UNIQUENESS OF CLOSED SELF-SIMILAR SOLUTIONS TO
o;-CURVATURE FLOW
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ABSTRACT. By adapting the test functions introduced by Choi-Daskaspoulos
[11] and Brendle-Choi-Daskaspoulos [9] and exploring properties of the k-th
elementary symmetric functions o intensively, we show that for any fixed k
with 1 < k < n — 1, any strictly convex closed hypersurface in R*t1 satisfying

op = (X,v), with a > %, must be a round sphere.

1. INTRODUCTION

Let X : M — R"*! be a smooth embedding of a closed, orientable hypersurface
in R**! with n > 2, satisfying
(L1) of = (X,v)
where v is the outward unit normal vector field of M, a > 0, 1 < k < n and oy}, is
the k-th elementary symmetric functions of principal curvatures of M.

This type of equation is important for the following curvature flow
(1.2) X, = —ofv.
Actually, if X is a solution of (1.1), then

~ 1

K(e.1) = (o + 1)(T — 1)) 5= X (2)

gives rise to the solution of (1.2) up to a tangential diffeomorphism [20]. So in the
same spirit, we call the solutions of (1.1) self-similar solutions of (1.2).
For k = 1, G. Huisken proved the following famous result:

Theorem 1.1 (Huisken, [18]). If M is a closed hypersurface in R™ 1 with non-
negative mean curvature o1 and satisfies the equation

g1 = <X3V>a

then M must be a round sphere.

For k = n, very recently, Choi-Daskalopoulos [11], further, Brendle-Choi-Daskalopoulos
[9] proved the following remarkable result:

Theorem 1.2 (Choi-Daskalopoulos [11], Brendle-Choi-Daskalopoulos [9]). Let M
be a closed, strictly convex hypersurface in R™1 satisfying

o =(X,v).

If a > ﬁ, then M must be a round sphere; if o =

ﬁ, then M s an ellipsoid.
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Remark 1.3. The results of convergence of of-curvature flow could implies Theorem
1.2. In case a = %, Theorem 1.2 was contained in the results of B. Chow in [12]. In
case n = 2, Theorem 1.2 was proved by B. Andrews for a = 1 in [3], by B. Andrews
and X. Chen for % < a<1in[6]. In case a = n%rz, Theorem 1.2 was proved by
B. Andrews in [2]. The more properties of o%-curvature flow were studied by W.

J. Firey [14], B. Chow [12], K. Tso [21], B. Andrews [3], P.-F. Guan and L. Ni [17],
B. Andrews, P.-F. Guan and L. Ni [7], etc.

From Theorem 1.1 and Theorem 1.2, the following natural question arises:

Question. For any fixed k£ with 1 < k <n —1, let M be a closed, strictly convex
hypersurface in R™*! satisfying (1.1) with o > % Can we conclude that M must
be a round sphere?

In this paper, we give an affirmative answer to the above question by proving
the following result:

Theorem 1.4. For any fized k with 1 < k < n —1, let M be a closed, strictly
convex hypersurface in R" 1 satisfying

O'I? = <Xa V>
with o > % Then M must be a round sphere.

Remark 1.5. Theorem 1.1 implies Theorem 1.4 for the case K = 1 and o = 1.

For v = ¢, Theorem 1.4 was contained in the results of B. Chow [12, 13] and B.

Andrews [1, 2, 4, 5]. For general k and «, there are some partial results under
certain pinching condition of the principal curvatures of hypersurface, see [20], [§]
and [15].

In fact, we prove the following two theorems:
Theorem A. For any fixed k with 1 < k < mn, let M be a closed, strictly convex
hypersurface in R™! satisfying
(1.3) op+C=(X,v)
with constants o and C. If either 1 <k <n—1,C<0, a > %, or, k=n, C <0,

a > %—4—27 then M must be a round sphere.

Remark 1.6. Choose C' = 0, Theorem A reduces to Theorem 1.4. When k =« = 1,
Theorem A implies the uniqueness of closed A—hypersurfaces introduced by Cheng-
Wei [10].

Let Si(A\) denote the k-th power sum of the principal curvatures Ai,---, Ay,
defined by Si(\) = Y1 Ak
Theorem B. For any fived k with k > 1, let M be a closed, strictly convex hyper-
surface in R satisfying
(1.4) Sp+C=(X,v)
with constants o and C. If a > % and C <0, then M must be a round sphere.

In this paper we first consider the following general equation
(1.5) F+C=(X,v),

where F' = F'(h) is a homogeneous smooth symmetric function of the second fun-
damental form h = (h;;) of degree 5 and C is a constant. We also suppose F' > 0
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and ( 38}5 j) is positive definite. In the spirit of Choi-Daskaspoulos [11] and Brendle-

Choi-Daskaspoulos [9], we consider the quantities

(1.6) zZ = Ftrb—méign|X\2,
vo— opal Py
(1.7) W o= Fil 2 |X?,

where b = (b)) denotes the inverse of the second fundamental form h = (h;;)
and Amin is the smallest principal curvature of the hypersurface. In case F' = oy
or F' = S}, by exploring properties of o, and Sj, intensively, we find that the
techniques in Choi-Daskaspoulos [11] and Brendle-Choi-Daskaspoulos [9] can be
carried out effectively by using the strong maximum principle of £ = %vivj for
Z and by using the maximum principle for W (see Section 4 for definition of W).

The structure of this paper is as follows. In Section 2, we give some properties
of the elementary symmetric functions o4 and prove our key lemma (Lemma 2.7).
In Section 3, we derive some fundamental formulas for the closed hypersurfaces
which satisfies self-similar equation (1.5) with the general homogeneous symmetric
function F'. In Section 4, we do analysis at the maximum point of W. In Section
5 and 6, we present the proofs of Theorem A and Theorem B, respectively.

Acknowledgments. The authors would like to thank Professor Xinan Ma for his nice
lectures on oy-problems delivered in Tsinghua University in January 2016.

2. SOME PROPERTIES OF ELEMENTARY SYMMETRIC FUNCTIONS AND KEY LEMMA

We first collect some basic notations, definitions and properties of elementary
symmetric functions, which are needed in our investigation of the o} self-similar
solutions.

Let A = (A1, ,A,) denote the principal curvatures of M. Throughout this
paper, we assume that \; < Ay <--- < \,. Denote

AN =M@ = S Ak

1<ii<ig--<ig<n

For convenience, we set o¢(A) = 1 and ox(A) =0 for &k > n or k < 0. Let op;;(N)
denote the symmetric function o (A) with A\; = 0 and oy,;(\), with i # j, denote
9ok (N) _ o) _

ax . Tk=Li> Fxaxn,
Ok—2.4;. Remark that without causing ambiguity we omit A in the notations of
ok (A) for simplicity.

the symmetric function o;(A) with A; = A; = 0. So

Definition 2.1. A hypersurface M is said to be strictly conver if A e I'y = {u €
R™|p1 > 0,02 > 0, , up, > 0} for any point in M.

The following basic properties related to o; will be used directly.
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Proposition 2.2 (See, for example, [19]). For 0 < k < n and 1 < i < n, the
following equalities hold:

Oktl = Okt1s + NiOhii,

Z Xiokyi = (k4 1)0k41,
i=1

n
Zak;,; = (n — k)og,
i=1

n
Z)\?Uk;i = 010k4+1 — (k‘ + 2)0k+2-

i=1
Lemma 2.3. If A\ €'y and i # j, then

or—1i(Ni = M) — o1 (N — \1)?

> 0.
)\i_/\j =0

Proof. Since oy_1,; = 0—1,45 + AjOr—2.i;, we have
Uk—l;i()\i - >\1)2 - Uk—l;j(>\j - )\1)2

= o155 (X — A)(Xi + A — 201) 4 o2 (A — Aj) (XA — AD)

= (i = A (Tr-1s O + Ay = 200) + oz (Aidy = D).
Then

ar-1i(Ni = M) —or; (N = \)?
NN
= 0145 (N + Aj — 2A1) + oh_2,i(NiA; — A7) > 0.

(]
Lemma 2.4. For A € Ty, = {p € R"|o1(u) >0, ,01(p) > 0}, we have
o > %Alak—l;l-
Proof. By using Proposition 2.2 and oy;; < 0.1, we have
kow =Y Niok-1:i = 3 _(0k — Okii) = n(0k — o) = nA10k_11.
i i
([l

We now turn to prove our key lemma of 0. First we show two lemmas. Let
Dgf)()\) = (dij), %, = 0,--- ,m, denote the following symmetric (m+1) x (m+1)-

matrix

O Ok;1 Ok;2 e Ok;m
Ok;1 Ok;1 Ok;12 e Ok;1m
Ok;2 Ok;21 Ok;2 o Ok2m

)

Ok;m Okyml Ok;m2 = °° Ok;m
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i.e., dij = dji and

or(N), ifi=j=0,
p or;(N), ifi=0,1<j<m,
) ora(N), if1<i=j<m,
Uk;ij(/\), 1f1§l<]§m
Lemma 2.5. If A € Ty and n > 2, then D;’“)()\) is semi-positive definite for

1<k<n.

Proof. First, since 0p,; = oppg = 0 for 1 < 4,p,q < n, it is clear that DM s
semi-positive definite.

For 1 < k < n — 1, the statement follows by induction on n. In fact, for n = 2,
the semi-positive-definiteness is proved by directly computation. Now, assum that
the statement is true for n — 1. For A = (Aq, ..., A,), the assumption implies the
following matrices are semi-positive definite

Ok;n Ok;1n Ok;2n Ok;n—1,n
Ok;1n Ok;1n Ok;12 Ok;1,n—1,n

(k) _ Ok Ok: Ok: Ok:2.m—
Dn—l;n()‘) — k;2n k:21n k:2n k;2,n—1,n
Okin—1,n Okn—1,1n Okn—12n Okin—1,n

for 1 <k <n-—1. And, using

Ok = Ok;n + )\no—kfl;na Ok,i = Oksin + )\no—kfl;in (]- <i<n-— 1)7

we obtain (1) ")
—1
D, 0 D"
D’SLk)()\) — )\n n—1;n + n}l,n n ,
0 0 n Okin
T _
where n = (Uk;nv Ok;1ns Ok;2n, " *° 70—k;n71,n)~ For
Ok;n Ok;1n Ok;2n Okin—1,n Ok;n
Ok;1n Ok;1n Ok;12n Ok;1,n—1,n) Ok;1n
D(k) Ok;2n Ok;21n Ok;2n Ok2,n—1,n Ok;2n
n}l;n n —
n Ok;n
Okin—1,n Okmn—1,1,n Okn—1,2n Ok;n—1,n Okin—1,n
Okn Ok;nl Okn2 Ok;n,n—1 Okn

by subtracting the first row from the last row and the first column from the last

(k) (k)
column, we find that (D”Tl?” N > is congruent to (Dnol?" 8) which is semi-

n Ok;n
positive definite. So D§L )()\) is semi-positive definite. Thus, the proof is completed.
O
For A = (A1,..., \p) € Ty, let AR()) = (@ij)nxn denote the following matrix
1
2, Tk—151 Ok—2;12 Ok—2;13 Ok—2;1n
1
Ok—2;21 Ea’kflﬁ Ok—2;23 Ok—2;2n
1
Ok—2;31 Ok—2;32 25 Tk—1;3 Ok—2:3n
1
Ok—2;n1 Ok—2;n2 Ok—2;n3 £, Ok—1in
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ie.,
1

70’]@—1;1‘()‘)7 for i = ja

A5 = )\z

Uk*Qﬂ'j(/\)v for i 7£ J-

Lemma 2.6. Let (7 = (Ok=1;1,0%—1,25 -+, Ok—1;n). Then the matriz o AR — geT
is semi-positive definite.

Proof. Denote o, AF) — ¢¢T = (Wij)nxn- Thus

Gk_l;ia ; fori=j

)\i kiis )

Y=y 1 .

m(okom — OkiiOkyj), fori#j.

We divide the proof in three steps.

Step 1. Since the semi-positive-definiteness is preserved under congruent transfor-
mation, we multiply A; to the i-th row and the i-th column of o, A% — &7 for

1<i<n. And, let A® = (@ij)nxn denote the new matrix which is defined by

3 opi(or — oky),  fori=j,
Q5 = . .
OkOk;ij — Ok;iOk;j, for i # j.

We will discuss A®) instead of o, A®) — £¢7 in the following.

Step 2. A% is semi-positive definite if and only if its principal minors are all
non-negative. Let flss) denote the upper-left m x m sub-matrix of A®) . For the
symmetry of the elemental functions, it suffices to show det 215,’? > 0.

Step 3. det fl,(ﬁ) can be calculated as follows.

1 Ok;1 Ok;2 e Ok;m
2
0 OkOk;1 = Ojq OkOk;12 = Oks10k;2 *°° OkOkslm — Oks10ksm
~ 2
det Asrlf) —det | O OkOk12 — Ok10k;2 OkOk;2 = Of.o ©tt OkOk2m — Ok20k:m
2
0 OkOk;ml — Ok;mOk;1 OkOk;m2 — Ok;mOk;2 - OkOkym — Uk;m
1 Ok;1 Ok;2 o Okym
Ok;1 OkOE;1 OkOk;12  *°°  OkOk;1m
= det Ok;2 OkOk;12 OkOk;2 T OkOk:2m
Ok;m OkOkyml OkOkm2 =~ OkOk;:m
2
O OkOk;1 OkOk;2 e OkOk:m
OkOEk;1 OkOE;1 OkOEk;12 e OkOk;1m
— gk—2 det | OkOk;2  OkOK;12  OkOK2  *°  OkOk2m
OkOk;m OkOkyml  OkOk;m2 OkOk;:m
_ _m-1 (k)
=0, “det D).

By Lemma 2.5, we know det qulf) > 0. So, det /L(q{f) > 0 which implies o A% —
T is semi-positive definite. O
133 p

With the help of the proceeding two lemmas, we finally obtain our key lemma.
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Lemma 2.7. Fory = (y1,Y2,.--,Yn) € R"™, the following inequality holds

n n

Ok—1;i 2 Ok—2;ij Ok—1;i 2
E 2 4+ E s > E N2
A0 Yi . Yiy; = ( - yz)

i=1 i#j i=1

Proof. By Lemma 2.6, we know

1 1
yT(—A® — — M)y > 0.
Ok O

O

3. FUNDAMENTAL FORMULAS OF SELF-SIMILAR SOLUTION WITH GENERAL F

Let X : M™ — R™*! be a closed convex hypersurface. Suppose that eq,es,--- , e,
is an orthonormal frame on M. Let h = (h;;) be the second fundamental form on M
with respect to this given frame. And the principal curvatures are the eigenvalues
of the second fundamental form h.

Let us first consider the following general equation

F(h)+C = (X,v),

where F' is a homogeneous symmetric function of h = (h;;) of degree 8, C is a
constant and v is the outward normal vector field. And, let £ denote the operator
L= C,,O)TI;VZ-VJ-. We also suppose F' > 0 and (;h—FJ) is positive definite. Inspired by
[20], [11] and [9], we have the following proposition. The summation convention is
used unless otherwise stated.

Proposition 3.1. Given a smooth function F : M — R"*1 described as above, the
following equations hold:

OF
(1) LF = (X,VF)+ BF — Whﬂhli(F +0),
ij
0*F
(2) Lhiy = him (X, em) + hiy — Chigmhim, — Whijkhstl
1] s
oF
- Wh'mghmzhkl + (ﬂ - 1)Fhkm,hml7
()
O*F
bR = (X, VbR — B+ Oy 4+ bR ————h, i by
(3) ﬁ < 7v > + C kil + ahijahst Jjp'tstq

F F
- bkl%hmjhmi = (B— 1)F o + 2" b0 (fh‘ “fstifipas
1] *

(4)  L(Ftrb) = (X, V(Ftrb)) + (8 — 1)Ftrb — n(B — 1) F?

oF oF
+ C(TLF - trbihﬂhli) + 2—V1ijtrb

ahij 8hij
2
+ FFrpk 78“ ul hijphstq + 2FDFbPTHR 75)3 stibipgs,
Ohi;jOhg Ohij
X? F
(5) RS o BF(F +C)
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Proof. (1) Differentiating (1.5) gives
(3.1) V;F =h(X, e)
and
ViV;F = hjii(X,e;) + hij — hjiha(X,v)

= hjui(X,e) + hij — hjthy(F + C).
Then, by 3 aF h = BF, we obtain
OF
Ohi;
(2) By Codazzi equation and Ricci identity, we obtain

LF = VZF<X,61> + BF — hjlhli(F—FO).

hitji = hijii = Pijin + hng Rkt + P Bomjti-

Then, using Gauss equation we have

oF
Lhig = —— (hijit + hmj Rkt + hem Rmjii)

3hi]‘
oF 0%F oF
= Vz(ahlj hiji) — Dhys O 7 Nijrhsu + %hmj(hmlhki — hmihii)
oF
+ aTijhkm(hmlhij — hmihjt)
0°F oF oF
= r— . o
ViV Dy 7 Migkhst — ey 7 hmghmihi + ey himbmihi;
32
= hpim (X, em) + hit — hgmbim (F + C) — Oy = Nijrhsu
oF
8}1 hm]hmzhkl +ﬁFhkm ml-
ij
(3) Since hpmb™ = 6, we have
(3.2) Vb = —b*PblN Dy,

And,
V, Vb = =V, (b*P019V ;)
= —bPYIINV Y jhyy + BB 1y V hypg + BBV 1y Vg
AR VA VY T L AV T v
Then, we obtain

OF oF
LHM = —b"PpT N,V by + 2055 0PV b VD
8]1 Pq 8hw J1°°pPaq

oF

OF
— bRyt R B+ 26FSHPTRl ——
Dy, il ¥ oh;

hstz hqu

82

hijphs
OhijOhg P
OF

oF
P Ronjhmi — BF S + Qbksbptblanhmhqu.

= (X, Vb — b - (F + C)bpy + bPPHI ————

+ b
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(4) From (3), we have

oF B kprak 0’F
aTqﬁjvlvjtrb = (X, Vtrb) — trb+ n(F + C) + b™Pb iy hijphstq
oF < oF
+ trbé)h” hmj TLBF + Qbk bptbkq ah stillpqyj-
Furthermore,
L(Ftrb) =2— oF V.FV; trb+trba ViV, F+F—— oF V;Vjtrb
T Ohy; Oh; Ohij
oF oF
= FVtrb + trb(X, VF) + trb——hy;
8h”V Vtrb + trb(X, VF) + tr o
oF
— trbah hjihi;(F + C) + F(X, Vtrb) — Ftrb+ nF(F + C)
ij
0’F oF oF
kppak - B — i,
+ F'b™Pb s hijphsiq + FtrB i honj o nFahij hi;
r
+ 2F e pPipka ghij histifipgj
2 oF
= (X,V(Ftrb)) + (8 —1)FtrB —n(8 — 1)F* + C(nF — trBah hjihi;)
i
oF 0’F oF
+ 2V FV trb 4+ FbPb% —————h;j,heq + 2F0 0P 05 ——hyyihpg;.
Ohij Oh;jOhg P Ohgj > P
(5) By direct computation and (1.5), we have
X2 OF
L5 = g ViliXoe)
oF oF
= F
2 g~ O gty

O
To finish this section, we list the following well-known result (See for example
[1] and [16]).

Lemma 3.2. If W = (w;;) is a symmetric real matriz and Ay, = Ay, (W) is one
of its eigenvalues (m = 1,--- . n). If F = F(W) = F(AW)), then for any real
symmetric matric B = (b;;), we have the following formulas:

. OF OF
(i) szbij = Wbppa

) 92F 2F oF an ,
W) G e 90 = g ong erbas T 22 Ny

OF _ OF
Remark 3.3. In the above lemma, % is interpreted as a limit if A, = Aq.

4. ANALYSIS AT THE MAXIMUM POINTS OF W

In the recent paper [9], S. Brendle, K. Choi and P. Daskalopoulos proved the
following powerful lemma.
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Lemma 4.1 ([9]). Let u denote the multiplicity of Ay at a point xq, i.e., A1(xg) =
<= Au(zo) < Apyi(zo). Suppose that ¢ is a smooth function such that ¢ < A\

everywhere and p(xg) = A1(xo). Then, at xo, we have

i) hii = Vipbp for 1 <k, < p.

ZZ) ViVip < hi1i — 2 Zl>u()‘l — Al)_lh%li.

Let W = )\E — —|X\2 and let 2o be an arbitrary point where T attalns its
maximum. In fact, we can choose a smooth function ¢ such that W = % TR |X |2

attains its maximum at xg. Thus, Wiax = Whax. Now, we consider W at xo.

Lemma 4.2. At xzg, W satisfies the following inequality

F oF 1 oF
> (X, V(= 2——V,FV;— +2F)\ > h?
‘C'W—< ,V(@))"‘ 6h”v VJ + 8)\ 112
., O%F OF _
A hwlhst1+2F>\128/\ (M= A\) T,
1] st I>u
B—10F A OF =\
1) = C=—N (= —1).
B O\ ()\1 ) CaAi (/\1 )

Proof. At xg, it follows from Lemma 4.1 and Proposition 3.1 that

oF

£ OA\;

(A = A1)~ Thdy,
I>p

F
= hiim (X, em) + A1 — AjC — Al%hmjhmi + A (B-1)F
O*°F
— ————hyj1hs N — A th?
OhygOhg 71T 8)\ Z L= h) e
I>p
Furthermore, we have
F 1
cE_y9F —V,FV;— + EF—I—FL—
© Bhw % ©
OF 1 . L OF _, OF
> F F(X, F
> 6hmv V; SD+>\ ViF(X,e) + A] 6% — Al ah”hﬂhlz( +0C)
+2F\] 3g§h§h+Fv (X, em) — FAT? +(1—5)F2+FC+F)\_1885 Pomjhomi
2]
O*F OF
FA[2————hij1hs +2F\? A —\) iR,
+ 1 ahijahst g1 11+ 1 8)\1 l>u( l 1) 14
OF OF F
— ah”v iFV— +2F/\ 3& h3; + Vim <X,em>
-1 2 -1 3F
H(B=DFAT + Q= B)F + CF = Ay o —hjihii)
2]
» OPF 2 OF —1;2
+ FAT Dy hijihse + 2FAT 5y (A — M) "tR2,

I>p
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According to Proposition 3.1 and the homogeneity of F', we have

2
F
— —£|X| +(B-1FX' +(1-B)F? + C(F - )\fla—hﬂh“)
B Ohi;
B—10F X\ oF .\
= — — —1)=C—=—X\(+— —1),
B O\ ()\1 ) o\ ()\1 )
thus the proof is completed.
O
Let
B—10F X\ oF N\
Ji = ——-1)-C i(— —1).
CIN)Y ()\1 WAl W)
Lemma 4.3. If C < 0 and 8 > 1, then J; > 0. And Jy = 0 if and only if
AL == Ay
Proof. The proof directly follows from that aF > 0 and f\‘—i >1. O

Lemma 4.4. At xg, we have the following equalities
1 X, V = A, 2(V,F)?
1) | sﬁ B Z

_ _ 6 -1, _ .
(2)  FA?huy= (00" — ij YWV,F, for1<j<n,

(3) Vi =0, for2<m < pu.
Proof. (1) Using VW =0 and (3.1), we have

<X,V(g)> = (X, VW) + % D (X e)?

p-1 S
(2) Using V;W = 0, Lemma 4.1 and (3.1), we have
B-1,
T)\j V,;F
-2 1 Bl
=—F\] h11j + ()\1 - T)\j )VjF.
(3) By Lemma 4.1, we have hii, = 0if 2 <m < p. Then, (2) leads to (3). O

1 1
OZFVJ‘*-F*VJ‘F—
2

Lemma 4.5.

0*F oF
mhmh o (A — A1) "'y,
I>p
0%F OF s
= mhmhm +223—/\i(& - hiy +2Z i
1> P>

GE (N —M\)2 = 2E (N — )2
i N, 2
22 (A = A1) = A1) (N — Aj) i

i>5>u
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Proof. Due to

O*F PF _, OF OF
oh; ahth”lhsﬂ (8>\ X, hinhin +23 (i = X) 7 (g5 = -)h?ﬂ)
17 S i>j ) J

O*F 8F
= a)\vaA “1h‘JJ1+2§ 1 6)\ )hllz

(OF _OF
+2 2 0= Gy oy, i
1>J> U

and

oF oF
> O =) = 25 S = )+ 2 3 = )

I>p l>u P>

+2 Z 8)\ — )7 th2,

i>l>p l>z>,u

—1
hllzv

the lemma follows by adding the above two equations.

Lemma 4.6. For 8> 1, at xg, W satisfies the following inequality
LW > J + Jo + J3,

where
B—10F X\ oF =\

S = N

- 1)3

Jo=2F\72 Y gﬂ(&’)‘lyf%(%ﬂ\mh%
: ! 52 A=Ay = A =) ut

L, OF

1y 2o = AT 'h3

12

1 OF
Jy= 2ot ()\‘ - EF Fe )(vlF)2 +2FA

P>

5 O?F
+EA thiilhij

Proof. By Lemma 4.4, we have

F OF L, s OF OF
p-1 S N P(ViF)? - 2F 125 (At - %A;l)(vim? + 2PN~

B-1 L OF B—1._
=L (- lml)(vlF)“;(ﬂV

2(8—-1) , ,0F -1 B=1 2
B WL )) (ViF)?.
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Furthermore, by Lemma 4.4 and 4.5, we have
oF

ﬁ_l —1(y—1 2 2
LW > =X ()\1 - 5F laTl)(vlF)

PTG G R O T i)
1>p

1
B o\ B BAZ(Ai — A1)

+2PA 7 Y i = A= 5 - )
T Vi W E VI W [V

*F B—10F X\ OF .\
hathyn + 2= =252y Do T2,

o, ihin T =g e (G TV O h Y

Noticing the second term is nonnegative, we finish the proof.

2

OF
2 IF N2
hi;i +2F\] o,

J
P>

(N — A1) th?

144

+ FAp?

O

Lemma 4.7. For F =0} and C <0, if a > %, then at the maximum point of W,
A==\,
Proof. By Lemma 4.3, we know J; > 0 and the equality occurs if and only if
A1 =+ = Ap. And Lemma 2.3 implies J, > 0. Using Lemma 2.7, we have

ka —1 201
= alka —1) CZ; ) %Jk 1’1)(V1 log o1,)?

+ 2007 A 20g— 1 Z(Az - A1) 7R
i>p
+ @i AP op_aijhiinhjji + ala — 1)of* A% (V1 log oy )?
2ka—k—1__,4 (ka—1) op_11 2
T}\l — QTTk) (vl log Uk)
+ 2007 A 001 ) (A = M) T
P>

+ o\ ?(Vilogoy)? — aot® 'AT?

J3

a,ﬁ“Afl(/\fl —

> aa,%o‘/\fl(

Ok—1;i hQ
/\i 22l

Then using Lemma 4.4, we obtain
2ka — 1 (ka—l) Ok—1;1
kj2 Ok

/\1_1(V1 log oy, )?

Jy > aa,%aA;l( AL -2 )(vl log 07,)2
@ 94-10k—-1;1
~ ot
2ka — 1 _
Z QTUzaAl 2 (k’ —

2ka —1)(n —1
2 Oé( « )(TL )o_ia)\l—Q(vl IOgO'k)z,
nk
thus J3 > 0. For £ is an elliptic operator when F' = oy, at the maximum point of
W, we have

B9, g,

Ok

0> LW > Ji+ Ja+ J3 > 0.

Thus J; = 0, which implies Ay = --- = \,. Since W and W have the same
maximum points, we finish the proof. U

By similar discussion, for F' = S}, we have the following lemma.
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Lemma 4.8. For F'= 5} and C <0, ifk > 1 and o > %, then at the maximum
point of W, Ay =+ = A\,

Proof. 1t is easy to check that J, > 0. We just show Js > 0 since the rest of the
proof is similar to Lemma 4.7. Actually, for F' = S}, we have

EA gy gy kgt = a(e ~ DTS (V1 log S4)? + ak(k — AT SE 02,
k-1
> ala — 1)A[2S2%(V1 log Si)? + %Sﬁ%ﬁ(% log Sy )?
ka—1
= L O;ﬂ )S,f"‘/\l_Q(Vl log Sk)?,
where we use the Cauchy-Schwarz inequality for
A1 2 Ak A2
2 — 2 7 B < 2 M 7 _ 1.2
s = 2 ) (2 ) (2 ) e A
Therefore,
koo —1 2AF1
Ty > Msgaxl—lu;l 2 )9, log 8p)?
k Sk
alka —1 _
%Sza)\l 2(V1 log Sk)2
2a(ka — 1

) @20y — AY
Tsﬁ A2 — Si)(v1 log Sy )?
> 0.

5. PROOF OF THEOREM A

In this section, by considering the quantity

7 = Ftrb — (ﬁ% )\X|2
we will prove Theorem A.
Lemma 5.1.
L7+ R(VZ) =Ly + Lo + L,
where R(VZ) denote the terms containing VZ,

Ly = (B —1)Ftrb— i =) 5~ OF + C(nBF — trba—)\2)

B Zeon " DY
_ n(B—1), 4 1 OF —1\ 4 OF 2
Lo = (75 R 8>\itrb) (Vi F)
and
OF _, O*F
Ly = 2Fa)\ )\ . 1h12)q1—|-F)\p N, a)\ hziphjjp

+F)\QZ m m Y(Ni = A)THRE,.
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Proof. By Proposition 3.1, we have
n(f —1) oF

LZ = (X, V(Ftrb)) + (8 — 1)Ftrb — B - Oh;

F
h 'lhli) + 2ivvajtrb

OF
C(npBF — trb—— i

Oh;
O2F oF
kppak _~ — p.. R 2FBFspPtpka Bstilpg -
+ Fb™Pb ah”ahst ijpllstq + 8hw tilipqy

From

n(f—1

VjZ:trijF—l—FVjtl"b— 3 )<XV7 6J‘>,

we have

Vi(Ftrb) (X, e;) = ViZ(X, e;) Z X, e)?
l

n(ﬁ - 1))\;

=ViZ(X,e) + 3

2(vlF)2

-1
V;trb = F‘l(ViZ —trbV, F + n(ﬁﬂ))\llvlF)

(5.1) B
= F 'V, Z 4+ F*(—trb + Mxl)vm

Then, by Lemma 3.2, we have

% . gi+0(n5F trba—FAz)

N
n(p—-1), OF L OF
+<T>\i1(2F o AT -2 e r)(ViF)2

O\
OF O*F
+2Fﬁ>\ NS 1hf,qz+F)\p28/\ 2y hiiphjip

LZ+R(VZ) = (B —1)Ftrb—

112
+FX; 22& m — X)),
t

Lemma 5.2. For F = oy, if ka > 1 and C <0, then Ly > 0. In particular, for
F=0 i C<0anda >0, then L1 > 0.

n’

1

Proof. For F = ojf and C' < 0, by Newton-Maclaurin inequality and trb = 2=,
we have

—k+1)ok-
Ly = (ka — 1)oy (trb — n(n + Do

) — aC’J,?( —nk +trb(01 (k + 1)Jk+1)>

k‘Uk Ok
- —k+ Doy, k
> (ka—1)o—g(aa 1 _nin k:k Jok-1y _ %CU%(—nQ—i-trbal)

Y

0.
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Theorem 5.3. For F = o)y and C <0, if a > %, then a strictly convex closed
solution of (1.5) is a round sphere.

Proof. For F = o},

ka—1) ) 2004 14 | 1. 200k 1. o
L2:< ntka 1), -1 200k-1i | \-1) _ 200k-1i trb)(Viok)z

ka o ¢ ok

ka — 1 200k 1.3 \; 202071
= aa,%“(n( a )A;Q( Wk—1i% 1) — 29 Tkt trb) (Vilogoy)?
k Ok Ok
and
Ly = 205020‘_101;—1;1/\ I\ 1h12,ql + ala— 1)0,30‘_2)\;2(Vp0;€)2

+ a0 N 2ok g (huiphyjp — hjy)
= Ot(Oé — 1)a2aA_2(V IOg O’k)2 + 010'1260471)\_2(0’]@,1.2‘)\-71]1?@ + O'kfg.ijhiiphjjp)

2a—1 2 2a—1 2
+ao* A, E (205—14A; " — Ok—2; w)h”p + ao;, )\ Ol—1;iA; h”p
i#]

By using Lemma 2.7, oj— 11)\ > Op—2; and
Ok—lii;o _ AiOk—1;i Ok—1:i ;9 Ok—1;i 2
T (S (S ) = (X %)

on the second, the third and the last terms, respectively, we obtain

L3> a(a— 1)0,30‘)\;2(Vp log o%)? + o\ (V log o)% + Eak (V log o )?
aka+1) o, _
_alka+l) - )a,% A2 (Vplogoy)?.
Then,
ka —1) 2a0k_1:i )\ DNka — 1. 2a20,_14
Lyt Ly > ao,%a(/\;z(n( a—1)2a0k_1; N (n+1ka—n+ ) oCog_q, trb)(Vi log o1)2.
k Ok k Ok

Assume that z( is a maximum point of W. Then it is follows from Lemma 4.7
that zg is an umbilic point. At zg, thus we have

)\‘_Q(n(ka —1) 200814\ n (n+ Dka—n+ 1) B 2a20k_1;itrb
v k o k Ok
_ )\;Q(n(ka —1) 2ka n (n+Dka—n+1 2a2kn)
k n k n
1
=\2(n—1)(a— %) > 0.

Since Z < nW < nW (x¢) = Z(xo), Z attains its maximum at zo. Hence, there
exists a neighborhood of z(, denoted by U, such that in U, LZ + R(VZ) > 0. By
the strong maximum principle, we know Z = Z(x¢) is constant in U, which implies
W is also constant in U. Then the set of points where W attains its maximum is an
open set. Hence W is constant on M, which implies that M is totally umbilic. O

In order to discuss I’ = o further, we need the following lemma.
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Lemma 5.4. Suppose y; € R and t; = ﬁ for1 <i<mn. Foranyl <m <n,
the following inequality holds

2
>ty — daym Zyz > (1 2 )Q*%)(Zw)z

Proof. If Y, y; = 0, the inequality is trivial. If ). y; # 0, we may assume ) . y; = 1.
In fact, we will estimate the minimum of

f y1a~ ayn Ztlyz 4aym

under the condition ), y; = 1. Using Lagrangian multiplier technique, we solve
the following equations for f = f+ 73", vi — 1),

0 -~
0= ——f=2ty; —4adim + 7,
Oy
0 -~
8>
And, using Y, \jog_1,; = koy, we have y; = %—%T and 7 = ;Ta_%. Thus,
Yi = + (206, — 2= + 7). Because t; > 0, we know
1 2 1 4o 2 1
min — —(2 5im*7 72*72 - 7, 7
/ ;ti(a e Cl i )
1 2« 2 1 2a 1
_ 2212 ~ (=9 ahad) — = il
Z k2t2(tm ) +tm( + kt,, k)( ot kt, k)
i#Em
1 2 42
Y, Vg
- k2t; "ty tm
_ 1(270‘_1)2_4;“2
k't m

Now, we use (5.1) to estimate Ly and L3 in a different way.

Theorem 5.5. For F' = o and C <0, if2 <k <n-1 and% <a< % or
k=a =1, the strictly convex closed solution of (1.5) is a round sphere. For
F=0o2 and C<0,if 75 <« < , the strictly convex closed solution of (1.5) is

a round sphere.

Proof. Using Lemma 2.7 and Uk,l;i)\jfl — Op—2;5 > 0, we have

1 C1a— _
“oals=(a—1A; 2(Vplogow)® + oy ' A 2 (0 —14A; Thiy + 0k hisphyp)
P
Ok—13i y—2y—172 -1 1 2
+ TkA Ay hig, + oy, Z)\ (20%—1,4A o'kf2;ij)hijp
1 Ok—1;i 372
+20k g)\ Uk 12 ] — Ok— sz)hu]"_Q%: o >‘ hZ]j
1Z£] 1F)

Ok—1: g
Za/\;2(vplogak)2+%)\ AT, 2 ’“O_k“ o2
i#]
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Furthermore,
1 2an(ka — 1 14 Dka —
ﬁ(LQ + LS) > )\;1( om( o ) Ofk—1; + (n + ) o n )(V IOg Uk)
k k Ok k
20201, Ok—15i y—3,2
— ————trb(V; 1 2 )\ h;
p” rb(V;log op)? + ; o iij

Wy

ok P

It follows from (5.1) that

n(ka—1) _,0%—1; PN Ok—1;
(52) - ( L )>‘i ' akl phppi =R(VZ)+ ZAP 1(/\11 1hppi - aTquhqqi)-

p

By using (5.2), we can estimate the following two terms

20[20k_1Z Ok—1;iy—3,2
- = tb(Vilogoy) - 22 A 8hE
,J

Ok—1;i -
- QZTZ)\j YA 2Ry, — 2 (Vilog oy)?)

i J

Ok—1: 1 dan(ka — 1) o1,
- zz T,: Z)\j Y gy — aVilog op)? — p a,j AN (Vilogor)? + R(VZ).

Therefore,

—5= (L2 + L3) + R(VZ)

k
2 —Dka — 1 Vka —
>\ ( a((n ) = n) Tt + (n+ Dha n)\i_l)(vilogak)Q
(o k
+22"’“ Ll Z/\ A higs = aVilog o) + A TR
J#i k
- 4&M)\;2h1“v2 ].Og Ofk.
Ok
Let ¢; = Uk’“ o and using Lemma 5.4, we have

_20k—1; Ok—15i \ —
A=A RS — da—— A hyiiV log o,
Ok Ok

_ Ok—1; 2 Ok—1;i Ok—1;
=D N Q{th(Tkphpm) —4aTkhiii(Z o phppl’)}
7 P

>Z)\ (12ﬁ—1) 4a)(Vlogak).

t
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Then, we have

1

k

202 2 2(n—2) n—1
>3 N S| el 1) - 2=V (Vi logop)?
=2 A; { . (ktl- n—1)+a s +n+1) ’ }(VZ 0g o)

_ ;Aﬁ{(i?‘ (g —n-Da+ ") H(Vilogan ).

Since t; > 1,if k> 2and o € [16(7:;7_1%72,%] or k=a =1, then Ly + L3 > 0.
Since Ly > 0, by the strong maximum principle, we know Z is constant. Hence,
Li=Ly+L3=0. Incase C < 0or a> %, L, = 0 implies M is totally umbilic;
in other cases, Lo + L3 = 0 implies that the second fundamental form is parallel.
Either of these implies the solution is a round sphere. [

Proof of Theorem A. Combining Theorem 5.3 with Theorem 5.5, we complete the
proof of Theorem A. a
6. PROOF oF THEOREM B

For F' = S}, by similar discussion, we have
Lemma 6.1. For F =5 and C <0, ifk>1 and kaa> 1 , then L; > 0.

Proof. For F' = S} and C' <0, by Sg—;rl > %, we have

nSk—1
Sk

Ly = (ka—1)Sy (trb — ) — k:aCS?il (trbSkH — nSk) > 0.
[l

Theorem 6.2. For F' =S5} and C <0, ifk>1 and o > %, solution of (1.5) is a
round sphere.

Proof. For F' = S},
2ka Ap—t

n(ka —1) k 2
— A (= 1) — 2k
Y g e )~ 2kat

Ly = aS2 ( trB) (V, log Si)?

and
L3 > 2kaS7o INFTINTEN T B2 + o — 1)SR2A % (Y, log Si)?

Pqi
+ak(k — 1)S7* A 2N 2R
> ak(k+ 1)S3*7IAPAT? R + ala — 1)SEYA,2(V, log S)?

kE+1
> %Sia)\;z(vp log Si)? + a(ar — 1)SF* AT 3(V, log Sk)?,
where the last inequality is from Cauchy-Schwarz inequality for

(Vplog Sk)? = kQ(Aj];: hiip)2 < kz(z gi) (Z )\f];: hzzip) = k? Z Af];j hipe

A i

Then,

Ab=2 Dka—n+1 AF=1trb
Lo+ Ls> aS,%“{2na(ka -1) g + (n+1) Z nt )\;2 — 2ka®~2
k

}(Vp log Sy )?.
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At an umbilic point, we have

M2 4+ Dka—n+1 Ne=Ltrp
2na(ka — 1) 22— + A% — 2kt —
Sk k P Sk
= A;Q(Qa(ka -1+ (n+ 1)kZ —ntl 2ka?)
(n—1)(ka—-1) _,
= T)\p
> 0.

The rest of the proof is similar to Theorem 5.3.
O

Theorem 6.3. For F'= 5 and C <0, if k> 1 and o = %, the solution of (1.5)
is a round sphere.

Proof. In fact, for F' =S¥ and o = %, we have

Ly = — 2 8 F AP ~1(V; log Si )2
2 -T2k roA; ( i 10g k)
and
2 \k—1y-3,2 11—k, 2
L3 > 28, % N7 A, "hyy, + 2 A, = (V) log Sk.)

2—k
+(k—1)S, " A\ 2AFh?

1P
2—k
T\ k—1y—372
> 28, % NN he
where the last inequality is from Cauchy-Schwarz inequality for

(V, log Si)? = kQ(/\f];kl hmg)2 < k2(z 2,:) (Z Afl;:h?ip) =k Aj];:h?m

% %

By (5.1) for a = 1, we have

I 1
(6.1) R(VZ) + Zp: A O s — 2 Vilog5) =0.

Using (6.1), we have

2=k . 1
Ly+ Ls+ R(VZ) = 28,7 A1 AN (A, %h) —ﬁ(vilogSk)Q)

ppi
p
225 k-1 1y -1 1 2
=257 MY AT, hppi = 2 Vilog Sy)
p

> 0.

Since Ly > 0, by the strong maximum principle, we know Z is constant. Hence,
Ly = Ly + Ls = 0. This implies that the solution is a sphere.
O

Proof of Theorem B. Combining Theorem 6.2 with Theorem 6.3, we complete the
proof of Theorem B. O
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