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Abstract. This note surveys and compares results in [12] and [21, 22]
on the separation of variables construction for soliton solutions of curva-
ture equations including the Kähler-Ricci flow and the Lagrangian mean
curvature flow. In the last section, we propose some new generalizations
in the Lagrangian mean curvature flow case.

1. Introduction

Let us recall a simple example of separation of variables constructions of
solutions of elliptic PDE’s. Consider the Laplace equation ∆Rn

f = 0 on R
n.

In terms of polar coordinates, the equation becomes

(1)
1

r

∂

∂r
(r2

∂f

∂r
) + ∆Sn−1

f = 0.

The separation of variables ansatz assumes that f takes the form f(r, θ) =
f1(r)f2(θ) for r ∈ (0,∞) and θ ∈ Sn−1, and equation (1) can be written as

−
1
r

∂
∂r
(r2 ∂f1

∂r
)

f1(r)
=

∆Sn−1

f2

f2
= constant.

Thus, the original equation reduces to an ODE for f1 and a PDE for a
function f2 on the sphere.

Suppose instead we would like to solve an inhomogeneous equation of the
form ∆Rn

f = g. Assuming again that g takes the form g(r, θ) = g1(r)g2(θ),
for g1(r) a function on (0,∞) and g2(θ) a function on Sn−1, the ansatz
f(r, θ) = f1(r)f2(θ) for suitable choices of g2(θ) and f2(θ) reduces the orig-
inal equation to an ODE for f1(r) involving g1(r). Thus the method of
separation of variables produces solutions of homogeneous equations and
reduces an inhomogeneous equation to an ODE.

2. Application to nonlinear elliptic curvature equations

We discuss two types of geometric parabolic equations, the Lagrangian
mean curvature flow and the Kähler-Ricci flow, and their soliton solutions.
First we review the elliptic case.
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Suppose a submanifold is given by an embedding X (or more gener-
ally an immersion) into the Euclidean space. The mean curvature equa-
tion H(X) = 0 corresponds to minimal submanifolds. We recall that
H(X) = ∆X for the embedding X where ∆ is the Laplace operator with
respect to the induced metric. Thus this should be considered as the Laplace
equation for submanifolds.

On the other hand, suppose a Riemannian metric g is given. The Ricci
curvature equation Ric(g) = 0 corresponds to Ricci flat manifolds. We
recall that Ric(g) = −1

2
∆g at a point with respect to a harmonic normal

coordinate system, and we can view the Ricci equation as a Laplace equation
for Riemannian metrics.

For both nonlinear elliptic equations, cone-like solutions appear naturally
in the study of singularity formation through blow-up, or rescaling process.
Minimal cone in R

n is of the form rX, r > 0 where X : Σ → Sn−1 is
a minimal submanifold in Sn−1. On the other hand, a Ricci flat cone is
of the form dr2 + r2ds2Σ for an Einstein manifold Σ. Both are solutions of
homogeneous elliptic equations and provide ansatz for separation of variable.
An elliptic geometric curvature problem is often accompanied by a parabolic
problem, which is the gradient flow in case the elliptic problem is variational.
Parabolic blow-up (rescaling) gives soliton solutions which are self-similar
in space and time variables. To classify singularities of parabolic flows, it
is important to study solitons. It turns out solitons of parabolic equations
satisfy elliptic inhomogeneous equations.

In the case of mean curvature flows, suppose Xt is a family of embeddings
that satisfies the mean curvature flow equation:

∂

∂t
Xt = H(Xt).

Special solutions called solitons or self-similar solutions can be obtained in
the following way. First one solves the elliptic equation for an embedding
X such that

H(X) = (aX +~b)⊥

for a constant real number a and a constant vector ~b. Then one defines a
one-parameter family of embeddings Xt by

Xt = a(t)X +~b(t).

One can check that Xt forms a mean curvature flow that is moving by scaling

and translation for suitable choices of a(t) and~b(t). The sign of a determines
whether the flow is expanding, shrinking, or steady (translating).

On the other hand, the Ricci flow is a parabolic equation for a family of
metrics gt that satisfies:

∂

∂t
gt = −2Ric(gt).



SOLITONS SOLUTIONS OF GEOMETRIC FLOWS 3

Self-similar solutions can be obtained by solving the elliptic Ricci soliton
equation: Ric(g) = ag + LV g for a metric g, where a is a constant real
number and V is a smooth vector field on the underlying manifold.

The family of metrics gt

gt = a(t)γ∗t g,

where γt is the one-parameter group of diffeomorphism generated by V , sat-
isfies the Ricci flow equation and the corresponding flow is a combination of
scalings and reparametrizations. Likiwise, the sign of a determines whether
the flow is expanding, shrinking, or steady.

3. The Kähler-Ricci flow

Let us first look at the Kähler-Ricci flow. Suppose the Kähler form is
ω = igij̄dz

i ∧ dz̄j , the Ricci form is then given by ρ(ω) = −i∂∂̄ log det gij̄ .
Given a family of Kähler metrics, in terms of the associated Kähler forms,
the Kähler-Ricci flow is the parabolic equation

d

dt
ω = −

1

2
ρ(ω).

Correspondingly, the Kähler-Ricci soliton equation is

−
1

2
ρ(ω) = λω + LV ω,

where λ = 1, 0,−1 corresponds to expanding, steady and shrinking Ricci
solitons.

This is a gradient soliton if

LV ω = i∂∂̄Q

for a function Q. Therefore, the Kähler-Ricci gradient soliton equation for
Kähler form ω and potential Q is:

−
1

2
ρ(ω) = λω + i∂∂̄Q.

The Ansatz to apply the separation of variables method in this case in-
volves a Sasakian manifold. Recall a 2m+1 dimensional Riemannian man-
ifold (S, g) is Sasakian if ḡ = dr2 + r2g is a Kähler metric on the cone C(S)
over S.

The restriction to S of ξ = Jr ∂
∂r

is the Reeb vector field of the contact
form that satisfies i(ξ)η = 1 and i(ξ)dη = 0. We have the following relation:

η =
1

r2
ḡ(ξ, ·) = i(∂̄ − ∂) log r.

The vector field ξ defines a transverse Kähler structure on the local orbit
space. ξ is Killing on (C(S), ḡ) and its complexification ξ − iJξ is holomor-
phic. In particular, the transverse metric satisfies gT + η ⊗ η = g and the
transverse Kähler form is

ωT =
1

2
dη = i∂∂̄ log r.
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The Kähler form on C(S) is

ω =
i

2
∂∂̄r2.

For example, we can take S = S2m+1, C(S) = C
m+1 − {0} and the orbit

space is CPm.
One can check that (S, g) is a Sasaki-Einstein manifold if and only if

(C(S), ḡ) is a Calabi-Yau cone manifold. Also, S is η-Einstein (Ricg =
αg+ βη⊗ η with α+ β = 2m) if and only if the transverse Kähler metric is
Einstein (ρ(ωT ) = (α+ 2)ωT ).

Suppose we start with an η-Einstein Sasaki manifold. The ansatz for the
Kähler form of a Kähler-Ricci gradient soliton is

ωT + i∂∂̄F (s)

with s = log r. This is similar to the Calabi Ansatz [4] for Calabi-Yau
metrics which was applied to the total space of a Hermitian line bundles
over a Kähler manifold.

The equation for F (s) can be derived as follows. Set σ = 1 + F ′(s) and
φ(σ) = F ′′(s). We have

ωφ = σωT + φ(σ)i∂s ∧ ∂̄s

where i∂s ∧ ∂̄s is the Kähler form of the cylindrical metric on C− {0}.
As a comparison, the metric on the Calabi-Yau cone (Ric = ρ(ω) = 0) is

given by F (s) = r2

2
− log r = 1

2
e2s − s and φ(σ) = 2σ. The Ricci form of ωφ

is

ρ(ωφ) = κωT − i∂∂̄ log(σmφ(σ))

with κ = α+ 2.
For a gradient soliton, if the potential Q is a function of s, Q must be of

the form Q = µσ + c for constants µ and c. Therefore, the gradient soliton
equation becomes

φ′(σ) + (
m

σ
− µ)φ(σ) − (κ+ 2λσ) = 0

for m,µ, κ, λ constants.
Studying of the ODE gives the following theorem:

Theorem 1. [12] Let S be a compact Sasaki manifold such that the trans-
verse Kähler metric gT satisfies Einstein equation

RicT = κgT

for some κ < 0 (or S is η-Einstein). Then there exists a complete expanding
soliton on the Kähler cone C(S).

On total space of line bundles over Fano manifolds, we also obtain shrink-
ing and expanding solitons that can be glued together to form eternal solu-
tion on (−∞,∞).
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Theorem 2. [12] Let M be a Fano manifold of dimension m, and L → M be
a positive line bundle with KM = L−p, p ∈ Z

+. For 0 < k < p, let S be the
U(1)-bundle associated with L−k, which is a regular Sasaki manifold. Let Z
be the zero section of L−k. Suppose that S admits a Sasaki-Einstein metric
(or M admits a K-E metric). Then there exist shrinking and expanding
solitons on L−k − Z, and they can be pasted together to form an eternal
solution of the Kähler-Ricci flow on (L−k − Z) × (−∞,∞). The shrinking
soliton for t ∈ (−∞, 0) extends smoothly to the zero section Z.

Our construction generalizes the work of H.-D. Cao [5], Feldman-Ilmanen-
Knopf [11] which are rotationally symmetric. B. Yang [27] and Dancer-
Wang [10] constructed cohomogeneity-one examples. All these examples
have very large symmetry group. In contrast, our examples do not carry
any continuous symmetry in general.

4. The Lagrangian mean curvature flow

An n-dimensional submanifold L ⊂ C
n is Lagrangian if ω|L = 0 where

ω is the standard Kähler form of Cn. An n − 1 dimensional submanifold
Σ ⊂ S2n−1 is Legendrian if the cone L over Σ is Lagrangian. L is minimal
in C

n if and only if Σ is minimal in S2n−1. Being Lagrangian is a closed
condition preserved by the mean curvature flow [25] and thus it makes sense
to consider the Lagrangian mean curvature flow. This is similar to being
Kählerian is a closed condition that is preserved by the Ricci flow.

Consider a minimal Legendrian X : Σn−1 → S2n−1 ⊂ C
n and a curve

γ(s) : I → C
∗. An Ansatz for Lagrangian submanifold can be taken to be

γ(s) · X : I × Σn−1 → C
n where · denotes complex multiplication. The

soliton equation for the Lagrangian mean curvature flow reduces to an ODE
for γ(s) (Angenent, Ilmanen, Anciaux [1],[2] ).

An Ansatz which differs from the minimal Legendrian one but still fits into
the separation of variable method is the quadric Ansatz. Here is an example
of a soliton of the Lagrangian mean curvature flow which was constructed
in [21]. Consider a quadric in R

n given by

Σ = {(x1, · · · , xn) |λ1(x1)
2 + · · · λn(xn)

2 = 1}

where λi non-zero and Σi=1nλi > 0. Then

L = {(x1e
iλ1s, · · · xne

iλns | (x1, · · · , xn) ∈ Σ, s ∈ I}

is a soliton solution.
In fact, the trace of the corresponding flow in R

n is given by the family
of hypersurfaces defined by

Σn
i=1λix

2
i = (−2t)

n
∑

i=1

λi.

We note that the flow is shrinking for t < 0 and expanding for t > 0.
The solution for t ∈ (−∞,∞) forms a weak eternal solution of the mean
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curvature flow and the singularity at t = 0 corresponds to a neck pinching
with topological change.

The quadric ansatz was used earlier by Joyce [18, 19] to construct special
Lagrangians submanifolds. Joyce-Lee-Tsui in [20] constructed translating
solitons of the Lagrangian mean curvature flow of the form

L = {(x1w1(s), · · · xnwn(s) | (x1 · · · , xn) ∈ Σ, s ∈ I},

wherew1(s), · · ·wn(s) satisfy an ODE system. This is a Lagrangian version
of “Grim Reaper” for curve shortening flows. Further generalizations were
obtained in [24]. There are also uniqueness results for minimal Lagrangians
and Lagrangian solitons, see [23], [17], [7, 8].

5. Generalizations

In this section, we discuss a generalization of both the minimal Legendrian
and the quadric Ansatz. Take an (n− 1) dimensional submanifold Σ of Cn

that is isotropic and consider the image of A(s)Σ where A(s) is a curve in
the complex affine group which is the semi-direct product of GL(n,C) and
C
n.
One can ask for what kind of Σ there will exist a solution A(s) such that

A(s)Σ is a Lagrangian submanifold. The answer is that Σ is an initial data
in the following sense:

A k-dimensional isotropic submanifold Σ of Cn is said to be an initial
data with respect to (B, b) with B ∈ GL(n,C) and b ∈ C

n if at any point
p ∈ Σ,

(2) 〈V,BXp + b〉 = 0

for any V ∈ TpΣ, where 〈·, ·〉 is the Hermitian product on C
n.

For example, let Λ be an n × n Hermitian matrix and let H be the real
hypersurface in C

n defined by {X | Re〈ΛX,X〉 = c} for a constant c. Then

γ(·) = ω(ΛX, ·)

is a contact form. Let Σ be a Legendrian submanifold of H with respect to
γ, then Σ is an initial data.

Theorem 3. Given any initial data (Σ, B, b) and any smooth complex curve
α : I → R, suppose (A(s), a(s)) satisfies

A∗(s)Ȧ(s) = α(s)B

A∗(s)ȧ(s) = α(s)b with A(0) = I and a(0) = 0
(3)

then A(s)Σ + a(s) is an isotropic submanifold.

In order to reduce the equation to an ODE, it is necessary that the La-
grangian angle of A(s)Σ depends only on the parameter s. Suppose (Σ, B, b)
is an initial data of dimension n− 1 in C

n. For any complex curve α(s), the
Lagrangian angle of A(s)Σ = A(s)Σ + a(s) at (s, p) is given by

(4) θ(s, p) = arg detA(s) + argα(s) + θ(0, p).
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Therefore, the Lagrangian angle of A(s)Σ depends only on the parameter
s if Σ is an initial data with constant Lagrangian angle in the following
sense: We say (Σ, B, b) is an initial data with constant Lagrangian angle if
the Lagrangian angle of TpΣ⊕ R(BXp + b) is a constant in p ∈ Σ.

Example 4. Suppose Σ is an (n− 1) dimensional Legendrian submanifold
of H = {X | 〈ΛX,X〉 = c} ⊂ C

n. The Σ is an initial data with constant
Lagrangian angle if

(5) ω(−H +
Λ2X

|ΛX|2
, ·) = 0

on Σ where H is the mean curvature vector of Σ in H.

Both minimal Legendrians of S2n−1 (Λ = I) and real quadrics in R
n

(H ∩R
n for Λ diagonal) satisfy this condition.

For an initial data with constant Lagrangian angle Σ , a mean curvature
equation (minimal Lagrangian equation or Lagrangian soliton equation) on
the Lagrangian submanifold A(s)Σ reduces to an ODE system on A(s) that
can be solved.

Theorem 5. Suppose (Σ, B, b) is an initial data with constant Lagrangian
angle. Let (A(s), a(s)) be a solution of

A∗(s)Ȧ(s) = detA(s)B

A∗(s)ȧ(s) = detA(s)b with A(0) = I and a(0) = 0
(6)

then A(s)Σ + a(s) is a special Lagrangian submanifold.

We also consider the multiple developing case, i.e.

A(s1, · · · sk) = A1(s1) · · ·Ak(sk)

on an (n− k) dimensional initial data and the twisted product of two initial
data.

Theorem 6. For p > 1 and q > 1. Suppose Σ1 is a p − 1 dimensional
isotropic submanifold of Cp that is an initial data of constant Lagrangian
angle with respect to B1 and Σ2 is a q−1 dimensional isotropic submanifold
of C

q that is an initial data of constant Lagrangian angle with respect to
B2, then Σ = Σ1 × Σ2 ⊂ C

p+q is an initial data of constant Lagrangian
angle in C

p+q with respect to any c11B̃1 + c12B̃2, c21B̃1 + c22B̃2 where B̃1 =
[

B1 0p×q

0q×p 0q×q

]

,B̃2 =

[

0p×p 0p×q

0q×p B2

]

, and C =

[

c11 c12
c21 c22

]

∈ GL(2,R).

The twisted product of Legendrians by Castro-Li-Urbano [9] (see also
Haskins-Kapouleas [15]) is such an example. New examples can be con-
structed by taking Σ1 to be a real quadric in C

p and Σ2 to be a minimal
Legendrian in S2q−1 ⊂ C

q.
Further questions to be studied include:
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1. The construction in the last section only addresses the local solvability
of the soliton equation. It would be interesting to see whether these solutions
are complete.

2. Are there more general initial data sets as “minimal Legendrians” of
general real codimensional 1 hyperquadrics in C

n?
3. What is the relation to complex affine geometry? There should be a

rigidity theorem for those solitons whose level sets of Lagrangian angles are
real hyperquadrics in a Lagrangian subspace? Note that the level sets are
congruent under actions of the complex affine group.

4. Is there a similar construction of “initial data” in the Kähler-Ricci flow
case? Does it lead to a further generalization of η-Sasaki-Einstein manifolds?

References

[1] H. Anciaux, Construction of Lagrangian self-similar solutions to the mean curvature
flow in C

n, Geom. Dedicata 120 (2006), 37–48.
[2] H. Anciaux, I. Castro, and P. Romon, Lagrangian submanifolds foliated by (n?1)-

spheres in R
2n, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 11971214.

[3] K.A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes,
Princeton University Press, 1978.

[4] E. Calabi, Métriques Kähleriennes et fibrés holomorphes, Annales Scientifiques de
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