisfies (1.3) for all j ∈ J . Consequently, (W2)8

is more general than (1.3), which corresponds to (W2) with J = {1}, Y1 = X, and G1(·)9

being a periodic function.10

We extend X to an unbounded space X∞ as follows. Let X∞ :=
⋃
i∈I Xi, where11

(C1) I is a countably infinite index set containing 0;12

(C2) each i ∈ I corresponds to a similitude τi : X → Xi of the form τi(x) = x+ bi, with13

bi ∈ Rn such that τ0 is the identity map on Rn and τi(X) = Xi;14

(C3) for any distinct i, j ∈ I, Xi ∩Xj = ∂Xi ∩ ∂Xj .15

Note each Xi is isometric to X; in particular, |Xi| = |X| for all i ∈ I. Condition (C3)16

implies that the interiors of any two distinct Xi are disjoint. For each i ∈ I, µi := µ ◦ τ−1
i17

defines a positive finite Borel measure on Xi. Intuitively, µi and µ have same measure18

structure. Also, µ0 = µ. In a natural way, we can define a glued measure µ∞ on X∞ by19

µ∞(E) :=
∑
i∈I

µi(E ∩Xi) for all Borel subsets E ⊆ X∞. (1.10)

Throughout this paper, we assume that µ∞(Xi ∩ Xj) = 0 for any distinct i, j ∈ I. For20

a real-valued function f on X∞ and λ > 0, we define the distribution function of f with21

respect to µ∞ as:22

F (λ, f) := µ∞
(
{x ∈ X∞ : f(x) ≤ λ}

)
. (1.11)
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Assume (W2) holds. For any j ∈ J , define

X∞,j :=
⋃
i∈I

τi(Yj) and µ∞,j := µ∞|X∞,j .

In order to state the precise results, we introduce the following associated Bohr’s asymptotic1

function: for any j ∈ J , λ > 0, and f ∈ L1
loc(X∞,j , µ∞,j), define2

gj(λ, f) :=
1

µ(Yj)

∫
X∞,j

((
λ− f(x)

)
+

)ds/2
Gj

(
ln
(
λ− f(x)

)
+

)
dµ∞,j(x), (1.12)

where Gj(·) is given in (W2). We remark that gj(·, ·) is an analog of the g(·, ·) in (1.2), which3

appears in [2], but slightly different because it is assumed in [2] that µ(K) = 1. Let V be a4

non-negative, locally bounded, piecewise continuous function on X∞ so that V (x) → +∞5

as |x| → ∞. Also, let V ∧ (resp. V ∨) be the piecewise constant function which takes the6

value supx∈Xi V (x) (resp. infx∈Xi V (x)) on Xi. The theorem below gives the eigenvalue7

asymptotics of N(λ,−∆µ∞ + V ).8

Theorem 1.3. Use the notation above. Let V be a non-negative, locally bounded, piecewise9

continuous function on X∞ so that V (x) → +∞ as |x| → ∞. Assume (MPI) and (W2)10

hold. Let F (·, ·) and gj(·, ·) be defined as in (1.11) and (1.12) for j ∈ J , respectively.11

Assume that12

F (λ, V ∨)/F (λ, V ∧) = 1 + o(1), as λ→ +∞, (1.13)

and that there exists some C > 0 such that F (2λ, V ∨) ≤ CF (λ, V ∧) for all sufficiently large

λ > 0. Then as λ→ +∞,

(
1 + o(1)

)∑
j∈J

gj(ξj,1λ, ξj,1V ) ≤ N(λ,−∆µ∞ + V ) ≤
(
1 + o(1)

)∑
j∈J

gj(ξj,2λ, ξj,2V ),

where (ξj,k)j∈J , k = 1, 2, are the constants in (1.9).13

We remark that Theorem 1.3 cannot be deduced from [2, Theorem 2.11], since (W2) is14

more general than (1.3), which is a key assumptionin Theorem [2, Theorem 2.11]. Theorem15

1.3 allows us to obtain eigenvalue asymptotics of Schrödinger operators in the absence of16

condition (1.3), as illustrated in the examples of IFSs with overlaps in Section 5. It also17

enables us to draw conclusions on N(λ,−∆µ∞ + V ) even though we only have information18

about the Weyl asymptotics of the Laplacian on a proper subset of X.19

We apply Theorem 1.3 to three classes of self-similar measures in Section 5. The infi-20

nite Bernoulli convolution associated with the golden ratio and a class of convolutions of21

Cantor-type measures have been studied extensively (see [9, 11, 15, 16, 19, 28]). They define22

Laplacians that exhibit many behaviors analogous to Laplacians on p.c.f. fractals, such23
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as sub-Gaussian heat kernel estimates [11] and infinite wave propagation speed [29]. The1

third class is used in [29] to illustrate self-similar measures satisfying (EFT). We show that2

all these measures satisfy (W2). However, it is not clear whether these three classes of3

measures satisfy (1.3).4

The rest of this paper is organized as follows. Section 2 summarizes some of the definitions5

and results that will be needed throughout the paper. In Section 3, we prove Theorem 1.1,6

and apply it to a class of self-similar measures satisfying (EFT). In Section 4, we study7

Bohr’s formula for Schrödinger operators defined by measures and non-negative locally8

bounded potentials, and prove Theorem 1.3. Finally, in Section 5, we illustrate Bohr’s9

formula by three classes of self-similar measures with overlaps.10

2. Preliminaries11

Let X be a metric space. For any subset E ⊆ X, let E, ∂E, |E| and E◦ (or int(E))12

denote, respectively, the closure, boundary, diameter and interior of E in X. For a real-13

valued function f on X, we define f+ := max{f, 0} and f− := −min{f, 0}, and let f |F14

denote the restriction of the function f to F ⊆ X.15

Let (X,µ) be a measure space with a σ-finite measure µ. We denote by µ|E the restriction16

of µ to E ⊆ X. For 1 ≤ p ≤ ∞, let ‖u‖p,µ = ‖u‖Lp(X,µ) denote the norm in Lp(X,µ). We17

denote by Ln(U) the n-dimensional Lebesgue measure of U ⊆ Rn.18

Let (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be Hilbert spaces. Let A1, A2 be linear operators in H1

and H2, respectively. A1 and A2 are said to be unitarily equivalent, denoted A1 ≈ A2, if

there exists a unitary operator ϕ : H1 → H2 such that

ϕ(domA1) = domA2 and ϕ(A1(u)) = A2(ϕ(u)) for all u ∈ domA1.

Note that u is a λ-eigenvector of A1 if and only if ϕ(u) is a λ-eigenvector of A2. In particular,19

unitarily equivalent operators have the same set of eigenvalues.20

Let (Hi)i∈I be a countably infinite or finite family of Hilbert spaces. Define a Hilbert

space

H =
⊕
i∈I
Hi :=

{
u = (ui)i∈I : ui ∈ Hi for all i ∈ I and ‖u‖2H :=

∑
i∈I
‖ui‖2Hi <∞

}
.

Assume that each Ai is a self-adjoint operator in Hi. We write A :=
⊕

i∈I Ai, if Au :=21

(Aiui)i∈I with domain domA := {u = (ui)i∈I ∈ H : ui ∈ domAi for all i ∈ I and Au ∈ H}22

(see [31]). We remark that (A,domA) is a self-adjoint operator in H.23
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2.1. Quadratic forms and the min-max principle. Let H be a (real or complex)1

Hilbert space with inner product (·, ·) and norm ‖ · ‖. We call a symmetric densely de-2

fined bilinear form E in H a quadratic form in H. A quadratic form (E ,dom E) is called3

semi-bounded below if there exists some constant M ≥ 0 such that4

E(u, u) ≥ −M‖u‖2 for all u ∈ dom E , (2.1)

and that (E , dom E) is non-negative if one may take M = 0 in (2.1) (see [31]). Then a5

quadratic form (E , dom E) is said to be closed if it is semi-bounded below and (EM+1,dom E)6

is a Hilbert space, where EM+1(u, v) := E(u, v) + (M + 1)(u, v) for all u, v ∈ dom E .7

A self-adjoint operator A in H is said to be semi-bounded below if there exists some

constant C ≥ 0 such that (Au, u) ≥ −C‖u‖2 for all u ∈ domA. It is well known that if

a quadratic from (E ,dom E) is closed, then there exists a unique self-adjoint operator A,

called the generator of (E , dom E), that is semi-bounded below, such that domA ⊆ dom E ,

and

E(u, v) = (Au, v) for all u ∈ domA and v ∈ dom E

(see [10, Section 1.3]). On the other hand, any self-adjoint operator (A,domA) in H de-

termines a quadratic form (E , domA) by E(u, v) := (Au, v) for all u, v ∈ domA. Moreover,

if A is semi-bounded below, then (E , domA) is closable, and its closure (E , dom E) is called

the closed quadratic form associated with A. We let Q(A) := dom E and call it the form

domain of A. Furthermore, if A is non-negative, then A1/2 is well-defined; moreover,

E(u, v) =
(
A1/2u,A1/2v

)
and dom E = dom (A1/2)

(see, e.g., [10, Theorem 1.3.1]). Moreover, for u ∈ dom E , we have u ∈ domA if and only8

if there exists a unique f ∈ H such that E(u, v) =
(
f, v
)

for all v ∈ dom E . In this case,9

Au = f .10

For i = 1, 2, let (Ei,dom Ei) be a closed quadratic form in a Hilbert spaceH with generator11

Ai. If dom E1 ∩ dom E2 is dense in H, then we denote the generator of the closure of12

(E1 + E2, dom E1 ∩ dom E2) by A1 + A2, and say that A1 + A2 is an operator defined as a13

sum of quadratic forms.14

Let (X,µ) be a measure space with a σ-finite measure µ. For any V ∈ L1
loc(X,µ), the

quadratic form EV given by

EV (u, v) =

∫
X
uvV dµ for all u, v ∈ C∞c (X),
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is closable on L2(X,µ). In this case, we denote the closure of (EV , C∞c (X)) by (EV ,dom EV )1

and regard V as the generator (see [5, 31]).2

We now state the min-max principle for self-adjoint operators that are semi-bounded3

below (see, e.g., [30]).4

Theorem 2.1. ( [30, Theorems XIII. 1 and XIII.2]) Let A be a self-adjoint operator in a5

Hilbert space H with inner product (·, ·) and norm ‖ · ‖. Assume that A is semi-bounded6

below and let (E , dom E) be the closed quadratic form associated with A. Define7

λn(A) := sup
u1,...,un−1

inf
u∈dom E,‖u‖=1

(u,ui)=0, i=1,...,n−1

E(u, u) for n ≥ 1. (2.2)

Note that the ui are not necessarily independent. Then for each fixed n, either8

(a) there are n eigenvalues (counting multiplicity) below the bottom of the essential9

spectrum, and λn(A) is the n-th eigenvalue counting multiplicity;10

or11

(b) λn(A) is the bottom of the essential spectrum, λn(A) = λn+1(A) = λn+2(A) = · · · ,12

and there are at most n− 1 eigenvalues (counting multiplicity) below λn(A).13

Definition 2.2. For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space Hi that is14

semi-bounded below, and (Ei, dom Ei) be the associated closed quadratic form. We say A1 ≤15

A2 (in the sense of quadratic forms) if H2 ⊆ H1, dom E2 ⊆ dom E1, and E1(u, u) ≤ E2(u, u)16

for all u ∈ dom E2.17

We state a simple proposition. A proof can be found in [30, Section XIII].18

Proposition 2.3. For i = 1, 2, let Ai be a self-adjoint operator in a Hilbert space Hi that19

is semi-bounded below. Assume A1 ≤ A2. If A1 has compact resolvent, then so does A2;20

moreover, N(λ,A1) ≥ N(λ,A2) for all λ ∈ R.21

2.2. Dirichlet Laplacian defined by a measure. For convenience, we summarize the22

definition of the Dirichlet Laplacian on a bounded domain defined by a measure; details23

can be found in [13]. Let U ⊆ Rn be a bounded open subset and µ be a positive finite Borel24

measure with supp(µ) ⊆ U and µ(U) > 0. We assume that µ satisfies (MPI) (see (1.5)).25

(MPI) implies that each equivalence class u ∈ H1
0 (U) contains a unique (in the L2(U, µ)26

sense) member û that belongs to L2(U, µ) and satisfies both conditions below:27

(1) there exists a sequence {un} in C∞c (U) such that un → û in H1
0 (U) and un → û in28

L2(U, µ);29

(2) û satisfies inequality (1.5).30
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We call û the L2(U, µ)-representative of u. Define a mapping ι : H1
0 (U) → L2(U, µ) by1

ι(u) = û. ι is a bounded linear operator, but not necessarily injective. Consider the subspace2

N of H1
0 (U) defined as N :=

{
u ∈ H1

0 (U) : ‖ι(u)‖2,µ = 0
}
. Now let N⊥ be the orthogonal3

complement of N in H1
0 (U). Then ι : N⊥ → L2(U, µ) is injective. Unless explicitly stated4

otherwise, we will denote the L2(U, µ)-representative û simply by u.5

Consider the non-negative bilinear form ED(·, ·) in L2(U, µ) given by6

ED(u, v) :=

∫
U
∇u · ∇v dx (2.3)

with domain dom ED = N⊥, or more precisely, ι(N⊥). (MPI) implies that (ED, dom ED) is7

a non-negative, closed quadratic form in L2(U, µ). We use −∆D
µ (or simply −∆µ) denote8

the generator of (ED, dom ED), and call it the (Dirichlet) Laplacian with respect to µ.9

Some sufficient conditions for (MPI) and the existence of an orthonormal basis {ϕn}∞n=110

of L2(U, µ) consisting of the eigenfunctions of −∆µ can be found in [6, 13, 26]. We remark11

that if n = 1, then (MPI) holds for any such µ, and thus ∆µ is well-defined; moreover, −∆µ12

has compact resolvent.13

2.3. Neumann Laplacian defined by a measure. By assuming some regularity con-14

ditions of the boundary of U , one can define a Neumann Laplacian in a similar fashion.15

We state a result below that is sufficient for the purpose of this paper. Laplacians with16

more general boundary conditions are studied in a forthcoming paper by Lau and the first17

author [17].18

Let U be a bounded open subset of Rn. We say that f ∈ C∞(U) if f ∈ C∞(U) and all19

of whose partial derivatives can be extended continuously to U . Suppose U is a bounded20

open subset in Rn that has the extension property. Then C∞(U) is dense in H1(U). All21

bounded regions in Rn with piecewise smooth or Lipschitz boundaries have the extension22

property. Let µ be a finite positive Borel measure on U with supp(µ) ⊆ U and µ(U) > 0.23

The following analog of (MPI), which we call Poincaré inequality* for measures (MPI*) is24

crucial: There exists a constant C > 0 such that25 ∫
U
|u|2 dµ ≤ C

(∫
U
|∇u|2 dx+

∫
U
|u|2 dx

)
for all u ∈ C∞(U). (2.4)

We remark that (MPI*) is stronger than (MPI). Similarly, (MPI*) implies that each equiv-26

alence class u ∈ H1(U) contains a unique (in the L2(U, µ) sense) member û that belongs to27

L2(U, µ) and satisfies both conditions below:28

(1) there exists a sequence {un} in C∞(U) such that un → û in H1(U) and un → û in29

L2(U, µ);30

(2) û satisfies inequality (2.4).31
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In view of Subsection 2.2, we need one additional inequality, namely, Poincaré inequality

(PI), i.e., there exists some constant C ′ > 0 such that∫
U
|u− u∗|2 dx ≤ C ′

∫
U
|∇u|2 dx for all u ∈ H1(U),

where u∗ := (1/Ln(U)) ·
∫
U u dx (see, e.g., [23, Theorem 8.11]).1

Define a quadratic form EN (·, ·) in L2(U, µ) by

EN (u, v) :=

∫
U
∇u · ∇v dx,

with domain dom EN := ι(N⊥), where ι : H1(U) → L2(U, µ) and N are analogues of2

those in Subsection 2.2. (MPI*) and (PI) imply that (EN , dom EN ) is a non-negative closed3

quadratic form in L2(U, µ) (see [13,17]). We denote the generator of (EN , dom EN ) by −∆N
µ ,4

and call it the Neumann Laplacian with respect to µ. We remark that −∆N
µ ≤ −∆µ.5

Some sufficient conditions for the existence of an orthonormal basis {ϕn}∞n=1 of L2(U, µ)6

consisting of the eigenfunctions of −∆N
µ can be found in [17]. We remark that if n = 1 and7

U = (a, b), then (MPI*) holds for any such µ and (PI) holds, and thus ∆N
µ is well-defined.8

Moreover, ∆N
µ has compact resolvent.9

3. Fractal analog of a semi-classical asymptotic formula for the number10

of bound states11

In this section, we prove Theorem 1.1 and illustrate it by a class of self-similar measures12

with overlaps.13

3.1. Proof of Theorem 1.1. Let µ be a positive finite Borel measure on a compact subset14

X ⊆ Rn with supp(µ) ⊆ X and µ(X◦) > 0. We call a µ-measurable closed subset B of X15

a cell (in X) if µ(B◦) > 0. Clearly, X itself is a cell. We say that two cells B and B′ are16

µ-equivalent, denoted by B 'µ,τ,w B′ (or simply B 'µ B′), if there exist some similitude17

τ : B → B′ of the form τ(x) = rx + b, r > 0, b ∈ Rn, and some constant w > 0 such that18

τ(B) = B′ and19

µ|B′ = w · µ|B ◦ τ−1. (3.5)

It is easy to check that 'µ is an equivalence relation.20

We call a finite family P of cells a µ-partition of X if any two distinct cells in P have21

disjoint interiors, and µ(X) =
∑

B∈P µ(B).22
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Definition 3.1. Let (Pk)k≥1 be a sequence µ-partitions of X. We say that (Pk)k≥1 satisfies1

condition (N) if for each k ≥ 1, Ln(X◦ \ (
⋃
B∈Pk B

◦)) = 0, and the following conditions are2

satisfied: for each B ∈
⋃∞
k=1 Pk,3

(1) B◦ has the extension property and satisfies (PI);4

(2) µ|B satisfies (MPI*);5

(3) −∆N
µ|B has compact resolvent.6

Condition (N) ensures that the Dirichlet-Neumann bracketing technique can be used in7

the proof of Theorem 1.1 The following theorem from [17] gives a sufficient condition for8

condition (N). For the definition of dim∞(µ) and other unexplained terms, see [13,38].9

Theorem 3.2. ( [17]) Let U ⊆ Rn, n ≥ 2, be a bounded domain that has the cone property.10

Assume that U has the uniform cone property or ∂U is minimally smooth. Let µ be a finite11

positive Borel measure on U with supp(µ) ⊆ U and µ(U) > 0. Assume that dim∞(µ) >12

n− 2. Then B := U satisfies conditions (1)–(3) in Definition 3.1.13

Consequently, (Pk)k≥1 satisfies condition (N) if for each k ≥ 1, Ln(X◦\(
⋃
B∈Pk B

◦)) = 0,14

and for each B ∈
⋃∞
k=1 Pk, U := B◦ satisfies the hypotheses of Theorem 3.2.15

Let (Pk)k≥1 be a sequence of µ-partitions of X, and let ν be a positive finite Borel16

measure on X ⊆ Rn. For each k ≥ 1, let mk = mk(Pk) := max{ν(B) : B ∈ Pk}. We say17

that (Pk)k≥1 is refining with respect to ν if it satisfies the following conditions:18

(1) {mk} is nonincreasing and limk→∞mk = 0;19

(2) for any B ∈ Pk and any B′ ∈ Pk+1, either B′ ⊆ B or (B′)◦ ∩B◦ = ∅.20

Condition (2) means that each member of Pk+1 is a subset of some member of Pk.21

We now prove Theorem 1.1 by modifying a method in [30, Theorem XIII 79].22

Proof of Theorem 1.1. Since X is compact and V is continuous, −∆µ + βV has discrete23

spectrum on the negative real line for any β > 0, i.e., N−µ (βV ) is finite for any β > 0.24

N−µ (βV ) ≤ N−µ (βVmin) = N(−βVmin,−∆µ) < ∞, where Vmin := min{V (x) : x ∈ X}.25

For each k ≥ 1, let Pk := {Bk,`}`∈Πk and define V ∨k (resp., V ∧k ) to be the piecewise26

constant function over each Bk,` with the value V ∨k,` := min{V (x) : x ∈ Bk,`} (resp.,27

V ∧k,` := max{V (x) : x ∈ Bk,`}).28

(a) For k ≥ 1, let −∆k
µ be the Dirichlet Laplacian on the union of the interiors of the29

cells in Pk. Since C∞c (
⋃
B∈Pk B

◦) ⊆ C∞c (X◦), we have −∆µ ≤ −∆k
µ for k ≥ 1. Combining30

this inequality with V ≤ V ∧k , we have −∆µ + βV ≤ −∆k
µ + βV ∧k for k ≥ 1. It follows from31
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Proposition 2.3 that for all k ≥ 1,1

N−µ (βV ) ≥ N(0,−∆k
µ + βV ∧k ) =

∑
`∈Πk

N(0,−∆µ|Bk,`
+ βV ∧k,`)

=
∑
`∈Πk

N(−βV ∧k,`,−∆µ|Bk,`
) =

∑
{`∈Πk:V ∧k,`≤0}

N(−βV ∧k,`,−∆µ|Bk,`
).

(3.6)

Combining (1.6) and (3.6) yields, for each k ≥ 1,2

N−µ (βV ) ≥ βα/2
(
C

∑
{`∈Πk:V ∧k,`≤0}

(
− V ∧k,`

)α/2
ν(Bk,`) + o(1)

)
, as β → +∞.

(3.7)

The definition of refining implies that limk→∞max{ν(Bk,`) : ` ∈ Πk} = 0. Moreover, it3

follows from the continuity of V that4

lim
k→∞

∑
{`∈Πk:V bk,`≤0}

(
− V b

k,`

)α/2
ν(Bk,`) =

∫
D−(V )

(−V )α/2 dν for b ∈ {∨,∧}, (3.8)

which, together with (3.7), yields the desired inequality.5

(b) The proof is similar to that of part (a). Since (Pk)k≥1 satisfies condition (N), the

Neumann Laplacian −∆k,N
µ is well defined on the union of the interiors of the cells in Pk

all k ≥ 1. Let u ∈ C∞c (X◦). Then the restriction of u to
⋃
B∈Pk B

◦ is in
⊕

B∈Pk C
∞(B).

Moreover, since Ln(X◦ \ (
⋃
B∈Pk B

◦)) = 0,

∫
X◦
|∇u|2 dx =

∑
B∈Pk

∫
B◦
|∇u|2 dx.

It follows that −∆k,N
µ ≤ −∆µ for k ≥ 1. Hence −∆k,N

µ +βV ∨k ≤ −∆µ+βV , which, together

with Proposition 2.3, yields

N−µ (βV ) ≤ N(0,−∆k,N
µ + βV ∨k ) =

∑
`∈Πk

N(0,−∆N
µ|Bk,`

+ βV ∨k,`)

=
∑
`∈Πk

N(−βV ∨k,`,−∆N
µ|Bk,`

) =
∑

{`∈Πk:V ∨k,`≤0}

N(−βV ∨k,`,−∆N
µ|Bk,`

) for all k ≥ 1.

Thus (1.8) implies the following analogue of (3.7), which holds for all k ≥ 1,

N−µ (βV ) ≤ βα/2
(
C

∑
{`∈Πk:V ∨k,`≤0}

(
− V ∨k,`

)α/2
ν(Bk,`) + o(1)

)
, as β → +∞.

Hence, the assertion follows from (3.8). �6
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It is well-known that if B ⊆ X is a closed interval on R, then N(λ,−∆µ) ≤ N(λ,−∆N
µ ) ≤1

N(λ,−∆µ) + 2 for all λ ≥ 0 (see, e.g., [28]). Thus N(λ,−∆µ) and N(λ,−∆N
µ ) have the2

same asymptotically behavior as λ→∞. Consequently, the result in the following remark3

holds.4

Remark 3.3. Let X = [a, b]. If there exist positive constants C and α, and a refining5

µ-partition (Pk)k≥1 of X such that all sets in
⋃∞
k=1 Pk are closed interval, and (1.6) holds6

with the inequality being reversed, then the conclusion of Theorem 1.1(b) holds.7

Let (X,µ) be a measure space with µ being σ-finite, and let (E , dom E) be a non-negative8

closed quadratic form with generator A. Levin-Solomyak (see [20, Theorem 1.2]) proved9

that if following Sobolev’s inequality holds for some q > 2: there exists some constant10

C > 0 such that ‖u‖2q,µ ≤ CE(u, u) for all u ∈ dom E , then the following general Cwikel-11

Lieb-Rosenbljum (CLR) inequality holds:12

N(0, A− βV ) ≤ epCpβp
∫
X
V p dµ, for all β > 0, (3.9)

where 0 ≤ V ∈ Lp(X,µ) and p := q/(q − 2) > 1. In the case X = Rn, n ≥ 3, µ is13

Lebesgue measure on Rn, and the generator A is the Dirichlet Laplace −∆ on Rn, then14

(3.9) holds with p = n/2 and C−1 =
(
n(n − 2)/4

)n/2
ωn−1, where ωn−1 is the volume of15

the unit (n − 1)-sphere in Rn. In this case, (3.9) is called the classical (CLR) inequality16

(see [3, 21,22,30,32]).17

We give a simple corollary for the general (CLR) inequality (3.9).18

Corollary 3.4. Let µ be a continuous Borel probability measure in R with supp(µ) ⊆ [a, b],

and (ED,dom ED) be defined as in (2.3). Assume 0 ≤ V ∈ Lp((a, b), µ) for some p > 1.

Then

N(0,−∆µ − βV ) ≤ ep|b− a|pβp
∫ b

a
V p dµ, for all β > 0.

Proof. For all u ∈ H1
0 (a, b) and x ∈ [a, b],

∣∣u(x)
∣∣ =

∣∣u(x)− u(a)
∣∣ =

∣∣∣ ∫ x

a
u′(t) dt

∣∣∣ ≤ |b− a|1/2ED(u, u)1/2.

It follows that for all q > 0,

(∫ b

a
|u(x)|q dµ

)2/q
≤ |b− a|ED(u, u),

and thus Sobolev’s inequality holds with C := |b− a|. Setting q := 2p/(p− 1). Thus using19

the discussion above or [20, Theorem 1.2], the desired inequality holds.20
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�1

We remark that Theorem 1.1(b) does not follow from [20, Theorem 1.2], which requires2

the Sobolev’s inequality. For n = 1, Corollary 3.4 implies that the general (CLR) inequality3

(3.9) holds for all p > 1. However, Theorem 1.1(b) does not follow from [20, Theorem 1.2] in4

this case either, since the constant α in Theorem 1.1(b), which corresponds to the constant5

p in the general (CLR) inequality (3.9), could be less than or equals 1. Precisely, we would6

like to have α = ds(−∆µ) ≤ 1, if ds(−∆µ) exists and n = 1, as in our examples below.7

We now apply Theorem 1.1 to a class of self-similar measures on R satisfying (OSC). For8

the convenience of the reader, we first state a slightly modified version of [28, Proposition9

2.2(b)] below.10

Proposition 3.5. ( [28, Proposition 2.2]) Let S : R → R be a similitude, with Lipschitz11

constant r, such that S[a, b] = [c, d], S(a) = c, and S(b) = d. Let ν be a continuous positive12

finite Borel measure on [a, b] with supp(ν) ⊆ [a, b]. Assume that [a, b] 'ν,w,τ [c, d]. Then13

−∆ν|[c,d] ≈ (rτw)−1 ·
(
−∆ν|[a,b]

)
, where rτ is the contraction ratio of τ .14

Let {Si}mi=1, m ≥ 2, be an IFS on R satisfying (OSC) with respect to an open set (a, b),

and let µ be a self-similar measure defined by {Si}mi=1 and a probability vector (pi)
m
i=1. Let

X = [a, b], and ds be the unique solution of

m∑
i=1

(piri)
ds/2 = 1,

where ri is the contraction ratio of Si. Solomyak and Verbitsky [33] have studied the15

asymptotic behavior of the eigenvalue counting function N(λ,−∆µ) as λ → +∞. They16

proved that there exist some positive constants C1, C2 such that17

C1λ
ds/2 ≤ N(λ,−∆µ) ≤ C2λ

ds/2 as λ→ +∞. (3.10)

In particular, for ck := ln(rkpk), if at least one of the ratios ck/c` is irrational, where18

k, ` ∈ {1, . . . ,m}, then there exists some constant C > 0 such that N(λ,−∆µ) ∼ Cλds/2.19

The same holds for the Neumann Laplacian for with the same constant C. We note that20

ds = ds(−∆µ).21

Proposition 3.6. Use the notation above and assume that {Si}mi=1 satisfies (OSC). Let22

ν be the self-similar measure defined by the probability vector ((piri)
ds/2)mi=1. Then for all23

continuous functions V on X,24
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(a) there exist positive constants C1, C2 such that, as β → +∞,1

C1

∫
D−(V )

(
− V

)ds/2 dν ≤ N−µ (βV )

βds/2
≤ C2

∫
D−(V )

(
− V

)ds/2 dν. (3.11)

(b) if, in addition, at least one of the ratios ck/c` is irrational for any distinct k, ` ∈2

{1, . . . ,m}, then one may take C1 = C2 in (3.11).3

Proof. Using the discussion above, we see that (b) follows from (a). Thus, we only prove4

(a). For k ≥ 1, define Pk :=
{
Si([a, b]) : i ∈ {1, . . . ,m}k

}
. It is easy to see that (Pk)k≥15

is a refining µ-partition of [a, b] with respect to ν, and all cells in
⋃
k≥1 Pk are closed6

interval. Thus by Theorem 1.1 and Remark 3.3, it suffices to show that for all k ≥ 1 and7

i ∈ {1, . . . ,m}k,8

C1ν
(
Si([a, b])

)
λds/2 ≤ N

(
λ,−∆µ|Si([a,b])

)
≤ C2ν

(
Si([a, b])

)
λds/2, as λ→ +∞. (3.12)

Fix any k ≥ 1 and any i ∈ {1, . . . ,m}k. (OSC) implies that µ|Si([a,b]) = piµ|[a,b] ◦ S−1
i

on Si([a, b]). It follows that [a, b] 'µ,pi,Si
Si([a, b]) and µ(Si([a, b])) = pi. In the view of

Proposition 3.5, we get N(λ,−∆µ|Si([a,b])
) = N(ripiλ,−∆µ), where ri is the contraction

ratio of Si. Combining this with (3.10), there exist some positive constants C1, C2 such

that

C1(ripi)
ds/2λds/2 ≤ N(λ,−∆µ|Si([a,b])

) ≤ C2(ripi)
ds/2λds/2, as λ→ +∞.

Since (ripi)
ds/2 = ν(Si([a, b])), (3.12) follows, which completes the proof. �9

3.2. A class of self-similar measures satisfying (EFT). In the rest of this section, we10

consider the following family of IFSs:11

S1(x) = r1x, S2(x) = r2x+ r1(1− r2), S3(x) = r2x+ 1− r2, (3.13)

where the contraction ratios r1, r2 ∈ (0, 1) satisfy r1 + 2r2 − r1r2 ≤ 1, i.e., S2(1) ≤ S3(0).12

The Hausdorff dimension of the self-similar sets is computed in [18]. The multifractal13

properties and spectral dimension of the corresponding self-similar measures are recently14

studied in [7, 29].15

Let µ be a self-similar measure defined by an IFS in (3.13) and a probability vector16

(pi)
3
i=1, and −∆µ be the associated Dirichlet Laplacian with respect to µ. We note that17

supp(µ) = X := [0, 1]. Let ds be the unique solution of18

(
1− (p2r2)ds/2

)(
1− (p3r2)ds/2

) ∞∑
k=0

(
w1(k)r1r

k
2

)ds/2 +
(
p
ds/2
2 + p

ds/2
3

)
r
ds/2
2 = 1, (3.14)
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where w1(k) := p1
∑k

i=0 p
k−i
2 pi3. [29, Theorem 1.2] implies that there exist some positive1

constants C1, C2 such that, for k = 0, 1,2

C1λ
ds/2 ≤ N(λ,−∆µ|B1,k

) ≤ C2λ
ds/2, as λ→ +∞, (3.15)

where B1,1 := S1(X)
⋃
S2(X) and B1,0 := S3(X). In particular, ds = ds(−∆µ).3

In order to define a sequence of refining µ-partitions of [0, 1] with respect to µ, we adopt4

the definition of an island from [29]. LetMk := {1, 2, 3}k for k ≥ 1 andM0 := ∅. A closed5

subset B ⊆ [0, 1] is called a level-k island with respect to {Mk} if the following conditions6

hold:7

(1) there exists a finite sequence of indexes i0, i1, . . . , in in Mk such that Sik(0, 1) ∩8

Sik+1
(0, 1) 6= ∅ for all k = 0, . . . , n− 1, and B =

⋃n
k=0 Sik([0, 1]);9

(2) for any j ∈Mk \ {i0, . . . , in} and any k ∈ {0, . . . , n}, Sj(0, 1) ∩ Sik(0, 1) = ∅.10

Intuitively, for each level-k islandB, B◦ is a connected component of SMk
(0, 1) :=

⋃
i∈Mk

Si(0, 1)11

(see Figure 1). For k ≥ 1, define12

Pk :=
{
B : B is a level-k island with respect to {Mk}

}
. (3.16)

We note that P1 = {B1,1, B1,0} (see Figure 1). It is easy to see that (Pk)k≥1 is a sequence of13

µ-partitions of [0, 1]. By the proof of [29, Example 3.3], (Pk)k≥1 is refining with respect to14

µ; moreover, for any k ≥ 1 and any B ∈ Pk, we can find a unique sequence of µ-partitions15

(B`)`≥1 of B satisfying the following conditions:16

(i)
⋃
`≥1 B` ⊆

⋃
k≥1 Pk;17

(ii) for each ` ≥ 1, there exists a unique cell B∗` ∈ B` such that B∗` is not µ-equivalent18

to any B1,i, i = 0, 1, and µ(B∗` )→ 0 as `→∞;19

(iii) B1 ⊆ Pk+1, B`+1 \ B` ⊆ Pk+`+1 and B` \ {B∗` } ⊆ B`+1 for all ` ≥ 1.20

Notice that (B`)`≥1 is not refining with respect to µ, since condition (1) in the definition of

refining fails. For example, define

B` :=
{
S2i−11(B1,1) : 1 ≤ i ≤ `

}⋃{
S2i(B1,0) : 1 ≤ i ≤ `

}⋃{
S2`(B1,1)

}
for all ` ≥ 1.

Then (B`)`≥1 is a sequence of µ-partitions of B1,1 such that all conditions above hold with21

B∗` = S2`(B1,1) (see Figure 1).22

23
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r0 1
X

k = 1

B1,1 B1,0r r r
r r rr r r r r r

k = 2

B∗1

r r rr r r r r rr r rr r r r r r r r rr r r r r rB∗2

k = 3

Figure 1. µ-partitions Pk and B∗` := S2`(B1,1) for k = 1, 2, 3 and ` = 1, 2,
where Pk is defined as in (3.16). Cells that are labeled consist of line segments
enclosed by a box. The figure is drawn with r1 = 1/3 and r2 = 2/7.

Proposition 3.7. Use the notation above. Let ν be a positive finite Borel measure on R1

and assume that max{ν(B) : B ∈ Pk} → 0 as k → ∞. Let ds be defined as in (3.14) and2

let P∗ := {B ∈ Pk : k ≥ 1 and B 'µ B1,i for some i ∈ {0, 1}}.3

(a) If there exists some constant c > 0 such that4

(
|B|µ(B)

)ds/2 ≥ cν(B) for all B ∈ P∗, (3.17)

then there exists some constant C > 0 such that5

N−µ (βV ) ≥ Cβds/2
(∫

D−(V )
(−V )ds/2 dν + o(1)

)
, as β → +∞. (3.18)

(b) The reverse inequality in (3.18) holds if (3.17) holds with the inequality being re-6

versed.7

Proof. Since (Pk)k≥1 is refining with respect to µ and max{ν(B) : B ∈ Pk} → 0 as k →∞,8

(Pk)k≥1 is refining with respect to ν. (a) In view of Theorem 1.1(a), it suffices to show that9

for all B ∈
⋃
k≥1 Pk,10

N(λ,−∆µ|B ) ≥ λds/2
(
Cν(B) + o(1)

)
, as λ→ +∞. (3.19)

Fix any B ∈
⋃
k≥1 Pk. Let (B`)`≥1 be the unique sequence of µ-partitions of B satisfying11

conditions (i), (ii), and (iii) in the paragraph preceding this proposition, and B∗` be the cell12
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satisfying the condition (ii) above. Thus, for each ` ≥ 1, we can write1

B` :=
( ⋃̀
i=1

{
Bi,j : 0 ≤ j ≤ m(i)

})⋃{
B∗`
}
, (3.20)

where m(i) is a positive integer for any i ≥ 1. Hence, for any i ≥ 1 and 0 ≤ j ≤ m(i),2

there exists a unique number w(i, j) > 0, a unique κ(i, j) ∈ {0, 1}, and a unique similitude3

τi,j such that B1,κ(i,j) 'µ,w(i,j),τi,j Bi,j . It follows from (3.17) that there exists some c∗ > 04

such that for all i ≥ 1 and 0 ≤ j ≤ m(i),5

(
w(i, j)r(i, j)

)ds/2 =

(
µ(Bi,j)

µ(B1,κ(i,j))
· |Bi,j |
|B1,κ(i,j)|

)ds/2
≥ c∗ν(Bi,j), (3.21)

where r(i, j) is the contraction ratio of τi,j . By assumption, we have ν(B∗` )→ 0 as `→∞,6

and thus7

ν(B) =
∞∑
i=1

m(i)∑
j=1

ν(Bi,j). (3.22)

Using calculations from [29, Sections 4 and 5], we get, as λ→ +∞,8

N(λ,−∆µ|B ) =
∞∑
i=1

m(i)∑
j=1

N(λ,−∆µ|Bi,j
) + λds/2o(1)

=

∞∑
i=1

m(i)∑
j=1

N
(
w(i, j)r(i, j)λ,−∆µ|B1,κ(i,j)

)
+ λds/2o(1),

(3.23)

where the fact B1,κ(i,j) 'µ,w(i,j),τi,j Bi,j and Proposition 3.5 are used in the last equality.

Combining (3.23) with (3.15), (3.21), and (3.22), we obtain positive constants C1, C2 such

that

N(λ,−∆µ|B ) ≥ C1λ
ds/2

( ∞∑
i=1

m(i)∑
j=1

(
w(i, j)r(i, j)

)ds/2 + o(1)
)

≥ C2λ
ds/2

( ∞∑
i=1

m(i)∑
j=1

ν(Bi,j) + o(1)
)

= C2λ
ds/2

(
ν(B) + o(1)

)
, as λ→ +∞,

i.e., (3.19) holds, which completes the proof.9

(b) The proof is similar to that of part (b). If (3.17) holds with the inequality being10

reversed, then the same is true for (3.21). Consequently, the desired inequality holds. �11

We now give a sufficient condition for the reverse inequality in (3.17) to hold.12
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Remark 3.8. Use the notation in Proposition 3.7. If (r1p1)ds/2 ≤ p1, p2 = p3 and

(r2p2)ds/2 ≤ p2, then there exists some constant c > 0 such that

(
|B|µ(B)

)ds/2 ≤ cµ(B) for all B ∈ P∗.

Proof. Let c be a positive constant such that1

(
|B|µ(B)

)ds/2 ≤ cµ(B) for B ∈ {B1,0, B1,1}. (3.24)

By assumption, w1(j) = p1
∑j

i=0 p
j−i
2 pi3 = p1(j + 1)pj2 for j ≥ 0. Using the assumptions2

(r1p1)ds/2 ≤ p1 and (r2p2)ds/2 ≤ p2, we have3

(
r1r

j
2w1(j)

)ds/2 = (r1p1)ds/2 ·
(
(j + 1)(p2r2)j

)ds/2 ≤ p1(j + 1)ds/2pj2

≤ p1(j + 1)pj2 = w1(j),
(3.25)

where the last inequality uses the fact ds/2 < 1. Fix any B ∈ P∗. By the definition of P∗,
there exist a unique k0 ∈ {0, 1}, w > 0, and i ∈

⋃
k≥0{1, 2, 3}k such that B1,k0 'µ,w,Si

B.

Let ri be the contraction ratio of Si. By the definition of 'µ, |B| = ri|B1,k0 | and µ(B) =

wµ(B1,k0). From the proofs of [29, Lemma 3.5 and Example 3.3], we see that w can be

expressed as w = w1(i)pj1p
`
2p
k−1−i−j−`
3 = w1(i)pj1p

k−1−i−j
2 for some i, j, ` ∈ {0, 1, . . . , k}. In

this case, ri = rj+1
1 rk−j−1

2 . Hence,

(
|B|µ(B)

)ds/2 =
(
ri|B1,k0 | · wµ(B1,k0)

)ds/2
=
(
|B1,k0 |µ(B1,k0) · r1r

i
2w1(i) · (p1r1)j ·

(
(p2r2)k−1−i−j))ds/2

≤ cµ(B1,k0)w1(i)pj1p
k−1−i−j
2 = cµ(B),

where we have use (3.24), (3.25), and the assumptions to get the inequality. This completes4

the proof. �5

4. Bohr’s formula for Schrödinger operators with locally bounded6

potentials7

Let X ⊆ Rn(n ≥ 1) be a compact subset, and µ be a continuous positive finite Borel8

measure on X such that µ(X◦) > 0 and supp(µ) ⊆ X. We extend X to X∞ :=
⋃
i∈I Xi as9

described in Section 1 so that conditions (C1)–(C3) are satisfied. For each i ∈ I, let τi be10

a similitude of the form τi(x) = x+ bi, bi ∈ Rn satisfying condition (C2) in Section 1, and11

µi := µ ◦ τ−1
i . Also, let µ∞ be a positive measure on X∞ defined as in (1.10). Assume that12

µ∞(Xi ∩Xj) = 0 for any distinct i, j ∈ I.13
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In the rest of section, we assume that µ satisfies (MPI). Let −∆µ be the Dirichlet Lapla-1

cian with respect to µ. We first give a simple proposition.2

Proposition 4.1. Let (µi)i∈I , (Xi)i∈I , X∞, and µ∞ be defined as above. Assume that µ3

satisfies (MPI). Then4

(a) for any i ∈ I, the Dirichlet Laplacian −∆µi with respect to µi is well-defined and5

−∆µi ≈ (−∆µ).6

(b) −∆µ∞ :=
⊕

i∈I(−∆µi) is a non-negative self-adjoint operator in L2(X∞, µ∞).7

Proof. Part (a) can be proved by verifying (MPI) and using a similar argument as that8

in [28, Lemma 2.1]. Part (b) follows from the facts that L2(X∞, µ∞) is isomorphic to9 ⊕
i∈I L

2(X◦i , µi) and that −∆µi is a non-negative self-adjoint operator in L2(X◦i , µi) for all10

i ∈ I. We omit the details. �11

In the rest of this section, we define −∆µ∞ :=
⊕

i∈I(−∆µi). Let V be a non-negative,12

locally bounded, piecewise continuous function on X∞ such that V (x) → ∞ as |x| → ∞.13

Then −∆µi + V |Xi is a non-negative self-adjoint operator in L2(Xi, µi) for all i ∈ I.14

Theorem 4.2. Use the notation above and assume that V is a non-negative, locally bound-15

ed, piecewise continuous function on X∞ so that V (x) → +∞ as |x| → ∞. Then the16

Schrödinger operator −∆µ∞ + V , defined as a sum of quadratic forms, is a non-negative17

self-adjoint operator in L2(X∞, µ∞) and has compact resolvent.18

Proof. Let D := {(ui)i∈I ∈ L2(X∞, µ∞) : ui ∈ C∞c (X◦i ) for all i ∈ I}. It follows from the19

fact D ⊆ Q(−∆µ∞) ∩ Q(V ) is dense in L2(X∞, µ∞) that −∆µ∞ + V , defined as a sum20

of quadratic forms, is a non-negative self-adjoint operator in L2(X∞, µ∞). The remaining21

assertion holds by using Theorem 2.1 and the proof of [30, Theorem XIII.16]. �22

Let Y be a closed subset of X with µ(Y ◦) > 0. If µ satisfies (MPI), then so does µ|Y .23

Hence, we can obtain analogues of Proposition 4.1 and Theorem 4.2 for µ|Y , as follows.24

Remark 4.3. Let (µi)i∈I , (Xi)i∈I , (τi)i∈I , X∞, and µ∞ be defined as above. Assume25

that µ satisfies (MPI). Let Y be a closed subsets of X. Define X∞,Y :=
⋃
i∈I τi(Y ) and26

µ∞,Y := µ∞|X∞,Y . Then27

(a) −∆µi|τi(Y )
≈ (−∆µ|Y ) for any i ∈ I;28

(b) −∆µ∞,Y :=
⊕

i∈I(−∆µi|τi(Y )
) is a non-negative self-adjoint operator in L2(X∞,Y , µ∞,Y );29

(c) −∆µ∞,Y + V |X∞,Y is a non-negative self-adjoint operator in L2(X∞,j , µ∞,j) with30

compact resolvent.31
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Proposition 4.1(b) implies that −∆µ∞ + V =
⊕

i∈I(−∆µi + V |Xi). It follows that1

N(λ,−∆µ∞ + V ) =
∑
i∈I

N(λ,−∆µi + V |Xi) for all λ > 0. (4.1)

Let V ∧ (resp. V ∨) be the piecewise constant function which takes the value supx∈Xi V (x)2

(resp. infx∈Xi V (x)) on Xi. Applying Theorem 4.2 to V b for b ∈ {∨,∧}, we see that3

−∆µ∞ + V b is a non-negative self-adjoint operator in L2(X∞, µ∞). Note that σ is an4

eigenvalue of −∆µ|Xi + V b|Xi with eigenvalue ϕ if and only if σ− V b|Xi is an eigenvalue of5

−∆µ|Xi with the same eigenfunction. Hence,6

N(λ,−∆µi + V b|Xi) = N(λ− V b|Xi ,−∆µi). (4.2)

This allows us to relate the eigenvalue counting function of the Schrödinger operator to7

that of the Laplacian. Since 0 ≤ V ∨ ≤ V ≤ V ∧ in the sense of quadratic forms, we have8

−∆µ∞ + V ∨ ≤ −∆µ∞ + V ≤ −∆µ∞ + V ∧, and thus, for all λ > 0,9

N(λ,−∆µ∞ + V ∧) ≤ N(λ,−∆µ∞ + V ) ≤ N(λ,−∆µ∞ + V ∨). (4.3)

As in (4.1), for b ∈ {∨,∧}, by (4.2),10

N(λ,−∆µ∞ + V b) =
∑
i∈I

N(λ,−∆µi + V b|Xi) =
∑
i∈I

N(λ− V b|Xi ,−∆µi)

=
∑

{i∈I:V b|Xi≤λ}

N(λ− V b|Xi ,−∆µ),
(4.4)

where Proposition 4.1(a) is used in the last equality. Replacing Proposition 4.1(b) and11

Theorem 4.2 by Remark 4.3(b) and (c), respectively, we also can now obtain analogues of12

(4.1) and (4.4) as follows. For all j ∈ J and b ∈ {∨,∧}, we get13

N(λ,−∆µ∞,j + V |X∞,j ) =
∑
i∈I

N(λ,−∆µi|τi(Yj)
+ V |τi(Yj)), and (4.5)

N(λ,−∆µ∞,j + V b|X∞,j ) =
∑

{i∈I:V b|Xi≤λ}

N(λ− V b|Xi ,−∆µ|Yj
). (4.6)

Define B(x, r) := {y ∈ X∞ : |x − y| < r}. The following theorem gives the existence of14

spectral dimension of −∆µ∞ + V . A similar result was obtained by Chen et al. [2]. We15

replace their assumption that µ∞ is Ahlfors-regular by a more general condition.16

Theorem 4.4. Use the notation above. Assume (W1) holds, and there exist positive con-17

stants c1, c2, c3, θ such that18

c1|x|θ ≤ V (x) ≤ c2|x|θ for all x ∈ X∞, (4.7)
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and µ∞(B(0, 2r)) ≤ c3µ∞(B(0, r)) as r →∞. Then there exist positive constants C,C1, C2

such that, as λ→ +∞,

F (2λ, V ∨) ≤ CF (λ, V ∧) and C1λ
ds/2F (λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤ C2λ

ds/2F (λ, V ),

where F (·, ·) is defined as in (1.11) and ds comes from (W1).1

Proof. Fix any b ∈ {∨,∧}. Since V b|Xi is a constant for any i ∈ I, we see that2

F (λ, V b) =
∑

{i∈I:V b|Xi≤λ}

µ∞(Xi) = µ(X) ·#{i ∈ I : V b|Xi ≤ λ} for λ > 0.
(4.8)

By (W1), there exist positive constants c4, c5,M0 such that c4λ
ds/2 ≤ N(λ,−∆µ) ≤ c5λ

ds/2

for all λ > M0. Thus

N(λ− V b|Xi ,−∆µ) ≤ N(λ,−∆µ) ≤ c5λ
ds/2 for all λ > M0 and any i ∈ I,

while for all λ > 2M0 and i ∈ I such that V b|Xi ≤ λ/2,

N(λ− V b|Xi ,−∆µ) ≥ N(λ/2,−∆µ) ≥ (c42−ds/2) · λds/2.

Combining these estimates with (4.4) and (4.8), we get

N(λ,−∆µ∞ + V b) ≤ c5λ
ds/2#{i ∈ I : V b|Xi ≤ λ}

= (c5/µ(X)) · λds/2F (λ, V b) for all λ > M0, and,

N(λ,−∆µ∞ + V b) ≥
∑

{i∈I:V b|Xi≤λ/2}

N(λ− V b|Xi ,−∆µ)

≥ (c42−ds/2) · λds/2#{i ∈ I : V b|Xi ≤ λ/2}

=
(
c42−ds/2/µ(X)

)
· λds/2F (λ/2, V b) for all λ > 2M0.

It follows that there exist constants c6, c7 > 0 such that for all λ > 2M0,3

c6λ
ds/2F (λ/2, V b) ≤ N(λ,−∆µ∞ + V b) ≤ c7λ

ds/2F (λ, V b). (4.9)

By the definition of F (·, ·), F (λ/2, V ∧) ≤ F (λ, V ) ≤ F (λ, V ∨) for all λ > 0. Using (4.3),

we have

N(λ,−∆µ∞ + V ∧)

λds/2F (λ, V ∨)
≤ N(λ,−∆µ∞ + V )

λds/2F (λ, V )
≤ N(λ,−∆µ∞ + V ∨)

λds/2F (λ/2, V ∧)
for all λ > 0,
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which, together with (4.9), gives1

c6
F (λ/2, V ∧)

F (λ, V ∨)
≤ N(λ,−∆µ∞ + V )

λds/2F (λ, V )
≤ c7

F (λ, V ∨)

F (λ/2, V ∧)
for all λ > 2M0. (4.10)

Using (4.7), we obtain positive constants M1, c8, c9 such that2

c8|x|θ ≤ V ∨(x) ≤ V ∧(x) ≤ c9|x|θ for all x ∈ X∞ with |x| > M1. (4.11)

Define M2 := sup{V ∧(x) : x ∈ X∞ such that |x| ≤M1}. Thus for all λ > 2M2, we have

F (λ/2, V ∧) ≥ µ∞
(
{x ∈ X∞ : c9|x|θ ≤ λ/2}

)
= µ∞

(
B(0, c10λ

1/θ)
)
,

F (λ, V ∨) ≤ µ∞({x ∈ X∞ : c8|x|θ ≤ λ}) = µ∞
(
B(0, c11λ

1/θ)
)
,

where c10 := (2c9)−1/θ and c11 := c
−1/θ
8 . Moreover, since µ∞(B(0, 2r)) ≤ c3µ∞(B(0, r)) for

all sufficiently large r by assumption, we have

µ∞
(
B(0, c11λ

1/θ)
)
≤ cm0

3 µ∞
(
B(0, 2−m0c11λ

1/θ
)
≤ cm0

3 µ∞
(
B(0, c10λ

1/θ)
)
, as λ→ +∞,

where m0 := min{i ∈ Z : i ≥ ln(c11/c10)/ ln 2}. Thus F (λ, V ∨) ≤ cm0
3 F (λ/2, V ∧) as

λ→ +∞. It follows from (4.10) that

c−m0
3 c6λ

dsF (λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤ cm0
3 c7λ

dsF (λ, V ) as λ→ +∞,

which completes the proof. �3

Assume (W2) holds. Fix j ∈ J and b ∈ {∨,∧}. Define4

Rj(λ, V
b) :=

∑
{i∈I:V b|Xi≤λ}

(
λ− V b|Xi

)ds/2Rj(λ− V b|Xi
)
.

(4.12)

Let gj(·, ·) be defined as in (1.12) for j ∈ J . We first observed that5

gj(λ, V
b) =

∑
{i∈I:V b|Xi≤λ}

(
λ− V b|Xi

)ds/2Gj( ln
(
λ− V b|Xi

))
.

(4.13)

Thus limλ→∞Rj(λ, V
b)/gj(λ, V

b) = 0, and using (4.6), we have N(λ,−∆µ∞,j +V b|X∞,j ) =6

gj(λ, V
b) +Rj(λ, V

b) as λ→ +∞. It follows that7

lim
λ→∞

N(λ,−∆µ∞,j + V b|X∞,j )
gj(λ, V b)

= lim
λ→∞

gj(λ, V
b) +Rj(λ, V

b)

gj(λ, V b)
= 1. (4.14)
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The following theorem is a slight modification of a similar one in [2], in order to suit our1

purpose. We include a proof for completeness.2

Theorem 4.5. [2, Theorem 2.11] Let V be a locally bounded non-negative, piecewise con-3

tinuous function on X∞ so that V (x) → +∞ as |x| → ∞. Assume that (W2) and (1.13)4

hold. Let F (·, ·) and gj(·, ·) be defined as in (1.11) and (1.12) for j ∈ J , respectively. Then5

for each j ∈ J ,6

N(λ,−∆µ∞,j + V |X∞,j ) ∼ gj(λ, V ), as λ→ +∞. (4.15)

Proof. Fix any j ∈ J . We claim that7

gj(λ, V
∨)/gj(λ, V

∧) = 1 + o(1), as λ→ +∞. (4.16)

Define Fj(λ, V
b) := µ∞({x ∈ X∞,j : V b(x) ≤ λ}) for b ∈ {∨,∧}. Similar to (4.8), we8

get Fj(λ, V
b) = µ(Yj) · #{i ∈ I : V b|Xi ≤ λ} for b ∈ {∨,∧} and λ > 0. This, together9

with (4.8), yields Fj(λ, V
∨)/Fj(λ, V

∧) = F (λ, V ∨)/F (λ, V ∧). By [2, Proposition 4.2], if10

Fj(λ, V
∨) ∼ Fj(λ, V

∧) as λ → +∞, then (4.16) holds. The claim follows by combining11

these observations with (1.13). Combining (4.16) and (4.14), we get12

lim
λ→+∞

N(λ,−∆µ∞,j + V ∨|X∞,j )
gj(λ, V ∧)

= lim
λ→+∞

N(λ,−∆µ∞,j + V ∧|X∞,j )
gj(λ, V ∨)

= 1. (4.17)

We note that hj(λ) := λds/2Gj(lnλ) is nondecreasing on (M,+∞) for some constant M > 0.13

Hence, by the definition of gj(·, ·) in (1.12),14

gj(λ, V
∧) ≤ gj(λ, V ) ≤ gj(λ, V ∨) as λ→ +∞. (4.18)

As in (4.3), we have

N(λ,−∆µ∞,j + V ∧|X∞,j ) ≤ N(λ,−∆µ∞,j + V |X∞,j ) ≤ N(λ,−∆µ∞,j + V ∨|X∞,j ).

It follows that, as λ→ +∞,

N(λ,−∆µ∞,j + V ∧|X∞,j )
gj(λ, V ∨)

≤
N(λ,−∆µ∞,j + V |X∞,j )

gj(λ, V )
≤
N(λ,−∆µ∞,j + V ∨|X∞,j )

gj(λ, V ∧)
,

which, together with (4.17), yields (4.15). �15

We now prove Theorem 1.3.16

Proof of Theorem 1.3. Proposition 4.1(a) and Remark 4.3(a) implyN(λ,−∆µi) = N(λ,−∆µ)17

and N(λ,−∆µi|τi(Yj)
) = N(λ,−∆µ|Yj

) for all i ∈ I and all j ∈ J . Also, (1.9) holds by (W2).18
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Thus, for all i ∈ I,1

∑
j∈J

N(ξj,1λ,−∆µi|τi(Yj)
)− C0 ≤ N(λ,−∆µi) ≤

∑
j∈J

N(ξj,2λ,−∆µi|τi(Yj)
) + C0. (4.19)

For all i ∈ I, since V ∨|Xi ≤ V |Xi ≤ V ∧|Xi , Proposition 2.3 and (4.2) give

N(λ− V ∧|Xi ,−∆µi) = N(λ,−∆µi + V ∧|Xi) ≤ N(λ,−∆µi + V |Xi)

≤ N(λ,−∆µi + V ∨|Xi) = N(λ− V ∨|Xi ,−∆µi),

which, together with (4.19), yields∑
j∈J

N(ξj,1(λ− V ∧|Xi),−∆µi|τi(Yj)
)− C0 ≤ N(λ,−∆µi + V |Xi)

≤
∑
j∈J

N
(
ξj,2(λ− V ∨|Xi),−∆µi|τi(Yj)

)
+ C0.

It follows that∑
i∈I

∑
j∈J

N(ξj,1(λ− V ∧|Xi),−∆µi|τi(Yj)
)− C0 ·#{i ∈ I : V ∧|Xi ≤ λ}

≤N(λ,−∆µ∞ + V ) =
∑
i∈I

N(λ,−∆µi + V |Xi)

≤
∑
i∈I

∑
j∈J

N(ξj,2(λ− V ∨|Xi),−∆µi|τi(Yj)
) + C0 ·#{i ∈ I : V ∨|Xi ≤ λ}.

Using (4.8) and (4.6), we get2 ∑
j∈J

N(ξj,1λ,−∆µ∞,j + ξj,1V
∧|X∞,j )− C1F (λ, V ∧)

≤N(λ,−∆µ∞ + V )

≤
∑
j∈J

N(ξj,2λ,−∆µ∞,j + ξj,2V
∨|X∞,j ) + C2F (λ, V ∨),

(4.20)

where Ci, i = 1, 2 are positive constants. Combining (4.13) and (4.8) with the fact 0 <3

inf Gj ≤ supGj < +∞, we have for b ∈ {∨,∧} and all c > 0,4

gj(cλ, cV
b) ≥ (cds/2 inf Gj) ·

∑
{i∈I:V b|Xi≤λ}

(
λ− V b|Xi

)ds/2
≥ (cds/2 inf Gj)(λ/2)ds/2 ·#{i ∈ I : V b|Xi ≤ λ/2}

≥ C3λ
ds/2F (λ/2, V b) ≥ C4λ

ds/2F (λ, V b), as λ→ +∞,

(4.21)
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where Ci > 0, i = 3, 4, are constants, and the last inequality uses the assumption F (2λ, V ∨) ≤
CF (λ, V ∧) as λ→ +∞. Combining (4.21) with (4.18), (4.17), and (4.20), we have

lim
λ→∞

N(λ,−∆µ∞ + V )∑
j∈J gj(ξj,1λ, ξj,1V )

≥ lim
λ→∞

∑
j∈J N(ξj,1λ,−∆µ∞,j + ξj,1V

∧|X∞,j )∑
j∈J gj(ξj,1λ, ξj,1V

∨)

− lim
λ→∞

C1F (λ, V ∧)∑
j∈J gj(ξj,1λ, ξj,1V

∨)
= 1 + 0 = 1.

Similarly, we have

lim
λ→∞

N(λ,−∆µ∞ + V )∑
j∈J gi(ξj,2λ, ξj,2V )

≤ 1.

The proof is complete. �1

A sufficient condition for (1.13) is given in [2, Remark 2.9]. We now give a simple sufficient2

condition for (1.13), which is needed in Section 5.3

Proposition 4.6. Let X = [0, a] ⊆ R and let X∞ and µ∞ be defined as above. Assume4

that V is a locally bounded non-negative, piecewise continuous function on X∞ so that5

V (x) ∼ c|x|β for some β > 1 and c > 0. Let F (·, ·) be defined as in (1.11). Then (1.13)6

holds.7

Proof. By the definition of F (·, ·) in (1.11), we have F (λ, V ∨) ≥ F (λ, V ∧). Since V (x) ∼
c|x|β, for any sufficiently small ε > 0, there exists some sufficiently large constant M > 0

such that 0 < c(|x| − a)β − ε ≤ V ∨(x) ≤ V ∧(x) ≤ c(|x|+ a)β + ε for all x ∈ X∞ such that

|x| > M . Define M0 := sup{V (x) : x ∈ X∞ such that |x| > M}. Thus for all λ > M0, we

have #{i ∈ I : V ∨|Xi ≤ λ} ≤ #{i ∈ I : V ∧|Xi ≤ λ}+ C(ε,M), where C(ε,M) is a positive

constant depending only on ε and M . It follows that

1 ≤ lim
λ→∞

F (λ, V ∨)

F (λ, V ∧)
= lim

λ→∞

#{i ∈ I : V ∨|Xi ≤ λ})
#{i ∈ I : V ∧|Xi ≤ λ}

≤ lim
λ→∞

#{i ∈ I : V ∧|Xi ≤ λ}+ C(ε,M)

#{i ∈ I : V ∧|Xi ≤ λ}
= 1.

Hence, (1.13) holds. �8

5. Examples: self-similar measures on R with overlaps9

In this section, we apply Theorem 1.3 to self-similar measures on R with overlaps. We10

first prove a simply proposition, which leads to a sufficient condition for Theorem 4.4.11

Proposition 5.1. Let X := [0, a] and µ be a continuous positive finite Borel measure with12

supp(µ) ⊆ [0, a]. Let X∞ :=
⋃
i∈I τi(X) and µ∞ be defined as in Section 1 with I = Z and13
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τi(x) = x + bi, where bi = a + bi−1 for all i ∈ I. Then X∞ = R, and there exist positive1

constants C1, C2 such that C1r ≤ µ∞(B(x, r)) ≤ C2r for all x ∈ R and r ≥ 2a, where2

B(x, r) := {x ∈ R : |x| < r}. Consequently, under the assumptions of (W1) and (4.7), the3

conclusions of Theorem 4.4 holds.4

Proof. By assumption, τi(0) = τi−1(a) and |τi(X)| = a for all i ∈ Z. Thus X∞ = R. Let

Xi := τi(X). Fix any x ∈ R and r > 2a. Then there exist positive integers m0,m1 such

that m1 −m0 ≥ 2 and
⋃m1
i=m0

Xi ⊆ B(x, r) ⊆
⋃m1+1
i=m0−1Xi. Thus

a(m1 −m0) =

m1∑
i=m0

|Xi| ≤ 2r ≤
m1+1∑
i=m0−1

|Xi| = a(m1 −m0 + 2) ≤ 2a(m1 −m0).

It follows that

µ(X)

a
r ≤ (m1 −m0)µ(X) ≤ µ∞(B(x, r)) ≤ 2(m1 −m0)µ(X) ≤ 4µ(X)

a
r,

where the fact µ∞(Xi) = µi(Xi) = µ(X) for all i ∈ I is used. Hence the assertion holds. �5

The spectral dimension of the examples in Subsections 5.1 and 5.2 are computed in [28].6

We will compute the spectral dimension of the example in Subsection 5.3 by using a similar7

method. The technique is to apply a vector-valued renewal theorem [14, Theorem 4.2] by8

deriving a system of renewal equations for the eigenvalue counting functions, and express9

them in vector form as:10

f = f ∗Mα + z, (5.1)

where α ≥ 0, and

f = fα(t) := [f
(α)
1 (t), . . . , f (α)

n (t)], t ∈ R;

Mα := [µ
(α)
`m ] is a n× n matrix of Radon measures on R;

z := z(α)(t) = [z
(α)
1 (t), . . . , z(α)

n (t)] is some error function.

Let11

Mα(∞) :=
[
µ

(α)
`m (R)

]n
`,m=1

. (5.2)

If the error functions decay exponentially to 0 as t → ∞, then ds(−∆µ) is given by the12

unique α such that the spectral radius of Mα(∞) is equal to 1.13

For the examples in this section, the functions Gj in condition (W2) tend to either a14

constant or a (non-constant) periodic function as λ→∞. This dichotomy is determined by15
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whether a set RM in [14] is arithmetic or non-arithmetic, where M := Mα = [µ
(α)
`m ]n`,m=1 is1

an n× n matrix-valued Radon measure and RM is the closed subgroup of (R,+) generated2

by G :=
⋃{

supp(µγ) : γ is a simple cycle on {1, . . . , n}
}

(see [14]).3

5.1. Infinite Bernoulli convolution associated with the golden ratio. In this section,4

we consider the infinite Bernoulli convolution associated with the golden ratio:5

µ =
1

2
µ ◦ S−1

1 +
1

2
µ ◦ S−1

2 , (5.3)

where

S1(x) = ρx, S2(x) = ρx+ (1− ρ), ρ = (
√

5− 1)/2.

We note that supp(µ) = [0, 1]. Strichartz et al. [35] showed that µ satisfies a family of6

second-order identities with respect to the following auxiliary IFS:7

T0(x) := ρ2x, T1(x) := ρ3x+ ρ2, T2(x) := ρ2x+ ρ. (5.4)

For any integer k ≥ 0 and any index j = (j1, . . . , jk) ∈ {0, 2}k, define

cj :=
1

2 · 4k+1

[
1 1

]
Pj

[
1
1

]
, Pj := Pj1 · · ·Pjk , P0 =

[
1 1
0 1

]
, and P2 =

[
1 0
1 1

]
.

The vector-valued renewal equation (5.1) reduces to the following scalar-valued one:

f(t) =

∞∑
k=0

∑
j∈Jk0

(ρ2k+3cj)αf
(
t+ ln(ρ2k+3cj)

)
+ zα(t),

where f(t) = e−αtN(et,−∆µ|T1(X)
) and zα(t) = o(e−σt), as t→∞, for some σ > 0 (see [28,8

Section 5]). Moreover, M = [µ(α)] is a 1 × 1 matrix-valued Radon measure, where µ(α) is9

a discrete measure with support G := {− ln(ρ2k+3cj) : k ≥ 0, j ∈ {0, 2}k}. Let RM be the10

closed subgroup of (R,+) generated by G.11

Let ds be the unique positive solution of12

∞∑
k=0

∑
j∈Jk0

(ρ2k+3cj)ds/2 = 1. (5.5)

[28, Theorem 1.2] shows that ds(−∆µ) = ds, and (W1) holds.13

Proposition 5.2. Let µ be the self-similar measure defined as in (5.3), and −∆µ be the

associated Dirichlet Laplacian with respect to µ. Then (1.9) holds with J = {1} and Y1 :=



30 S.-M. NGAI AND W. TANG

T1(X), where T1 is defined as in (5.4). Moreover, (W2) holds; in particular, the non-

arithmetic case holds: there exists a constant G1 > 0 such that

N
(
λ,−∆µ|T1(X)

)
= λds/2

(
G1 + o(1)

)
, as λ→ +∞,

where ds is defined as in (5.5).1

Proof. From [28, paragraph following Proposition 3.2], we see that there exists a constant2

ξ > 0 such that3

N
(
λ,−∆µ|T1(X)

)
≤ N(λ,−∆µ|X ) ≤ N

(
ξλ,−∆µ|T1(X)

)
+ 1 for all λ > 0, (5.6)

and hence the first assertion holds. Condition (2) of (W2) holds by combining [28, Theorem4

1.2 and Theorem 4.1]. We now use [28, Theorem 4.1] again to show that the non-arithmetic5

case holds by verifying that RM = R. Suppose, on the contrary, that RM 6= R. Letting6

k = 0 and 1, we obtain the elements a := − ln(ρ3/4) and b := − ln(3ρ5/32) in G. Then7

b/a = 1 − ln(3ρ2/8)/a ∈ Q and thus there exist m,n ∈ Z such that − ln(3ρ2/8)/a = n/m.8

Consequently, 3m = 23m−2nβ2m−3n, where β = 2/(
√

5−1) = 1/ρ. Without loss of generality,9

we assume that 2m − 3n > 0. Define h(x) := 23m−2nx2m−3n − 3m. Then h(β) = 0. Since10

β is an algebraic integer with x2 − x− 1 being its minimal polynomial, x2 − x− 1 divides11

h(x), a contradiction. Hence, RM = R, which implies the desired result. �12

Let I := Z and define τi(x) = x+ i for all i ∈ I. Define X∞ :=
⋃
i∈I τi(X) and let µ∞ be13

defined as in (1.10). Thus X∞ = R. Define X∞,1 :=
⋃
i∈I τi(T1(X)) and µ∞,1 := µ∞|X∞,1 .14

Corollary 5.3. Let X∞, µ∞, X∞,1 and µ∞,1 be defined as above. Assume V is a locally15

bounded non-negative, piecewise continuous function on X∞ such that V (x) ∼ c|x|β for16

some β > 1 and c > 0. Let ds be defined as in (5.5). Then17

(a) there exist positive constants C1, C2 such that

C1λ
ds/2F (λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤ C2λ

ds/2F (λ, V ), as λ→ +∞,

where F (·, ·) is defined as in (1.11);18

(b) as λ→ +∞,

(
1 + o(1)

)
g1(λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤

(
1 + o(1)

)
g1(ξλ, ξV ),

where ξ comes from (5.6), and g1(·, ·) is defined as in (1.12) with G1(·) being a19

constant function in Proposition 5.2.20
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Proof. Part (a) follows from Proposition 5.1 and the fact that (W1) holds. Part (b) follows1

by combining Theorems 1.3 and 4.4 with Propositions 4.6, 5.1 and 5.2. �2

5.2. A class of convolutions of Cantor-type measures. We study the following family3

of convolutions of Cantor-type measures studied in [16,28]. Let4

S0(x) =
1

m
x, S1(x) =

1

m
x+

m− 1

m
, (5.7)

where m ≥ 3 is an odd integer. Let νm be the self-similar measure defined by the IFS (5.7)

with probability weights p0 = p1 = 1/2. The m-fold convolution µm of ν∗m is the self-similar

measure defined by the following IFS with overlaps (see [28]):

Si(x) =
1

m
x+

m− 1

m
i, i = 0, 1, . . . ,m,

together with probability weights wi :=
(
m
i

)
/2m, i = 0, 1, . . . ,m. That is,5

µm =

m∑
i=0

wi · µm ◦ S−1
i . (5.8)

Note that supp(µm) = [0,m]. For the rest of this subsection, we fix an odd integer m ≥ 3,6

and let µ := µm for convenience. It is shown in [16] that µ satisfies a family of second-order7

identities with respect to the IFS8

Tj(x) =
1

m
x+ j, j = 0, 1, . . . ,m− 1. (5.9)

Similarly, the vector-valued renewal equation (5.1) is given in [28, Section 6] with f`(t) =9

e−αtN(et,−∆µ|T`(X)
), ` = 1, . . . ,m − 2. Thus M = [µ

(α)
k` ]m−2

k,`=1 is an (m − 2) × (m − 2)10

matrix-valued Radon measure. By the proof of [28, Proposition 6.2], we have11

supp
(
µ

(α)
11

)
=
{

ln(2m)
}⋃{

− ln(cj/m
k+2) : k ≥ 0, j ∈ {0, 2}k

}
, (5.10)

where for any integer k ≥ 0 and any index j = (j1, . . . , jk) ∈ {0, 2}k,

Pj := Pj1 · · ·Pjk , cj :=
1

22m+mk

[(m
2

) (
m
1

)]
Pj

[
1
1

]
, P0 :=

[
1 0
1 m

]
, Pm−1 :=

[
m 1
0 1

]
.

By the definition of G and [14, Lemma 2.3], we get supp
(
µ

(α)
11

)
⊆ G. In particular, the12

equation holds if m = 3.13

An explicit formula for the spectral dimension of −∆µ is given in [28, Theorem 1.3],14

which also shows that (W1) holds.15



32 S.-M. NGAI AND W. TANG

Proposition 5.4. Let µ := µm be defined as in (5.8), and −∆µ be the associated Dirichlet

Laplacian. Then (1.9) holds with J = {j} and Yj := Tj(X) for any j = 1, . . . ,m− 2, where

Tj is defined as in (5.9). Moreover, (W2) holds. In particular, the non-arithmetic case

holds: for any j = 1 . . . ,m− 2, there exists a constant Gj > 0 such that

N(λ,−∆µ|Tj(X)
) = λds/2

(
Gj + o(1)

)
, as λ→ +∞,

where ds is the spectral dimension of −∆µ.1

Proof. As in the proof of Proposition 5.2, using the discussion in the paragraph following [28,2

Proposition 3.2], we see that there exist positive constants (ξj)
m−2
j=1 such that for each3

j = 1, . . . ,m− 2,4

N(λ,−∆µ|Tj(X)
) ≤ N(λ,−∆µ|X ) ≤ N(ξjλ,−∆µ|Tj(X)

) + 1. (5.11)

Hence, the first result holds. Condition (2) of (W2) follows from [28, Section 6 and Theorem5

4.1]. As in Proposition 5.2, we show that RM = R. Letting k = 0, we get a := − ln(m(m+6

1)/2)+2 ln(2m) ∈ G∗ ⊆ RM . Suppose RM 6= R. Since ln(2m) ∈ G∗, we have−a/ ln(2m)+2 =7

ln(m(m+ 1)/2)/ ln(2m) = s/t for some s, t ∈ Z. Thus ms(m+ 1)s = 2mt+s, a contradiction,8

and the assertion follows. �9

Let Yj := Tj(X) for j = 1, . . . ,m − 2. Let I := Z and define τi(x) = x + mi for all10

i ∈ I. Define X∞ :=
⋃
i∈I τi(X) and let µ∞ be defined as in (1.10). Then X∞ = R. Define11

X∞,j :=
⋃
i∈I τi(Yj) and µ∞,j := µ∞|X∞,j for j = 1, . . . ,m− 2.12

Corollary 5.5. Let X∞, µ∞, X∞,j and µ∞,j be defined as above. Assume V is a locally13

bounded non-negative, piecewise continuous function on X∞ so that V (x) ∼ c|x|β for some14

β > 1 and c > 0. Let ds be the spectral dimension of −∆µ. Then15

(a) there exist positive constants C1, C2 such that

C1λ
ds/2F (λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤ C2λ

ds/2F (λ, V ), as λ→ +∞,

where F (·, ·) is defined as in (1.11);16

(b) as λ→ +∞,

(
1 + o(1)

)m−2∑
j=1

gj(λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤
(
1 + o(1)

)m−2∑
j=1

gj(ξjλ, ξjV ),

where ξj comes from (5.11), and gj(·, ·) is defined as in (1.12) with Gj(·) being the17

constant function in Proposition 5.4.18



FRACTAL SCHRÖDINGER OPERATORS 33

Proof. The proof is similar to that of Corollary 5.3 with Proposition 5.4 replacing Proposi-1

tion 5.2. �2

5.3. A class of graph-directed self-similar measures satisfying (EFT). This pur-3

pose of this subsection is to illustrates the arithmetic case by constructing a graph-directed4

self-similar measure.5

A graph-directed iterated function system (GIFS) of contractive similitudes is an ordered6

pair G = (V,E) described as follows (see [25]). V := {1, . . . , q} is the set of vertices and E is7

the set of directed edges with each edge beginning and ending at a vertex. It is possible for8

an edge to begin and end at the same vertex and we allow more than one edge between two9

vertices. Let Eij denote the set of all edges that begin at vertex i and end at vertex j. We10

call e = e1 . . . ek a path with length k if the terminal vertex of each edge ei (1 ≤ i ≤ k − 1)11

equals the initial vertex of the edge ei+1.12

Consider the GIFS G = (V,E) with V = {1, 2} and E = {ei : 1 ≤ i ≤ 5}, where

e1, e2 ∈ E11, e3 ∈ E12, e4 ∈ E21, e5 ∈ E22. The five similitudes associated with E are

defined by

Se1(x) =
1

4
x, Se2(x) =

1

4
x+

3

4
, Se3(x) =

1

4
x− 5

16
, Se4(x) =

1

4
x+ 2, Se5(x) =

1

4
x+

9

4
.

The GIFS G = (V,E) is used in [4] as basic example for the graph finite type condition. It

is known (see [8, 25]) that if for each edge e ∈ E, there corresponds a transition probability

pe, then for each i ∈ V , there exists a unique Borel probability measure µi such that

µi =

2∑
j=1

∑
e∈Eij

pe · µj ◦ S−1
e .

We note that supp(µ1) = [0, 1] and supp(µ2) = [2, 3].13

Define µ(E) := µ1(E∩[0, 1])+µ2(E∩[2, 3]) for all measurable subset E ⊆ R. We call µ the14

graph-directed self-similar measure defined by G = (V,E) and probability matrix (pe)e∈E .15

Since µ satisfies (EFT) (see [29, Example 3.6 ]), we can derive a vector-valued renewal equa-16

tion by using the same method in [29, Section 4] as follows. Let Y1 := Se1([0, 1])∪Se3([2, 3])17

and Y2 := Se2([0, 1]). For α ≥ 0 and j = 1, 2, define fj(t) = f
(α)
j (t) := e−αtN(et,−∆µ|Yj

).18
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Thus, combining the proof of [29, Example 3.6 ] and the process of deriving the vector-valued1

renewal equation in [29, Section 4], we see that (5.1) can be written as2

f1(t) =
(pe1

4

)α
f1

(
t+ ln(

pe1
4

)
)

+
(pe1

4
+
pe3pe4
4pe2

)α
f2

(
t+ ln

(pe1
4

+
pe3pe4
4pe2

))
+

∞∑
k=1

(pe3pke5
4k+1

· pe4
pe2

)α
f2

(
t+ ln

(pe3pke5
4k+1

· pe4
pe2

))
+ z

(α)
1 (t),

f2(t) =
(pe2

4

)α
f1

(
t+ ln

(pe2
4

))
+
(pe2

4

)α
f2

(
t+ ln

(pe2
4

))
+ z

(α)
2 (t),

(5.12)

where z
(α)
1 (t) := e−αt(N

(
et,−∆µ|Bnt

)
+ ε(nt, 1)), Bnt := S

e3e
nt−1
5

(B1,3), and z
(α)
2 (t) :=3

e−αtε(2, 2).4

For j, k ∈ {1, 2}, let µ
(α)
`m be the discrete measure such that5

µ
(α)
11

(
− ln

(pe1
4

))
:=
(pe1

4

)α
; µ

(α)
21

(
− ln

(pe2
4

))
:=
(pe2

4

)α
;

µ
(α)
12

(
− ln

(pe1
4

+
pe3pe4
4pe2

))
:=
(pe1

4
+
pe3pe4
4pe2

)α
;

µ
(α)
12

(
− ln

(pe3pke5
4k+1

· pe4
pe2

))
:=
(pe3pke5

4k+1
· pe4
pe2

)α
for k ≥ 1;

µ
(α)
22

(
− ln

(pe2
4

))
:=
(pe2

4

)α
.

(5.13)

Let Mα(∞) be defined as in (5.2). Since µ
(α)
`m (R) > 0 for all `,m ∈ {1, 2}, Mα(∞) is6

irreducible. The remaining conditions of [29, Theorem 1.1(b)] can be easily checked by using7

the same method as in [29, Propositions 5.2 and 5.4]. Finally, It follows from [29, Theorem8

1.1(b)] that the spectral dimension of −∆µ exists, and (W1) holds.9

Proposition 5.6. Let µ be the graph-directed self-similar measure defined by the GIFS10

above and probability vector (pe)e∈E, and −∆µ be the associated Dirichlet Laplacian. Also,11

let Y1 and Y2 be defined as above. Then (1.9) holds with J = {j} and Yj := Tj(X) for any12

j = 1, 2. Moreover, (W2) holds. In particular, if pe1 = pe2 = 1/4 and pe3 = pe4 = pe5 = 1/2,13

then the arithmetic case holds: there exist non-constant period functions G1(·) and G2(·)14

such that for j = 1, 2,15

N(λ,−∆µ|Yj
) = λds/2

(
Gj(lnλ) + o(1)

)
, as λ→ +∞, (5.14)

where ds is the spectral dimension of −∆µ.16
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Proof. Combining [29, Example 3.6] and [29, Proposition 4.5], we see that for each j = 1, 2,1

there exists some constant ξj > 0 such that2

N(λ,−∆µ|Yj
) ≤ N(λ,−∆µ) ≤ N

(
ξjλ,−∆µ|Yj

)
. (5.15)

Hence, the first assertion holds. Since all conditions of [29, Theorem 1.1(b)] hold, con-3

dition (2) of (W2) follows from [28, Theorem 4.1]. Hence, (W2) holds. Assume that4

pe2 = pe4 = 1/4 and pe1 = pe3 = pe5 = 1/2. Using [28, Theorem 4.1] again, we show that5

the arithmetic case holds by verifying that RM can be generated by a real number a ∈ R. By6

(5.12), M = [µ
(α)
ij ] is a 2×2 matrix-valued Radon measure, where µ

(α)
ij is defined as in (5.13).7

It follows from [14, Lemma 2.3] that RM is the closed subgroup generated by supp(µ
(α)
11 ),8

supp(µ
(α)
22 ), and the closure of supp(µ

(α)
12 ) + supp(µ

(α)
12 ). Combining (5.13) and the assump-9

tions on (pe)e∈E shows that supp(µ
(α)
11 ) = {ln(8)}, supp(µ

(α)
21 ) = supp(µ

(α)
22 ) = {ln(16)}, and10

supp(µ
(α)
12 ) = {ln(4)}

⋃
{ln(23k+3) : k ≥ 1}. Consequently, RM can be generated by ln(2),11

which completes the proof. �12

Let X = [0, 3] and I := Z. Define τi(x) = x+ 3i for all i ∈ I. Define X∞ :=
⋃
i∈I τi(X)13

and let µ∞ be defined as in (1.10). Then X∞ = R. Define X∞,j :=
⋃
i∈I τi(Yj) and14

µ∞,j := µ∞|X∞,j for j = 1, 2.15

Corollary 5.7. Let X∞, µ∞, X∞,j and µ∞,j be defined as above. Assume V is a locally16

bounded non-negative, piecewise continuous function on X∞ so that V (x) ∼ c|x|β for some17

β > 1 and c > 0. Let ds be the spectral dimension of −∆µ. Then the following hold.18

(a) There exist positive constants C1, C2 such that

C1λ
ds/2F (λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤ C2λ

ds/2F (λ, V ), as λ→ +∞,

where F (·, ·) is defined as in (1.11).19

(b) As λ→ +∞,

(
1 + o(1)

) 2∑
j=1

gj(λ, V ) ≤ N(λ,−∆µ∞ + V ) ≤
(
1 + o(1)

) 2∑
j=1

gj(ξjλ, ξjV ),

where ξj comes from (5.15), and gj(·, ·) is defined as in (1.12) with the non-constant20

period function Gj(·) in (5.14).21

Proof. The proof is similar to that of Corollary 5.3 with Proposition 5.6 replacing Proposi-22

tion 5.2. �23
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