SELF-SIMILAR SOLUTIONS OF CURVATURE FLOWS IN
WARPED PRODUCTS

SHANZE GAO AND HUI MA

ABSTRACT. In this paper we study self-similar solutions in warped products
satisfying F' — F = g(A(r)0r, V), where F is a nonnegative constant and F is
in a class of general curvature functions including powers of mean curvature
and Gauss curvature. We show that slices are the only closed strictly convex
self-similar solutions in the hemisphere for such F. We also obtain a similar
uniqueness result in hyperbolic space H? for Gauss curvature F' and F > 1.

1. INTRODUCTION

Self-similar solutions are important in the study of mean curvature flow and
powers of Gauss curvature flow in Euclidean space, since they describe the asymp-
totic behaviors near the singularities (See [11, 7, 4, 10] etc). Remarkable results due
to Huisken [11] and Choi-Daskalopoulos [6], Brendle-Choi-Daskalopoulos [5] show
the uniqueness of closed self-similar solutions for mean curvature flows and powers
of Gauss curvature flows respectively. Although relation between self-similar solu-
tions of general curvature flows and their singularities is unclear now, there have
been some study on rigidity of closed self-similar solutions of curvature flows, for
instance, [12] and [9], etc. Recently self-similar solutions of the mean curvature
flows were introduced on manifolds endowed with a conformal vector field [1], such
as Riemannian cone manifolds [8] and warped product manifolds [14, 1]. In par-
ticular, Futaki-Hattori-Yamamoto [8] proved that if the mean curvature flow in a
Riemannian cone manifold develops a type I singularity, after a parabolic rescaling,
there exists a subsequence which convergences to a self-similar solution.

In this paper we study closed strictly convex self-similar solutions of a class
of curvature flows in Riemannian warped products. By using the properties of
constant sectional curvatures and the advantage of 2-dimension case, we obtain the
uniqueness of closed strictly convex self-similar solutions in general hemispheres and
3-dimensional hyperbolic spaces. Even for hemispheres, there are delicate difference
with the results for Euclidean spaces (See Remarks 1.3 and 1.7 below.)

Let N = [0,7) x S™ be a warped product manifold with metric § = dr? + \?(r)gs
where g5 is the standard metric of S™. Let X : M — N be a smooth embedding of
a closed, orientable hypersurface in N with n > 2, satisfying the following equation

(L.1) F(r(x)) = F = g(A(r(2)) 0 (x), v(x)),
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for all x € M, where F is a constant which can be regarded as a forcing term with
respect to the flow, v is the outward unit normal vector field of M and F' is a homo-
geneous smooth symmetric function of the principal curvatures k = (k1, K2, ..., kn)
of M, which satisfies the following condition.

Condition 1.1. Suppose F is a smooth function defined on the positive cone I' . =
{k €R"K1 > 0,60 >0, - ,ky >0} of R, and satisfies the following conditions:
i) F is positive and strictly increasing, i.e., F' > 0 and % >0 forl<i<n.
ii) F is homogeneous symmetric function with degree B3, i.c., F(tr) = t°F(k)

for allt € R;.

iii) For anyi # j,

OF . _ OF ..
T UTRC N
Ri — Rj
iv) For all (y1,...,yn) € R",
1 0logF d?log F
(1.2) — vi + ) Yy =0.
21: Kj 8;‘@‘ y 8/@8/@ J

We know that A(r)d, is a conformal vector field on N and Vy(\9,) = 'Y for any
vector field Y on N. For a warped product N, when the warping factor A(r) = r,
sinr, or sinhr, N is the Euclidean space R™*!, the sphere S**! or the hyperbolic
space H"*! with constant sectional curvature e = 0, 1 or —1 respectively. In R™+!,
A(r)0, is just the position vector. So in the spirit of [14, 1], we call solutions of
(1.1) self-similar solutions to the following curvature flow

0 ~
(1.3) &X =—(F—-F).
 We give a further brief explanation here and more details can be found in [1]. If
X satisfies the equation

0 ~

(1.4) &X = —¢(t) A0,
for a smooth function ¢(¢) on ¢, then it gives a family of conformal hypersurfaces.
Suppose X satisfies (1.3) and (1.4) simultaneously, then X satisfies

F—F=0(t)g(A,v)
up to a tangential diffeomorphism for each ¢ € [0, 7). This is why solutions to (1.1)

are called self-similar solutions to (1.3).
In this paper, we prove the following main theorem.

Theorem 1.2. Let M be a closed, strictly convex hypersurface in the hemisphere
ST‘I satisfying

F—F =g(\o.,v).
For 8>1 and F > 0, if F satisfies Condition 1.1, then M is a slice {ro} x S™ in
S’ffl,

Remark 1.3. In Euclidean space, a similar theorem is proven for § > 1 in [9].
Due to the positivity of sectional curvature, we can further achieve § = 1 for the
hemisphere.
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Let
k
Uk(’%): E : Kiy Kig ** " Rigs Sk(’{): E Kis
1<i1<ig--<ip<n i=1

be the k-th elementary symmetric function and the k-th power sum of principal
curvatures, respectively. Since off and Sy satisfy Condition 1.1 if & > 0 (see [9]),
we have the following corollaries immediately.

Corollary 1.4. Let M be a closed, strictly convex hypersurface in the hemisphere
Sﬁ“ satisfying

(1.5) o (k) — F = g(A\or,v).
If1<k<n-1, Ozz% and F >0, then M is a slice {ro} x S™ inSiﬂ.

Corollary 1.5. Let M be a closed, strictly convex hypersurface in the hemisphere
Sﬁ“ satisfying

(1.6) S (k) — F = §(A,, ).

Ifk>1,a> % and F > 0, then M is a slice {ro} x S™ in Si“.

(03

For the power of Gauss curvature case, ie., F' = o3,

corollary.

we have the following

Corollary 1.6. Let M be a closed, strictly convex hypersurface in the hemisphere
Sﬁ“ satisfying

(1.7) op (k) = F = g(Aoy, v).
If a > %—&-2 and F > 0, then M is a slice {ro} x S™ in S,

Remark 1.7. In Euclidean space, M is an ellipsoid under the same conditions when
o= %4-2 (See [2, 5]). But in the hemisphere, the positivity of the sectional curva-
tures of the ambient manifold forces M to be umbilic.

In 3-dimensional hyperbolic space H?, deforming surfaces by a speed function
o3 — 1 is studied in [3]. For self-similar solutions to a relevant curvature flow in H?,
we obtain the following theorem.

Theorem 1.8. Let M be a closed, strictly convex surface in H® satisfying
(1.8) o2(k) — F = g(AOy, V).
If F > 1, then M is a slice {ro} x S* in H3.

The paper is organized as follows. In Section 2, we present basic properties of
curvature tensors in warped products, then we derive some fundamental formulas
for self-similar solutions in warped products with a general curvature function F’
satisfying Condition 1.1. In Section 3 and Section 4, we use a two-step maximum
principle to prove the case 8 > 1 for Theorem 1.2. The case for § =1 is proved in
Section 5. In the last section, we finish the proof of Corollary 1.6 and Theorem 1.8.
Throughout this paper, the summation convention is used unless otherwise stated.
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2. PRELIMINARIES

Let N be a warped product of the form N = [0,7) x S™ endowed with metric
g = dr? + \2(r)gs. Suppose that M™ (n > 2) is a smooth closed strictly convex
embedded orientable hypersurface in N satisfying

F_f:.g()‘a’my>7

described as above. Let h = (h;;) denote the second fundamental form with respect
to an orthogonal frame {ej,...,e,} on M. The principal curvatures ki, ..., &, are
the eigenvalues of h.

For convenience we first state the properties of curvature tensors of (IV,g). Our
convention for the (1,3)- and (0, 4)-Riemannian curvature tensors of the Levi-Civita
connection V of (N, g) are given by

R(Y1,Y3)Ys =Vy, Vy, Y3 — Vy, Vi, Y5 — Vi, vy Vs

and

R(Y1,Ys,Y3,Yy) = —g(R(Y1,Y2)Y3, Ya),
respectively, for vector fields Y7, Ys,Ys, Y, on N. Thus the (0,4)-Riemannian cur-
vature tensor of (N, g) is

- 17}\/2_ ~ 17)\/2 b ~
(2.1) R—Wg@g(v+)\>g@d7“2,

where @ is the Kulkarni-Nomizu product, cf. [13].
In terms of orthonormal frames {ei1, - ,e,, v} of N along M, we use the con-

ventions R;;x = R(e;, ej,ex, 1) and Ry, = R(v, e5,¢e5,ex). Denote r; = §(0r, €;)
and r, = g(9,,v). We have

(2.2)
B 1 — )\/2 1— )\/2 )\//
Rijkl = T(éikéjl_éilajk)_ ()\2 + )\) ((5ik7’j7‘l‘|‘(5jl7’i7"k—(SilT'jT‘k—(sjk’f’iT'l)?
and
_ 1-X2 )
(2.3) Ryiji = — (/\2 + A) 7y (0ikTj = 0ijT)-

Let V denote the Levi-Civita connection with respect to the induced metric on
M. Tt follows from a direct computation that the covariant derivatives of r, and
7} are given by

I

A
Tvil = vlru = Vlg(arv V) = _XTITV + hlmrm

and
!

Ty = VT, = X((;kz —rE71) — Rty

Thus we obtain the following covariant derivative of the curvature tensor
B 1— )\2 A\ / N /1 — N2 A\
Ryijia = {— (/\2 + A) 2 </\2 + A) } riry (kT — 0ijTk)

A2 A

1— )\/2 P bV )
+ + — | § —PumTm (0T — dij7r) — XTV(&:/@@'[ — 0ij0k1) + 73, (Sirchji — 0ijhir)

b
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Denote h;jr = Vihi; and hiji = V;Vih;;. Making use of the Gauss equation

Rijii = Rijri + hixhji — hahjg,
the Coddazi equation
hijk = hik; + Ruiji
and the Ricci identity, we get

hijrr = hikji + Ruijka
= hkitj + Pk Rmiji + Rim Runkjt + Ruijka
= hitij + Bk (Rmghi — Rijhont) + Rim (R — hmihr)
+ Rukit;j + Ruiji + hank Rinigi + Pim Ronjit-

By straightforward calculation, we have

Rukit;j + Ruijist + hmk Romigt + Rim Rt

1— \2 A\ 4 N /1= N2 A\
= { <)\2 + )\> + QX <)\2 + )\) } ry((;klrirj — 5ij7"k7"l)

12

(hkj5il — hyi6i5 4 hij6r — hil5kj)

)\2
1— )\/2 )\//
- (>\2 + )\) (hjk’l“ﬂ‘l — hkﬂ‘ﬂ“j + hij’l“kﬁ — hilrkrj)
1— )\/2 )\//
- ( 2 + )\> TT?L((Sleihjm — 5kﬂ'lhjm + 5ikrjhlm — 5ij7’khlm

+ Bk 0ur; — Bmk0iiTt + RimOrir; — RimOk;T1)-

Let b = (b/) denote the inverse of the second fundamental form h = (h;;) with
respect to a given orthonormal frame {ey,--- ,e,} of M. Define the operator £ by
L= %Vivj. It follows from Condition 1.1 that £ is an elliptic operator. Define
a function Z by

7 = Ftrb — M@

/3 )

where @ = for A(s)ds. We next derive some basic formulas of £ for further use.
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Proposition 2.1. Given a smooth function F' : M — R described as above, the
following equations hold:

oF oF
——hhi (F — -
Ohs; 1hiji( F)+ i
(2) Ehkl = g()‘a’m vhlk) + )\/hlk + hlmhkm]: + Rukmlg()\ar7 em)
0’F oF

7h, h
Ohi;Ohg 7*7" T Ohy;
oF - _ _ _

+ Ohis (Rl/ikj;l + Rukli;j + hmiRmklj + hkamilj),
ij

(3) LW =g(AD,, VM) — NbM — 51y F — P69 Ry G( Ny, €1
0*F oF

hiinhs
ahu 8h«st P tq 8}7,1_]

(1)  LF =g(\d,,VF)+ B\F — Ryj1g(A\or, e1),

hmjhmihkl + (B - I)Fhkmhml

+ bkrpet P hmib™ — (B — 1) Féy

oF _ _ _ _
- bkpbqlW(Rvipj;q + Rqui;j + hmiRmqu + hmemiqj)
ij
oF
+ Qkathblq o hstihqua

)

11

(4) L® :A’ng — BF(F — F),

5) cz-225.pv, b+ G(ADy, V(Fitrb)) + (8 — 1)X (Ftrb — 3 Z

8hU 8hu
F O2F

—— hithjtrthb — AnF ) L

(g Mithittxb = BB} F Dhiy Oy 75t
OF oF _
+ 2FbrspPtpka o Pstiloas + (trb o FOF Y™V R i G(AOr, m)
17 17
OF - _ _ _
— Fb*rpa Ohis (Rvipj;q + lepqi;j + hmiRmqu + hmemiqj)'
ij

Proof. (1) From
Ve, A0, = Ne,,
we know
ViF = g(A\Or, hiep)
and
ViV,;F = hj;;g(A\0y,e;) + N hij — hyhji(F — F)
= hijig( Ao, e1) + Nhij — hyhji(F — F) + Ryjuig( A0y, €1).

Then from % = GF we get

F F o
LF =G\, VF)+ NF — oF gTRleig()‘ara er).
ij

ha(F —
ahij hllhjl( ]:) +



SELF-SIMILAR SOLUTIONS OF CURVATURE FLOWS

(2) From (2.4), we have

oF
Lhy = ——hpii
ki hy; klij

oF
= o (gt + i (hanthag = Bt + i (hanthss = )
Ol
+ Ryikja + Rokiij + hmi Rk + hkamilj>
0*F oF

————hiithstt — =—hmihmih Fhimhm
Dy kNt j &l + BEhy !

= F —
V.V e

oF - _ _ _
+ O s (Ruikj;l + Rl/kli;j + hmiRmk:lj + hkamilj)
ij
= g()‘ara Vh/lk) + )‘/hlk + hlmhkm]: + RVk)mlg()\a’f‘) em)

0*F oF
— ————hiithsyy — =——hmihmih — 1) Fhghm
sy kst By ki + (B—=1)Fhy !

oF - _ _ _
+ M (Rm’kj;l + Rukli;j + hmiRmk:lj + hkamﬂj).
ij

(3) Since hpmb™ = 01, we have
(2.5) Vb = —b*Pbl Dy,
And,
V.V b = — v, (b*P019V ;1)
= —DFPYIN Y jhpy + BP OO 1 hy YV hypg + BFPOEDEN 11y Vg

Then, using (2) we obtain

OF . OF
LM = —pFPpet o, ViV jhpg + 26" bptblq%vihstvjhm
— _pkpdl (g()\ar, Vhog) + Nhog + hpmhamF + RupmaG (A €m)
OPF OF
_ mhmhm - aTZ_jhmjhmihpq + (8 — 1) Fhpmhumg
OF _ _ _
+ 5 Buivgia + Bupgisy + hmi R + hmemiqj))
j
+ 2p"spPipta 88}5 stiPpgj
j
= gDy, VO — NOF' — 61y F — "1 R, g G(NO;, 1)
O*F OF
VP hyjphetg + s PBmihmib™ — (8 — 1)F§
T Byt g (8= D)Fdow
—b’”’bqla—F(R iviva + Bupgici + i Rmpas + Ppm Rimig;)
ahij vipjiq vpqvg mr=vmpq]) pm=tmeq)
OF

+ 26F5 P i
6h1’j Pqj
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(4) We know
Vi® =V.®=\r)V.,r=g(A0,e;)
and
ViV;® = XN&;; — hijg(AO,,v) = Ndij — hij(F — F).
Then

or

o=\
L A o

— BF(F — F).

(5) From (4) we know
L trb = gDy, Vtrb) — Ntrb — nF — b*Pb* R, 0 G(NO;, €1n)

d*F OF
T —" — hypihmitrh — —1)F
+ Thi; Oy iawhsta & G Pimihimitrh = (8 —1)
OF _ _ _ _
— bMPpIE Oh - (Rvim’;q + Rvmi;j + hmiRmqu + hmemiqj)
i)
OF

+ 20k Ptk ™ Pstilpg;-

Then we have

27 =22 G v b+ wber + Frous - "B =Y g

Ohij 3

OF _ /
= QWViFVjtrb + trbg(A\O,., VF) + BN Ftrd

]

oF OF —
— ——hyhj(F — F)trb + trtb—— R, :1:G(\0,,

ahi]‘ 1 jl( ]:) O + tr 8hin il g( 0 el)
+ Fg(\d,, Vtrb) — N Ftrb — nFF — FV"P0* R, G( A0y, €m)

9?F OF

Foreptd . heo + F———hppihumitth — —1)F?

+ B0y iavltsta + Egphmghimatb = n(f = 1)

oF - _ _ _
- Fbkpbqu(Rvipj;q + Rupqi;j + hmiRmqu + hmemiqj)
ij

oF n(B—1) oF
QEVF WPV D i — N —1)F(F-F
+ 8}11] tilpqy ﬁ 8hii +TL(6 ) ( )
=29 G e + G(ADy, V(Ftrb)) + (8 — 1) N (Ftrb — Z
B ah”L] ‘ ’ g " ﬂ 8hn
F O*F
+ (55— P, hihjitrb — BnF)F + Fb"pth ———— Dy hijphstq
F F o
+ 2FbFspPtyka 4 hstihpgj + (trb oF _ FOR VYR, G(AOy, €m)
Oh.; Ohy;
OF  _ _ _ _
— Fb'Ppt Oh s (Rm'pj;q + Rupqi;j + hmiRmqu + hmemiqj)~
i
O
Notice that for a warped product N, when A(r) = r, sinr, or sinhr, N is

Euclidean space, the sphere S**! or hyperbolic space Ht! with constant sectional
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curvature € = 0, 1 or —1 respectively. For the rest of the paper, we focus on spaces
of constant sectional curvature. In these cases, we have

Rijkl = 6(5¢k5ﬂ — 5il5jk) and Ruijk =0.

Therefore,
_ - OF _ _ _ _
Rukmlg(Aam em) + W(Ruikj;l + Rukli;j + hmiRmklj + hkamilj)
ij
oF
= eﬁTij (hmi(5ml5kj — OmjOkt) + Niem (0midij — 5mj§il))
oF
= EaTij(hil(Skj — RO + hiidij — hkj(sil)
and
F o
(trb or _ FO V)R, G(NOy, €m)
3hij
oF  — _ _ _
- Fbkpbqk Ohis (Rvipj;q + Rqui;j + hmiRmqu + hmemiqj)
ij
OF
—ert S (hzq% Ppidia + padis = higdpg )

2
¢F(BFtr(b?) —trbz 8h“

Then in spaces of constant sectlonal curvature, (2) and (4) in Proposition 2.1
reduce the following equations.

Corollary 2.2.

0%F oF
. = ! . .
(i) Lhgy = g(AOr, V) + Nhig + hymhigm F — Dy = Nijrhsu — hy; ——hmihmihi
oF
+ (8 — 1) Fhimhmi + T (hilakj — hij0rs + hidi; — hkj(sil)a
ij
.. oF
(i) LZ =25 —ViFVtrb+ g\, V(Ftrb)) + (8 = X (Ftrb — - Z ah
i m
+ (g halitsd = BuF)F + FUPH s hisphity
s oF
+ 2Fb* bptb’“anhmhpq] + eF(BFtr(b?) — trbz 8h”

For convenience, we call the following term
2.6 Ftr(b%) — trb
(2.6) eF(BFtr( r Z ahu

the e-term in £Z. It vanishes for the Euclidean space case and we need to estimate
it in other cases. In fact, we have the following lemma.

Lemma 2.3. If F satisfies i), ii) and i) in Condition 1.1 and k € Ty, we have

BFtr(b?) —trby gf. >0
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and the equality occurs if and only if k1 = ... = K.

Proof. In fact,

2
BFtr(b”) ftrbzah“ 6 G — ;)
_o _ 6F o _ 6F oF
=D iR g Zf“ (o )i = ).
i#j i>j
Using i), ii) and iii) in Condition 1.1, we finish the proof. O

3. ANALYSIS AT THE MAXIMUM POINTS OF W

In this section and next section, we prove Theorem 1.2 for 8 > 1. The proof is a
delicate application of the maximum principle to two test functions W = %1 — B
and Z, where k1 is the smallest principal curvature of M. The idea comes from
[6, 5] and is used in [9]. The following lemma is employed to analyze the maximum

points of W.

Lemma 3.1 ([5]). Let p denote the multiplicity of k1 at a point T, i.e., k1(T) =
- = Kku(Z) < Kut1(Z). Suppose that ¢ is a smooth function such that ¢ < K4

everywhere and p(z) = k1(Z). Then, at T, we have

i) hii = Vipdp for 1 < k1 < p.

i) ViVip < hirgg — 2355, (ki — k1) R,

Now define a smooth function ¢ by g — %q) = maxgepy Wi(x) on M. If W
attains its maximum at z, then we know ¢ < k; everywhere and ¢(z) = k1(Z).
Using Lemma 3.1 at Z and (i) in Corollary 2.2, we have

(3.1)
oF
a,ﬁ‘ Z(Hl - Hl)ilh’%li
¢ I>p
_ oF 0*F
=g\, Vhi1) + Nk1 + FKT — k1 =— oh,; hanjhmi + 15 (8 — 1)F — mhijlhstl
8F _ oF
8,‘{1 ;ﬂ(lﬂ?l — K)l) lh%li —_ 66F —+ €ER1 Z Wu

Lemma 3.2. Let M be a strictly convex hypersurface in the hemisphere ST‘l with
n > 2 satisfying (1.1). For 8> 1 and F >0, if F satisfies Condition 1.1 and T is
a mazimum point of W, then T must be umbilic and VF(z) = 0.

Proof. At T, we have

(3.2) 0=vi(t - %@)
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for 1 <i < n. And, using (3.1), we obtain

F p-1
0=L(——-——9
((p 5 )
F 8 oF
> G(\O,, V(— F 2Fk®
> g(/\aT,V((p)) oh,, V'V, — + B, ——hiy;
(3.3) 82F OF
F ‘27h1~ hs1 + 2F k72 — k1),
+ Ky ahijahst ij11ostl + Ky 6Hi ;(K’l Kl) 1l
B — OF k; OF ki _10F K
+7B )\ 8/-@1(;1_1)—1_‘7:87/-@1&1(;1_1)—’_6}7%1 amz(a—l)
For convenience, let us denote
B—1_,0F &k OF Ky _10F K;
4 = — — -1 —ri(——1 F — —1),
(3-4) & B8 )\8}@(&1 )+]:8mﬁ(m )+ ek ani(m )
F OF 1 OF
=q ). _ 2 _V.FV.— 2F -377 p2
g(A8HV(§0))+ ah”V1 VJSO + K‘l ah_/ihlh
and
_, O?F L, OF _
o = Fry Qah”ahét higihon + 281" 5 g(m — ) i
Using V;F = k;G(A0y, €;), V;® = §(AD,, e;) and (3.2), we have
F OF 1
g(AO, V(—))+2=—V,FV,;—
( (so)) sy ig
8—1_ _, OF F 2 __,0F
. —_— ., VO®) + 2F FV,—— —F JFVF
(3.5) g(A\0,, V@) + ahijv VJ - ah”v V;
_B=1 o e, 208 1) 18logF 71810gF
= 75 k; - (V. F)* + 3 K; Ors (ViF)? -2k Or, (ViF)2.
From (3.2) we know
(36) mflviF - Flﬁil_thli = EVZ(I) = El{i_lv F
B B
Therefore
_3 OF 4 pB—=1 _{,0logF
(3.7) 2Fk 36 hiy; = 2m1 (k7 — T”z‘ 2 Orer (ViF)
and by Lemma 3.1 i)
(3.8) V,F=0, forl<i<up.
From (3.5) and (3.7), we have
f—-1 2 2(8-1) _,0logF (B-1)° _p0log F
J2 = Tﬂi (VlF) — ﬂ Ry 8;@1 (V F) +2 62 Ri1k; alii

11
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By Lemma 3.1 i) we also know

O*F O*F \(OF _OF
7}% hs u h 2 — h2
Ohi;Oht j1st1 = 5/@8 ihgj1 + ; 3l€i 3/<Lj) ij1

0*F aF OF
hii1h 2 i — Il h2 )
8/@8 171+ ; K1) 6"% 8&1) 11
oF O0F
+2 3 (=) (G - o i
1>J> M
and
oF B
2 — k) TIRE =2 ~ ki) Lp2 9 )~ 1h2
Or g:(m w0 =2, 2w ) >3 8/{1 i
H >p 1>
+2Z aF(mfﬁl 'h +22 — k1) h3,
) K:i 114 1 1li-
i>l>p l>Z>lJf
And
oF ,
2 Z (ki — Kj)~ (5'11 ”1 Z — K1) hul + 2 Z — K1) hm‘
5> ' 1>l>M l>z>H
oF aF 5F B
>2 ) (5= )N = o kit Z TR I Pt
>3 ' %>l>u l>z>p
oF oF
— -1,.-1 -1 2 _ 2 2
=2 Z N ) (67/-@ o, K5)hiz >0,
1>J> M

where the last inequality is due to Condition 1.1 iii).
Now we have

(3.9)
_y O°F _ _, OF _ oF _
J3 Z F"Qlthiilhjjl +2FI€12Z(I’1273 7/11) I%h%h%*QF 12 8[9(‘%7 7/11) 1h1”
L i>p v i>p "
oF -1 dlog F
2 PRy g hin £ 50 (ViF)” 4 26 D (i —r)Hmy = d g ) a"f (ViF)?
P> v
—2 -1
+ 2Fk K1 Z aHZ h‘lu
i>p
1 _1810gF 1 B=1 _1,0logF 9
> —— V1iF (V F 2 — . V.F
= 62 8/‘ﬂ) ( 1 ) +K:1 1 + Hl; K’l Kjl ﬂ Hl ) aﬁli ( )

where the second inequality is from Condition 1.1 iv) and (3.7), the last inequality
is from

_9 _ 8F _ _3 OF
_F’%l 2I€i ! a 27,1 + 2Fk K1 : Z 3/€Z lh%“ Z —Fr 38:‘1 h?ll
i>p
and
oF 1 _,0logF
-3 2 -1 2
_FK/1 Tmhlll 52 K:l aKll (VIF)
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Using (3.8), we have

Jo+Js > %nﬁ(ViF)Q - 2(% 1)@ 1ag’iF(v F)2 128 g;)zﬁml Qag’iF
— %mfl agonglF (ViF)? + k]2 2 423 ; — k) YT - %m;
-2 (561,{;2 + %m(ni — k)R - 55 1,{;1)8231?) (Vi F)?
+ Qﬂﬂ_ 1Hf2 ( - ;8?§1Fﬁ1> (V1F)2 >0

And combining (3.3), we obtain
0> Ji.

On the other hand, since A'(r) = cosr > 0 and € = 1 for the hemishpere ST‘l,
by >0, >1 and :—1 > 1, we know J; > 0. Thus, J; = 0 = Jy + J3, which
implies k1 = ... = Kk, and VF =0 at Z.

U

4. PROOF OF THEOREM 1.2 WHEN 5 > 1

Coming back to the test function Z = Ftrb — "(ﬁ V% and considering £Z
according to (i) in Corollary 2.2, we have

OF
2—(% V,FVtrb + g(Ad,, V(Ftrb))
i
_, OF L. OF
=2F V.FV(Ftrb) — 2F " 'rb——V,FV;F + g(\d,, V(Ftrb))
8h” Ohi;
_, OF (B —1) ,_, OF oF
=2F 1 OF Y7 F! JFV® — 2F b avaa
ahijv V,Z + 5 ahijv \Z r 8h”v V;
-1
+ g()\ara VZ) + %g(A&”v V@)

Using V;® = n;lviF which follows from V;® = (A9, ;) and V, F = k;g(A\0,, e;),
we get

2§TFViFVjtrb + §(A0,, V(Ftrb))
ij
n(f—1) _,0logF Olog F 9
41 - _ _
(4.1) R(VZ) + T (Vi F)? — 2trb oo (Vil)
+"(55_ ,—2v.p)2,

where R(VZ) denotes the terms including VZ.
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Using Condition 1.1 iv), we know

O*F
Fblpbqlmhijphstq
O*F oF
_ —2 —2 —172
=Fr Kp OOk, h“phajp + F“ ; 8/@ 78/@)(& — k) hijp
,2 1 oF oF oF
>

—F'r p Ki 8 hzzzp+’172(v F) + Fr ;22(85 - 871%])(’{7 7’%J’)71h1?jp'
i#j

Then combining

oFr oFr
ksiptpk _ -2, —1;2
2Fb"° b b qﬁhstihqu = 2F87K/i/€p K/q hpqi
oF _, 71 2 OF 5 1,9
— 2F—aﬁ K hapii + 2FZ 78/1-% Ky Nogis
qFi !
we get
O*F oF
FblPpt ———hyihgo 4+ 2FDR0P0R R gyihoo s
8h”8hst jpltstq + i tiltpqj
oF oF
—2,.~1 2 -2 —2 142
4.2) = Fry "k Ory oD + 1y " (VpF)? + Fre Z 3,% 6;@3 (ri = Kj)" hijp
72 i 1p2
+ QFZ TR
qF#i
By Condition 1.1 iii), we have
oF
—2 11,2 -2 —1;2
Z oo 85 — ki) hi, + ZFZ —a Ky Ky Py
7 i
4.3 !
- =Fk _QZ K7 — aFﬁ»)Kflffl(n — 1) hE
3,{1 Kj g/ g g J ZJP—

According to the Cauchy-Schwartz inequality and Zz i = BE, we have

—2 —1 6Fh2 1 —Q(V F)

(4.4) Fr, %k, O ”p_ﬂ Ky

Combining (4.2), (4.3) and (4.4), we know

O*F s OF +1 _
(45) Fblpbqlmhwphstq + 2Fbk bptbkq 8h” hstihqu Z /Qp 2(va)2.
For convenience, let us denote
(4 6)
OF
eF(BFtr(b?)—trb —1)N( Ftrb—2 F(trb—hh;;—npBF)
Z 8h“ B Z 6hu Ohiy "7
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It follows from Condition 1.1 iii) that

(4.7)
BF 2 oF 4 1 oF
Li=eFY) H2,€2 I 37]%)(@ — Kj) Z o 81@ 87],/%)(& -
> >
1 (OF 2 oF
4 ) (ki — k) >
+f_z_ Rik; <8m v 8@“3)(”2 kj) 20,
1>7
and the equality holds if and only if k; = -+ = K,,. Thus adding (4.1), (4.5) and
(4.7), we obtain
n(—1) _,0logF Odlog F
Z Z) > F)* —2trb F
£2+ r(v2) > O L v 2 o (ViF)?
8logF _ 2n _,0logF  (n+1)f—n+1 2
= - - i F
= (25 it — o) = T R 3 ) (Vi)

By Lemma 3.2, we know that any maximum point & of W is an umbilic point
on M. Thus at Z, we have

2810gF(an1 ) — ZJHl_lalogF N (n+1)B—n+ lﬁ_2
0K ¢ B8 " Ok B !
) (=B~
R T

for any 1 <4 < n. Then there exists a neighborhood of Z, denoted by U, such that
LZ+R(VZ)>0inU. Since Z < nW < nW(Z) = Z(Z), Z attains its maximum
at . By the strong maximum principle, we know Z = Z(z) is a constant in U,
which implies W is also a constant in U. Hence the set of maximum points of W
is an open set. Due to the connectedness of M, W is a constant on M.

Then by Lemma 3.2, we know VF = 0 on M. From V;F = k;§(\0,,¢;) and
ki > 0, we know v is parallel to 0, at every point of M, which implies M is a slice
{ro} x S™. This completes the proof of Theorem 1.2 for g > 1.

5. PROOF OF THEOREM 1.2 WHEN [ =1

Notice that (4.8) vanishes for § = 1, we need a new approach. The proof is
divided into two cases according to the dimension of M.

5.1. For n > 3. When 8 =1, from (4.1), (4.2) and (4.7) we get

Olog F ~2,-1 oF o 9
LZ+R(VZ) > —2b=o (Y, F) — Fiy g b+ (Y F)?
OF OF
2 172 —2,—1p2
s Z Ok am ) higy 2F87K ¢ Mpai-

Notice now our test function is Z = Ftrb. Using

—t 2 hppi = Vjtrb = t1bV; log Z — trbV; log F,
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we have
Olog F
2 172
2F T(—trb(vi log F)* + K, K, hpqz>
Olog F'
= 2F? ;If ( g H;l( _thm—(v log F)?) + E Ky %K 1h§ql)
‘ P p#q

dlog F 1, _9 _
=27 Ok, (Z’% 1(’% 1hm>i — Vilog F)* + Zﬁpgn 1h22,q1 + R(VZ)).
p#q

Moreover, we have

dlog F OF OF
DI D R R IR D B) DL e (R
Kj

i p#q P i
OF .2 OF .2

dlogF _, _ ar: Vi T ok, Vi
2 2, 1 2 Oki Vi Ok T 932
=2F hz.. + F E ) K, hijp

i#p O " " Rty (Ki = Kj
BFH
01 ki3 o
FAF Y S P
i#p
Olog F
2 —2,-1p2
>2F Z o i hoiis
° Ri
i#p

where >  denotes that the three summation indices are distinct. Thus we know

OloglF _, _ o 1 OF
LZ 4+ R(VZ) > 2F? o Ky (ki " hpps — Vilog F)? — Frr 2 18—hfw
log F
P2V py 1 or Y PO ey
izp O
alogF R . . OF
_2F22 > (k5 Y hppi — Vilog F)? + Fr %k 1a—hfw
i#p
dlog F
Ky 2(V,F)? + 2F> aog k1 (V;log F)?
log F
18l oy o P
6/‘61‘
Let y, = alothppi and t; = 8g)g‘Fﬁi7 then
dlog F
Ky (Vo F)? 4 2F2 08 T (Vi log F)? = F2h 2 (1 +26)(3 )
‘ p
and
OF dlog F
Friy iy Wy = AP =2 i hi Vi log F

_ _,10log F BlogF Olog F
2,.-2 1 2
=Is Z a hpm - Ok, hiii 5‘/9,, hppi)

= F?r;° Z — 4yiyp)-
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Therefore

_ 1

(5.1)  LZ+R(VZ)>F?k;? (Z(tyf, — dyiyp) + (1+26:) (O yp)2> .

p P P

Since Y t; = 1 for 3 =1 and ¢; > 0 for any 4, using Lagrangian multiplier

technique, we have Zp(iyz —dyyp) > (1 —8t; + 4tf)(zp Yp)? (see Lemma 6.2 in
[9]). Thus, we have

LZ+R(VZ) > 2F?;2(1 = 3t; + 21) (> p)*.

P
It follows from Z?Zl t; =1 that t; = % at any umbilic point for each i. Thus

(n—1)(n-2)

>0
n2

(5.2) 1—3t; +2t7 =

at an umbilic point if n > 3. For n > 3, the rest of the proof is as same as the one
for 8 > 1 in Section 4 by using Lemma 3.2.

5.2. For n = 2. In the case of n = 2, notice that 1 — 3t; + 2t = 0 in (5.2). So
instead of the above argument, we will show directly that £LZ + R(VZ) > 0 at
all point of M. We have known this holds at umbilic points from (5.2). Thus we
assume K1 # Ko below.

We know
Vitrh = —k7 2hi1; — kg 2hasi = —t7 'y g — t thg Ty
and
—trbV;log F = — (k7" + w3 1) (1 + y2).
By
Vjtrb = R(VZ) — trbV, log F,
we have

T Tyt ey e = (k7 A+ Ry D)+ 12) + R(VZ).
Multiplying t1t2 on both sides and using t; + to = 1, we see
taty +to)ky yr + ta(t +ta)ky tye = tita (k] + ko D (y1 +y2) + R(VZ).
This implies
ta(tarT ! — ting Vyr = t1(tak] ! — ting Ny + R(VZ),
which means
(5.3) tayr = t1ya + R(V Z),

or equivalently
y1 = ti(y1 +y2) + R(VZ).

From (5.1), we have

LZ+R(NVZ) > F?r72 (675 + 65195 — dyi(yr + y2) + (14 2t:) (y1 + 12)°) -
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By using (5.3) for ¢ = 1, similarly for ¢ = 2 as well, we have

4t 3 — Ay (i + y2) + (14 261) (1 + 2)?
=t Yl o s — Aty (14 2t1)tf2yf +R(VZ)
=ty 'y5 + (1= t)t 2yf + R(VZ) = t5'y5 + tat 2y + R(V Z).
Then we know
LZ + R(VZ) > 0.

By the strong maximum principle, we know Z is a constant. Then e-term vanishes
which implies M is totally umbilic. This also means that W is a constant on M.
As the discussion in Section 4, we finish the proof.

6. PROOF OF COROLLARY 1.6 AND THEOREM 1.8

Proof of Corollary 1.6. From Theorem 1.2, we know Corollary 1.6 is established for
o > L. When n%ﬂ < a < %, it can be proven in a similar way as the Euclidean
case (Refer to [5] for F = 0 and [9] for 7 > 0). Compared to the Euclidean space,
the only different terms in equation (zz) of Corollary 2.2 for LZ are

(B— 1N (Ftrb — — 3 Z 8h” ) + eF(BFtr(b?) —trbz 0h“

Observe that

Ftr bi*Zah

for F' = ¢%. And by Lemma 2.3, we know the e-terms with ¢ = 1 is nonnegative.
Using the similar argument of the Euclidean case (see [5, 9]), we know Z is a
constant. Thus the e-term must vanishes, which implies M is totally umbilic by
Lemma 2.3. It also means that W is a constant on M. Thus the proof can be
completed by the same method employed in Section 4. O

Proof of Theorem 1.8. In the hyperbolic space H?, X' (r) = coshr > 0, under the
assumption, it is easy to check J; > 0 in (3.4) and the equality occurs if and only if
K1 = Ko. Therefore Lemma 3.2 is established for this case. Taking n = 2, e = —1,
F =05 and F > 1 into consideration, we know

OF
8h Ohij

= —(203tr(b?) — alaztrb) + F(o109trb — 403)
= (]:— 1)(/@1 - HQ)Q >0

e(BF?tr(b?) — Ftrbz (trb——hithji — nBF)

and
(B — 1N (Ftrb — Bzah”

This leads to L; > 0 in (4.6). Thus using the same argument as in Section 4, we
can easily carry out the proof of this theorem. O
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