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Abstract. We study orthogonal polynomials with respect to self-similar measures,
focusing on the class of infinite Bernoulli convolutions, which are defined by iterated
function systems with overlaps, especially those defined by the Pisot, Garsia, and
Salem numbers. By using an algorithm of Mantica, we obtain graphs of the coeffi-
cients of the 3-term recursion relation defining the orthogonal polynomials. We use
these graphs to predict whether the singular infinite Bernoulli convolutions belong
to the Nevai class. Based on our numerical results, we conjecture that all infinite
Bernoulli Convolutions with contraction ratios greater than or equal to 1/2 belong
to Nevai’s class, regardless of the probability weights assigned to the self-similar
measures.

1. Introduction

Orthogonal polynomials with respect to fractal measures have been studied by

authors including Mantica [9,10], Heilman et al [7], Krüger and Simon [8], and Bandt

and Peña [1]. In [7], the self-similar measures studied satisfy the open set condition.

As the classical theory [6, 22] to compute the orthogonal polynomials can be applied

to a large class of general measures and algorithms formulated by Mantica to compute

the coefficients of the 3-term recurrence relation (see (2.2)) can be applied to general

self-similar measures, we use them to study self-similar measures defined by iterated

function systems with overlaps. This paper can be consider a continuation of the

explorations in [7].

Let µ be a positive measure on [0, 1]. We say that a measure µ is in Nevai’s class

(see [12, 14,18]) if the recurrence coefficients An and rn in (2.2) satisfy

lim
n→∞

An =
1

2
and lim

n→∞
rn =

1

4
.
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Rahmanov [19, 20] proved that if µ′ > 0 for Lebesgue a.e. on [0, 1], then µ belongs

to Nevai’s class. On the other hand, Lubinsky [13] constructed singular continuous

measures that belong to Nevai’s class. These results seem to suggest the relationship

between absolute continuity being in Nevai’s class, and motivated our study of infinite

Bernoulli convolutions with overlaps. They are self-similar measures defined by an

iterated function system (IFS) with two similitudes {S1, S2} together with probability

weights w1 = w2 = 1/2 as follows:

µ =
1

2
µ ◦ S−11 +

1

2
µ ◦ S−12 , where

S1(x) = ρx, S2(x) = ρx+ (1− ρ), 1/2 ≤ ρ < 1.
(1.1)

We are particularly interested in several families of algebraic integers. If ρ−1 is a

Pisot number (i.e., an algebraic integer > 1 whose algebraic conjugates lie inside the

unit circle), then µ is singular [3]. This is the only class of numbers for which µ is

known to be singular. Wintner [23] proved that if ρ = 1/ n
√

2 for some n ∈ N, then

µ is absolutely continuous. Garsia [5] constructed a class of algebraic integers for

which µ is absolutely continuous. These are the only numbers for which the self-

similar measures are explicitly known to be absolute continuous, and by Rahmanov’s

theorem, they are in Nevai’s class. Solomyak [21] proved that for Lebesgue a.e.

ρ ∈ (1/2, 1), µ is absolutely continuous. Salem numbers are algebraic integers greater

than 1 whose algebraic conjugates have moduli less than or equal to 1, with at least

one of them being 1. They are of interest in dynamical systems and number theory

(see [2, 15] and references therein) as well as fractals (see, e.g., [4]). Although the

definition of a Salem number is close to that of a Pisot numbers, Salem numbers,

as well as the associated self-similar measures, are much less understood. It is not

known whether the self-similar measure associated with a Salem number is absolutely

continuous or singular.

We also study weighted infinite Bernoulli convolutions, namely,

µ = w1µ ◦ S−11 + w2µ ◦ S−12 , where w1 > 0, w2 > 0, w1 + w2 = 1,

S1(x) = ρx, S2(x) = ρx+ (1− ρ), and 1/2 ≤ ρ < 1.
(1.2)

As the weights become more biased, the corresponding measure µ tend to be more

singular (in the sense that the Hausdorff dimension of µ becomes smaller). However,

our numerical experiments suggest, rather unexpectedly, that µ continues to belong

to Nevai’s class. Unfortunately, we are not able to prove this.

This paper is organized as follows. In Section 2, we establish some properties of the

recurrence coefficients for general measures. In Section 3, we graph the orthogonal

polynomials defined by the infinite Bernoulli convolution associated with the gold-

en ratio and the 3-fold convolution of the Cantor measure, both being self-similar

measures with overlaps that have been studied extensively. In Section 4 we derive
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explicit formulas for computing the recurrence coefficients by using both Mantica’s

and Chebyshev’s algorithms. Numerical solutions are displayed in Section 5. Finally,

we state some open problems and conjectures in Section 6.

2. 3-term recursive relation and symmetric measures

Let µ be a positive measure on R. Let P be the vector space of all real polynomials

and Pn be the subspace of polynomials of degree ≤ n. Define an inner product and

norm on P respectively as

〈u, v〉µ :=

∫
R
uv dµ, ‖u‖µ :=

√
〈u, u〉µ.

The inner product is said to be positive definite on P (resp. Pn) if ‖u‖µ > 0 for all

u ∈ P (resp. Pn) that is not identically 0. The orthogonal polynomials {Pn(x)}n≥0
with respect to µ are polynomials of the form

Pn(x) = cnx
n + · · ·+ c1x+ c0 with cn > 0 (2.1)

that satisfy 〈Pi, Pj〉µ = δij for all i, j = 0, 1, 2, . . . , where δij is the Kronecker delta.

{Pi(x)}ni=0 form a basis of Pn. The existence and uniqueness of orthogonal polynomials

{Pn(x)}n≥0 with respect to µ are well-known (see [6, Theorem 1.6]). The orthogonal

polynomials {Pn(x)}n≥0 satisfy a 3-term recurrence relation (see [6, Theorem 1.29])

xPn(x) = rn+1Pn+1(x) + AnPn(x) + rnPn−1(x) for n = 0, 1, 2 . . . , (2.2)

where P−1(x) = 0, P0(x) = 1, and r0 = 1. Orthogonality implies that for all n ≥ 0,

rn+1 = 〈xPn+1, Pn〉µ and An = 〈xPn, Pn〉µ .

Monic real polynomials P̃n(x) = xn + · · · , n = 0, 1, 2, . . . , are called the monic

orthogonal polynomials with respect to the measure µ if 〈Pi, Pj〉µ = 0 for all i 6= j ∈
{0, 1, 2, . . . } and ‖P̃i‖µ > 0 for all i = 0, 1, 2, . . . . Note that Pn(x) = P̃n(x)/‖P̃n‖µ.

Combining [6, Theorem 1.29] and (2.2), we see that monic orthogonal polynomials

{P̃n(x)}n≥0 satisfy the following 3-term recurrence relation

xP̃n(x) = P̃n+1(x) + AnP̃n(x) + r2nP̃n−1(x) for n = 0, 1, 2 . . . , (2.3)

where P̃−1(x) = 0 and P̃0(x) = 1.

Let x0 ∈ R and T (x) := 2x0 − x for x ∈ R. Note that T = T−1. We say that µ is

symmetric with respect to x = x0 if µ(E) = µ ◦ T−1(E) for all µ-measurable E ⊆ R.

Proposition 2.1. Let µ be a positive measure on R and let {Pn(x)} be orthogonal

polynomials with respect to µ as in 2.1. Assume that µ is symmetric with respect to

x = x0 for some x0 ∈ R and let T (x) := 2x0 − x. Then for each n ≥ 0,

(a) Pn(x) = (−1)nPn(T (x)) for all x ∈ R;
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(b) An = x0.

Proof. (a) For each n ≥ 0, define P̂n(x) := (−1)nPn(T (x)) for x ∈ R. It follows from

the definitions of T (x) and Pn(x) that P̂n(x) = cnx
n + · · · . Moreover, for 0 ≤ k 6= `,

we have

〈P̂k, P̂`〉µ = (−1)k+`
∫
R
Pk(T (x))P`(T (x)) dµ(x)

= (−1)k+`
∫
T (R)

Pk(y)P`(y) dµ ◦ T−1(y)

= (−1)k+`
∫
R
Pk(y)P`(y) dµ(y) = (−1)k+`〈Pk, P`〉µ = δk`.

(2.4)

Thus {P̂n(x)}n≥0 is also a sequence of orthogonal polynomials with respect to µ. By

the uniqueness of orthogonal polynomials, Pn(x) = P̂n(x), i.e., (a) holds.

(b) Combining T = T−1, µ = µ ◦ T−1, and (a), we have

An =

∫
R
xP 2

n(x) dµ(x) =

∫
T (R)

(T−1(y))P 2
n(T−1(y)) dµ ◦ T−1(y)

=

∫
R
(2x0 − y)P 2

n(T (y)) dµ(y) =

∫
R
(2x0 − y)P 2

n(y) dµ(y)

= 2x0 − An for n ≥ 0.

(2.5)

Thus An = x0 for all n ≥ 0. �

3. Graphing orthogonal polynomials with respect to self-similar

measures

Let µ be the self-similar measure defined by an IFS {Si}Ni=1 on R of the form

Si(x) = ρix+ bi, i = 1, . . . , N, (3.1)

together with a probability weight {wi}Ni=1. That is, µ is the unique probability

measure satisfying the following self-similar identity

µ =
N∑
i=1

wiµ ◦ S−1i . (3.2)

Thus for any continuous function f on R,∫
K

f dµ =
N∑
i=1

wi

∫
K

f ◦ Si dµ, (3.3)

where K := supp(µ) is called the self-similar set defined by {Si}Ni=1. It is known that

if N ≥ 2, then µ is continuous. For n ≥ 0, let mn be the n-th moment with respect
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to µ, defined as

mn = mn(µ) :=

∫
K

xn dµ. (3.4)

Let {P̃n(x)}n≥0 be the monic orthogonal polynomials with respect to µ. In this

section, we will draw the figures of P̃n(x). Since the monic orthogonal polynomials

P̃k(x) can be expressed in terms of the moments in the following well-known formula

(see, e.g., [6]):

P̃n(x) =
1

mn

∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1
...

... · · · ...
mn−1 mn · · · m2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
, (3.5)

we first need to compute the moments {mi}2n−1i=0 with respect to µ.

The following proposition gives a straight-forward derivation of a formula for the

moments corresponding to any one-dimensional self-similar measure µ.

Proposition 3.1. Let µ be defined by (3.1) and (3.2), and let mn be defined as in

(3.4). Then

mn =
1

1−
∑N

i=1wiρ
n
i

N∑
i=1

wi

n−1∑
k=0

(
n

k

)
ρki b

n−k
i mk.

Proof. Letting f(x) = xn in (3.3) yields

mn =
N∑
i=1

wi

∫
K

(ρix+ bi)
n dµ =

N∑
i=1

wi

∫
K

(
ρni x

n +
n−1∑
k=0

(
n

k

)
ρki b

n−k
i xk

)
dµ

=
( N∑
i=1

wiρ
n
i

)
mn +

N∑
i=1

wi

n−1∑
k=0

(
n

k

)
ρki b

n−k
i mk,

which gives the desired formula. �

3.1. Infinite Bernoulli convolution associated with the golden ratio. The

infinite Bernoulli convolution associated with golden ratio µ is the self-similar measure

on [0, 1] defined by the IFS

S1(x) = ρx, S2(x) = ρx+ (1− ρ), ρ = (
√

5− 1)/2 ≈ 0.618033988 . . . , (3.6)

together with probability weights w1 = w2 = 1/2. That is,

µ =
1

2
µ ◦ S−11 +

1

2
µ ◦ S−12 . (3.7)
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It is known that µ is singular (see [3]) with supp(µ) = [0, 1]. By using Proposition

3.1, we have

mn =
1

2

ρ2n

(1− ρn)

n−1∑
i=0

(
n

i

)
ρ−imi. (3.8)

Now the point is how to compute the moments. Using formula (3.8), would takes

too much time to compute mn when n > 18. The following are some equalities

which may be used to reduce computing time. We first introduce the Lucas and

Fibonacci sequences, which are closely related to the golden ratio ρ. The Lucas

sequence {Ln}n≥0 is given by the recurrence relation:

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2, n ∈ Z, (3.9)

while the Fibonacci sequence {Fn}n≥0 is given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ∈ Z. (3.10)

Let φ := ρ−1. We note that for n ≥ 0,

Ln = φn + (1− φ)n and Fn =
φn − (1− φ)n√

5
.

Thus

φn = (Ln +
√

5Fn)/2 for n ≥ 0. (3.11)

It follows that

ρ2n

1− ρn
=

1

ρ−2n − ρ−n
=

1

φ2n − φn
=

2

(L2n − Ln) +
√

5(F2n − Fn)
. (3.12)

Combining (3.8), (3.11) and (3.12), we have

mn =
1

2
· 1

(L2n − Ln) +
√

5(F2n − Fn)

n−1∑
i=0

(
n

i

)
(Li +

√
5Fi)mi.

Monic orthogonal polynomials P̃1(x), . . . , P̃5(x) corresponding to the golden ratio

are plotted in Figure 1(a).

3.2. Three-fold convolution of the Cantor measure. The 3-fold convolution of

the Cantor measure is the self-similar measure defined by the IFS

Si(x) =
1

3
x+

2

3
(i− 1), i = 1, 2, 3, 4,

together with the probability weight {1/8, 3/8, 3/8, 1/8}, i.e.,

µ =
1

8
µ ◦ S−11 +

3

8
µ ◦ S−12 +

3

8
µ ◦ S−13 +

1

8
µ ◦ S−14 .



ORTHOGONAL POLYNOMIALS DEFINED BY SELF-SIMILAR MEASURES 7

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

(b)

Figure 1. Monic orthogonal polynomials P̃1(x), . . . , P̃5(x) correspond-
ing to (a) the infinite Bernoulli convolution associated with the golden
ratio, and (b) the three-fold convolution of the Cantor measure.
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��
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AU

S4

1 20 3

Figure 2. Figure showing the IFS defining the 3-fold convolution.

(See Figure 3.2.) We note that µ = µ∗3c := µc ∗ µc ∗ µc, where µc is the standard

Cantor measure.

Proposition 3.1 implies that for the 3-fold convolution of the Cantor measure, the

moments mn satisfy

mn =
1

8(3n − 1)

n−1∑
k=0

(
n

k

)
(3 · 2n−k + 3 · 4n−k + 6n−k)mk.

Monic orthogonal polynomials P̃1(x), . . . , P̃5(x) corresponding to the 3-fold convolu-

tion are plotted in Figure 1(b).

4. Algorithms for computing An and rn

In this section, we introduce two methods, namely Mantica’s algorithm [9] and

modified Chebyshev’s algorithm [6], to compute the An’s and rn’s in (2.2).
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4.1. Mantica’s algorithm. In this subsection, we use a method of Mantica [9] to

compute the An’s and rn’s in (2.2). We first describe the method for an IFS {Si}Ni=1

on R, where

Si(x) = ρix+ bi, i = 1, . . . , N,

and let µ be the self-similar measure defined by the IFS together with a set of prob-

ability weights {wi}Ni=1.

Let Pn(x) be orthogonal polynomials with respect to µ. For any n ≥ 0 and i ∈
{1, . . . , N}, and 0 ≤ ` ≤ n, let Γni,` be defined by the relation:

Pn(Si(x)) =
n∑
`=0

Γni,`P`(x). (4.1)

According to [9, Lemma 1], the coefficients Γni,` can be determined recursively from

{ρi}Ni=1, {bi}Ni=1, {Ak}n−1k=0 , and {rk}nk=0. We state the precise result below.

Proposition 4.1. Let (Γni,`) be the the coefficients in (4.1). For each i ∈ {1, . . . , N},
we have

(a) Γ1
i,0 =

(
ρiA0Γ

0
i,0 + biΓ

0
i,0 − A0Γ

0
i,0

)
/r1 and Γ1

i,1 = ρiΓ
0
i,0.

(b)

Γ2
i,0 =

(
ρir1Γ

1
i,1 + ρiA0Γ

1
i,0 + biΓ

1
i,0 − A1Γ

1
i,0 − r1Γ0

i,0

)
/r2

Γ2
i,1 =

(
ρir1Γ

1
i,0 + ρiA1Γ

1
i,1 + biΓ

1
i,1 − A1Γ

1
i,1

)
/r2

Γ2
i,2 = ρiΓ

1
i,1.

(4.2)

(c) for n ≥ 3 and 1 ≤ ` ≤ n− 2,

Γni,0 =
(
ρiA0Γ

n−1
i,0 + ρir1Γ

n−1
i,1 + biΓ

n−1
i,0 − An−1Γn−1i,0 − rn−1Γn−2i,0

)
/rn;

Γni,` =
(
ρir`Γ

n−1
i,`−1 + ρiA`Γ

n−1
i,` + ρir`+1Γ

n−1
i,`+1 + biΓ

n−1
i,` − An−1Γ

n−1
i,` − rn−1Γ

n−2
i,`

)
/rn;

Γni,n−1 =
(
ρirn−1Γ

n−1
i,n−2 + ρiAn−1Γ

n−1
i,n−1 + biΓ

n−1
i,n−1 − An−1Γn−1i,n−1

)
/rn;

Γni,n = ρiΓ
n−1
i,n−1.

Proof. We first note that P−1(x) = 0. Fix any i ∈ {1, . . . , N}.

(a) Using 3-term recurrence relation (2.2), we have

xP0(x) = r1P1(x) + A0P0(x) + r0P−1(x) = r1P1(x) + A0P0(x). (4.3)

Substituting x by Si(x) = ρix+ bi, we have

(ρix+ bi)P0(Si(x)) = r1P1(Si(x)) + A0P0(Si(x)).
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It follows from (4.1) that (ρix+bi)Γ
0
i,0P0(x) = r1

(
Γ1
i,0P0(x)+Γ1

i,1P1(x)
)

+A0Γ
0
i,0P0(x),

i.e.,

ρiΓ
0
i,0xP0(x) =

(
r1Γ

1
i,0 + A0Γ

0
i,0 − biΓ0

i,0

)
P0(x) + r1Γ

1
i,1P1(x). (4.4)

Combining (4.4) with (4.3), we have

ρiΓ
0
i,0

(
r1P1(x) + A0P0(x)

)
=
(
r1Γ

1
i,0 + A0Γ

0
i,0 − biΓ0

i,0

)
P0(x) + r1Γ

1
i,1P1(x). (4.5)

Thus ρir1Γ
0
i,0 = r1Γ

1
i,1 and ρiA0Γ

0
i,0 = r1Γ

1
i,0 + A0Γ

0
i,0 − biΓ0

i,0. Consequently,

Γ1
i,1 = ρiΓ

0
i,0, Γ1

i,0 =
(
ρiA0Γ

0
i,0 + biΓ

0
i,0 − A0Γ

0
i,0

)
/r1.

(b) Similarly, using 3-term recurrence relation (2.2), we have

xP1(x) = r2P2(x) + A1P1(x) + r1P0(x). (4.6)

Substituting x by Si(x) = ρix+ bi, we have

(ρix+ bi)P1(Si(x)) = r2P2(Si(x)) + A1P1(Si(x)) + r1P0(Si(x)). (4.7)

Using (4.1), (4.3), and (4.6), we have the left side of (4.7)

(ρix+ bi)P1(Si(x)) = (ρix+ bi)
(
Γ1
i,0P0(x) + Γ1

i,1P1(x)
)

= ρiΓ
1
i,0xP0(x) + ρiΓ

1
i,1xP1(x) + biΓ

1
i,0P0(x) + biΓ

1
i,1P1(x)

= ρiΓ
1
i,0

(
r1P1(x) + A0P0(x)

)
+ ρiΓ

1
i,1

(
r2P2(x) + A1P1(x) + r1P0(x)

)
+ biΓ

1
i,0P0(x) + biΓ

1
i,1P1(x)

= ρir2Γ
1
i,1P2(x) +

(
ρir1Γ

1
i,0 + ρiA1Γ

1
i,1 + biΓ

1
i,1

)
P1(x)

+
(
ρiA0Γ

1
i,0 + ρir1Γ

1
i,1 + biΓ

1
i,0

)
P0(x).

(4.8)

On the other hand, (4.1) implies that the right side of (4.7)

r2P2(Si(x)) + A1P1(Si(x)) + r1P0(Si(x))

= r2
(
Γ2
i,0P0(x) + Γ2

i,1P1(x) + Γ2
i,2P2(x)

)
+ A1(Γ

1
i,0P0(x) + Γ1

i,1P1(x)
)

+ r1Γ
0
i,0P0(x)

= r2Γ
2
i,2P2(x) +

(
r2Γ

2
i,0 + A1Γ

1
i,0 + r1Γ

0
i,0

)
P0(x) +

(
r2Γ

2
i,1 + A1Γ

1
i,1

)
P1(x).

(4.9)

Combining (4.7), (4.7), and (4.7), we obtain

Γ2
i,0 =

(
ρir1Γ

1
i,1 + ρiA0Γ

1
i,0 + biΓ

1
i,0 − A1Γ

1
i,0 − r1Γ0

i,0

)
/r2

Γ2
i,1 =

(
ρir1Γ

1
i,0 + ρiA1Γ

1
i,1 + biΓ

1
i,1 − A1Γ

1
i,1

)
/r2

Γ2
i,2 = ρiΓ

1
i,1.

(4.10)

(c) Fix any n ≥ 3. Replacing x by Si(x) = ρix+ bi in (2.2) gives

(ρix+ bi − An−1)Pn−1(Si(x)) = rnPn(Si(x)) + rn−1Pn−2(Si(x)). (4.11)
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Using (4.1), we can write this as

(ρix+ bi − An−1)
n−1∑
`=0

Γn−1i,` P`(x) = rn

n∑
`=0

Γni,`P`(x) + rn−1

n−2∑
`=0

Γn−2i,` P`(x)

=
n−2∑
`=0

(
rnΓni,` + rn−1Γ

n−2
i,` )P`(x)

+ rnΓni,n−1Pn−1(x) + rnΓni,nPn(x).

(4.12)

Moreover, (2.2) implies

(ρix+ bi − An−1)
n−1∑
`=0

Γn−1i,` P`(x)

= ρi

n−1∑
`=0

Γn−1i,` xP`(x) + (bi − An−1)
n−1∑
`=0

Γn−1i,` P`(x)

= ρi

n−1∑
`=0

Γn−1i,`

(
r`+1P`+1(x) + A`P`(x) + r`P`−1(x)

)
+ (bi − An−1)

n−1∑
`=0

Γn−1i,` P`(x)

=
(
ρiA0Γ

n−1
i,0 + ρir1Γ

n−1
i,1 + biΓ

n−1
i,0 − An−1Γn−1i,0

)
P0(x)

+
n−2∑
`=1

(
ρir`Γ

n−1
i,`−1 + ρiA`Γ

n−1
i,` + ρir`+1Γ

n−1
i,`+1 + biΓ

n−1
i,` − An−1Γ

n−1
i,`

)
P`(x)

+
(
ρirn−1Γ

n−1
i,n−2 + ρiAn−1Γ

n−1
i,n−1 + biΓ

n−1
i,n−1 − An−1Γn−1i,n−1

)
Pn−1(x) + ρirnΓn−1i,n−1Pn(x).

(4.13)

Equating (4.12) and (4.12) gives, for 1 ≤ ` ≤ n− 2,

Γni,0 =
(
ρiA0Γ

n−1
i,0 + ρir1Γ

n−1
i,1 + biΓ

n−1
i,0 − An−1Γn−1i,0 − rn−1Γn−2i,0

)
/rn;

Γni,` =
(
ρir`Γ

n−1
i,`−1 + ρiA`Γ

n−1
i,` + ρir`+1Γ

n−1
i,`+1 + biΓ

n−1
i,` − An−1Γ

n−1
i,` − rn−1Γ

n−2
i,`

)
/rn;

Γni,n−1 =
(
ρirn−1Γ

n−1
i,n−2 + ρiAn−1Γ

n−1
i,n−1 + biΓ

n−1
i,n−1 − An−1Γn−1i,n−1

)
/rn;

Γni,n = ρiΓ
n−1
i,n−1.

The proof is complete. �

Let P̃n(x) = rnPn(x). Hence, we can write a second decomposition

P̃n(Si(x)) = Γ̃ni,`P̃n(x) +
n−1∑
`=0

Γ̃ni,`P`(x). (4.14)

It is easy to see that Γ̃ni,` = rnΓni,` for 0 ≤ ` ≤ n − 1 and Γ̃ni,n = Γni,n. Thus the

coefficients Γni,n can be computed recursively on the basis of the knowledge of only

(rk)
n−1
k=1 and (Ak)

n−1
k=1 .

The following proposition gives formulas for An and rn. The proof is given in [9,

Lemmas 2 and 3].
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Proposition 4.2. For n ≥ 0,

(a) r2n =
(∑N

i=1wi(Bi + Ci)
)
/
(
1−

∑N
i=1wiρiΓ̃

n
i,nΓn−1i,n−1

)
, where

Bi =
n−1∑
`=0

(bi + ρiA`)Γ̃
n
i,`Γ

n−1
i,` , and Ci = ρi

n−2∑
`=0

r`+1

(
Γ̃ni,`Γ

n−1
i,`+1 + Γ̃ni,`+1Γ

n−1
i,`

)
.

(4.15)

(b) An =
∑N

i=1wi

(∑n−1
`=0 (Γni,`)

2(bi+ρiA`)+2ρi
∑n−1

`=0 r`+1Γ
n
i,`Γ

n
i,`+1+bi

(
Γni,n
)2)

/(1−∑N
i=1wiρi

(
Γni,n
)2

).

4.2. Modified Chebyshev’s algorithm. Let µ be a positive measure on R with

compact or infinite support, for which all moments mn, n = 0, 1, . . . , exist and are

finite. Let {P̃n(x)}n≥0 be the monic orthogonal polynomials with respect to µ. We

can also use the Modified Chebyshev algorithm [6] to compute the An’s and rn’s in

(2.2), as follows. Let {πn(x)}n≥0 denote a system of monic polynomials satisfying a

recurrence relation

xπn(x) = πn+1(x) + αnπn(x) + βnπn−1(x), n = 0, 1, 2, . . . ,

π−1(x) = 0, π0(x) = 1,
(4.16)

where αn ∈ R and βn ≥ 0 are assumed known. In the case αn = βn = 0, it reduces

to Chebyshev’s original algorithm. We then call

vn = vn(µ) :=

∫
R
πn(x) dµ(x), n = 0, 1, 2, . . . , (4.17)

the modified moments of the measure µ relative to the polynomial system {πn(x)}.
Combining (2.3) and (4.16), we see that if αn = An and βn = r2n, then πn(x) = P̃n(x)

and the modified moments reduce to the ordinary moments (3.4).

To describe the algorithm, we introduce mixed moments, which are defined for

k, ` ≥ −1, as follows

σk,` :=

∫
R
P̃k(x)π`(x) dµ with σ−1,` := 0. (4.18)

One obtains the first n coefficients αk, βk, k = 0, 1, . . . , n − 1, from the first 2n

modified moments vi, i = 0, 1, . . . , 2n − 1, by the following modified Chebyshev’s

algorithm:

Initialization:

A0 = α0 + v1/v0,

r0 =
√
v0,

σ−1,` = 0, ` = 1, 2, . . . , 2n− 2.

σ0,` = v`, ` = 0, 1, 2, . . . , 2n− 1.

(4.19)
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Continuation: For k = 1, 2, . . . , n− 1,

σk,` = σk−1,`+1 − (Ak−1 − α`)σk−1,` − r2k−1σk−2,` + β`σk−1,`−1,

` = k, k + 1, . . . , 2n− k − 1,

Ak = αk +
σk,k+1

σk,k
− σk−1,k
σk−1,k−1

,

rk =

√
σk,k

σk−1,k−1
.

(4.20)

The algorithm requires {v`}2n−1`=0 and {αk, βk}2n−2k=0 as input, and produces {Ak, rk}n−1k=0 .

The complexity in terms of arithmetic operations is O(n2). We apply the Chebyshev

algorithm to infinite Bernoulli convolutions with overlaps. The results are the same

as those obtained by Mantica’s algorithm.

5. Numerical results for infinite Bernoulli convolutions

In this section, we display numerical results for the recurrence coefficients An and

rn in (2.2) for the symmetric and weighted infinite Bernoulli convolutions in (1.1)

and (1.2). The value of ρ in (1.1) and (1.2) are taken from the following Table 1

through Table 4. For symmetric Bernoulli convolutions, we have An = 1/2 for all

n = 0, 1, 2, . . . (see Proposition 2.1), and so in this case, we only display numerical

results for rn. For the weighted infinite Bernoulli convolutions in (1.2) with weights

w1 = 1/4 and w2 = 3/4, we show numerical results for both An and rn.

We also remark that for the symmetric Bernoulli convolutions, An = 1/2 is known,

and so we are able to compute rn quite efficiently for n up to 10000. For the weighted

Bernoulli convolutions, computations of An and rn take much more machine time and

memory and so we only show results up to n = 1000.

Label ρ−1 Appro. value ρ Label ρ−1 Appro. value ρ

(a) 2
√

2 0.7071067811 (d) 8
√

2 0.9170040432

(b) 4
√

2 0.8408964152 (e) 20
√

2 0.9659363289

(c) 6
√

2 0.8908987181 (h) 100
√

2 0.9930924954

Table 1. The sequence n
√

2.



ORTHOGONAL POLYNOMIALS DEFINED BY SELF-SIMILAR MEASURES 13

Label Minimal polynomial Appro. value of ρ−1 ρ

(a) x3 − 2x− 2 1.7692923542 0.5651977173

(b) x3 − x2 − 2 1.6956207695 0.5897545123

(c) x3 − 2x2 + 2x− 2 1.5436890126 0.6477988712

(d) x3 − x2 + x− 2 1.3532099641 0.7389836215

(e) x5 − x2 − 2 1.2980299423 0.7703982530

(f) x3 + x2 − x− 2 1.2055694304 0.8294835409

Table 2. Selected Garsia numbers.

Label Minimal polynomial Appro. value of ρ−1 ρ

(a) x6 − x5 − x4 − x3 − x2 − x− 1 1.9835828434 0.5041382583

(b) x3 − x2 − x− 1 1.8392867552 0.5436890126

(c) x3 − 2x2 + x− 1 1.7548776662 0.5698402909

(d) x2 − x− 1 1.6180339887 0.6180339887

(e) x3 − x2 − 1 1.4655712318 0.6823278038

(f) x3 − x− 1 1.3247179572 0.7548776662

Table 3. (f) is the smallest Pisot number. (d) is the golden ratio. We
also include the first few Pisot number from the family xn − xn−1 −
· · ·−x−1 = 0. These family of Pisot numbers are decreasing and tend
to 1.

Label Minimal polynomial Appro. value of ρ−1 ρ

(a) x9 − x8 − x7 − x6 − x5 − x4 − x3 − x2 − x+ 1 1.9940041991 0.5015034574

(b) x7 − x6 − x5 − x4 − x3 − x2 − x+ 1 1.9748187082 0.5063755957

(c) x6 − x5 − x4 − x3 − x2 − x+ 1 1.9468562682 0.5136486017

(d) x4 − x3 − x2 − x+ 1 1.7220838057 0.5806918319

(e) x10 − x8 − x7 + x5 − x3 − x2 + 1 1.2934859531 0.7731046460

(f) x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1 1.1762808182 0.8501371309

Table 4. Selected Salem numbers.
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Figure 3. Graphs of rn for the infinite Bernoulli convolutions in (1.1),
where ρ comes from the sequence { n

√
2} in Table 1.
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Figure 4. Graphs of rn for the weighted infinite Bernoulli convolutions
in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ comes from the
sequence in { n

√
2} in Table 1.



ORTHOGONAL POLYNOMIALS DEFINED BY SELF-SIMILAR MEASURES 15

0 200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

(a)

0 200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

(b)

0 200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

(c)

0 200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

(d)

0 200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

(e)

0 200 400 600 800 1000
0.40

0.45

0.50

0.55

0.60

(f)

Figure 5. Graphs of An for the weighted infinite Bernoulli convolu-
tions in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ comes from
the sequence { n

√
2} in Table 1.
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Figure 6. Graphs of rn for the infinite Bernoulli convolutions in (1.1),
where ρ are selected Garsia numbers in Table 2.



16 S.-M. NGAI, W. TANG, A. TRAN, AND S. YUAN

0 200 400 600 800 1000
0.20

0.22

0.24

0.26

0.28

0.30

(a)

0 200 400 600 800 1000
0.20

0.22

0.24

0.26

0.28

0.30

(b)

0 200 400 600 800 1000
0.20

0.22

0.24

0.26

0.28

0.30

(c)

0 200 400 600 800 1000
0.20

0.22

0.24

0.26

0.28

0.30

(d)

0 200 400 600 800 1000
0.20

0.22

0.24

0.26

0.28

0.30

(e)

0 200 400 600 800 1000
0.20

0.22

0.24

0.26

0.28

0.30

(f)

Figure 7. Graphs of rn for the weighted infinite Bernoulli convolutions
in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ are the Garsia
numbers in Table 2.
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Figure 8. Graphs of An for the weighted infinite Bernoulli convolu-
tions in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ are the
Garsia numbers in Table 2.
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Figure 9. Graphs of rn for the infinite Bernoulli convolutions in (1.1),
where ρ are the selected Pisot numbers in Table 3
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Figure 10. Graphs of rn for the weighted infinite Bernoulli convolu-
tions in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ are the
selected Pisot numbers in Table 3

.
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Figure 11. Graphs of An for the weighted infinite Bernoulli convolu-
tions in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ are the
selected Pisot numbers in Table 3.
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Figure 12. Graphs of rn for the infinite Bernoulli convolutions
in (1.1), where ρ are the selected Salem numbers in Table4.
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Figure 13. Graphs of rn for the weighted infinite Bernoulli convolu-
tions in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ are the
selected Salem numbers in Table 4.
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Figure 14. Graphs of An for the weighted infinite Bernoulli convolu-
tions in (1.2) with weights w1 = 1/4 and w2 = 3/4, where ρ are the
selected Salem numbers in Table 4.

6. Comments and open questions

In view of numerical experiments in Section 5, we formulate the following conjec-

ture.
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Conjecture 6.1. The family of infinite Bernoulli convolutions in (1.2) belong to

Nevai’s class, regardless of the probability weights w1 and w2.

In fact, it is of interest to study a weaker version of this conjecture: the average of

An tends to 1/2 and the average of rn tends to 1/4.

It is also of interest to study the behaviors of the recurrence coefficients An and

rn for other one-dimensional self-similar measures with overlaps, such convolutions of

Cantor-type measures (see, e.g., [11, 16]) and measures that are so-called essentially

of finite type (see, e.g., [17]).
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[3] P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974–

976.
[4] D.-J. Feng, Gibbs properties of self-conformal measures and the multifractal formalism, Er-

godic Theory Dynam. Systems 27 (2007), 787–812.
[5] A. M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102

(1962), 409–432.
[6] W. Gautschi, Orthogonal polynomials. Computation and approximation, Oxford University

Press Inc., New York, 2004.
[7] S. M. Heilman, P. Owrutsky, and R. S. Strichartz, Orthogonal polynomials with respect to

self-similar measures, Exp. Math. 20 (2011), 238–259.
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