HEAT KERNELS ON FORMS DEFINED ON A SUBGRAPH OF A
COMPLETE GRAPH

YONG LIN, SZE-MAN NGAI, AND SHING-TUNG YAU

ABSTRACT. We study the heat kernel expansion of the Laplacian on n-forms defined on a subgraph
of a directed complete graph. We derive two expressions for the subgraph heat kernel on 0-forms
and compute the coefficients of the expansion. We also obtain the subgraph heat kernel of the
Laplacian on 1-forms.

1. INTRODUCTION

Given a directed complete graph K and a subgraph G, one can define n-forms on both G and
K as well as Laplacians on these forms (see e.g., [6,/7]). The main purpose of this paper is to
derive formulas for the the heat kernel expansion for the Laplacian on n-forms on G in terms of
the heat kernel of the Laplacian on n-form on K. This has an analog in Riemannian geometry,
with K playing the role of the FEuclidean space R™ and G playing the role of an n-dimensional
Riemannian manifold. Spectral graph theory and heat heat kernels on graphs have been studied
by many authors (see [3] and the references therein). In general, it is not easy to compute the
heat kernel on graphs. Nevertheless, Chung and Yau [4,5] derived formulas for the heat kernel
on lattice graphs, n-cycles, k-regular graphs, and the k-tree. Grigor’yan and Telcs [8] obtained
conditions under which a two-sided sub-Gaussian heat kernel estimate for a weighted graph holds.
More recently, Chinta et al. [2] derived a formula for the heat kernel on regular trees in terms of
the classical I-Bessel functions.

This paper studies heat kernels on subgraphs. In addition to functions on the graphs and
subgraphs, we also study forms on them. In the classical setting, the heat kernels on forms yields
interesting geometric information, such as the Euler characteristic and the Gauss-Bonnet Theorem
(see [111/14]). For non-directed graphs, the Gauss-Bonnet Theorem and Mckean-Singer Theorem
on the Euler characteristic have been studied by Knill [9,|10]. In this paper, we consider directed
graphs. We start by deriving a formal expression for the heat kernel of the Laplacian on n-forms
on a subgraph in terms of a geometric series of an operator and the heat kernel on n-forms defined
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on the entire graph, namely,

1S ) = (3017 HE (2., (1.1)

m=0

where T is some linear operator. See Theorem in Section

For 0-forms, i.e., functions defined on K, the terms 7 H[ in can be computed explicitly in
terms of the difference of the Laplacians A% := AKX — A% where AX and A are the combinatorial
Laplacians on K and G respectively. This allows us to derive a formula for HtG (z,y) and express
it in three different forms. See Theorem Corollary and Corollary in Section

Section[is devoted to computing the coefficients of the subgraph heat kernel expansion obtained
in Section [3

In Section [5, we use another method to obtain the expansion of the heat kernel on a subgraph of
a complete graph. This method was first introduced by Minakshisundaram-Pleijel and then used by
Minakshisundaram to construct the heat kernel on compact Riemannian manifolds (see [1/12}13]),
which has the form:

1

We—d(z,y)2/(4t) (UO(JI, y) +uy(z,y)t + - - + ug(z, y)tk 4. )

We compute explicit formulas for the functions that are analogs of u;(x,y), ¢ = 0,1,2 (see Propo-
sition . The terms in the series expansion of a subgraph heat kernel obtained by the two
different methods appear in quite different forms. We verify that the first few terms of the two
series expansions agree.

For n forms it is in general not clear how T H[ (x, 1) can be computed explicitly. Nevertheless,
we show Section [6] that by solving a system of ODEs, one can derive an explicit formula for the
heat kernel on a 1-forms on a complete graph, and use it to obtain an expression for HtG (z,y).

2. RECURSIVE FORMULA FOR HEAT KERNELS ON n-FORMS OF A SUBGRAPH

Let K = Ky be the complete graph with N vertices. Let V) := {1,2,..., N} denote the set of
vertices. For n > 1, let

Vo = {io- - in :d0,...,0n € Vo,4j #ij4q forall j=0,...,n—1}

denote the set of directed paths of length n+1. Let G be a subgraph of K with vertex set VOG CW
and edge set VlG CVi. Forn >1, let

VG =iy vip € Vytijijp €V forall j=1,...,n—1}

denote the set of directed paths in the graph G.

We let G° be the complement of G defined as follows. Let V =1\ VOG and call it the set of
vertices of G¢. Let V,** := V4 \ V|¥. Note that G€ is not necessarily a graph, since an edge in V,*°
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does not necessarily connect two vertices in VOGC. In fact, in Example below, G has vertex set
V& = {3} and edge set V,¥° = {13,23,31,32} and thus it is not a graph. For each n > 1, let

Ve =V, \ V¢ (2.1)

be the set of directed paths of length n 4 1 associated with G¢. Note that a directed path in V&
may contain a subpath that belongs to some VkG, 1 < k <n—1. For instance, in Example
below, the path 123 € V2GC contains the subpath 12 that belongs to VlG.

For each n > 0, we call any real-valued function on V,, an n-form on V,,, and let A™ be the vector
space of all n-forms on V,,. Let {e® "}, ; <y, be the canonical basis on A" with e taking
the value 1 at ig---i, and zero elsewhere. Define the exterior operator d,, = dX : A" — A" as
follows. For

w= Y Wi, €€V, (22)
10t €EVn
define
n+1
k
(dnw)io~~-in+1 = Z(_l) wi0~~~2k~-~in+1’
k=0

where 7, means that the index iy, is removed. For each n > 0, we also define dff and dg’w as follows.
Let w be as in (2.2]). Then

dG(W) = Y wigna,dg (€07,

i0-in €V
where
- dp (€0 ifig---iy € VO
dG (gioiny .— ) O no 2.3
n(e ) {0 otherwise. (2:3)
Similarly, define
A5 (W)= Y wigdy (€07,
io---inEVn
where
¢ i dp (e i i i, € VO
dG 10 tn — n n n 24
n (e ) {O otherwise. (2.4)
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It follows directly from the above definitions that
d, = dS +dS". (2.5)

Example 2.1. Consider the complete graph Ks with vertices {1,2,3}. Let G be the complete
subgraph with vertices {1,2}. Then

VO ={1,2}, VC¥={12,21}, V= {121,212},
VE = {3}, V¥ ={13,23,31,32},
VE = VE\ VE = {123,131, 132,213,231, 232, 312, 313, 321, 323}

1 1 0 0 0 0
1 -1 0 0 0 0
¢« 0o 0 o0 e -1 0 1
=19 o o0 and —dy =1 o 3
0 0 0 1 0 -1
0 0 0 0 1 —1]

Notice that dy = d§ + dS°.

Let Ag := (d¥)*d¥ be the Laplacian on 0-forms, where A* denotes the transpose of A. For
n>1, let

AR = (A S+ al ()" (2.6)

n n—1
be the Laplacian on n-forms. Define AS and AS analogously.

Proposition 2.2. The following relations hold.

(a) For anyn >0,

@) (@) =0  and  (dS)(dS) = 0. (2.7)

n

(b) AF = A§ + A§”.
(¢) For anyn >1,

AF = AG+ A +dS (5 +dSEd5 ) (2.8)

Proof. (a) Let e®in be a canonical basis element of the vector space of all n-forms. Then by (2.3))

and ,

(dy €™ Vo s> if jo...Jny1 €V,

¢ g e c (2.9)
(dg e’ Zn)jo.--jn+1’ if jo...Jnt1 € VnG .

(dnemmm)jomjrwrl — {
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Now by (2.1), the non-zero rows of d$° are exactly the zero rows of d¥, i.e., the zero columns of

(d%)*. Hence the equalities in [2.7] follow.
(b) By (2.5) and ({2.7)), we have
(dp )y = (dif +d )™ (d] + ) = (d7) dyf + (dg)

Also, by using ([2.5)), we have

(di_ (X)) = (dS_ +d5 )5y +d5 )"

=dS (dS 1) +dS_ (5" + (dS ) (A5 ) + (5,5 )"

Thus, (2.§) follows by combining (2.10)), ([2.11]), and the definitions of AKX AT A"

To simplify notation we let
L1:=0 and  L,_q:=d% (d% )" +d% (d9 )" forn>1.

Proposition 2.3. Letn > 0. Then for all z,y € V,, andt > s > 0,

t
18 @) = ) = [ (HE A+ L) HE ) (w9) ds.

Proof. First, by the fundamental theorem of calculus,

t

0

/O %( Z HSG(Zay)HtIis(xvz)) ds = HtG(xvy) - HtK("my)
2€Vn

(2.10)

(2.11)

O

(2.12)

(2.13)



6 Y. LIN, S.-M. NGAI, AND S.-T. YAU

Computing the derivative on the left-side of (2.13), and using the symmetry of the operators
Af, Agc, and L,_1, we get

(X HE Gy HE ()

2V
=3 (= HE (2. 2)AG HE (2, ) + HE (2, p) AR HE (2.2))
2EVp
= (= HE () AT HE (v,2) + HE (2, y) AL HE (2.2))
= > HE(zy) (AN, — AT )HS (2,2) (2.14)
ZEVTL
=Y H (2, 9) (AT + Lo ) HE ((,2) (by 23) and (212))
ZGVn
= Z Ht s :C Z AG + Ln— 1,Z)HSG(Zvy)
2€Vp

:(HﬁS(ASC + Ln_l)HsG> (@, y)-

Combining (2.13) and (2.14)) yields the desired equality. O

Let F be the vector space of all real-valued functions on [0,00) x V,2. Let T : F — F be a linear
operator defined as

T = [ (HEO + Lan)) (o) d. .15

Theorem 2.4. Let T be defined as in (2.15) and assume that | T|| < 1. Then

HE (2,y) (Z T’")Ht (z,y).

Proof. By Proposition

Hf (z,y) = Hf (z,y) + TH{ (2,y)
= H (a,y) + T(H[ (,y) + THE (2,y))

= (I +T+T*+ - Y HE(z,y),

completing the proof. O
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3. HEAT KERNEL ON 0-FORMS

A complete graph Ky has N vertices and N(N — 1)/2 edges. The combinatorial Laplacian has
eigenvalues 0 (with multiplicity 1) and N (with multiplicity N — 1). Let V be the set of vertices
of K. Let G be a sub-graph of K. Let G¢ denote the complement of G obtained by removing
those edges in K that appear in G.

Recall that the combinatorial Laplacian A on a graph is defined as A = A — D, where A and D
are the adjacency and degree matrices respectively. Let HX (x,y), HE (x,y), HE (,y) denote the
combinatorial Laplacians corresponding to K, G, G¢ respectively. We use similar notation for the
Laplacian A and the degree d, of an element. Then

AR = AG L AC°,

It is well known that that heat kernel associated to AX is given by

1 1y ,—Nt

" FHA-ReN =y,

1/ (2y) = { YU " (31)
N N ’ y

It can be obtained by expressing H/S(x,y) in terms of the eigenfunctions and eigenvalues of AX.

Proposition 3.1. For all z,y € V andt > 0,

t
Hf (w,y) = Hf (z.y) - eNt/ MNUAGH (2,y) ds.
0
Proof. By using the proof of Proposition [2.3] we have

t ~
HE (2,y) — HE (2,y) = /0 " HE (2, ) ASHE (2, 2) ds. (3.2)
zeV
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In view of (3.1)), the integrand in (3.2)) is equal to
S |HE s w) — HE (w,2)] ) HE (2, )
Ge

=( X [#E ) — HE (@) ) HE @) + (Y [HE (ww) - HE (@,2)] ) HE (2, p)

W w22

- Z —e NI (@) + 3 [HE (v0) - HE (@, )| HE (2,)
=

- Z e NI (@,y) + 3 e NI HE 2, y)
=

= — e NG HE (2, y) + Z e NI HT (2,y)

= e N S)<dGHny ZHGzy)

$NZ

= — e VUIAL HE (2,y).
Substituting this into (3.2)), we obtain the desired formula. O

Now let F be the space of all real-valued functions on [0,00) x V. Let T': F — F be a linear
operator defined as

t
Tu(t,x) := —eNt/ NS AG u(s, x) ds.
0
Let
lulloe = sup {Jut,2)| -2 € Vit € [0,00)}.

Proposition 3.2. Ift < (1/N)log(2(N —1)/(N —2)), then |T| < 1.

Proof. Tt follows from definitions that

Tu(t,z) = —Nt/ ey " [u(s, w) — u(s, z)) ds.

’UJNCE

Hence

2AN 1) |

—Nt
v )

[ oo

t
|Tut, 2)|| < e—Nt/ N5 LN — 1) uf| oo ds =
0

Now, solving the inequality 2(N — 1)(1 — e=V*)/N < 1 yields the stated upper bound for ¢ below
which one has ||T']] < 1. O
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Under the hypothesis of Proposition IIT|| < 1 and thus by using Proposition
Hi(v,y) =T +T +T*+ - )HS (2,y). (3.3)

To derive a more explicit formula for HZ (x,v), for each y € V, we let uy : V' — V be the function
defined as

ds* it z =y,

uGC(w) .~ 0 if x £y and z 5 (3.4)
-1 ifx;éyandxéy.

Theorem 3.3. Let uch : V=V be defined as in (3.4). Then for any x,y € V, and all t > 0,

G K NG () 4 N )" 1tm g\t ge
HE (2,y) = HE (2.) + te N Z (A%)" (@)
m—1ym N\ Mm— 1 c
k- e NNy LT (AG) W (), y# (3.5)

m!

_1)ym—1m c -1 c
(L= e N e | G (AG) T @),y =,

m—1
where (A§°) denotes the (m —1)-fold composition of AS® (or equivalently, the (m —1)th power
of AS").

Proof. We first compute THtG (xz,y) by considering the following three cases. Throughout the
calculations below, we denote x o y (i.e., z and y are neighbors in the graph G¢) simply by = ~ y.

Case 1. x = y. Then
t
THE (z,y) = THE (z,2) = —e_Nt/ NSNS HE (2, 2) ds
0

= _Nt/ NSZ HKw z) — HE (z, x)}d

wn~x

— Nt/ st st

wn~x

—Nt Ns —Ns\ 3G°
= d; ds
/0 (—e %)

teiNtdfc.
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Case 2. © # y and x ~ y. Then

t
THf (z,y) = —e_Nt/ NUAT HE (2,y) ds
0

= —e_Nt/OteNs Z [HSK(w,y) — HSK(x,y)} ds

wn~x

— e [l [ ) - B )]+ Y [H @) - HE @) fds

0 wN:C,u)?éy w~T,W=Y

¢
——e_Nt/ N0+ e M%) ds
0

= —te M,

Case 3. x # y and x ¢ y. Then, unlike in Case 2, the situation w ~ z and w = y cannot occur.

Hence
t
TH (x,y) = —6_1\”/ eNS( > [Hf(w,y) —Hf(:v,y)Dds
t
= —eNt/ eV 0ds
0
=0.
Thus,
THE (z,y) = te_Ntuch(x). (3.6)

Now we can express T?H/ (z,y) conveniently as

t
T2HE (z,y) = —e_Nt/ eNSACE (THf(x,y)> ds
0

(by (3.6))

V2

t
= ¢ N / eNIAC” (se_NsugC (z))d
0

t
= —e_Nt/O sAfcqu(m) ds
tQE_Nt Ge @Ge
== A uy (7).

By induction and a similar derivation, for all m > 2,

T o) = () 2 (A8) TG ), (3.7)

m! Y

Combining this with equation (3.3]) proves the proposition. ([l
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By using (3.1)), we can rewrite the formula for H (z,v) in the following form.

Corollary 3.4. The formula in Proposition [3.3 can be expressed as

mfltm

Hf(.fﬂ,y) <1+M]\§V12:nol(_l)'rn'(AzGc)m_luch($)), Y=,
HE (z,y) =
'm 1tm c c
R e A ) B

We now study the radius of convergence of the power series in (3.5). We first prove a lemma.

Lemma 3.5. For any m > 1 and any vertices x,y € Vp,

‘(Afc)m_lugc ()| < gm=1pnm

Proof. The inequality clearly holds when m = 1. Assume that it holds for some m > 1. Then

(Aa Gy (@) = 37 (A5l (w) = (A0)" M (@) ‘

w~ T
G¢

< Z (2m7INT 4 2N (Induction hypothesis)

wn~xT
Ge

<dS 2mN™
<2mNm+1’

which completes the proof.

Note that the series in Corollary can also be written as

m—1ym—1 c c
Htl((x7y) (1 + eNtJrN 1 Em 1 DTt(Ag )milu]? (1’)), y=x,
HE (z,y) = (3.8)
m 1ym—1 c _ c
HE ) (14 e Sony SV A @)y

Proposition 3.6. Consider the expansion in Corollary[3.7)

(a) The radius of convergence of the series

> m ltm Ge m—1 Gc m ltm Ge m—1 Ge
Z (Ax ) u, (z) and Z (Aw ) u, ()
=1

that appear in and . 8 Q.
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(b) The functions t/(eNt + N — 1) is real analytic in some open neighborhood of 0, and so is
the function

t .
Sy A0,

— if t = 0.

Proof. (a) By Stirling’s formula, m! ~ em!'/2*™e=™ and hence ¥/m! ~ C'm for some constant C.
Thus, by Lemma, for all z,y € Vj,

) m -1 m—ltm . .
lim \/‘( >m! (AGS)m—1uG (x)

m—0o0

™

m!
. 2N ¥/NJt|

= lim o

m—oo m)
=0.

<limm‘

T m—oo

2mNm+1 ’

Hence the series converges for all ¢ € R. The proof of the second series is the same.

(b) The function t/(e* + N — 1) is clearly real analytic in some open neighborhood on 0. We
now consider f. First, it is clear the f is continuous at 0. Let f(z) be the extension of f to C.
Then

1
= No)k—1
NY 2, b Zk)!

f(z)

which is (complex) analytic on some open neighborhood of 0 in C. Thus, f(¢) is real analytic on
some open neighborhood of 0 in R. ([l

Using Proposition and Taylor series expansion, we can rewrite the heat kernel HtG (z,y) in
Corollary [3.4] in the following form.

Corollary 3.7. Let ufc(a:) defined in (3.4). Then

(a) If y = x, then

C 1 C C C
HtG(a:,y) = HtK(x,y) (1 + df t— B (2de + AIG uf (m))t2

1 c c C C C
+ = ((6 =3NS + 385" uS" (@) + (AF) 2 (2) ) ¢

6 Yy
1 c c C C C
+ 2 (=124 128 = 2N%)dS" — (6 = 3N) AT uf" (2) — (A" )l (2) ) !

+ O(t5)).
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(b) If y #x andyga:, then

1 (& c 1 (& c C C
HE (2,y) = H (z,y) (1 — AT W (@)t + ﬁ(:mmfj ug () + 2(A5 ) *ug (x))t2

L (v2aage ae Gev2, Ge 3
- ﬂ(N AG UG () + 2N(AZ )2 (:z:))t
1

+72

NZ(AY)?uf" ()t + O(t5)> :
(¢) Ify#x andy é x, then

c c ]. c c c c
(N = AU () )t + E( — N2 4 3NAS WS () + 2(A5) S (w) ) 2

N

HY (z,y) = Hf(mﬁ(

1
24

b= (N4 + 10N2(A§c)2u§c(a¢))t4 +0 (t5)> .

<N2A§Cugc(:c) +2N(AG) 2" (x))ts

720

4. COMPUTING THE COEFFICIENTS IN THE HEAT KERNEL EXPANSION

This section is devoted to the computation of the coefficients in the heat kernel expansion of
HE(z,y). Let ci(z,y) be the coefficients of t* in the above expression for H (x,%). Then we see
from the expression for HtG (z,y) in Corollary that

1 if x =y,
1 ifm#yand:ngy,

0 ifx#yandxéy.

co(z,y) :=

To compute the other coefficients, we let n%(z,y) be the number of G-neighbors of z that are
also G-neighbors of y, and let n&%(x, y) be the number of G-neighbors of = that are G°-neighbors

of y. Similarly we define n%%(z,y) and n%%(x,y). We first establish some elementary properties
relating these quantities and d<, d&°.

Since K is a complete graph, we have

d9 +d¢° =N —1. (4.1)

The following elementary identities follow immediately from symmetry:

% (y,x) =Y x,y), 9y, x) = n"C(x,y)

c c c (e c (e (42)
NGy, x) = (@,y), (g, 2) = 9 (@, y).
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Proposition 4.1. (a) Ifx #y and ~Y, then

dS —1=n%%(z,y) + n“ (z,y), (4.3)
dgc = nGC,G(:U? y) + nGC,GC (.T}, y)

(b) If z #y andxéy, then

dS = n%C(z,y) + 9 (2,y), (4.5)
dacc;c -1= nGC,G($7 y) + nGC,GC ($, y).

Proof. We only prove (b); the proof of (a) is similar. In this case, y is a G%neighbor of z. G-
neighbors of x can be partitioned into two classes: those that are G-connected to y and those that
are G°-connected to y. This gives rise to (4.5]).

As for (4.6)), we note that y is G°-neighbors of 2. The remaining d§° — 1 G°-neighbors of x can
be partitioned into two classes: those that are G-connected to y and those that are G°-connected

to y. This proves (4.6). O

Proposition 4.2. (a) Ifx #y and =Y then

NG (@) = %G (2, y) — dS +dS° +1
=% z,y)+dS" —d§ +1 (4.7)
=N +n%%a,y) — df — dS.

(b) Ifx #y andxféy, then

@ (@ y) =0T (y) —df +dy 1
=G, y) +d7" —dyf —1 (4.8)
=N -2-df —d§ +n%%(z,y).

Proof. We will prove (a); the proof of (b) is similar. Interchanging the roles of x and y in (4.3)) and
using (4.2)), we have

dS — 1= (y,z) + % (y,x) = %G (2, y) + n%C(x,y),

c c c c c c c (49)
a5 =0 (y,2) + 0% Oy, 2) = 19 (@) + 0O (@),
Substituting these into (4.3) and (4.4) respectively, we get
dC —1 = pCC(x y) +dO° — nGC (1),
7 (@ y) +dy =0 (@) (4.10)

dg" =n® (@,y) + df — 1 (2,y) - 1,
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which imply the first two inequalities in (4.7]), respectively. The third equality in (4.7 follows by

using (4.2]). O

Proposition 4.3.

dGC (d 0)2, fo:y7

Agc (uch(a:)> = n% (x,y), ifx#y and x ~ Y,
—nG5G (x,y)—i—dgc—kdgc, ifx#y andx/éy,
~(N=1-dS) = (N=1-dS)?, ifz=y,

_ —N_nG,G(y;,y)—i-dg—l—dyG, ifx#y andxrgy,
N —n%%(z,y), ifx#vy anda:r;Géy.

Proof. Note that

AG (u (@) = (AF - AD) (oS (@)

e Wt (4.11)
G° G°
DA SAC!
w~x wn~T
G¢ leld

We divide the proof into three cases.

Case 1. y = x. In view of the definition of ugc () and (4.11]), we have

AGC( (:r:)) Z ZdGC

w~x ’LUNCC
Ge

=—d — ()
=~ (N-1-d) = (N-1-d7)’ (by @1))-

Case 2. y#x and y =T Using (4.11)) followed by Proposition (a), we have

Aﬁc (ufc(az)) = < Z ufc(w) + Z ufc(w)> - dfcugc(a})

W oL W ~
jord A wGCac W /@ Yy

= > (-)+0-0

wwmwwy
G¢

=" (2,y)

= —N — %%z, y) +dS + dyG (by Proposition [4.2(a)).



16 Y. LIN, S.-M. NGAI, AND S.-T. YAU

Case 3. y# = and y 7G6 x. Using (4.11)) followed by Proposition (b), we have

Afc <u§c(1‘)> = ( Z u?c(w) + Z u?%w)) +uch(y) — dfcufc(:v)

W N~ T, W~
GePWEY wgcx,wé@cy

= > (-D)+d§ +dS"

waxcx,wévcy

= (@,y) +dS +dS

=N — nG’G(x, Y) (by Proposition b))
]
Proposition 4.4.
(AFP (uf" (@)
2(dg")? + (d5°)? — 2w % (w, ) + 2w dg’, T =y,
(dg" + 47 (@,9) = oy 17 (w,9)
_ Ge
=4 T 2wy sy G v#y andw oy,
—(dg")? = dy" — (dy")? — dgdy" + (dg" +dy ) (2, )
_ ngcx’w#y n&G (w,y) + Zw&x7w¢y7w&y ds*, x#y and x %(; Y,
~N? + N3 — (1 =3N +3N?d$ — (2 - 3N)(d$)? — (d$)3
_ZUIGNCQU 77G7G(w7x)7 r =1y,
—242N +2N? — (14 3N)d§ + (dS)? — 3NdS + (d$)? + dSdS
) —(1-3N+d§ + dg)nG’G(x, Y)
- Zwrva:,w#y,wwy nG7G(w7 y) + wax,wiy,wwcy dg’ T 7é Y and x ~ Y,
el ac Gc G
—N?24+dS — (3= 3N +dS + d5 )% (z,y)
- Zwévc.t,w;éy,wévcy nG7G(w’ y) + Zwévcz,wyéy,wNGy(dg - nGVG (w7 y))v €z 7é y and x /é' Y.
Proof.
(AP (uf (@) = 3 A (u5" (w) = AF (" (@) )
'LUé\‘CZ'
(4.12)
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We now apply the three cases of Proposition to (4.12) as follows.

Case 1. y = .

(AP (u (@) = D (=0 (w,2) +dS" +aS") —af*(— af" - (aSP?).
=

As > dS° = (d5°)?, the result follows.

wC’;Cx x
Case 2. y # x andygac.

AFP(uf @)= Y AL (uf )+ D AT (uf W)

Y
W ETW=Y wcwc:c,w;éy,wgcy

Y A () - dS (= ()

——d§ @+ > (= (wy) S+ )

wgc$’w¢y7w&:y
- > S (wy) +dT T (2, y)
wgcx7w¢vacf§éy
Ge Ge Ge,Ge Ge,Ge Ge
:_dy _(dy )2_ Z n- (w’y)_l_n ' (zay)dy

wgcx,w;éy

S dS +d S (ay),

wc?cw,w#y,wcycy

which equals the desired formula.

Case 8. y # «x andyéx.

17
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AGP(u§ @) = Y AG(wf @)+ > AT (u ()

W~ W= ~ ~
G Y chm,wiy,chy

+ Z AC” (u?c (w)) - dgc( — 95 () + dgc + dfc>
wévca:,w#y,wgcy

——d§ @Y (= )+ d§ )

w&%w#y,w&y

S () (e )

w gcm,wiy,w gcy

——d§ @) - > (=0 wy) - dl) O )

wgcx,w#y,wcf;y

- Y ) +dE T @y - dE - (dF)
wgcx,w#y,wgcy

2
)

and the desired formula follows. OJ

From the expansion of HZ (z,y), we have

ds”, if z =y,
1 (& c .
c1(z,y) = —3AY uf (x), ifx#y andxrgy, (4.13)
%(N - Afcufc(x)), if x #yand 76[; y.

By using Proposition we obtain the following expression for ¢;(z,y) involving G and not G¢,
which also shows the equality of a;(x,y) and ¢i(z,y). For all z,y € K, we can verify directly that

ar(z,y) = ci(z,y)-

In fact, using Proposition and (4.13)), followed by Proposition and (4.1)), we get

Proposition 4.5.

(& ifr =y,
calzr,y) = %nGC,GC (z,9) ifx#y and x ~ v,
K%(N — dfc . dch + nGc,Gc(x’y)> if v #vy and x 76(; Y,
N-1-d7 ifz =y,
= %<N+UG’G($ay)_dg—d§> ifx#y andxrgy,
319 (2, y) ifv#yandx 75 Y.
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Proposition 4.6. (a) If x =y, then
1
erl@y) = 5 (N2 — 3N +2+ (3—2N)d + (df)Z).

(b) Ifx #y cmda:r(\;/y, then

1
ex(r,9) = 55 ( — 444N + N? — (24 3N)d§ — 3Nd§ + 2(d5)? + 2dS dS

— (2= 3N +2dS +2d5)n“C (2,y)

-2 Z n%C (w, y) + 2 Z dg)

WS TWEYW Y W o TWEY, WY

(c) Ifx#y and:véy, then

1
ca(,y) = 5 < d§ — (9= 6N +2d5 +2d5)n“% (x,y)
2 Y w2 Y @G- nGvG‘(w?y)).
wGNC%w#Z/wa’;Cy wgCLw;éy,wgy

Proof. (a) Using the expansion formula for HZ (z,y), we have

c 1 c c
ol y) =~ — SAG WS (@)
c 1 c c
= " = S — (P
1 e 1 c
— —*dG - dG 2
1

1
:—§(N—1—d§)+§(N—1—d§)2

1
- (N2 — 3N +2+(3-2N)d + (d§)2),
which is equal to as(z, x).

We will prove part (b); the proof of (c) is similar. According to the expression for H (xz,y) at
the beginning of this section,

) = PNAS (a8 (@) + (AT ().
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By using Propositions and [£.4] we get
1
ealayy) =N (= N +df +d§ —n%C(a,y))
1
+5 (—2 +2N +2N? — (1= 3N)dS + (dS)* — 3NdS + (d)? + dSdS

— (1 =3N +df +djj )% (z,y)

- Z TIG’G(U/» y) + Z dg) ’

w~T,W w n~ w ~ W wn
SeTWFYW Y SuTWEY WY

which can be simplified to the stated formula.

The coefficients of c3(z,y) can be obtained as in Proposition We state the result below and
omit the proof.

Proposition 4.7. The coefficients c3(z,y) are as follows.

(a) Ifz =y,
1
cs(@,y) = —¢ (6 — 12N +7N? — N3 4+ (10 — 12N + 3N?)dS + (5 — 3N)(d$)* + (d5)?

- ¥ ).

wn~x
G¢

(b) If z #y andxz;y, then

1
es(x,y) = —5; ( — 4N +4N? + 5N? — (2N + 7TN?)dS + 2N (d$)? + 2NdS dS
— TN?d + 2N(dS)? + (2N + 2Nd§ — 2NdS /™ (z,y)

—2N Y 9wy +2N D dg)

W WEYW o Y W o TWHEY, Wy

(c) Ifx#y andxréy, then

1
cs(z,y) = —— < — N? 4+ 2Nd§ — (6N — 5N? 4 2dS + 2d)n“ (2, y)

24
—2N > %CYwy)+2eN > (dG 09w, y))-

w ~ rw w ~ w~ W wn
SLEWAEYW Y SLEWEY WY
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5. A SECOND METHOD FOR FINDING HEAT KERNEL EXPANSION

In this section, we use a second method to obtain the heat kernel expansion. The method is
analogous to one on Riemannian manifolds (see [1;/12,/13]). The coefficients of the expansion for
HE(x,7y) obtained by using the two methods appear in quite different forms. The fact that they
must equal give us identities relating various quantities that appear in the expansions. We can
verify that the first few of these coeflicients are indeed the same by converting one to another.

First, we may expand the heat kernel on K in (3.1]) as follows:

Hf (z,y)
CJI= (Nt IN(N =D - IN2(N =D+ ZN3 (N =D+ O (), az=y, (1)
S|t = AN+ AN - NS L O(), T Fy.

Here and throughout this paper, an asymptotic order of the form O(t*), k > 0, holds as t — 07.
Next, using Proposition we can write

Hﬁ(:c, y) = HtK(a:, Y) <a0(x, y) + a1z, y)t + as(x, y)t2 + a3(z, y)t3 + .- )

We remark that this method is not completely independent of the previous one, which guarantees
that such an expansion is valid on some open interval containing 0.

Now, in view of (5.1)), if z = y, then
HE (2,2) = ao(a, @) + (= (N = Dao(w, @) + ar(,) )¢

+ (;N(N — Dag(z,z) — (N — Daq(z,x) + ag(:n,:v)) t2

+ (—1N2(N ~ ag(z, z) + %N(N ~ Day(z,z) — (N = as(z,7) + ag(:n,x)) =

6 (5.2)
+ (214N3(N ~ Dag(,y) — NN ~ D (z)
+ %N(N — Daz(z,y) — (N — 1)as(z,y) + as(z, y))t4
+0 ().
If x # y, then
HE ) = et + (~yNao(o) + (o) ) ¢
+ <t13N2a0(:c, y) — %Nal(x, y) + ag(aj,y)> 3 (5.3)

1 1 1
- <—24N3ao(w,y) + 6N2a1(9«“7 y) — §Na2(33,y) + as(l‘ay)> th+ O(t),
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By using (5.2]) and (5.3)), we obtain the following partial derivatives with respect to t. If x =y,
then

OHE (x, )

ot = _(N - 1)a0(.7:,:c) + al(m,x)

_l’_

/

N(N - Dag(z,z) — 2(N — Vay (e, z) + 2a2(x,a:)>t

+ <_;N2(N — Dao(z,z) + ;N(N — Dai(z,z) = 3(N — Daz(z, z) + 3a3(x,x)> :
+<éNWN—1MM%yW‘§N%N—1MN%W

+ 2N (N — Dag(z,y) —4(N — 1)as(z,y) + 4a4(x,y)>t3 +0 (t4) :

(5.4)
Ifx#y,
HG
31:7(%1/) = ao(x,y) + ( — Nag(x,y) + 2611(%3/))75
ot
1 3
+ <N2a0($7 y) —-Nay (1137 y) + 30,2(13, y)> t2
2 2 (5.5)
1 2
+(—6N%d%y%+SN%ﬂ%y%—%Wm@w%+@ﬂ%yO§
+0(t).

We now compute the Laplacian AG of H (x,y). If 2 = y, then

ASHE (z,2) = —d%aq(x, z) + [— df( — (N = Dag(z,x) + al(m,x)> + Z ap(w, m)}t

wn~x
G

ar (w, x) — %Nao(w,x)> - df(%N(N — Dagp(z,z) — (N — 1)aq(z, ) + as(z, x))}tQ

+
(]
/N

+ [Z (éNan(w,a:) — %Nal(w,m) + cm(w,x)) - dg( - %NQ(N — Dao(z, )

+ %N(N —Dai(z,z) = (N — 1)ag(z,x) + ag(gc,x)>]t3
+ [Z ( - 2—14N3a0(w,x) + %N2a1(w,m) — %Nag(w,x) + ag(w,x)>

— 9 (5 VAN ~ Dao(a ) — SNAN = Dar(a, ) + NN ~ Da(a 2)

(N = Dag(z, ) + aa(z, x))} 40 ()
(5.6)
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If x # y, we have

ASHE (v,y) = ao(y,9) + | — dSao(w,y) = (N = Dao(y. ) + ar(yp) + > ao(w,y)|t

wgz,w;éy
1 1
e L L
+ [ d(a(ay) - GNao(e )+ D (aa(w,y) - 5 Nao(w,y))
ng,w;éy
1
+ 5NV = Dao(y, y) — (N = Dar(y, y) + aa(y,y)]lt2
1 1
_ G (L2 L
+ [ dgc <6N a()(l',y) 2Na1(m,y)—|—a2(x,y))
1, 1
Y (ENao(w,y) — SNay(w,y) + ax(w,y))
wgz,’w;éy .
1 (5.7)

- 6N2(N —1Dao(y,y) + %N(N = Dai(y,y)

— (N = Daz(y, ) + as(y,y) |

1 1 1
+ [ = dS (= 5N a0, y) + S N1 (w,y) — 5 Nas(e,y) + as(e,))

1 . 1, 1
2 (=g NVaolw,y) + 2N (w,y) - SNas(w,y) + as(w,y))

ng,w;éy
+ 5 VAN = Daoly,) — gV N = Dar(3,)
+ %N(N —Das(y,y) — (N = 1)as(y,y) + a4(y,y)]t4 +0 (1)

To compute the coefficients a;(z,y), we let n%(z,y) be the number of G-neighbors of = that are
also G-neighbors of y.

Proposition 5.1. The coefficients a;(x,y), i = 0,1,2,3 are as follows:

(a)

L ifz=y,
aO(xvy) = 1 fo # Y and x g Y,
0 fo#yandxqéy,
—C()(l',y)
(b)
N_l_dg ifr =y,
1 .
ar(z,y) = %<N—d§—d§+nG(x,y)) zfx;éyand:ngy,
577G(307y) ifx#£y andzx 7Gé Y.
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(N2 —3N 42+ (3-2N)dS + (df)2>, ifz =y,

N

1
— <N2 — 3NdS +2(dS)? + (2 = 3N)d +2(dS)* + 245 dS

12
+ (3N —2dS — 2d )0 (z,y)
ag(x,y) = -2 ) dg+2 ) nG(w,y)), ifo#y andz oy,
wgmv#y,wgy wgw,w#y

1 e ay, G
15 (68 262 = 203 o)

-2 Z d% +2 Z nG(w,y)>, ife#y cmda:éy.

e wEY Wy W wEY

\

In particular, this verifies that as(z, x) = ca(z, x).
Proof. To find a;(z,y), we set

G
AGHE (z,y) = 2L V) 6(:’ v) (5.8)

and equate the coefficients of ¢ for i € N.
(a) When t =0, Ho(z,y) = 65,. We impose the same condition on H (z,y).
Case 1. x = y. Substituting ¢ = 0 in (5.2)) gives

ap(z,z) =1 for all x. (5.9)

To find ag(z,y) for x # y, consider the following two cases:

Case 2. © #y and x Y- By using (5.8)), (5.5)), and (5.7)), we have
ao(z,y) = ao(y,y) = 1.

In view of (5.9) and ([5.3), we have

ap(z,y) = ao(y,y) =1 for all . (5.10)

Case 3. x £y and x ré y. By using (5.9), (5.3)), and (5.7, we get

a0<$,y) =0.
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This proves (a).
(b) Again we divide the the three cases separately.
Case 1. x = y. Equating the constant terms of (5.4)) and (5.6]), we have

(1 — Nao(z,z) + a1(z,z) = —dSap(z, z).
Thus,

ar(z,z) =N —1-d<. (5.11)

Case 2. x #y and x Y. Equating the coefficients of ¢ in (5.5) and (5.7]), and then using part (a)
and (5.11)), we have

—Nag(x,y)—i—Qal(:c,y) = (1_N)QO(yay)+al(y7y)_dgaﬂ(xvy)—i_ Z ag(w,y),

w~T, W
i #Y

which gives

i y) =5 (N—df —af + 3 aolwy)).

wg:c,a:;éy
But

Y oawy= Y a@y+ Y awy)

waam,w;éy wgm,w;éy,ywr werx,wyéy,yé/w
= > 1+ > 0
wgcc,w;éy,ygw wgw,w#y,yéw
=1%(z,y),

which proves the asserted expression for a;(x,y).
Case 8. © #y and x 75 y. Equating the coefficients of ¢ in (5.5)) and , and then using part (a)
and (5.11)), we have

*NCLO(xay) +2a1($ay) = 7d§a0(xvy) + Z aO(way)a
wgywsﬁy
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which implies that

Z aO(xvy)

wEm,w;éy

(T Y wwy)

wzwiiva’c\;y w5$7w¢vagy

DN | =

al(xv y) =

1
= —n(

5 z,y).

(c) az(z,y) can be found similarly.

Case 1. y = z. Equating the coefficients of ¢ in (5.4)) and (5.6)), we have

N(N —1)ap(z,z) +2(1 — N)ai(z, ) + 2a2(z, x) = —df((l — N)ag(z, x) + a1 (z, a:)> + Z ap(w, x).
ng
Substituting ag(z,z) =1, ap(w,z) =1 if w = and aj(z,z) = N — 1 —dS gives
1
as(a,z) = 5 ((d§)2 +(3—2N)dC + N? — 3N + 2). (5.12)

Case 2. y# x and y T Again, equating the coefficients of ¢? in (5.5) and (5.7) gives

as(x,y) = % <3NnG(x,y) — ngnG($, y) +4 Z (al(w, y) — ;Nao(w,y)>>. (5.13)

wrgm,w;éy

The desired formula now follows by using the expression in ([5.15]).
Case 3. y#x and y ,é x. We equate the coefficients of #? in (5.5) and (5.7)) to get

1 3
§N2a0(x7 y) - §NCL1(I‘, y) =+ 3(12(:1:,y)

=—d¢ (al(a:,y) - %Nao(w,y)) + Z (al(w,y) - %Nao(w,y)) (5.14)
wsrwty

+ %N(N —Dao(y,y) + (1 = N)ai(y,y) + az(y,y).
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The second term on the right-hand side can be simplified as

> (artw.y) 5 Naofw,))

wréx,w;éy
1 1
= Z <_ §Na0(way) +a1(w7y)) + Z (_ §Na0(w7y)+al(way)>
wzx7w¢y7w’5y w’awi#vaféy
1 1
= > (- nfwy)+; > %)
W WAy Wy wesw WAy wiky
(5.15)
1 1 1
= - i@+ 5 D] <*d§+nG(w,y)) +ts o >, n%wy)
weEwEY, Wy wewwY,wky
l & a 1 g, 1 e
wesw WAy Wy wewwAY WY wawwEywky
1 1 1
wrc\;wi;évagy ngvw?éy

Substituting this and the known values of agp and a; into (5.14]) we get the desired expression for
az(z,y). We remark that ag(z,y), £ > 3 can be computed by using the same method but the

formulas get increasingly complicated.

O

6. HEAT KERNEL OF LAPLACIAN ON 1-FORMS ON SUBGRAPHS OF A COMPLETE GRAPH

Let K = Ky be the complete graph with N vertext set Vo := {1,2,...,N}. Let V] :={ij :4,j €
Vo, # j} denote the set of directed edges

There are six heat kernels for the Laplacian on 1-forms on Ky:
ui(t) = Hi (wij,wig),  ua(t) = Hf (wij,wye),  ua(t) == H (wij, wjp),
ug(t) = Hi (wij,weg),  us(t) = Hf (wij,wir),  ue(t) = H{* (wij, wi),

where 4, j, k, [ are distinct indices. The heat kernels satisfy the following heat equation for 1-forms

(see, e.g., [3]):

0

aHt(wi]ﬁ ) = AH(wsj, ),

where

AHy(wij, ) = =(3N = 2)Hy(wij,-) + > [Hi(wag, ) + Hi(wia, )]
a#i,j
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We obtain the following six ODEs with initial values

1 if Wkl = Wqj,
Ho(wij, wgt) = { 0 otherwisé].

0
(1) aﬂt(wmwz’j) =AH(wij, wiz)

=— (3N — 2)Hy(wij, wij) + Z [Ht(wWaj,wij) + Hi(wia, wij)]
air
=— (3N = 2)Hy(wij, wij) + (N = 2) Hy(waj, wij) + (N — 2) Hy(Wia, wij)

=— (BN —2)u; + (N —2)ug + (N — 2)us.

0
(2) aHt(wiﬁwji) =AH;(wij, wji)

=— (3N — 2)Hy(wjj, wj;) + Z [Hi(waj,wji) + Hi(Wia, wjs)]
aisj
= — (BN — 2)Hy(wij, wji) + (N — 2) Hy(waj, wji) + (N — 2) Hy(wji, wia)

=— (3N —2)ug + 2(N — 2)us.

0
(3) g He(wij, win) =AH(wij, win)

=— (3N — 2)Hy(wij, wji) + Z [Hi(wayj, wik) + Hi(Wia, wik)]
ai,j
=— (BN — 2)Hy(wij, wjk) + Hi(wij, wik) + (N — 3)uz + He(wir, wijk)
+ (N —3)ug
=— (2N + 1)ug + ug + ug + (N — 3)ug.

0
(4) 5 Hi(wij, wis) =AH(wij, wij)

= — (3N — 2)Ht(wij,wkj) + Z [Ht(wajawkj) + Ht(wimwkj)]
ai,j
=— (3N — Q)Ht(wij,wkj) + Ht(wkj,wkj) + (N - 3)“«4 + Ht(wikvwkj)
+ (N — 3)u6
=— (2N 4+ 1)ug +uy +usz + (N — 3)ug.
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0
(5) aHt(wipwik) =AH;(wij, wik)

— (3N = 2)Hy(wij,wit) + > [Hi(Way, wik) + Hi(Wia, wir)]

ai,j
— (BN = 2)Hy(wij, wik) + Hy(wij, wir) + (N — 3)us + Hy(wik, wir)
+ (N — 3)’LL5

— (2N+ 1)u5 +up +uz + (N — 3)u6

0
(6) aH,g(wj,wkl) =AH(wij, wrt)

= — (3N = 2)Hy(wij,wi) + D [He(way, wit) + Hi(wia, wit)]
i, j
— (3N — 2)Hy(wij, wit) + Hi(wij, wit) + Hy(wij, wir) + (N — 4)ug
+ Hy(wip, wiy) + Hy(wig, wrt) + (N — 4)ug
— (N + 6)ug + 2u3 + ug + us.

Note that equations (4) and (5) are the same and satisfy the same initial values. So u4(t) = us(t).
We have the following system of ODEs:

ui(t) = —(BN = 2)ug + (N — 2)ug + (N — 2)us
uhy(t) = —(3N — 2)ug + 2(N — 2)us
uh(t) = ug — (2N + 1)ug + ug + (N — 3)ug
uy(t) = ug +usz — (2N + Duyg + (N — 3)ug
ug(t) = uy +us — (2N + Vus + (N — 3)ug
ug(t) = 2ug + ug + us — (N + 6)ug
(21(0) = 1,u2(0) = uz(0) = u4(0) = u5(0) = ue(0) = 0.

From the symmetry of heat kernel, we have

Hy(wij,wri) = Hy(wri, wij) = us(t).
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The solution of the above system is:

e~ (N2t L (N — 1)e 2N+ L (N — 1)e 2Nt 4 (N2 — 3N +1)e 3Nt

uy(t) = NN =1) ;

e—(N+2)t + (N o 1)6—2(N+1)t o (N o 1)6_2Nt . 6—3Nt
uz(t) = NN - 1) !

2(N —2)e~ N+t L (N — 1)(N — 4)e 2N+DE (N — 1)(N — 2)e 2Nt 4 23N
us(t) = IN(N — 1)(N — 2) !

2(N = 2)e"WNF2t L (N — 1)(N — 4)e2(N+DE (N — 1)(N — 2)e 2Nt — 2(N? — 3N + 1)e 3N
u(t) = ON(N — 1)(N — 2) ’
us(t) = 2(N —2)e" N+ 4 (N — 1)(N — 4)e2NH+Dt L (N — 1)(N —2)e 2Nt —2(N? — 3N + 1)e 3N

IN(N —1)(N —2) ’

(N _ 2)67(N+2)t _ 2(N _ 1)672(N+1)t + Nef:}Nt
us(t) = NN 1) (N —2) '
We observe that w;(t), i =1,...,6, can be re-written as

—(N+2)t
wi(t) = ;U(V_)l)(prﬂi(t)), i=1,...,6, (6.1)

where

() = (N = 1N 4 (N = 1)e N 4 (N = 3N 4 1)e 2V D1
u2(t) = —(N — 1)6—(N—2)t + (N - 1)€—Nt _ e—Q(N—l)t’
—(N = 1)(N =2)e” V=2 4 (N = 1)(N — 4)e~ N 4 22N -1

() = (N — 2) )
oy (N - 2)e~(N=2)t 4 (N~ 1)(N — 4)e~Nt — 2(N? — 3N + 1)e20¥-1¢  (62)
falt) = 2(N —2) )

~ —2(N _ 2)e—Nt + Ne—2(N—1)t
UG(t) = N —9 .

Note that u;(t) is bounded on [0,00) and u;(t) — 0 as t — co. In fact, we can get more precise

bounds as shown in the following lemma.

Lemma 6.1. For N >4,i1=1,...,6, and t > 0, we have

@ (t)| < N*—=N—-1  andthus  |1+@(t)] < N(N—1).
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Proof. Applying the triangle inequality to the expressions for ;(t) in , we get

@] = N - N -1,
|aa(t)| = 2N
- (N )(N —-4) N-1 1
t <N,
[s(1)] = aN—2) 2 tTwn_2
_ (N—1)(N—4) N-1 N2-3N+1 (6.3)
< < _
|u4(t)‘_max{ SN —1) 5 N3 <N -1,
|as(t)] = |as(t)| < N -1,
2(N -1 N
|ﬁ6(t)‘§max{ (N—2)’ N—Q}S?"
For N >4, N?> — 2N — 1 dominates the other upper bounds and the assertion follows. O

The number of directed edges in K is equal to #V; = N(N — 1). Define six (0, 1)-matrices A;,
i=1,...,6, of order #V; x#V; as follows. The rows and columns of each A; are labeled by the edges
in Vi, or equivalently by the forms w;;. For A1, ..., Ag, entries equal to 1 are, respectively, (w;j, w;;),
(wij, wsi), (wig, win), (Wig, wg), (wij, wik), (i, wir). Note that Hf (wij, wir) = Hf* (wjk, wi;) and
(wjk, ws;j) can be identified with (wyj,wk;). So if a row is indexed by w;; then an entry in the
corresponding column is 1 if it is indexed by w; or wy,;, where i, j,k are distinct (see the matrix
As in the following example.) The following example illustrates the matrices A; i = 1,...,6, for
the case N = 4.

Example 6.2. For N =4, we have

Vo =1{1,2,3,4}
Vi = {12,13,14,21,23,24, 31,32, 34,41, 42, 43}.

e
I

SO OO DD DODO OO -
eleloloBoBoNaoleoBoRoll =
[N eleoloNoNeoNaoBaRael o =N
SO OO OO OO+ O OO
SO DODOD DD DDODODO OO OO
SO OO OO HOOO OO
DO O OO OO0 O OO
[oNeNeNeB ool oleNeNoeNe]
[eNeNel eoNeNoNoNeNoNo Nl
SO OO0 O OO o OO
O R OO OO o oo o oo
—H OO OO o oo
S OO OO OO OO OO
[eoNeNeNeNael HololeNoNo N
SO OO0 OO o oo
[N eleoloBoNoNeoloBoloRol S
OO O O OO OO o oo
O R OO DD OO
el eloloBoloNaoleoBoRol =
[Nl oo NoNeNol =l =Nl
—H OO OO0 o oo
[eNeoNeoNoNoNoNeoNeNal S =]
SO OO OO HOOO OO
S OO OO OO Oo oo
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Ay =

As

H OO R OO0 O+HrOOoO OO OoDoOoo oo
SO O OHOOHOODOOD OO0 HOOFr,rOOOoOOoOOo
—H OO OO0 OO OoOOH+HOOOOoOOoOOo
OHRP OO OO H OO0 OCOHOOOOoOO RO OOo
O OO OO H OO0 OHO OO0 O OO OoOoOoOOoO O -
O OO OO OO OO0+ OO0 OO OO+ OO HO

OFR OO OO HR OO0 POOoODoOoOoOooOoOoO OO oo
OO O OO0 OHOO0O HFOOOoOoooOoooo O
OO DD OO OO OHO OO0 OO OoO OO
OO R OO O OO0 OO OHOOOOOoOOooo o
DO OO OO OO+ OO+ OO0 OO+ OO OO
OO DO OHOOH OO0 OO0 oo OoOOoOHHOOOo

OO DD DD OO OO RO OO OO, FFEFOOOO
OO DD DODOODOOOHHROKH OOHOFROOORKROOO
OO OO OO0 KRR RFHOFHOFROOROOO
DO OO OO OHR OO0 OFrRROOHOOOO RO
OO OO DD OO HOH OO O OO0 OO o
OO DD DODO OO OHHFHF OO HFOFFPFMFHPFOODODODOO M
D OO R HROODODODDODODODODO HRPOODODODODOORrRrOR O+
OO O OH OO0 HFOoOOD oo O RO OFO
OO OO HH P OO OO0, OOoO O
H R OO0 OHOHOOFROOO R
_H O OO0 OO0 OOO—HFFEOO
ORPr PR OO0 OO0, PR OO, OO

By using the matrices A; and (6.3]), we can write the heat kernel (matrix) on K as

6 6 e—(N+2)t s
HtK:Z;Ui(t)Ai z; N(]\(fl_—:) (t))Ai (6.4)

Lemma 6.3. Let A; be the matrices defined above, and let ||A;|| denote the mazimum row sum
norm of A;. Then

(a) [|A1]l = [|A2] = 1;

(b) [[As]] = 2(N —2);

(©) [|Aall = [|4s] = N —2;
(d) [[Aell = (N = 2)(N = 3).
Consequently,

2(N —2) if N =4,

(N—-2)(N-3) ifN>5. (6.5)

max { || A :izl,...,6}:{

Proof. (a) An entry of A; equal 1 if and only if its row and column are both indexed by ij, i.e., if
and only if the entry is (ij, 7).

For As, we notice that if the row is indexed by ij, then an entry in that row is nonzero if and
only if the column is indexed by ji. Hence the row sum is 1.

(b) We first note that if a row is indexed by ij, then an entry in that row is nonzero if the
column is indexed by jk,ik € Vo \ {i,7}. There are N — 2 such entries. Next, we note that since
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HE (wij,wjk) = HE (wjg, w;j), which can be identified with H (w;j, wy;), row ij has N — 2 such
entries. So the row sum is 2(N — 2).

(c) For fixed ij, there are N — 2 choices for k. Hence the row sum is N — 2. Identifying
HE (wyj, w;j) with HE (w;;, wg;) yields no other nonzero entries. The proof for Aj is similar.

(d) For fixed ij, there are N — 2 choices for k& and N — 3 choices for ¢ that give rise to a 1 in
row ij. Thus the row sum is (N — 2)(N — 3). Again, identifying H/S (wip, wi;) with HJ (w;;, wke)
produces new possibilities.

Finally, (6.5) follows by observing that 2(N —2) < (N — 2)(N — 3) if and only if N <5. O

Lemma 6.4. Fori=1,...,6, we have

4(N —2)(N? = N —1) if N =4,

47" + Lo < {2(N— NN—3)(N2 —N—1) ifN>5.

Proof. Recall from Proposition [2.2| that AG® 4 L, 1 = AKX — AZ. Hence

[Ai(AS" + Lo)|| = [[A:(Af — AT
< | A ||AT = Al
< |4 AT,

where the last inequality is because the entries of A and A{ have the same sign.

Note that a non-diagonal entry of A is either 0 or 1, and a diagonal entry is —(N(N — 1) — 1),
negative of the degree of any vertex. Hence the maximal row sum of AKX is 2[N(N — 1) — 1]. Now
the lemma following by combining this and Lemma [6.3] O

Lemma 6.5. Fori=1,...,6, we have

4(N —2)(N? =N —1) if N =4,

(AG®
[4dAT + Lo)l| < {2(N—2)(N—3)(N2—N— 1)  ifN>5.

Proof. Recall from Proposition that AG° + L, 1 = AKX — A®. Hence

[Ai(AS" + Lo)|| = [[Ai(Af — AT
< [|Ai|| |AT = Al
< | 4] | AT,

where the last inequality is because the entries of AKX and A? have the same sign.

Note that a non-diagonal entry of A is either 0 or 1, and a diagonal entry is —(N(N — 1) — 1),
negative of the degree of any vertex. Hence the maximal row sum of AKX is 2[N(N — 1) — 1]. Now
the lemma following by combining this and Lemma [6.3] d
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Let F be the vector space of all real-valued functions on [0,00) x V. Let T : F — F be a linear
operator defined as

t
Tf): = —/0 (HE(AF + Lo)) fu(w) ds
_e—(N+2)t 6

= v 2o, (T 9) A+ L) s
=1

We now give a sufficient condition for the series >~ T™ to converge. Define

if N < 4,

— N +2
In{1—
(N = N—EQ < 24(N—2)(N2—N—1)>

- N 42
(1 i N> 5.
N+2n< 1mN—2mv—amﬁ—N—n> N 23

Proposition 6.6. Let N > 4. Then for allt € (0,7(N)), | T < 1.

Proof. The proof is similar to that of Proposition
+ C
ITf(@)|| < Z/ (V281 4 Gt — 5)| - | Ad(AS" + Lo) fu()]| ds.

Using Lemmas [6.1] and [6.5] and letting
c:= sup{’l—l—ﬂi(t—s)‘ . HAZ-(A?C—l—LO)H ti=1,...,6, 0< sgt},

we have

6—(N+2)t)

75 < v Z [ e e = S

To complete the proof, we will only consider the case N > 5; the case N = 4 is similar. According

to Lemmas and

6e(1 — (VDY) 12N —2)(N = 3)(N? = N — 1)(1 — e= (V42
NN-1)(N+2) — N +2 ’

which is less than 1 if

N+2

h< N_+21n<1_ 12(N2)(N3)(N2N1)> Y(N).

The proposition follows. O
Theorem 6.7. Let N >4, v(N) be as in , Ui, 1 <i <6, be defined as in (6.3)).
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(a) For allxz,y € Vi andt> s >0,

t
18 @) = @) = [ (HE AT + L)HE ) @.9) ds.

_ 6
o— (N+2)t

t
> / e NS (14 (¢ — 5)) Af(AT" + Lo)H (2, y) ds.

= gK S
t (.T,y) N(N— 1) — 0

(b) For allt € (0,v(N)),

H (z,y) (Z T’">HK(90 y)-

m=0

Proof. (a) It follows from the proof of Proposition that

HE (2, ) — HX (2, ) / S HE (3, 2)(AYS + Lo )HE (2, y) ds. (6.7)
zeV

By using the definitions of the matrices A; (see (6.4)), we can write (2.14) as

6
S (S wilt — )i, 2) ) (AF: + Lo, ) HE (2,9)

ZGVl =1

_Zuz t—S ZA xz A12+L02) (Zuy)
zeVy (68)

— Z ui(t — s) (Ai(AfC + Lo)Hf) (2, y)

(N+2

i (1+@lt = ) (A(AF" + Lo HE) (2,y).

Part (a) now follows by substituting into (6.7)).
Part (b) follows by combining Part (a) and Proposition O

For 1-forms we cannot obtain an analogous expression for the subgragh heat kernel as the one
in Corollary The main reason is that for O-forms, T' HtK (z,y) can be expressed explicitly as in
(3.7). For 1-forms the expression is not so explicit and involves an integral, e.g., for m =1,

THE (2,y) : = _e_wwz te(N”)s(l—i—ﬁ(t—s))A(AGc + Lo.)HE (2,y)d
t 1Y) 0 7 1\ 21,z 0,z)41¢ Y) as.

N(N-1) =
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