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Abstract. In this paper, employing a new inequality, we show that under

certain curvature pinching condition, the strictly convex closed smooth self-

similar solution of σαk -flow must be a round sphere. We also obtain a similar
result for the solutions of F = −〈X, en+1〉 (∗) with a non-homogeneous func-

tion F . At last, we prove that if F can be compared with
(n−k+1)σk−1

kσk
, then

a closed strictly k-convex solution of (∗) must be a round sphere.

1. Introduction

Let X : M → Rn+1 be a smooth embedding of a closed, orientable n-dimensional
manifold with n ≥ 2. Choose an orthonormal frame in Rn+1 along M such that
{e1, e2, · · · , en} are tangent to M and en+1 is the inward-pointing unit normal
vector of M . Under such a frame, let A = {hij} denote the components of the
second fundamental form of X, then the principal curvatures λ1, · · · , λn of M are
eigenvalues of the second fundamental form A. Define

σk(A) =
1

k!
δ

(
i1i2 · · · in
j1j2 · · · jn

)
hi1j1hi2j2 · · ·hinjn ,

where δ

(
i1i2 · · · in
j1j2 · · · jn

)
is the generalized Kronecker symbol. We use the summation

convention throughout this paper unless otherwise stated. For convenience, we set
σ0 = 1 and σk = 0 for k > n.

In this paper, we consider a hypersurface M which satisfies the following equation

(1.1) F (A(x)) = −〈X(x), en+1(x)〉, for all x ∈M,

where F (A) = f(λ) is a smooth function of principal curvatures and 〈 , 〉 denotes
the standard Euclidean metric in Rn+1.

This type of equation is important for curvature flow of the following type

(1.2) X̃t = F (A)en+1.

Actually, if X is a solution of (1.1) and F is homogeneous of degree β, then

X̃(x, t) = ((β + 1)(T − t))
1

1+βX(x)

gives rise to the solution of (1.2) up to a tangential diffeomorphism [17]. So in the
same spirit, we call the solutions of (1.1) self-similar solutions of (1.2). Moreover,
for F = H, the solution of (1.1) is usually called self-shrinker which describes the
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asymptotic behavior of mean curvature flow (see [15, 11]). Huisken proved the
following theorem.

Theorem 1.1 ([15]). If Mn, n ≥ 2, is a closed hypersurface in Rn+1, with non-
negative mean curvature H and satisfies the equation

H = −〈X, en+1〉,

then Mn is a round sphere of radius
√
n.

Similar to the case of mean curvature, the solution of (1.1) with F = σαn also de-
scribes the asymptotic behavior of α-Gauss curvature flow (see [4, 5, 14, 16]). Very
recently, for F = σαn , Brendle, Choi and Daskalopoulos proved that the solution of
(1.1) is either a round sphere for α > 1

n+2 or an ellipsoid for α = 1
n+2 (see [7, 8]).

In [17], McCoy considered the case which F is a class of concave or convex
homogeneous functions of principal curvature with degree 1. Under certain pinching
condition, he also obtained a result for higher degree homogeneous functions.

For homogeneous functions with degree greater than 1, the convergence of α-
Gauss curvature flow is well-studied. For the flows (1.2) of convex hypersurfaces
by speeds F = Hα [18], F = σα2 [1, 2] and more general F with certain properties
[6], similar results are obtained under certain curvature pinching conditions.

In this paper we first consider the self-similar solutions of σαk -flow for strictly
convex hypersurfaces when k ≥ 2 and α > 1

k under a different type of curvature
pinching condition.

Let λ = (λ1, · · · , λn) denote the principal curvatures of M . M is said to be
strictly convex if λ ∈ Γ+ = {µ ∈ Rn|µ1 > 0, µ2 > 0, · · · , µn > 0} for any point in
M . Denote

σk(λ) = σk(λ(A)) =
∑

1≤i1≤i2···≤ik≤n

λi1λi2 · · ·λik .

Let σk(λ|i) denote the symmetric function σk(λ) with λi = 0 and σk(λ|ij), with
i 6= j, denote the symmetric function σk(λ) with λi = λj = 0. The following two
basic equalities are needed in our investigation of the σαk self-similar solutions.

σk−1(λ|i) =
∂σk(λ)

∂λi
, σk−2(λ|ij) =

∂2σk(λ)

∂λi∂λj
.

Condition 1.2. Assume

σ2
1(λ)σk−2(λ|ij)

(αk − 1)σ1(λ)σk−1(λ|p)− (α− 1)k2σk(λ)
∈ [1, 1 + δ]

holds for all 1 ≤ p ≤ n, 1 ≤ i < j ≤ n, where

(1.3) δ =


3

n− 1
, if k = 2,

√
n2 + 8n− 8 + 2− n

2(n− 1)
, if 3 ≤ k ≤ n− 1.

Our main result can be stated as follows.

Theorem 1.3. Let M be a closed strictly convex hypersurface in Rn+1 with n ≥ 2.
If F = σαk with 2 ≤ k ≤ n− 1, α > 1

k and Condition 1.2 holds, then the solution of
(1.1) is a round sphere.
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Remark 1.4. If M is totally umbilical, then Condition 1.2 leads to

σ2
1(λ)σk−2(λ|ij)

(αk − 1)σ1(λ)σk−1(λ|p)− (α− 1)k2σk(λ)
=

n

n− 1
∈ [1, 1 + δ],

which implies that Condition 1.2 is a pinching condition for principal curvatures.

Remark 1.5. In the case of F = σ2, Condition 1.2 satisfies if 3λmin ≥ λmax,
where λmin and λmax are the minimum principal curvature and maximum principal
curvature, respectively.

Remark 1.6. Brendle, Choi and Daskalopoulos obtained better result for the case
of F = σαn in [7, 8], so we omit this case in the statement of Theorem 1.3.

Somewhat surprisingly, the above argument enables us to discuss the solution of
(1.1) with a non-homogeneous function F =

∑n
l=1 alσl, where al are nonnegative

constants with
∑n
l=2 al > 0. Thus we obtain the following result.

Theorem 1.7. Let M be a closed strictly convex hypersurface in Rn+1 with n ≥ 2.
If F =

∑n
l=1 alσl and the condition λmin ≥ Θλmax holds, where 0 < Θ ≤ 1 is a

constant depending on n, then, the solution of (1.1) is a round sphere.

Remark 1.8. For F =
∑n
l=1 alσ

αl
l with αl >

1
l , under suitable pinching condition,

the solution of (1.1) is also a round sphere. The proof is similar to the proof of
Theorem 1.7.

For F = σk−1

σk
(which is used in [13]), the solution of (1.1) can be characterized

as follows when M is strictly k-convex. A hypersurface M in Rn+1 is strictly
k-convex, if λ(x) ∈ Γk = {µ ∈ Rn|σ1(µ) > 0, · · · , σk(µ) > 0} for all x ∈ M .
Obviously, Γ+ = Γn ⊂ Γn−1 ⊂ · · · ⊂ Γ1.

Theorem 1.9. Let M be a closed strictly k-convex hypersurface in Rn+1. Assuming

F ≥ (n−k+1)σk−1

kσk
or F ≤ (n−k+1)σk−1

kσk
, if there exists a solution of (1.1), then

F = (n−k+1)σk−1

kσk
and the solution must be a round sphere.

The paper is organized as follows. In Section 2, we show a new inequality of
symmetric functions, which plays an important role in the proof of our main result.
Some basic equations are derived in Section 3. In Section 4, we use the maximum
principle to establish our main result (Theorem 1.3). We devote Section 5 to a
discussion on the solution of (1.1) with a non-homogeneous function F . Finally the
proof of Theorem 1.9 is presented in Section 6.

2. A new inequality of symmetric functions

In this section we show a new inequality of symmetric functions, which may have
its own interest.

Lemma 2.1. For any 2 ≤ k ≤ n and λ ∈ Γ+, we have

1

k(k − 1)
σ1(λ)− kσk(λ)

(k − 1)σk−1(λ)
+

(k + 1)σk+1(λ)

kσk(λ)
≥ 0.

Equality occurs if and only if λ1 = λ2 = · · · = λn.
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Proof. Let Sk(λ) denote the power sum of λ defined by Sk(λ) =
∑n
i=1 λ

k
i . Then

2σ2 = S2
1 − S2 and 3σ3 = 1

2S
3
1 − 3

2S1S2 + S3. Thus for k = 2, we have

σ1 − 4
σ2
σ1

+ 3
σ3
σ2

=
1

σ1σ2
(σ2

1σ2 − 4σ2
2 + 3σ1σ3)

=
1

σ1σ2

(1

2
S2
1(S2

1 − S2)− (S2
1 − S2)2 + S1(

1

2
S3
1 −

3

2
S1S2 + S3)

)
=

1

σ1σ2
(S1S3 − S2

2)

=
1

σ1σ2

(∑
i<j

λiλj(λi − λj)2
)
≥ 0

and equality occurs if and only if λ1 = λ2 = · · · = λn.
We complete the proof by induction for k and assume the lemma is true for

{2, 3, · · · , k − 1}. Let

f(x) =

n∏
i=1

(1− λix) =

n∑
m=0

(−1)mσm(λ)xm.

Then
d

dx
f(x) =

n∑
m=1

(−1)mmσm(λ)xm−1.

On the other hand, since d
dxf(x) is a polynomial of degree n−1, by Rolle’s theorem,

if all roots of a polynomial f(x) are real and positive, then the same is true for its
derivative. This leads to

d

dx
f(x) = −σ1(λ)

n−1∏
i=1

(1− µix) = −σ1(λ)

n−1∑
l=0

(−1)lσl(µ)xl.

By comparing the above two expressions, we conclude that

(2.1) (m+ 1)σm+1(λ) = σ1(λ)σm(µ) for 0 ≤ m ≤ n− 1.

Thus, for 2 ≤ k ≤ n− 1, we obtain

(k + 1)σk+1(λ)

kσk(λ)
=

σk(µ)

σk−1(µ)

≥ k − 1

k

(
(k − 1)σk−1(µ)

(k − 2)σk−2(µ)
− σ1(µ)

(k − 1)(k − 2)

)
=
k − 1

k

(
kσk(λ)

(k − 2)σk−1(λ)
− 2σ2(λ)

(k − 1)(k − 2)σ1(λ)

)
=

(k − 1)2

k(k − 2)

kσk(λ)

(k − 1)σk−1(λ)
− 2σ2(λ)

k(k − 2)σ1(λ)

=
kσk(λ)

(k − 1)σk−1(λ)
+

1

k(k − 2)

(
kσk(λ)

(k − 1)σk−1(λ)
− 2σ2(λ)

σ1(λ)

)
=

kσk(λ)

(k − 1)σk−1(λ)
+

1

k(k − 2)

k−1∑
i=2

(
(i+ 1)σi+1(λ)

iσi(λ)
− iσi(λ)

(i− 1)σi−1(λ)

)
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≥ kσk(λ)

(k − 1)σk−1(λ)
− 1

k(k − 2)

k−1∑
i=2

σ1(λ)

i(i− 1)

=
kσk(λ)

(k − 1)σk−1(λ)
− 1

k(k − 1)
σ1(λ).

For k = n, since σn+1 = 0, it is confirmed by the Newton-MacLaurin inequalities.
We finish the proof by noticing all equalities occur if and only if λ1 = λ2 = · · · =
λn. �

Remark 2.2. The condition λ ∈ Γ+ seems necessary because for k = 2, n = 3 and
λ = (−1, 3, 3), we have σ1(λ) > 0 and σ2(λ) > 0 but

σ1 − 4
σ2
σ1

+ 3
σ3
σ2

=
1

σ1σ2

(∑
i<j

λiλj(λi − λj)2
)
< 0.

The following corollary of Lemma 2.1 will be used in Section 4.

Corollary 2.3. For any 2 ≤ k ≤ n and λ ∈ Γ+, we have

(k − 1)σ1(λ)− 2k
σ2(λ)

σ1(λ)
+ (k + 1)

σk+1(λ)

σk(λ)
≥ 0.

Equality occurs if and only if λ1 = λ2 = · · · = λn.

Proof. Notice

(k + 1)σk+1(λ)

kσk(λ)
− 2σ2(λ)

σ1(λ)
=

k∑
i=2

(
(i+ 1)σi+1(λ)

iσi(λ)
− iσi(λ)

(i− 1)σi−1(λ)

)

≥ −
k∑
i=2

σ1(λ)

i(i− 1)

= −(1− 1

k
)σ1(λ),

where the inequality follows from Lemma 2.1. �

To finish this section, we list one well-known result (See for example [3] and [12]).

Lemma 2.4. If W = (wij) is a symmetric real matrix and λm = λm(W ) is
one of its eigenvalues (m = 1, · · · , n). If f = f(λ) is a function on Rn and
F = F (W ) = f(λ(W )), then for any real symmetric matrix B = (bij), we have the
following formulae:

(i)
∂F

∂wij
bij =

∂f

∂λp
bpp,

(ii)
∂2F

∂wij∂wst
bijbst =

∂2f

∂λp∂λq
bppbqq + 2

∑
p<q

∂f
∂λp
− ∂f

∂λq

λp − λq
bpqbqp.

Remark 2.5. In the above lemma,
∂f
∂λp
− ∂f
∂λq

λp−λq is interpreted as a limit if λp = λq.
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3. Equations of the test function

In this section, we will obtain some useful equations by direct computation from
the following equation

(3.1) F = −〈X, en+1〉.

Differentiating (3.1) gives

∇jF = hjl〈X, el〉,

and

(3.2) ∇i∇jF = hjli〈X, el〉+ hij − hjlhliF.

Then, we obtain

(3.3)
∂F

∂hij
∇i∇jF = ∇lF 〈X, el〉+

∂F

∂hij
hij −

∂F

∂hij
hjlhliF.

Let G = G(A) = g(λ(A)) be a homogeneous function, called the test function in
this paper. By directly calculation, we obtain

∇i∇jG = ∇i
(
∂G

∂hpq
hpqj

)
=

∂2G

∂hpq∂hst
hpqjhsti +

∂G

∂hpq
hpqji.

By Codazzi equation and Ricci identity, we obtain

hpqji = hpjqi = hpjiq + hmjRmpqi + hpmRmjqi.

Furthermore, using Gauss equation gives rise to

hpqji = hijpq + hmj(hmqhpi − hmihpq) + hpm(hmqhji − hmihjq).

Then, we have

∂F

∂hij
∇i∇jG =

∂F

∂hij

∂2G

∂hpq∂hst
hpqjhsti +

∂F

∂hij

∂G

∂hpq
hijpq

+
∂F

∂hij

∂G

∂hpq
(hmj(hmqhpi − hmihpq) + hpm(hmqhji − hmihjq))

=
∂F

∂hij

∂2G

∂hpq∂hst
hpqjhsti +

∂G

∂hpq

(
∇p∇qF −

∂2F

∂hij∂hst
hijphstq

)
+

∂F

∂hij

∂G

∂hpq
(−hmjhmihpq + hpmhmqhji).

Moreover, using (3.2), we obtain

∂F

∂hij
∇i∇jG−∇lG〈X, el〉

=
∂G

∂hij
hij

(
1− ∂F

∂hpq
hpmhmq

)
+

∂G

∂hij
hjlhli

(
∂F

∂hpq
hpq − F

)
+

(
∂F

∂hij

∂2G

∂hpq∂hst
− ∂G

∂hij

∂2F

∂hpq∂hst

)
hpqjhsti.

(3.4)

The above equation is elliptic if ∂F
∂hij

is positive definite. In fact, for λ ∈ Γ+, the

cases that we discuss are all elliptic.
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For convenience, we denote the first two terms on the right hand of the above
equality by TERM I and the last term by TERM II. In fact, by Lemma 2.4, we
have

TERM I =
∂g

∂λi
λi

(
1− ∂f

∂λp
λ2p

)
+

∂g

∂λi
λ2i

(
∂f

∂λp
λp − f

)
and

TERM II =

(
∂f

∂λi

∂2g

∂λp∂λq
− ∂g

∂λi

∂2f

∂λp∂λq

)
hppihqqi

+ 2
∑
p<q

( ∂g
∂λp
− ∂g

∂λq

λp − λq
∂f

∂λi
−

∂f
∂λp
− ∂f

∂λq

λp − λq
∂g

∂λi

)
h2pqi.

4. the case of F = σαk (k ≥ 2)

In this section, we consider the case of F = σαk (k ≥ 2) and we choose G =
σk1
σk

as the test function. By straightforward calculation, we obtain the following
expressions which will be used later:

(4.1)
∂2f

∂λp∂λq
= αf

(
(α− 1)σk−1(λ|p)σk−1(λ|q)

σ2
k

+
σk−2(λ|pq)

σk

)
,

(4.2)

∂f
∂λp
− ∂f

∂λq

λp − λq
= −αf σk−2(λ|pq)

σk
,

(4.3)
∂g

∂λp
= g

(
k

σ1
− σk−1(λ|p)

σk

)
,

(4.4)

∂2g

∂λp∂λq
= g
(k(k − 1)

σ2
1

− k(σk−1(λ|p) + σk−1(λ|q))
σ1σk

− σk−2(λ|pq)
σk

+
2σk−1(λ|p)σk−1(λ|q)

σ2
k

)
,

(4.5)

∂g
∂λp
− ∂g

∂λq

λp − λq
= g

σk−2(λ|pq)
σk

.

We will see TERM I is non-negative and TERM II is non-negative under Con-
dition 1.2.

Lemma 4.1. For F = σαk (k ≥ 2) and G =
σk1
σk

, TERM I is non-negative for

α ≥ 1
k . Moreover, it vanishes for α > 1

k if and only if λ1 = λ2 = · · · = λn.

Proof. Noting that G =
σk1
σk

is homogeneous of degree 0, we have ∂g
∂λi

λi = 0. And,

(4.3) and
∑n
i=1 σk−1(λ|i)λ2i = σ1(λ)σk(λ)− (k + 1)σk+1(λ) yield

∂g

∂λp
λ2p = g

(
k(σ2

1 − 2σ2)

σ1
−
σk−1(λ|p)λ2p

σk

)

= g

(
(k − 1)σ1 − 2k

σ2
σ1

+ (k + 1)
σk+1

σk

)
.
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Thus,

TERM I = (kα− 1)fg

(
(k − 1)σ1 − 2k

σ2
σ1

+ (k + 1)
σk+1

σk

)
.

For f > 0 and g > 0, the proof is finished by Corollary 2.3. �

Now, we consider TERM II and complete the proof of Theorem 1.1.

Lemma 4.2. For F = σαk (k ≥ 2) and G =
σk1
σk

, if G attains its maximum at x0,
then, at x0,

TERM II =
αkfg

σ3
1σk

(∑
i

∑
p 6=q

σ2
1σk−2(λ|pq)(h2pqi − hppihqqi)

+
∑
i

(
− (α− 1)k2σk + (αk − 1)σ1σk−1(λ|i)

)
(∇iσ1)2)

)
.

Proof. By Lemma 2.4, we have σk−1(λ|p)hppi = ∇iσk. Then, by (4.1) and (4.4),

∂2f

∂λp∂λq
hppihqqi = αf

∑
i

(α− 1)(∇iσk)2

σ2
k

+
∑
i

∑
p 6=q

σk−2(λ|pq)
σk

hppihqqi


and

∂2g

∂λp∂λq
hppihqqi =g

∑
i

(k(k − 1)(∇iσ1)2

σ2
1

− 2k∇iσ1∇iσk
σ1σk

−
∑
p 6=q

σk−2(λ|pq)
σk

hppihqqi +
2(∇iσk)2

σ2
k

)
.

Since G attains its maximum at x0, then ∇lG = 0 at x0 which implies
k∇lσ1
σ1

=

∇lσk
σk

at x0. Thus, at x0,

∂2f

∂λp∂λq
hppihqqi = αf

∑
i

(α− 1)k2(∇iσ1)2

σ2
1

+
∑
i

∑
p 6=q

σk−2(λ|pq)
σk

hppihqqi


and

∂2g

∂λp∂λq
hppihqqi = g

(∑
i

k(k − 1)(∇iσ1)2

σ2
1

−
∑
i

∑
p 6=q

σk−2(λ|pq)
σk

hppihqqi

)
.

Furthermore, using (4.2), (4.3), (4.5), at x0, we get

TERM II =
αkfg

σ3
1σk

(∑
i

∑
p 6=q

σ2
1σk−2(λ|pq)(h2pqi − hppihqqi)

+
∑
i

(
− (α− 1)k2σk + (αk − 1)σ1σk−1(λ|i)

)
(∇iσ1)2)

)
.

�

For convenience, we denote

Aij = σ2
1σk−2(λ|ij)
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and

Bp = −(α− 1)k2σk + (αk − 1)σ1σk−1(λ|p).

Then,

TERM II =
αkfg

σ3
1σk

(∑
i 6=j

∑
p

Aij(h
2
ijp − hiiphjjp) +

∑
p

Bp(∇pσ1)2)
)
.

Lemma 4.3. Let M be a closed strictly convex hypersurface in Rn+1 with n ≥ 2

satisfying Condition 1.2. For F = σαk (k ≥ 2) and G =
σk1
σk

, if G attains its
maximum at x0, then, at x0, TERM II is non-negative.

Proof. It suffices to check if
∑
i 6=j
∑
pAij(h

2
ijp − hiiphjjp) +

∑
pBp(∇pσ1)2 is non-

negative. Firstly, we notice∑
i 6=j

∑
p

Aij(h
2
ijp − hiiphjjp) +

∑
p

Bp(∇pσ1)2

=
∑
i 6=j

Aij(h
2
iji + h2ijj) +

∑
6=

Aijh
2
ijp −

∑
i6=j

Aij(hiiihjji + hiijhjjj)

−
∑
6=

Aijhiiphjjp +
∑
p

Bp(
∑
i

h2iip +
∑
i 6=j

hiiphjjp)

= 2
∑
i 6=j

Aijh
2
iij +

∑
6=

Aijh
2
ijp − 2

∑
i 6=j

Aijhiiihjji −
∑
6=

Aijhiiphjjp +
∑
i

Bih
2
iii

+
∑
i6=p

Bph
2
iip +

∑
i 6=j

(Bihiiihjji +Bjhiijhjjj) +
∑
6=

Bphiiphjjp

=
∑
i

Bih
2
iii +

∑
i6=j

(2Aij +Bj)h
2
iij +

∑
6=

Aijh
2
ijp + 2

∑
i 6=j

(−Aij +Bi)hiiihjji

+
∑
6=

(−Aij +Bp)hiiphjjp,

where 6= represents i, j, p are pairwise distinct.
Now, we estimate the lower bounds of the last two terms. For fixed i, j and p,

we have

2 (−Aij +Bi)hiiihjji ≥ −aijh2iii − bijh2jji ,

where aij > 0, bij > 0 are constants satisfying

(4.6) aijbij = (−Aij +Bi)
2
.

And

(−Aij +Bp)hiiphjjp ≥ −cijph2iip − dijph2jjp ,

where cijp > 0, dijp > 0 are constants satisfying

(4.7) 4cijpdijp = (−Aij +Bp)
2

and cijp = cjip, dijp = djip.



10 SHANZE GAO AND HUI MA

Thus we obtain∑
i6=j

∑
p

Aij(h
2
ijp − hiiphjjp) +

∑
p

Bp(∇pσ1)2

≥
∑
i

Bi −∑
j 6=i

aij

h2iii +
∑
i 6=j

(
2Aij +Bj − bji −

∑
p 6=i,p 6=j

(cipj + dpij)
)
h2iij

+
∑
6=

Aijh
2
ijp.

Condition 1.2 implies Bi > 0, then we can choose aij = 1
n−1Bi. Then, from

(4.6), we have

bij = (−Aij +Bi)
2
a−1ij =

(n− 1) (−Aij +Bi)
2

Bi
.

And, we can choose cijp = dijp, because hiip and hjjp are the same type of terms.
Furthermore, from (4.7), we obtain

cipj = dpij =
1

2
| −Aip +Bj |.

Then, we just need

2Aij +Bj ≥
(n− 1) (−Aij +Bj)

2

Bj
+

∑
p 6=i,p 6=j

| −Aip +Bj |.

For Bj > 0, the above inequality is equivalent to

(4.8)
2Aij
Bj

+ 1 ≥ (n− 1)

(
−Aij
Bj

+ 1

)2

+
∑

p 6=i,p 6=j

| − Aip
Bj

+ 1|.

It is easy to check this inequality holds if 1 ≤ Aij
Bp
≤ 1 + δ with δ satisfies (1.3) for

all 1 ≤ p ≤ n and 1 ≤ i < j ≤ n. �

Proof of Theorem 1.4. The proof is completed by the maximum principle. The
equation (3.4) is elliptic and at the maximum point of G, the left hand side of (3.4)
is non-positive. But, under Condition 1.2, we know the right hand side of (3.4)
is non-negative. This means TERM I must be zero. By Lemma 2.1, we obtain

λ1 = λ2 = · · · = λn. By Newton-Maclaurin inequality, we know G =
σk1
σk

also
reaches its minimum, therefore is a constant. So, λ1 = λ2 = · · · = λn is established
everywhere on M which implies M is a round sphere. �

5. For F =
∑n
l=1 alσl

In this section, for a non-homogeneous function F =
∑n
l=1 alσl, where al is a

nonnegative constant and
∑n
l=2 al > 0, we choose G =

σn1
σn

as the test function. We
will analyze TERM I and TERM II as in the previous section.

Lemma 5.1. For F =
∑n
l=1 alσl and G =

σn1
σn

, TERM I is non-negative. Moreover,
it vanishes if λ1 = λ2 = · · · = λn.

Proof. Just need to notice that G =
σn1
σn

is homogeneous of degree 0 and ∂f
∂λi

λi−f =∑n
l=2(l − 1)alσl > 0, the rest of the proof is similar to Lemma 4.1. �
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Now, we regard TERM II as an operator on C∞(M), i.e.,

TERM II = Φ(f, g),

where Φ : C∞(M)×C∞(M)→ C∞(M). Obviously, Φ(
∑n
l=1 alσl, g) =

∑n
l=1 alΦ(σl, g).

Now, we consider Φ(σl, g).

Lemma 5.2. For G =
σn1
σn

, if G attains its maximum at x0, then, at x0,

Φ(σl, g) = g

(∑
i

∑
p 6=q

(σl−1(λ|i)
λpλq

+
nσl−2(λ|pq)

σ1
− σl−2(λ|pq)

λi
)(h2pqi − hppihqqi)

+
∑
i

n(n− 1)σl−1(λ|i)
σ2
1

(∇iσ1)2).

Proof. By (4.3) and (4.5), we have

∂g

∂λp
= g

(
n

σ1
− 1

λp

)
and

∂g
∂λp
− ∂g

∂λq

λp − λq
=

g

λpλq
.

Since G attains its maximum at x0, ∇lG = 0, which implies
n∇lσ1
σ1

=
∇lσn
σn

at

x0. Thus, at x0,

∂2g

∂λp∂λq
hppihqqi = g

(∑
i

n(n− 1)(∇iσ1)2

σ2
1

−
∑
i

∑
p 6=q

1

λpλq
hppihqqi

)
.

Furthermore, we obtain

Φ(σl, g) = g

(∑
i

∑
p 6=q

(σl−1(λ|i)
λpλq

+
nσl−2(λ|pq)

σ1
− σl−2(λ|pq)

λi

)
(h2pqi − hppihqqi)

+
∑
i

n(n− 1)σl−1(λ|i)
σ2
1

(∇iσ1)2

)
.

�

For convenience, let

Aijp =
σl−1(λ|i)
λpλq

+
nσl−2(λ|pq)

σ1
− σl−2(λ|pq)

λi

and

Bp =
n(n− 1)

σ2
1

σl−1(λ|p).

Then,

Φ(σl, g) = g
(∑
i 6=j

∑
p

Aijp(h
2
ijp − hiiphjjp) +

∑
p

Bp(∇pσ1)2
)
.

Lemma 5.3. Let M be a strictly convex hypersurface in Rn+1 satisfying the condi-
tion λmin ≥ θ(l, n)λmax, where 0 < θ(l, n) ≤ 1 is a constant depending on l and n.

For G =
σn1
σn

, if G attains its maximum at x0, then, at x0, Φ(σl, g) is non-negative.
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Proof. Similar to the proof of Lemma 4.3, we obtain∑
i 6=j

∑
p

Aijp(h
2
ijp − hiiphjjp) +

∑
p

Bp(∇pσ1)2

=
∑
i

Bih
2
iii +

∑
i 6=j

(2Aiji +Bj)h
2
iij +

∑
6=

Aijph
2
ijp + 2

∑
i 6=j

(Bi −Aiji)hiiihjji

+
∑
6=

(Bp −Aijp)hiiphjjp.

We first estimate the lower bounds of the last two terms. As the previous section,

2 (Bi −Aiji)hiiihjji ≥ −aijh2iii − bijh2jji ,
where aij > 0, bij > 0 are constants satisfying

(5.1) aijbij = (Bi −Aiji)2 .

And

(Bp −Aijp)hiiphjjp ≥ −cijph2iip − dijph2jjp ,
where cijp > 0, dijp > 0 are constants satisfying

(5.2) 4cijpdijp = (Bp −Aijp)2 ,

and cijp = cjip, dijp = djip.
Then, we obtain∑
i6=j

∑
p

Aijp(h
2
ijp − hiiphjjp) +

∑
p

Bp(∇pσ1)2

≥
∑
i

Bi −∑
j 6=i

aij

h2iii +
∑
i 6=j

(
2Aiji +Bj − bji −

∑
p6=i,p 6=j

(cipj + dpij)
)
h2iij

+
∑
6=

Aijph
2
ijp.

We can choose aij = 1
n−1Bi. Then, From (5.1), we have

bij = (−Aiji +Bi)
2
a−1ij =

(n− 1) (−Aiji +Bi)
2

Bi
.

And, we can choose cijp = dijp, because hiip and hjjp are the same type of terms.
Furthermore, from (5.2), we can take

cipj = dpij =
1

2
| −Aipj +Bj |.

Then, we just need

2Aiji +Bj ≥
(n− 1) (−Aiji +Bj)

2

Bj
+

∑
p 6=i,p 6=j

| −Aipj +Bj |.

For Bj > 0, the above inequality is equivalent to

(5.3)
2Aiji
Bj

+ 1 ≥ (n− 1)

(
−Aiji
Bj

+ 1

)2

+
∑

p 6=i,p 6=j

| − Aipj
Bj

+ 1|.
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Notice that
Aijp
Bq

= n
n−1 at umbilical points of M for any 1 ≤ i, j, p, q ≤ n . Thus

we can assume

(5.4) 1 <
Aijp
Bq

< 1 + δ.

Then, by solving
3 ≥ (n− 1)δ2 + (n− 2)δ,

we can choose δ =
√
n2+8n−8+2−n

2(n−1) such that (5.3) holds. By direct calculation, we

can choose

θ(l, n) =


max(

√
n− 1

n
,

√
n

(n− 1)(1 + δ)
), for l = 1,

max(

(
n−1
n Cl−1n−1 + Cl−2n−2

Cl−1n−1 + Cl−2n−2

) 1
l+1

,

(
Cl−1n−1 + Cl−2n−2

(1+δ)(n−1)
n Cl−1n−1 + Cl−2n−2

) 1
l+1

),for l = 2, ..., n,

such that under the condition λmin > θ(l, n)λmax, (5.4) holds, where Ckn = n!
k!(n−k)! .

Thus the proof is completed. �

Proof of Theorem 1.7. Now, let Θ(n) = max
l=1,...,n

θ(n, l). Then, under condition

λmin > Θλmax, Φ(σl, g) is non-negative for all l. Therefore, TERM II is non-
negative under the condition. Similarly, by the maximum principle we complete
the proof. �

6. Proof of Theorem 1.9

Proof of Theorem 1.9. By Minkowski identity, we have

k

∫
M

σk〈X, en+1〉dµ+ (n− k + 1)

∫
M

σk−1dµ = 0.

By (1.1), we have

(6.1) 0 =

∫
M

kσk

(
−F +

(n− k + 1)σk−1
kσk

)
dµ.

Since σk > 0 and −F + (n−k+1)σk−1

kσk
is non-negative or non-positive, we know

F = (n−k+1)σk−1

kσk
. Notice that (6.1) also holds for k − 1. Combining Newton-

MacLaurin inequalities, we have

0 =

∫
M

(k − 1)σk−1

(
−F +

(n− k + 2)σk−2
(k − 1)σk−1

)
dµ

=

∫
M

(k − 1)σk−1

(
− (n− k + 1)σk−1

kσk
+

(n− k + 2)σk−2
(k − 1)σk−1

)
dµ ≤ 0.

This implies
(n− k + 1)σk−1

kσk
=

(n− k + 2)σk−2
(k − 1)σk−1

on M . Thus, we have λ1 = λ2 = · · · = λn for every point of M which means M is
a round sphere. �
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