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Abstract. A two-dimensional periodic Schrödingier operator is associated

with every Lagrangian torus in the complex projective plane CP 2. Using

this operator we introduce an energy functional on the set of Lagrangian tori.
It turns out this energy functional coincides with the Willmore functional

W− introduced by Montiel and Urbano. We study the energy functional on

a family of Hamiltonian-minimal Lagrangian tori and support the Montiel–
Urbano conjecture that the minimum of the functional is achieved by the

Clifford torus. We also study deformations of minimal Lagrangian tori and

show that if a deformation preserves the conformal type of the torus, then it
also preserves the area, i.e. preserves the value of the energy functional. In

particular, the deformations generated by Novikov–Veselov equations preserve
the area of minimal Lagrangian tori.

1. Introduction and main results

In this paper we study Lagrangian tori in the complex projective plane CP 2.
The paper consists of two parts. In the first part we introduce an energy functional
E on the set of Lagrangian tori. The value of E on the torus is an integral of
the potential of the associated Schrödinger operator. It turns out that it coincides
with the Willmore functional W− introduced by Montiel and Urbano [14] from
the twistor decomposition of the classical Willmore functional E(Σ) = W−(Σ) =
2
∫

Σ
dσ+ 1

4

∫
Σ
|H|2dσ (see Lemma 1.4 bellow). We study this energy functional on a

family of the Hamiltonian-minimal (H-minimal) Lagrangian tori constructed in [12]
and support the Montiel–Urbano conjecture that the minimum of the functional is
achieved by the Clifford torus. This conjecture can be considered as a Lagrangian
analogue of the famous Willmore conjecture for tori in R3, which was proved by
Marques and Neves [10].

The existence of the Schrödinger operator associated with Lagrangian tori allows
one to use methods of spectral theory and integrable systems to study Lagrangian
tori. In the second part of the paper we study minimal Lagrangian tori as an im-
portant subclass. More precisely, we study the deformations of minimal Lagrangian
tori preserving the value of the energy functional, i.e. preserving the area. Such
deformations give rise to eigenfunctions of the Laplace–Beltrami operator on mini-
mal Lagrangian tori with eigenvalue 6. Using the Novikov–Veselov (NV) hierarchy
[19] we propose a method of finding such eigenfunctions. We also prove that if a
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deformation of minimal Lagrangian tori preserves the conformal type of the torus
then it preserves the area of the torus. As an example of such deformations one
can consider deformations defined by higher equations from the NV hierarchy.

Let Σ be a closed Lagrangian surface immersed in CP 2 with the holomorphic
sectional curvature 4. Let x, y denote local conformal coordinates such that the
induced metric of Σ is given by

(1.1) ds2 = 2ev(x,y)(dx2 + dy2).

Let r : U → S5 be a local horizontal lift of the immersion defined on an open
subset U of Σ, where S5 ⊂ C3 is the unit sphere. Since Σ is Lagrangian and x, y
are conformal coordinates, we have

(1.2) 〈r, r〉 = 1, 〈rx, r〉 = 〈ry, r〉 = 〈rx, ry〉 = 0,

(1.3) 〈rx, rx〉 = 〈ry, ry〉 = 2ev,

where 〈 , 〉 denotes the Hermitian inner product on C3. Hence

R̃ =

 r
rx
|rx|
ry
|ry|

 ∈ U(3).

Then one can define a local function β : U → R, called the Lagrangian angle of Σ,
by eiβ(x,y) = det R̃. Consequently,

(1.4) R =

 r
1√
2
e−

v
2−i

β
2 rx

1√
2
e−

v
2−i

β
2 ry

 ∈ SU(3).

By direct calculations, from

(1.5) Rx = AR, Ry = BR,

where A,B ∈ su(3) (see Section 3), one can obtain the following lemma.

Lemma 1.1 ([11]). Any local horizontal lift r of a Lagrangian surface in CP 2

satisfies the Schrödinger equation Lr = 0, where

L = (∂x −
iβx
2

)2 + (∂y −
iβy
2

)2 + V (x, y),

with the potential

V = 4ev +
1

4
(β2
x + β2

y) +
i

2
∆β,

∆ = ∂xx + ∂yy.

Now assume that Σ is a Lagrangian torus given by the mapping

r : R2 → S5,

where r satisfies (1.2) and (1.3). Then the potential V is a doubly periodic function
with respect to a lattice of periods Λ ⊂ R2 and r is a Bloch eigenfunction of the
Schrödinger operator L, i.e.,

r((x, y) + es) = eipsr(x, y), ps ∈ R, s = 1, 2,

where {e1, e2} is the basis of Λ. We thus can introduce the energy of the Lagrangian
torus as follows.
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Definition 1.2. The energy E(Σ) of the Lagrangian torus Σ ⊂ CP 2 is defined by

E(Σ) =

∫
Σ

V dx ∧ dy.

Remark 1.3. Similarly one can define the energy functional of arbitrary closed
Lagrangian surfaces in CP 2.

It turns out that the energy functional has the following geometric meaning.

Lemma 1.4. The energy of a Lagrangian torus is

(1.6) E(Σ) = W−(Σ) = 2

∫
Σ

dσ +
1

4

∫
Σ

|H|2dσ,

where dσ = 2evdx∧dy is the area element of Σ and H = trh is the mean curvature
vector field in terms of the second fundamental form h.

Remark 1.5. In [14] W−(Σ) = 2
∫

Σ
dσ +

∫
Σ
|H|2dσ, but there another definition of

the mean curvature vector H = 1
2 trh is used.

Remark 1.6. From now we will use both energy functional and Willmore functional
for the same notion (1.6).

Let Σr1,r2,r3 be a homogeneous torus in CP 2, where r1, r2, r3 are positive numbers
such that r2

1 + r2
2 + r2

3 = 1. Any homogeneous torus can be obtained as the image
of the Hopf projection H : S5 → CP 2 of the 3-torus

{(r1e
iϕ1 , r2e

iϕ2 , r3e
iϕ3), ϕj ∈ R} ⊂ S5.

Every homogeneous torus is H-minimal Lagrangian in CP 2, i.e. it is a critical
point of the area functional under Hamiltonian deformations (see [15]). Among
homogeneous tori there is a minimal torus Σ 1√

3
, 1√

3
, 1√

3
, called the Clifford torus in

CP 2 and denoted by ΣCl. One can easily calculate the energy of a homogeneous
torus.

Lemma 1.7. The identity holds

E(Σr1,r2,r3) =
π2(1− r2

1)(1− r2
2)(1− r2

3)

r1r2r3
.

Montiel and Urbano observed [14] that among Lagrangian homogeneous tori in
CP 2, the Clifford torus attains the minimum of the energy functional

E(ΣCl) = 2Area(ΣCl) =
8π2

3
√

3
.

From this observation they proposed the following conjecture.

Conjecture 1.8. The Clifford torus attains the minimum of the Willmore functional
among all Lagrangian tori in CP 2.

Let us consider another family of H-minimal Lagrangian tori in CP 2 (see [12]).
Let Σm,n,k ⊂ CP 2 be given as the image of the surface

{(u1e
2πimy, u2e

2πiny, u3e
2πiky)} ⊂ S5

under the Hopf projection, where (u1, u2, u3) ∈ R3 such that

u2
1 + u2

2 + u2
3 = 1,
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mu2
1 + nu2

2 + ku2
3 = 0,

with integers m ≥ n > 0 and k < 0. Such surface Σm,n,k is an (immersed or
embedded) H-minimal Lagrangian torus or a Klein bottle. The topology of Σm,n,k
depends on whether the involution

(u1, u2, u3)→ (u1 cos(mπ), u2 cos(nπ), u3 cos(kπ))

preserves the orientation of the surface mu2
1 + nu2

2 + ku2
3 = 0 in R3. We obtain

Theorem 1.9. The energy of Σm,n,k is greater than the energy of the Clifford torus

E(Σm,n,k) > E(ΣCl).

Theorem 1.9 supports the conjecture 1.8.

Remark 1.10. M. Haskins estimated the area of a minimal Lagrangian torus in CP 2

in [5]. It follows from his estimate that Conjecture 1.8 is valid for tori with spectral
curves of large genus. For arbitrary minimal Lagrangian tori the conjecture remains
open.

In the second part of the paper we study deformations of minimal Lagrangian
tori in CP 2.

Theorem 1.11. Let Σ0 be a minimal Lagrangian torus in CP 2. Suppose that Σt
is a smooth deformation of Σ0 preserving the conformal type of the initial surface
such that Σt is still minimal Lagrangian. Then the area of Σt is preserved, i.e.,

Area(Σt) = Area(Σ0).

Remarkable examples of such deformations are those generated by the NV hier-
archy. Let Σ ⊂ CP 2 be a minimal Lagrangian torus. On Σ there are coordinates
x, y such that the induced metric is of the form ds2 = 2ev(x,y)(dx2 + dy2), where v
satisfies the Tzizéica equation

(1.7) ∆v = 4(e−2v − ev).
Let r : R2 → S5 be a horizontal lift map for Σ satisfying (1.2) and (1.3).

Theorem 1.12 ([11]). There is a mapping r̃(t) : R2 → S5, t = (t1, t2, . . . ), r̃(0) =
r, defining a minimal Lagrangian torus Σt ⊂ CP 2 such that Σ0 = Σ. The map r̃
satisfies the equations

Lr̃ = ∆r̃ + 4eṽ r̃ = 0,

∂tn r̃ = A2n+1r̃,

where A2n+1 is a differential operator of order (2n+1) in x, y and ds2 = 2eṽ(x,y,t)(dx2+
dy2) is the induced metric on Σt. The deformation r̃(t) preserves the conformal
type of the torus and the spectral curve of the Schrödinger operator L. The function
Ṽ = 4eṽ with ṽ(0) = v satisfies the NV hierarchy

∂L

∂tn
= [A2n+1, L] +B2n−2L,

where B2n−2 is a differential operator of order 2n− 2.

Thus Theorems 1.11 and 1.12 lead to the following corollary.

Corollary 1.13. Deformations of minimal Lagrangian tori given by the Novikov–
Veselov hierarchy (see Theorem 1.12) preserve the area of tori.
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Taimanov [17], [18] proved that the modified NV equation defines a deformation
of tori in R3, which preserves the value of the Willmore functional. The tori of
revolutions are preserved by this deformation. It would be interesting to prove that
the first NV equation defines a deformation of arbitrary Lagrangian tori in CP 2. In
this case the spectral curve of the corresponding Schrödinger operator is preserved
and the energy is also preserved. Moreover, since the first NV deformation preserves
the minimal Lagrangian tori, it gives a support of Conjecture 1.8.

Deformations of minimal Lagrangian tori are related to eigenfunctions of the
Laplace–Beltrami operator with eigenvalue 6. The preceding theorem provides a
method to find such eigenfunctions. In the next theorem two eigenfunctions related
to the second NV equation are found. Other eigenfunctions can be found with the
help of explicit calculations related to the higher NV equations.

Theorem 1.14. Let ds2 = 2ev(x,y)(dx2 + dy2) be a metric on a surface Σ and v
satisfy the Tzizéica equation. Then functions

α1 = v2
x − v2

y + vxx − vyy,
α2 = vxvy + vxy

are eigenfunctions of the Laplace–Beltrami operator with eigenvalue 6.

Acknowledgements. The authors are grateful to professors Yong Luo, Iskander
Taimanov and Francisco Urbano for their useful discussions.

2. An energy functional for Lagrangian tori in CP 2

In this section we prove Lemmas 1.4, 1.7 and Theorem 1.9.

2.1. Proof of Lemma 1.4. For a given Lagrangian surface Σ ⊂ CP 2, its mean
curvature vector field H = trgh satisifies

H = Jgradβ,

where h is the second fundamental form, J is the standard complex structure on
CP 2 and gradβ is the gradient of the Lagrangian angle β with respect to the induced
metric ds2 = 2ev(dx2 + dy2). Thus

|H|2 = |Jgradβ|2 = |gradβ|2 =
e−v

2
(β2
x + β2

y),

and

E(Σ) =

∫
Σ

V dx ∧ dy =

∫
Σ

4evdx ∧ dy +
1

4

∫
Σ

2ev|H|2dx ∧ dy +
i

2

∫
Σ

4βdx ∧ dy

= 2

∫
Σ

dσ +
1

4

∫
Σ

|H|2dσ.

2.2. Proof of Lemma 1.7. Let Σr1,r2,r3 ⊂ CP 2 be a homogeneous torus. Then
by choosing of appropriate coordinates and taking automorphisms of CP 2, the
horizontal lift r : R2 → S5 of Σr1,r2,r3 can be given by

r(x, y) = (r1e
2πix, r2e

2πi(a1x+b1y), r3e
2πi(a2x+b2y)),

where r2
1 + r2

2 + r2
3 = 1. It follows from (1.2) and (1.3) that

a1 = a2 = − r2
1

r2
2 + r2

3

, b1 =
r1r3

r2(r2
2 + r2

3)
, b2 = − r1r2

r3(r2
2 + r2

3)
.
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By direct calculations, we obtain that the lattice of periods Λ for H ◦ r is Λ =
{Ze1 + Ze2} ⊂ R2, where

e1 = (r2
2 + r2

3, 0), e2 = (r2
3,
r2r3

r1
).

By using 〈rx, rx〉 = 〈ry, ry〉 =
4π2r21
r22+r23

, we have

ds2 =
4π2r2

1

r2
2 + r2

3

(dx2 + dy2),∫
Σr1,r2,r3

dσ = 4π2r1r2r3,

β = 2π
1− 3r2

1

r2
2 + r2

3

x− 2π
r1(r2

2 − r2
3)

r2r3(r2
2 + r2

3)
y,

V =
π2(1− r2

2)(r2
1 + r2

2)

r2
2r

2
3

.

Hence the energy of Σr1,r2,r3 is

E(Σr1,r2,r3) = 8π2r1r2r3 + π2 (r2
1r

4
2 + r2

2r
2
3 − 8r2

1r
2
2r

2
3 + 9r4

1r
2
2r

2
3 + r2

1r
4
3)

r1r2r3(r2
2 + r2

3)

=
π2(1− r2

1)(1− r2
2)(1− r2

3)

r1r2r3
.

Thus it is easy to find that the minimum of E(Σr1,r2,r3) is attained on the Clifford
torus Σ 1√

3
, 1√

3
, 1√

3
.

2.3. Proof of Theorem 1.9. By taking an appropriate parametrization of the
curve given by

u2
1 + u2

2 + u2
3 = 1,

mu2
1 + nu2

2 + ku2
3 = 0,

where m ≥ n > 0 and k < 0 are constant integers, we obtain

ψ(u, y) = (u1e
2πimy, u2e

2πiny, u3e
2πiky) ⊂ S5,

with

u1 = sinx

√
k

k −m
, u2 = cosx

√
k

k − n
, u3 =

√
n cos2 x

n− k
+
m sin2 x

m− k
.

Thus we have a horizontal lift of the surface in CP 2 given by

r(x, y) = (u1(x)e2πimy, u2(x)e2πiny, u3(x)e2πiky).

Now let us consider the torus as given above, denoted by Σm,n,k.
By straightforward calculations, we obtain that the induced metric on Σm,n,k is

ds2 = 2ev1(x)dx2 + 2ev2(x)dy2,

where

2ev1(x) = − k(m+ n− (m− n) cos(2x))

2mn− k(m+ n) + k(m− n) cos(2x)
,

2ev2(x) = −2kπ2(m+ n− (m− n) cos(2x)),

and the Lagrangian angle is β = 2π(k +m+ n)y + π
2 .
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From above we know that e1 = (2π, 0) and e2 = (0, 1
p ) give the basis of the

lattice of the periods, where p = (m − k, n − k) is the largest common factor of
m− k and n− k. Moreover,

A(Σm,n,k) =

∫
Σm,n,k

dσ =

∫
[0,2π]×[0, 1p ]

2e
v1+v2

2 dx ∧ dy

=
1

p

∫ 2π

0

−
√

2kπ(m+ n− (m− n) cos 2x)√
2mn− k(m+ n) + k(m− n) cos 2x

dx,∫
Σm,n,k

|H|2dσ =

∫
[0,2π]×[0, 1p ]

|H|22e
v1+v2

2 dx ∧ dy

=
1

p

∫ 2π

0

2
√

2(k +m+ n)2π√
2mn− k(m+ n) + k(m− n) cos 2x

dx,

E(Σm,n,k) = 2A(Σm,n,k) +
1

4

∫
Σm,n,k

|H|2dσ

=
1

p

π√
2

∫ 2π

0

4k(m− n) cos 2x+ (m+ n− k)2√
2mn− k(m+ n) + k(m− n) cos 2x

dx.

It follows from k < 0 and n− k = pn0 with some positive integer n0 that

E(Σm,n,k) ≥ 1

p

π√
2

∫ 2π

0

4k(m− n) cos 2x+ (m+ n− k)2√
2mn− k(m+ n)− k(m− n)

=
π2

p

(m+ n− k)2√
m(n− k)

=
π2

p

(m+ n− k)(m+ pn0)
√
mpn0

≥ 2π2

p
(n+m− k) = 2(

m

p
+ n0)π2 > 2π2 >

8

3
√

3
π2.

Thus the proof of Theorem 1.9 is completed.

3. deformations of Minimal Lagrangian tori

Now consider a Lagrangian torus in CP 2 defined by the composition of the maps
r : R2 → S5 and the Hopf projection H : S5 → CP 2, where r satisfies (1.2) and
(1.3). Then the associated frame R given by (1.4) satisfies (1.5), where

A =

 0
√

2e
v+iβ

2 0

−
√

2e
v−iβ

2 iFe−v i(
βy
2 + e−vG)− vy

2

0 i(
βy
2 + e−vG) +

vy
2 −iFe−v

 ∈ su(3),

B =

 0 0
√

2e
v+iβ

2

0 iGe−v i(βx2 − e
−vF ) + vx

2

−
√

2e
v−iβ

2 i(βx2 − e
−vF )− vx

2 −iGe−v

 ∈ su(3),

with real functions F and G given by

F = − 1

2i
(〈rxy, ry〉 − ev(vx + iβx))

and

G =
1

2i
(〈rxy, rx〉 − ev(vy + iβy)).
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The compatibility condition

Ay −Bx + [A,B] = 0

leads to the following equations (see [11] and also [8], [9])

2Fx + 2Gy = (βxx − βyy)ev,

2Fy − 2Gx = (βxvy + βyvx)ev,

4v = 4(F 2 +G2)e−2v − 4ev − 2(Fβx −Gβy)e−v.

3.1. Minimal Lagrangian tori. Now we assume that Σ is minimal with β =
0. From the above equations it follows that F and G are constants. With the
appropriate change of coordinates (a homothety and a rotation) one can assume
that F = 1 and G = 0. Hence

(3.1) A =

 0
√

2e
v
2 0

−
√

2e
v
2 ie−v −vy2

0
vy
2 −ie−v

 ∈ su(3),

(3.2) B =

 0 0
√

2e
v
2

0 0 −ie−v + vx
2

−
√

2e
v
2 −ie−v − vx

2 0

 ∈ su(3),

and v satisfies the Tzizéica equation (1.7). Smooth periodic solutions of the Tzizéica
equation are finite-gap solutions [16]. Minimal Lagrangian tori were studied in [3]–
[6]. Assume that we have a deformation Σt of Σ, Σ0 = Σ, given by the mapping

r(t) : R2 → S5

with the induced metric ds2 = 2ev(x,y,t)(dx2 + dy2), where v(x, y, t) satisfies (1.7).
We have Rt = TR, where

(3.3) T =

 is a1 + ib1 a2 + ib2
−a1 + ib1 is1 a3 + ib3
−a2 + ib2 −a3 + ib3 −i(s+ s1)

 ∈ su(3),

with functions s, s1, a1, a2, a3, b1, b2 and b3 depending on x, y and t. From the
compatibility conditions

(3.4) At − Tx + [A, T ] = 0, Bt − Ty + [B, T ] = 0,

we obtain the identities

b1 =
e−

v
2 sx

2
√

2
, b2 =

e−
v
2 sy

2
√

2
,

a3 =
e−2v(

√
2sy − 2e

3
2 v(a1vy − 2a2x))

4
√

2
,

b3 =
e−

3
2 v(−8a2 −

√
2e

1
2 v(sxvy + syvx − 2sxy))

8
√

2
,

s1 =
e−

3
2v(8a1 +

√
2e

1
2 v(8evs+ syvy − sxvx + 2sxx))

8
√

2
and the following overdetermined system of equations for s, a1, a2 which determine
the deformation:

(3.5) vt +
1

2
e−2v(−

√
2e

3
2va2vy − 2

√
2e

3
2 va1x + sx) = 0,
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(3.6) 4s+ 12evs = 0,

(3.7) 2a1x − 2a2y − a1vx + a2vy −
√

2e−
3
2 vsx = 0,

(3.8) 2a1y + 2a2x − a1vy − a2vx +
√

2e−
3
2 vsy = 0,

(3.9)
√

2e
3v
2 a2vy + 2

√
2e

3v
2 a1x − sx + 2e3v(b3vy + sx + s1x) = 0,

(3.10) 2e−va3 − s1y + b3vx = 0.

Now we can give a geometric interpretation of s.

Remark 3.1. (1) The deformation we obtained above is a Hamiltonian defor-
mation with the Hamiltonian s

2 . In fact,

r⊥t =
b1√
2e

v
2

irx +
b2√
2e

v
2

iry =
e−v

4
(sxirx + syiry) = grad

s

2
,

where r⊥t denotes the normal component of the velocity vector rt.
(2) Observe that (3.6) can be rewritten as

4
LB
s = 6s,

where 4
LB

is the Laplace–Beltrami operator with respect to the induced
metric on Σt. In other words, the function s is an eigenfunction of the
Laplace–Beltrami operator with the eigenvalue 6.

Proof of Theorem 1.11. Using (3.5) and (3.7), we get

vt =
e−

v
2 (2a2y + a2vy + 2a1x + a1vx)

2
√

2
.

Considering the area form dσ = 2evdx ∧ dy, we set

Ω = ∂t(2e
v)dx ∧ dy =

e
v
2 (2a2y + a2vy + 2a1x + a1vx)

√
2

dx ∧ dy.

It turns out that Ω = dω, where

ω =
√

2e
v
2 (a1dy − a2dx).

If Σt is a smooth deformation of Σ0 preserving the conformal type of Σ0, then

d

dt

∫
Λ

2evdx ∧ dy =

∫
Λ

Ω =

∫
Λ

dω = 0,

where Λ is a lattice of periods. The proof is completed.
�
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3.2. The Novikov–Veselov hierarchy and deformations of minimal La-
grangian tori. In this subsection we consider an example of a deformation of
minimal Lagrangian tori defined by the second NV equation. In particular we give
an explicit solution of the system (3.5)–(3.10) in terms of the function v defining
the induced metric (1.1) of the torus.

Let us recall the NV hierarchy. Let L be a Schrödinger operator

L = ∂z∂z̄ + V (z, z̄),

and

A2n+1 = ∂2n+1
z + u2n−1∂

2n−1
z + · · ·+ u1∂z + ∂2n+1

z̄ + w2n−1∂
2n−1
z̄ + · · ·+ w1∂z̄,

where uj = uj(z, z̄), wj = wj(z, z̄). The operator ∂tn − A2n+1 defines an evolution
equation for the eigenfunction r of the Schrödinger operator Lr = 0 by

∂tnr = A2n+1r.

The n-th NV equation is

∂L

∂tn
= [A2n+1, L] +B2n−2L,

where B2n−2 is a differential operator of order 2n− 2. Note that V and the coeffi-
cients of A2n+1 are the unknowns. In the case of the periodic Schrödinger operator
L the NV equation preserves its spectral curve.

When n = 1, as obtained in [13], we could take V = ev(z,z̄,t1), where v is a real
function satisfying the Tzizéica equation, and

A3 = ∂3
z + ∂3

z̄ − (v2
z + vzz)∂z − (v2

z̄ + vz̄z̄)∂z̄,

B0 = −∂z(v2
z + vzz)− ∂z̄(v2

z̄ + vz̄z̄).

It turns out the first NV equation reduces to vt1 = 0. Hence it cannot provide a
deformation of minimal Lagrangian tori in CP 2.

For the case where n = 2, as discussed in [13], assume

A5 = ∂5
z + u3∂

3
z + u3z∂

2
z + u1∂z + ∂5

z̄ + w3∂
3
z̄ + w3z̄∂

2
z̄ + w1∂z̄,

B2 = u3z∂
2
z + u3zz∂z + w3z̄∂

2
z̄ + w3z̄z̄∂z̄ + u1z + w1z̄,

the second NV equation reduces to

u3z̄ = 5Vz, w3z = 5Vz̄,(3.11)

u1z̄ = 10Vzzz + 3u3Vz + u3zV − u3zzz̄,(3.12)

w1z = 10Vz̄z̄z̄ + 3w3Vz̄ + w3z̄V − w3zz̄z̄,(3.13)

Vt2 = ∂5
zV + u3Vzzz + 2u3zVzz + (u1 + u3zz)Vz + u1zV

+∂5
z̄V + w3Vz̄z̄z̄ + 2w3z̄Vz̄z̄ + (w1 + w3z̄z̄)Vz̄ + w1z̄V.(3.14)

Moreover, by the argument of [13], the equations (3.11)–(3.13) can be solved
explicitly in the following way.
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Theorem 3.2 ([13]). Let v(z, z̄, t2) be a real function satisfying the Tzizéica equa-
tion and V = ev(z,z̄,t2). Then the functions

u3 = −5

3
(v2
z + vzz), w3 = ū3,

u1 =
5

9
v4
z +

10

9
v2
zvzz −

5

3
v2
z −

20

9
vzvzzz −

10

9
vzzzz, w1 = ū1,

satisfy equations (3.11)–(3.13). The second Novikov–Veselov equation (3.14) at-
tains the following form

(3.15) vt2 = h+ h̄,

h =
1

9
(5v1v

2
2 + 5v2

1v3 − 5v2v3 − v5
1 − v5),

where vj = ∂jzv.

Let us consider a minimal Lagrangian torus defined by r : R2 → S5 such that
Rx = AR,Ry = BR, matrices A,B have the form (3.1), (3.2). If we rewrite the
NV deformation

∂t2r = A5r

in terms of the frame R, we get the corresponding matrix T ∈ su(3) such that
Rt = TR. The matrix T is given by (3.3), where

a1 =
1

72
√

2
e
v
2 (144e−v − v4

y − 3v2
y − vyyyy − v4

x + 12v2
xy − 3vxvxyy

−2vyy(2v2
x − 3vxx)− 2v2

y(2vyy + 3v2
x − 2vxx)− 4v2

xvxx + 3v2
xx

−vy(vyyy − 16vxvxy − 3vxxy)− 6vxxyy − vxvxxx − vxxxx),

a2 =
1

72
√

2
e
v
2 (vxvyyy − 4v3

yvx + 8v2
yvxy − 4vxyyy − 4vxy(3vyy + 2v2

x − 3vxx)

−3vxvxxy + vy(3vxyy + 4vx(2vyy + v2
x − 2vxx)− vxxx) + 4vxxxy),

s =
1

3
(v2
x − v2

y + vxx − vyy).

By direct calculation one can check that a1, a2 and s provide the solution to the
equations (3.5)–(3.10). In other words, equations (3.4) follow from the Tzizéica
equation (1.7) and the second NV equation (3.15).

Proof of Theorem 1.14. Given v satisfying the Tzizéica equation, it is easy to see
that the function η = v2

z+vzz satisfies (3.6), which means that η is an eigenfunction
of the Laplace-Beltrami operator with eigenvalue 6. Thus s = α1 = 4Reη, α2 =
−2Imη give two real eigenfunctions of the Laplace-Beltrami operator with eigen-
value 6 on the minimal Lagrangian torus. �
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