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Abstract. For Laplacians defined by measures on a bounded domain in Rn, we prove
analogs of the classical eigenvalue estimates for the standard Laplacian: lower bound of
sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya
and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on
fractals.

1. Introduction

One of the anomalous behaviors of Laplacians on fractals is the existence of spectral gaps,

i.e., limk→∞ λk+1/λk > 1, where λk are the eigenvalues. This is not possible for bounded

domains on Rn or on Riemannian manifolds. In fact, according to the Weyl law, on a

compact connected oriented n-dimensional Riemannian manifold M ,

(λk)
n/2 ∼ (2π)nk

ωn vol(M)
as k →∞,

where vol(M) is the volume of M , and ωn is volume of the unit ball in Rn (see, e.g., [2]).

Consequently, limk→∞ λk+1/λk = 1. Strichartz [20] showed that the existence of spectral gaps

implies better convergence of Fourier series. Rigorous proofs for the existence of spectral gaps

have been obtained for only a limited number of fractals, such as the Sierpiński gasket and

the Vicsek set (see [5,8,21]). For Laplacians defined by most self-similar measures, especially

those with overlaps, it is not clear whether spectral gap exists. This is the main motivation

of the present paper. This paper is also a continuation of the work by the authors’ [4] and

by Pinasco and Scarola [17] on estimating the first eigenvalue of Laplacians with respect to

fractal measures.

To describe some classical results, let Ω be a bounded domain on Rn and let λk be the

k-th Dirichlet eigenvalue. Li and Yau [10] obtained the following lower estimate for the sum
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of the first k eigenvalues
k∑
i=1

λi ≥
nCn
n+ 2

k(n+2)/nvol(Ω)−2/n, (1.1)

where vol(Ω) denotes the volume of Ω, and Cn = (2π)2B
−2/n
n , with Bn being the volume of

the unit ball in Rn.

An upper estimate was obtained by Kröger [16]. The results of Li-Yau and Kröger have

been extended to homogeneous Riemannian manifolds by Strichartz [19].

For the gaps between consecutive eigenvalues, Payne, Pólya and Weinberger [15] (see

also [18]) proved the following estimate for the gaps between two consecutive eigenvalues:

λk+1 − λk ≤
4
∑k

i=1 λi
nk

. (1.2)

The goal of this paper is to prove analogs of (1.1) and (1.2) for Laplacians defined by

a measure µ. Let Ω ⊂ Rn be a bounded open subset of Rn and µ be a positive finite

Borel measure with µ(Ω) > 0 and with support being contained in Ω. Under suitable

conditions (see Section 2), µ defines a Dirichlet Laplacian −∆µ; moreover, there exists an

orthonormal basis {ϕn} consisting of eigenfunctions of −∆µ and the eigenvalues λn satisfy

0 < λ1 ≤ λ2 ≤ · · · , with limn→∞ λn =∞. We remark that if µ is the restriction of Lebesgue

measure to Ω, then ∆µ is the classical Dirichlet Laplacian.

We first prove an analog of the classical lower estimate of the sum of eigenvalues of the

standard Laplacian obtained by Li and Yau [10]. We let L2
µ(Ω) denote the Hilbert space

of square-integrable functions with respect to µ. For u ∈ L2
µ(Ω), if there is no confusion of

what Ω is, we let

‖u‖µ =
(∫

Ω

|u|2 dµ
)1/2

.

If µ is the restriction of Lebesgue measure to Ω, we denote the corresponding L2-space and

norm respectively by L2(Ω) and ‖ · ‖.

Theorem 1.1. Let Ω ⊆ Rn be a bounded domain, µ be a positive finite Borel measure on Ω

with supp(µ) ⊆ Ω, −∆µ be the Dirichlet Laplacian defined by µ described in Section 2, λk be

the k-th eigenvalue of −∆µ, and ϕk be the corresponding L2
µ(Ω)-normalized eigenfunction.

Then
k∑
j=1

λj ≥
( k∑
j=1

‖ϕj‖2
)n+2

2
(
Bn sup

z∈Rn

k∑
j=1

|ϕ̂j(z)|2
)− 2

n n

n+ 2

≥
( k∑
j=1

‖ϕj‖2
)(

(2π)−nvol(Ω)Bn

)− 2
n

n

n+ 2
,

where vol(Ω) is the volume of Ω and Bn is the volume of the unit ball in Rn.
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Finally, we generalize the classical theorem by Payne, Pólya and Weinberger [15] on the

gaps between two consecutive eigenvalues.

Theorem 1.2. Assume the hypotheses of Theorem 1.1. Then for all k ≥ 1,

λk+1 − λk ≤
4
∑k

i=1 λi

n
∑k

i=1 ‖ϕi‖2
. (1.3)

Remark 1.1. We note that in (1.2), ‖ϕj‖ > 0 for all i. In fact, if ∇ϕj = 0, then, in view

of the Poincaré inequality for measures (see (2.1)), we would get ‖ϕj‖µ = 0, a contradiction.

Both Theorems 1.1 and 1.2 involve the sum
∑k

i=1 ‖ϕi‖2, which suggests that it is necessary

to study the eigenfunctions. We are not able to obtain a good estimate for this sum. Prop-

erties of eigenfunctions in one-dimensional, especially when the support of µ is an interval,

have been studied in [1]). In Section 3, we focus on the case when the support of µ is not

an interval, such as a Cantor-type measure.

This paper is organized as follows. In Section 2, we recall the definition and some ele-

mentary properties of the Dirichlet Laplacian ∆µ defined on a domain by a measure µ. In

Section 3 we prove the min-max principle for −∆µ and some properties of the eigenfunctions

in one-dimension. Theorem 1.1 is proved in Section 4. Section 5 is devoted to the proof of

Theorem 1.2. Finally in Section 6 we state some comments and open questions.

2. Preliminaries

For convenience, we summarize the definition of the Dirichlet Laplacian with respect to a

measure µ; details can be found in [9]. Let Ω ⊂ Rn be a bounded open subset and µ be a

positive finite Borel measure with supp(µ) ⊆ Ω and µ(Ω) > 0. We further suppose µ satisfies

the following Poincaré inequality (PI) for measures: There exists a constant C > 0 such that∫
Ω

|u|2 dµ ≤ C

∫
Ω

|∇u|2 dx for all u ∈ C∞c (Ω). (2.1)

Notice that (PI) cannot be immediately extended to H1
0 (Ω) functions. For example, let

Ω = (0, 1) ⊆ R and µ be the standard Cantor measure, which is supported on the Cantor

set. For any u ∈ H1
0 (Ω), if we increase the value of u on the Cantor set,

∫ 1

0
|∇u|2dx remains

unchanged but
∫ 1

0
|u|2dµ can be increased within the same equivalence class of u without

bound and hence the inequality cannot hold. However, the following is true. (PI) implies

that each equivalence class u ∈ H1
0 (Ω) contains a unique (in L2

µ(Ω) sense) member ū that

belongs to L2
µ(Ω) and satisfies both conditions below:

(1) There exists a sequence {un} in C∞c (Ω) such that un → ū in H1
0 (Ω) and un → ū in

L2
µ(Ω);
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(2) ū satisfies the inequality in (2.1).

We call ū the L2
µ(Ω)-representative of u. Consider our Cantor set example above. For

u ∈ H1
0 (Ω), let {un} ⊆ C∞c (Ω) be a sequence convergent to u and hence Cauchy in H1

0 (Ω).

By (PI), {un} is Cauchy and hence convergent in L2
µ(Ω). Then ū is the function obtained

by redefining u on the Cantor set to be the L2
µ(Ω) limit of un.

Assume (PI) holds and define a mapping ι : H1
0 (Ω)→ L2

µ(Ω) by

ι(u) = ū.

ι is a bounded linear operator, but not necessarily injective. Consider the subspace N of

H1
0 (Ω) defined as

N := {u ∈ H1
0 (Ω) : ‖ι(u)‖µ = 0}.

Now let N⊥ be the orthogonal complement of N in H1
0 (Ω). Then ι : N⊥ → L2

µ(Ω) is

injective. Throughout the rest of this paper, unless explicitly stated otherwise, we will use

the L2
µ(Ω)-representative ū of u and denote it simply by u.

Consider a nonnegative bilinear form E(·, ·) in L2
µ(Ω) given by

E(u, v) :=

∫
Ω

∇u · ∇v dx (2.2)

with domain dom(E) = N⊥, or more precisely, ι(N⊥). (PI) implies that (E , dom(E)) is a

closed quadratic form on L2
µ(Ω). Hence, there exists a nonnegative self-adjoint operator −∆µ

in L2
µ(Ω) such that dom(E) = dom((−∆µ)1/2) and

E(u, v) = 〈(−∆µ)1/2u, (−∆µ)1/2v〉L2
µ(Ω) for all u, v ∈ dom(E)

(see [3]). We call ∆µ the (Dirichlet) Laplacian with respect to µ. It follows that u ∈ dom(∆µ)

and −∆µu = f if and only if −∆u = f dµ in the sense of distribution: for all ϕ ∈ C∞c (Ω),∫
Ω
∇u · ∇ϕdx =

∫
Ω
fϕ dµ (see [9, Proposition 2.2]). A real number λ ∈ R is a (Dirichlet)

eigenvalue of −∆µ with eigenfunction f if for all ϕ ∈ C∞c (Ω),∫
Ω

∇f · ∇ϕdx = λ

∫
Ω

fϕ dµ. (2.3)

From [9, Theorem 1.2], when µ satisfies (PI), there exists an orthonormal basis {ϕn}∞n=1

of L2
µ(Ω) consisting of (Dirichlet) eigenfunctions of −∆µ. The eigenvalues {λn}∞n=1 satisfy

0 < λ1 ≤ λ2 ≤ · · · . Moreover, if dim(dom E) = ∞, then limn→∞ λn = ∞. We have the

following characterizations of dom E and dom (−∆µ):

dom E = N⊥ =

{ ∞∑
n=1

cnϕn :
∞∑
n=1

c2
nλn <∞

}
,

dom (−∆µ) =

{ ∞∑
n=1

cnϕn :
∞∑
n=1

c2
nλ

2
n <∞

}
.
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To state a sufficient condition for (PI), we recall that the lower L∞-dimension of a measure

µ is defined by

dim∞(µ) = lim inf
δ→0+

ln(supx µ(Bδ(x)))

ln δ
,

where the supremum is taken over all x ∈ supp(µ).

Theorem 2.1. ( [9, Theorems 1.1, 1.2]) Let Ω ⊆ Rn be a bounded open set and µ be a positive

finite Borel measure on Rn with supp(µ) ⊆ Ω and µ(Ω) > 0. Assume dim∞(µ) > n− 2.

(a) (PI) holds. In particular, if n = 1, or n = 2 and µ is upper s-regular with s > 0, or µ

is absolutely continuous with bounded density, (PI) holds.

(b) The set of eigenvalues of −∆µ is contained in (0,∞) and has no accumulation point.

Hence −∆µ has a positive smallest eigenvalue λµ1 .

3. The min-max principle and properties of eigenfunctions

Let Ω be a bounded domain in Rn and µ be a positive finite Borel measure with supp(µ) ⊆
Ω. In this section we extend the variational principle for the principal eigenvalue and

Courant’s min-max principle for the k-th eigenvalue to the Laplacians ∆µ. This will be

needed in the proof of Theorem 1.2. We first introduce some notation that will be needed

in the proof of the theorem. Let (·, ·)µ denote the inner product in L2
µ(Ω). Also, for any

subset S ⊆ L2
µ(Ω), let 〈S〉 be the vector subspace of L2

µ(Ω) spanned by S, and let S⊥ be the

orthogonal complement of S in L2
µ(Ω).

Theorem 3.1. (Min-Max principle) Let ∆µ be the Dirichlet Laplacian defined on a bounded

domain Ω ⊆ Rn and let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues. Then for k = 1, 2, . . . , the

k-th eigenvalue satisfies

λk = max
S∈Σk−1

min
{
E(u, u) : u ∈ S⊥, ‖u‖µ = 1

}
, (3.1)

where Σk−1 is the collection of all (k−1)-dimensional subspaces of dom (−∆µ). In particular,

for k = 1 we have the variational principle for the principal eigenvalue:

λ1 = min
{
E(u, u) : u ∈ dom (−∆µ), ‖u‖µ = 1

}
. (3.2)

Proof. Step 1. Let {ϕk} ⊆ L2
µ(Ω) be an orthonormal basis of L2

µ(Ω) with {ϕk} ⊂ dom (−∆µ)

satisfying {−∆µϕk = λkϕk in Ω

ϕk = 0 in ∂Ω
(3.3)

for k = 1, 2, . . . . Hence

E(ϕk, ϕl) = (λkϕk, ϕl)µ = λkδkl, (3.4)
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where δkl is the Kronecker delta. If u ∈ dom E and ‖u‖µ = 1, then

u =
∞∑
k=1

dkϕk in L2
µ(Ω), (3.5)

where dk = (u, ϕk)µ, and the equality holds in the sense that ‖u −
∑N

k=1 dkϕk‖µ → 0 as

N →∞. Also,
∞∑
k=1

d2
k = ‖u‖2

µ = 1. (3.6)

Step 2. Equation (3.4) implies that {ϕk/λ1/2
k }∞k=1 ⊆ dom (−∆µ) is an orthonormal set with

respect to the inner product E(·, ·). We claim that {ϕk/λ1/2
k }∞k=1 is an orthonormal basis of

dom (−∆µ) with respect to E(·, ·). To see this, we let u ∈ dom (−∆µ) such that E(ϕk, u) = 0

for all k ≥ 1. Then (λkϕk, u)µ = 0 for all k ≥ 1 implies that (uk, u)µ = 0 for all k ≥ 1.

Thus, u = 0 µ-a.e. on Ω, which implies that u = 0 in dom (−∆µ) (in the H1
0 -norm), since

ι : N⊥ → L2
µ(Ω) is an injection. Thus, for all u ∈ dom (−∆µ),

u =
∞∑
k=1

ak
ϕk

λ
1/2
k

, (3.7)

where ak = E(u, ϕk/λ
1/2
k ). Observe that

ak = E
(
ϕk

λ
1/2
k

, u

)
=

1

λ
1/2
k

(λkϕk, u)µ =
1

λ
1/2
k

(
λkϕk,

∞∑
`=1

d`ϕ`

)
µ

= λ
1/2
k dk.

Hence,

u =
∞∑
k=1

(λ
1/2
k dk)

ϕk

λ
1/2
k

=
∞∑
k=1

dkϕk in dom (−∆µ). (3.8)

Equations (3.8) and (3.4) imply that

E(u, u) = E
( ∞∑

k=1

dkϕk,
∞∑
k=1

dkϕk

)
=
∞∑
k=1

d2
kλk ≥ λ1.

Since E(ϕ1, ϕ1) = λ1, (3.2) follows.

Step 3. Now let {ϕk}∞k=1 ⊆ L2
µ(Ω) be an orthonormal basis of L2

µ(Ω) satisfying (3.3). Let

v ∈ dom (−∆µ) with ‖v‖µ = 1. Write v =
∑∞

i=1 ciϕi, where the equality holds in both L2
µ(Ω)

and dom (−∆µ). As E(v, v) =
∑∞

i=1 λic
2
i ,

λk = min

{ ∞∑
i=1

λic
2
i : c1 = · · · = ck−1 = 0,

∞∑
i=1

c2
i = 1

}
= min

{
E(v, v) : v ∈ 〈ϕ1, . . . , ϕk−1〉⊥, ‖v‖µ = 1

}
.

We claim that this is equal to

max
S∈Σk−1

min
{
E(v, v) : v ∈ S⊥, ‖v‖µ = 1}.

To prove this, let S ∈ Σk−1 and consider the following two cases.
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Case 1. S = 〈v1, . . . , vk−1〉 with v` =
∑∞

i=1 d`iϕi for ` = 1, . . . , k − 1 and det(d`i)
k−1
`,i=1 = 0.

In this case, there exist c1, . . . , ck−1, not all zero, such that

k−1∑
i=1

c2
i = 1 and

k−1∑
i=1

d`ici = 0, ` = 1, . . . , k − 1.

Let v :=
∑k−1

i=1 ciϕi ∈ S⊥. Then ‖v‖µ = 1 and

min
v∈S⊥,‖v‖µ=1

E(v, v) ≤ (v, v) =
k−1∑
i=1

λic
2
i ≤ λk = min

v∈〈ϕ1,...,ϕk−1〉⊥
E(v, v).

Case 2. S = 〈v1, . . . , vk−1〉, v` =
∑∞

i=1 d`iϕi for ` = 1, . . . , k − 1 with det(d`i)
k−1
`,i=1 6= 0.

Let v ∈ 〈ϕ1, . . . , ϕk−1〉⊥ with ‖v‖µ = 1, i.e., v =
∑∞

i=k ciϕi with
∑∞

i=k c
2
i = 1 and E(v, v) =∑∞

i=k λic
2
i . We will find v′ ∈ S⊥ with ‖v′‖µ = 1 such that E(v′, v′) ≤ E(v, v).

Let v̄ =
∑∞

i=1 ciϕi (i.e., v has the same ϕi components as v for i ≥ k) such that v · v` = 0

for all ` = 1, . . . , k. That is,

k−1∑
i=1

d`ici =
∞∑
i=k

d`ici, ` = 1, . . . , k − 1.

Since det(d`i)
k−1
`,i=1 6= 0, a solution c1, . . . , ck−1 exists (can be all 0). Let v′ := v̄/‖v̄‖µ. Note

that

‖v̄‖2
µ =

k−1∑
i=1

c2
i +

∞∑
i=k

c2
i = 1 +

k−1∑
i=1

c2
i ,

and
k−1∑
j=1

λjc
2
j ≤

(k−1∑
j=1

c2
j

)
λk =

(k−1∑
j=1

c2
j

)( ∞∑
j=k

c2
j

)
λk ≤

(k−1∑
j=1

c2
j

)( ∞∑
j=k

λjc
2
j

)
.

Thus,

E(v′, v′) =
1

‖v‖2
µ

E(v, v) =
1

1 +
∑k−1

i=1 c
2
i

∞∑
j=1

λjc
2
j =

1

1 +
∑k−1

i=1 c
2
i

(k−1∑
j=1

λjc
2
j +

∞∑
j=k

λjc
2
j

)

≤
∞∑
j=k

λjc
2
j = E(v, v).

It follows that

min
v′∈S⊥,‖v′‖µ=1

E(v′, v′) ≤ min
v∈〈ϕ1,...,ϕk〉⊥,‖v‖µ=1

E(v, v).

This completes the proof. �

The following proposition establishes some properties of eigenfunctions in one-dimension,

some of them being specific for measures on bounded domains in R. Additional properties



8 D.-W. DENG AND S.-M. NGAI

of eigenfunctions can be found in [1]. Let L1(E) be the one-dimensional Lebesgue measure

of a subset E ⊆ R.

Proposition 3.2. Let Ω ⊂ R be a bounded open interval, µ be a positive finite Borel measure

on Ω with supp(µ) ⊆ Ω, ∆µ be the Dirichlet Laplacian with respect to µ, and ϕ ∈ H1
0 (Ω) be

an eigenfunction of −∆µ, i.e., there exists λ ∈ R such that −∆µϕ = λϕ. Then

(a) ϕ ∈ C0,1/2(Ω);

(b) ϕ is linear over any component of Ω \ supp(µ);

(c) if L1(supp(µ)) = 0, then ϕ /∈ C2(Ω), and in fact, ϕ′ is not absolutely continuous

(with respect to Lebesgue measure);

(d) eigenfunctions corresponding to the first eigenvalue do not change sign;

(e) the first eigenvalue is simple.

Proof. (a) It follows directly from Sobolev’s embedding theorem that H1
0 (Ω) ↪→ C0,1/2(Ω).

(b) Consider a component (a, b) of Ω \ supp(µ). For all v ∈ C∞c (a, b) ⊆ C∞c (Ω),∫
Ω

ϕ′v′ dx = λ

∫
Ω

ϕv dµ = 0,

and hence it also holds for continuous piecewise linear v with supp(v) ⊂ (a, b). Note that

ϕ′|(a,b) ∈ L2(a, b) ⊂ L1(a, b). Let

a < x− δ < x1 < x1 + δ < x2 − δ < x2 < x2 + δ < b.

Let v ∈ C(a, b) that is equal to 0 on (a, x1 − δ) ∪ (x2 + δ, b), equal to 1 on (x1 + δ, x2 − δ),
and linear over (x1 − δ, x1 + δ) and (x2 − δ, x2 + δ). Then

0 =

∫ b

a

ϕ′v′ dy =

∫ x1+δ

x1−δ
ϕ′(y)v′(y) dy +

∫ x2+δ

x2−δ
ϕ′(y)v′(y) dy

=
1

2δ

∫ x1+δ

x1−δ
ϕ′(y) dy − 1

2δ

∫ x2+δ

x2−δ
ϕ′(y) dy.

By the Lebesgue differentiation theorem, for Lebesgue a.e. x ∈ (a, b), ϕ′(x) = c, a constant.

As ϕ ∈ H1
0 (Ω) is absolutely continuous, for all x ∈ (a, b),

ϕ(x) = ϕ(a) +

∫ x

a

ϕ′(y) dy = ϕ(a) + c(x− a),

completing the proof of (b).

(c) By part (b), ϕ′′ = 0 Lebesgue a.e. Hence, if ϕ′ is absolutely continuous, then for

Lebesgue a.e. a, b ∈ Ω,

ϕ′(a)− ϕ′(b) =

∫ b

a

ϕ′′(y) dy = 0.

Thus, ϕ′ is a constant. Since ϕ ∈ H1
0 (Ω), we conclude that ϕ ≡ 0, contradicting that ϕ is

an eigenfunction.
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(d) By [1, Proposition 3.4], eigenfunctions corresponding to the first eigenvalue are concave

or convex. As they vanish at the end points, they do not change sign.

(e) Let ϕ1 and ϕ2 be normalized functions corresponding to the first eigenvalue of −∆µ.

Then ϕ1, ϕ2 ∈ C0,α(Ω) ⊂ C(Ω). If ϕ1 ≡ ϕ2 on supp(µ), then by linearity on components of

Ω \ supp(µ) and continuity, ϕ1 ≡ ϕ2 on Ω. Thus ϕ1 6≡ ϕ2 if and only if ϕ1 6≡ ϕ2 on supp(µ).

Suppose that ϕ1 and ϕ2 are of the same sign, say positive, and ϕ1 6≡ ϕ2. If ϕ1 ≥ ϕ2, then

ϕ1 > ϕ2 on some subset E ⊂ Ω with µ(E) > 0. Hence

1 =

∫
Ω

|ϕ1|2 dµ >
∫

Ω

|ϕ2|2 dµ = 1,

a contradiction. Thus, there exist x1, x2 ∈ Ω such that ϕ1(x1) > ϕ2(x1) and ϕ1(x2) < ϕ2(x2).

Now ϕ = ϕ1 − ϕ2 is an eigenfunction with ϕ(x1) > 0 and ϕ(x2) < 0, contradicting (d). �

4. Lower estimate of sums of eigenvalues

We will use the a lemma from [10] which says that if f is a real-valued function defined

on Rn with 0 ≤ f ≤M1, and ∫
Rn
|z|2 dz ≤M2,

then ∫
Rn
f(z) dz ≤ (M1Bn)

2
n+2M

n
n+2

2

(n+ 2

n

) n
n+2

(4.1)

Proof of Theorem 1.1. Let

Φ(x, y) =
k∑
j=1

ϕj(x)ϕj(y), x, y ∈ Ω and f(z) :=

∫
Ω

|Φ̂(z, y)|2 dµ(y), z ∈ Rn, (4.2)

where

Φ̂(z, y) = (2π)−n/2
∫
x∈Rn

Φ(x, y)e−ix·z dx

is the Fourier transform of Φ at z and each ϕj is extended to Rn by setting it equal to 0 on

Rd \ Ω. Then, using the linearity of the Fourier transform,

f(z) =

∫
Ω

∣∣∣ k∑
j=1

ϕ̂j(z)ϕj(y)
∣∣∣2 dµ(y)

=

∫
Ω

k∑
j,`=1

ϕ̂j(z)ϕj(y)ϕ̂`(z)ϕ`(y) dµ(y)

=
k∑
j=1

∣∣ϕ̂j(z)
∣∣2.

(4.3)
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Let M1 := supz∈Rn
∑k

j=1 |ϕ̂j(z)|2. Then it follows that for all z ∈ Rn,

0 ≤ f(z) ≤M1 ≤ (2π)−n
k∑
j=1

‖ϕj‖2
L1(Ω) ≤ (2π)−nvol(Ω)

k∑
j=1

‖ϕj‖2. (4.4)

Also, ∫
Rn
|z|2f(z) dz =

∫
Ω

∫
Rn
|z|2|Φ̂(z, y)|2 dz dµ(y)

=

∫
Ω

∫
Rn
|∇̂xΦ(z, y)|2 dz dµ(y)

=

∫
Ω

∫
Ω

|∇xΦ(x, y)|2 dx dµ(y) (Plancherel’s theorem)

=

∫
Ω

∫
Ω

( k∑
j=1

λjϕj(x)ϕj(y)
)( k∑

`=1

ϕ`(x)ϕ`(y)
)
dµ(x) dµ(y)

=
k∑
j=1

λj =: M2,

(4.5)

where the fourth equality follows from (2.3). Using (4.3) followed by the Plancherel theorem,

we get ∫
Rn
f(z) dz =

k∑
j=1

‖ϕ̂j(z)‖2 =
k∑
j=1

‖ϕj‖2. (4.6)

By applying [10, Lemma 1] (see (4.1)) to the function f in (4.2), and using (4.5) and (4.6),

we get

k∑
j=1

‖ϕj‖2 =

∫
Rn
f(z) dz ≤ (M1Bn)

2
n+2M

n
n+2

2

(n+ 2

n

) n
n+2

=
(
Bn sup

z∈Rn

k∑
j=1

|ϕ̂j(z)|2
) 2
n+2
( k∑
j=1

λj

) n
n+2
(n+ 2

n

) n
n+2

.

Thus, using (4.4), we get

k∑
j=1

λj ≥
( k∑
j=1

‖ϕj‖2
)n+2

n
(
Bn sup

z∈Rn

k∑
j=1

|ϕ̂j(z)|2
)− 2

n
( n

n+ 2

)

≥
( k∑
j=1

‖ϕj‖2
)(

(2π)−nvol(Ω)Bn

)− 2
n

( n

n+ 2

)
,

which completes the proof. �
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5. Upper estimate of gaps of eigenvalues

This section is devoted to generalizing the estimate of Payne, Pólya and Weinberger in

1.2 to Laplacians with respect to measures. We use the same notation as in Theorem 1.1.

Proof of Theorem 1.2. By the min-max principle,

λk+1 = inf

{∫
Ω
|∇v|2 dx∫
Ω
v2 dµ

:

∫
Ω

vϕi dµ = 0, i = 1, . . . , k, v ∈ dom (−∆µ)

}
. (5.1)

Choose test functions vi = gϕi −
∑k

j=1 aijϕj, where g will be chosen later. Obviously,

vi ∈ dom E . Suppose
∫

Ω
viϕ` dµ = 0. Then

0 =

∫
Ω

gϕiϕ` dµ−
k∑
j=1

aij

∫
Ω

ϕjϕ` dµ =

∫
Ω

gϕiϕ` dµ− ai`.

Therefore, ai` = a`i and∫
Ω

v2
i dµ =

∫
Ω

(
gϕivi −

k∑
j=1

aijϕjvi

)
dµ =

∫
Ω

gϕivi dµ.

Notice that ∫
Ω

|∇vi|2 dx = 〈−∆vi, vi〉H−1,H1
0
.

Since

∆vi = (∆g)ϕi + 2∇g · ∇ϕi + g∆ϕi −
k∑
j=1

aij∆ϕj

= (∆g)ϕi + 2∇g · ∇ϕi − λigϕi dµ+
k∑
i=1

aijλjϕj dµ,

we have ∫
Ω

|∇vi|2 dx = −
∫

Ω

(∆g)viϕi dx− 2

∫
Ω

vi∇g · ∇ϕi dx+ λi

∫
Ω

gϕivi dµ.

Now,

−2
k∑
i=1

∫
Ω

vi∇g · ϕi dx = −2
k∑
i=1

g∇u · ϕi∇ϕi dx+ 2
∑
j,i

aij

∫
Ω

ϕj∇ϕi · ∇g dx

=
k∑
i=1

(
− 1

2

∫
Ω

∇g2 · ∇ϕ2
i dx

)
+
∑
i,j

aij

∫
Ω

∇(ϕiϕj)∇g dx

=
k∑
i=1

1

2

∫
ϕ2
i∆g

2 dx−
k∑

i,j=1

aij

∫
Ω

ϕiϕj∆g dx.

(5.2)
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Hence,

λk+1

∫
Ω

v2
i dµ ≤

k∑
i=1

∫
|∇v|2 dx =

k∑
i=1

(
−
∫
viϕi∆g dx

)
+

1

2

k∑
i=1

∫
ϕ2
i∆g

2 dx

−
k∑

i,j=1

aij

∫
Ω

ϕiϕj∆g dx+
k∑
i=1

λi

∫
Ω

gϕivi dµ

= −
k∑
i=1

∫
Ω

ϕ2
i g∆g dx+

k∑
i,j=1

aij

∫
Ω

ϕiϕmj∆g dx+
1

2

k∑
i=1

∫
Ω

ϕ2
i∆g

2 dx

−
k∑

i,j=1

aij

∫
Ω

ϕiϕj∆g dx+
k∑
i=1

λi

∫
gϕivi dµ

=
k∑
i=1

∫
Ω

ϕ2
i |∇g|2 +

k∑
i=1

λi

∫
v2
i dµ

≤
k∑
i=1

∫
Ω

ϕ2
i |∇g|2 dx+ λk

k∑
i=1

∫
Ω

v2
i dµ.

Since for all i,

λk+1

∫
Ω

v2
i dµ ≤

∫
Ω

|∇vi|2 dx,

we have

λk+1 − λk ≤
∑k

i=1

∫
Ω
ϕ2
i |∇g|2 dx∑k

i=1

∫
Ω
v2
i dµ

.

Now take g = ga(x) =
∑n

i=1 aixi with
∑n

i=1 a
2
i = 1. Then ∆g = 0 and |∇g| = 1. It follows

that

λk+1 − λk ≤
∑k

i=1

∫
Ω
ϕ2
i dx∑k

i=1 v
2
ia dµ

=

∑k
i=1 ‖ϕi‖2∑k

i=1

∫
Ω
v2
ia dµ

, (5.3)

where via = ga(x)ϕi −
∑k

j=1 aijϕj. From (5.2),

k∑
i=1

∫
Ω

ϕ2
i dx =

k∑
i=1

‖ϕi‖2 = −2
k∑
i=1

∫
Ω

via(∇ga · ∇ϕi) dx

= −2
k∑
i=1

∫
Ω

via

( n∑
j=1

aj
∂ϕi
∂xj

)
dx.
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Normalize the measure on Sn−1 so that
∫
Sn−1 dSa = 1. Then

1

2

k∑
i=1

‖ϕi‖2 = −
k∑
i=1

∫
Sn−1

∫
Ω

via

( n∑
j=1

aj
∂ϕi
∂xj

)
dxdSa

= −
∫
Sn−1

∫
Ω

( k∑
i=1

via

( n∑
j=1

aj
∂ϕi
∂xj

))
dxdSa

≤
(∫

Ω

∫
Sn−1

k∑
i=1

v2
ia dSadx

)1/2
(∫

Ω

∫
Sn−1

k∑
i=1

( n∑
j=1

aj
∂ϕi
∂xj

)2

dSadx

)1/2

.

Obviously,
∫
Sn−1 aja` = δj`/N . Hence∫

Ω

∫
Sn−1

k∑
i=1

( n∑
j=1

aj
∂ϕi
∂xj

)2

dSadx =
∑
i

∫
Ω

1

n

n∑
j=1

(∂ϕi
∂xj

)2

dx =
k∑
i=1

1

n

∫
Ω

|∇ϕi|2 dx

=
1

n

k∑
i=1

λi

∫
Ω

ϕ2
i dµ =

1

n

k∑
i=1

λi.

It follows that

1

4

( k∑
i=1

‖ϕi‖2
)2

≤ 1

n

( k∑
i=1

λi

)∫
Ω

∫
Sn−1

k∑
i=1

v2
ia dSadx.

Finally, from (5.3) we get

(λk+1 − λk)
k∑
i=1

∫
Sn−1

∫
Ω

v2
ia dxdSa ≤

k∑
i=1

‖ϕi‖2.

Hence

1

4

( k∑
i=1

‖ϕi‖2
)2

≤ 1

n

( k∑
i=1

λi

)∑k
i=1 ‖ϕi‖2

λk+1 − λk
,

which implies (1.3) and completes the proof. �

Remark 5.1. In the case µ is Lebesgue measure, the inequality in Theorem 1.2 reduces to

λk+1 − λk ≤
4
∑k

i=1 λi
nk

,

which coincides with the classical Payne, Pólya and Weinberger inequality (see [15, 18]).

6. Comments and open problems

In view of Theorems 1.1 and 1.2, it is of interest to estimate the bound of the norm ‖ϕi‖
of the eigenfunctions ϕi that satisfy ‖ϕi‖µ = 1.

An upper estimate for the sum of eigenvalues was obtained by Kröger [16]. Let dist(x, ∂Ω)

denote the distance from a point x ∈ Ω to the boundary of Ω. Let Ωr = {x ∈ Ω :

dist(x, ∂Ω) < 1/r} and B1 be a unit ball in Rn. Kröger proved that if there exists a
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constant C
(0)
Ω such that vol(Ωr) ≤ (C

(0)
Ω /r)vol(Ω)(n−2)n for every r > vol(Ω)−1/n, then for

every k ≥ (C
(0)
Ω )n,

k∑
j=1

λj ≤ (2π)2 n

n+ 2

(
vol(Ω)vol(B1)

)−2/n(
k(n+2)/n + C(1)

n C
(1)
Ω k(n+1)/n

)
, (6.1)

where C
(1)
n is a constant depending only on the dimension n. It is of interest to generalize

this result to Laplacians with respect to measures.

The spectral asymptotics of Laplacians defined on domains by fractal measures have been

investigated and obtained by a number of authors (see [6,7,11–14] and the references therein).

It is of interest to find examples among these measure for which spectral gap exist.
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