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Abstract. We propose a geometric inequality for two-dimensional space-
like surfaces in the Schwarzschild spacetime. This inequality implies the
Penrose inequality for collapsing dust shells in general relativity, as pro-
posed by Penrose and Gibbons. We prove that the inequality holds in
several important cases.

1. Introduction

In [11], Penrose proposed an inequality as a natural consequence of Cosmic
Censorship. The original set-up of Penrose consists of a shell of dust collaps-
ing at the speed of light. The null hypersurface swept by the incoming shell
separates the spacetime into two components with the flat Minkowski metric
inside. Outside the null shell, the metric is no longer flat. The spacetime is
vacuum except for a delta distribution of the energy-momentum tensor of
matter density supporting along the null hypersurface.

The Penrose inequality in this case reduces to a geometric inequality on
a marginally trapped surface in the null hypersurface. The location and
geometry of the marginally trapped surface depends on the matter density
which can be arbitrarily prescribed. This inequality should hold for a gen-
eral spacelike 2-surface in the Minkowski spacetime with minimal convexity
assumptions to guarantee the regularity of the null hypersurface at infinity.
It was observed by Gibbons [4] that the inequality is exactly the classical
Minkowski inequality when the 2-surface lies in an Euclidean hyperplane.
Tod [12, 13] studied the case when the 2-surface lies in the past null cone of
a point and derived it from the Sobolev inequality.

The classical Minkowski inequality was generalized to a mean convex and
star-shaped surface using the method of inverse mean curvature flow (cf.
[6]). Very recently, Huisken [7] showed that the assumption that Σ is star-
shaped can be replaced by the assumption that Σ is outward-minimizing.
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In [5], Gibbons proposed a reduction scheme to approach the Penrose
inequality for general surfaces in the Minkowski spacetime. The idea is
to project the 2-surface orthogonally onto an Euclidean hyperplane and
to relate to the Minkowski inequality of the projected surface. However,
Gibbons’ calculation contains a mistake and the validity of this inequality
for general surfaces remains open, see Section 7.1 of [9]. See also the detailed
description in [10], where the Penrose inequality in the Minkowski spacetime
is proven for a large class of surfaces.

In [16, 17], the authors made use of Gibbons’ projection procedure in
their definition of quasi-local mass. It turns out the term that is missing
from Gibbons’s calculation corresponds a connection 1-form of the normal
bundle with respect to a certain normal frame on the 2-surface. This term
does not vanish in general and is essential in the new definition of quasi-local
mass in [16, 17].

In [3], a Minkowski type inequality for surfaces in the Anti-deSitter-
Schwarzschild manifold was proved using the inverse mean curvature flow
and a new Heintze-Karcher type inequality in [2]. When the mass parame-
ter is zero, this inequality implies the Penrose inequality for a 2-surface that
lies on the hyperbola of the Minkowski spacetime, see Section 8 of [15]. In
this article, we propose a conjecture generalizing the Penrose inequality for
surfaces in the Minkowski spacetime. More specifically, the ambient space
is the Schwarzschild spacetime. We prove that the inequality holds in fol-
lowing four cases: (1) when the surface lies in a totally geodesic time slice;
(2) when the surface lies in a totally umbilical slice; (3) when the surface
lies in a null hypersurface emanating from a sphere of symmetry; (4) when
the surface lies in a convex static timelike hypersurface (see Definition 3 for
a precise statement).

We remark that the Riemannian Penrose inequality was proved by Huisken-
Ilmanen [8] and Bray [1]. For other related work on the Penrose inequality,
we refer to [9] and references therein.

2. Statement of the Penrose inequality

2.1. Minkowski spacetime. Let Σ be a two-dimensional spacelike closed
embedded orientable surface in the Minkowksi space R

3,1. Throughout the
article, we assume Σ is diffeomorphic to S2. We consider a fixed future
timelike vector T0 ∈ R

3,1 satisfying 〈T0, T0〉 = −1.

We recall the mean curvature vector field ~H of Σ, which is the unique
normal vector field such that the variation of area of Σ in a normal variation
field V is given by −

∫

Σ
〈 ~H, V 〉 dµ. The convention we adopt here makes the

mean curvature vector of a standard round sphere inward pointing. Let L

and L be two null normals of Σ with 〈L,L〉 = 2. We assume L is future-
directed and L is past-directed (both outward pointing whenever this makes
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sense). In terms of L and L, we have

~H =
1

2
(〈 ~H,L〉L+ 〈 ~H,L〉L).

The dual mean curvature vector ~J is defined as

~J =
1

2
(〈 ~H,L〉L− 〈 ~H,L〉L).

~J satisfies 〈 ~J, ~J〉 = −〈 ~H, ~H〉 and 〈 ~J, ~H〉 = 0. In fact, ~J is uniquely charac-

terized by these properties, up to a sign. The choice here makes ~J a future

timelike vector in case ~H is inward spacelike.
The following inequality for spacelike 2-surfaces in the Minkowski space-

time was proposed by Penrose in [11]:

Conjecture 1. (Penrose) Suppose that Σ is past null convex in the sense
that the past null hypersurface generated by Σ is smooth. Then

(1) −

∫

Σ

〈 ~J, T0〉 dµ ≥
√

16π |Σ|.

By the divergence theorem, we have
∫

Σ

〈 ~H, T0〉 dµ = 0.

This implies

(2) −

∫

Σ

〈 ~H,L〉 〈L, T0〉 dµ =

∫

Σ

〈 ~H,L〉 〈L, T0〉 dµ = −

∫

Σ

〈 ~J, T0〉 dµ.

Thus, the inequality (1) can be rewritten as

(3) −

∫

Σ

〈 ~H,L〉 〈L, T0〉 dµ ≥
√

16π |Σ|.

This formulation is independent of the choice of L and L except the normal-
ization 〈L,L〉 = 2. If we choose L such that 〈L, T0〉 = 1, then the inequality
(1) can be written in the form

(4)

∫

Σ

θ dµ ≥
√

16π |Σ|,

where θ = −〈 ~H,L〉 corresponds to the future (outward) null expansion.
Note that the inequality (4) is equivalent to the inequality (51) in [9].

2.2. Schwarzschild spacetime. The Schwarzschild spacetime metric is
given by

(5) − (1−
2m

r
) dt2 +

1

1− 2m
r

dr2 + r2 gS2 ,

where gS2 = dθ2 + sin2 θ dφ2 is the round metric on S2.
Let Σ be a closed embedded orientable spacelike 2-surface in the Schwarzschild

spacetime. Let L and L be two null normals of Σ with 〈L,L〉 = 2. Again
we assume L is future-directed and L is past-directed.
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Since ∂
∂t

is a Killing field, we have
∫

Σ

〈 ~H,
∂

∂t
〉 dµ = 0.

As above, this implies

−

∫

Σ

〈 ~H,L〉 〈L,
∂

∂t
〉 dµ =

∫

Σ

〈 ~H,L〉 〈L,
∂

∂t
〉 dµ = −

∫

Σ

〈 ~J,
∂

∂t
〉 dµ,

where

~J =
1

2
(〈 ~H,L〉L− 〈 ~H,L〉L)

denotes the dual mean curvature vector.

Conjecture 2. Let Σ be a spacelike 2-surface in the Schwarzschild space-
time. Suppose that the past null hypersurface generated by Σ is smooth.
Then

(6) −

∫

Σ

〈 ~J,
∂

∂t
〉 dµ + 16πm ≥

√

16π|Σ|.

Here m is the total mass of the Schwarzschild spacetime.

Of course, an equivalent formulation is

(7) −

∫

Σ

〈 ~H,L〉 〈L,
∂

∂t
〉 dµ + 16πm ≥

√

16π|Σ|.

The Schwarzschild spacetime belongs to the larger class of static spacetimes.
We recall that a spacetime S is static if the metric is of the form −Ω2 dt2+gM
where gM is a Riemannian metric on a 3-manifold M and Ω is a smooth
function defined on M .

Definition 3. Let B be a complete timelike hypersurface in a static space-
time S. We say that B is convex static if B = {(t, x) : t ∈ R, x ∈ Σ̂} for

some 2-surface Σ̂ ⊂ M , and the second fundamental form ĥab and the in-
duced metric ĝab of Σ̂ in M satisfies ĥab ≥ Ω−1 ν̂(Ω) ĝab > 0. Here, ν̂ denotes

the outward-pointing unit normal to Σ̂.

The condition ĥab ≥ Ω−1 ν̂(Ω) ĝab > 0 has a natural geometric interpreta-
tion: it implies that the second fundamental form Π of the timelike hyper-
surface B is nonnegative when evaluated at a null vector, i.e. Π(X,X) ≥ 0
if X is null and tangent to B.

In this paper, we prove that the inequality holds for a large class of space-
like 2-surfaces in the Schwarzschild spacetime.

Theorem 4. Let Σ be a closed embedded orientable spacelike 2-surface in
the Schwarzschild spacetime. The Gibbons-Penrose inequality (6) holds in
the following cases:

(1) Σ lies in a totally geodesic spacelike hypersurface and Σ is mean
convex and star-shaped.
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(2) Σ lies in a totally umbilical (spherically symmetric) spacelike hyper-
surface and Σ is mean convex and star-shaped.

(3) Σ lies in a outward directed null hypersurface emanating from a
sphere of symmetry.

(4) Σ lies in a convex static timelike hypersurface.

We remark that by taking m = 0, these give rise to the Penrose inequality
in the Minkowski spacetime in the corresponding cases (see also [15]).

3. Proof of the inequality in four cases

3.1. Surfaces in a totally geodesic time slice. We first check the case
when Σ lies in a totally geodesic time-slice (t = 0) and thus the induced
metric is

1

1− 2m
r

dr2 + r2 gS2 .

The future timelike unit normal is given by e0 =
1

√

1− 2m

r

∂
∂t
. Let L = e0 + ν

and L = −e0+ν be the two null normals where ν is the outward unit normal

of Σ in the time-slice. We compute ~H = −Hν and ~J = He0. This gives

−

∫

Σ

〈 ~J,
∂

∂t
〉 dµ = −

∫

Σ

H 〈e0,
∂

∂t
〉 dµ =

∫

Σ

H

√

1−
2m

r
dµ.

Thus, the inequality (6) in this case is equivalent to

(8)

∫

Σ

H

√

1−
2m

r
dµ+ 16πm ≥

√

16π|Σ|.

Notice that the horizon area |∂M | equals 16πm2, and the static potential

for the Schwarzschild space-time is
√

1− 2m
r
. Hence, the inequality (8)

follows from results in [3]. (Theorem 1 in [3] works for arbitrary negative
cosmological constant, and the result needed here follows by sending the
cosmological constant to 0.)

3.2. Surfaces in a totally umbilical slice. We claim that the inequality
in Theorem 1 of [3] for surfaces in the Anti-deSitter-Schwarzschild mani-
fold corresponds to inequality (6) for surfaces in a spherically symmetric
umbilical slice of the Schwarzschild space-time. Let us recall the definition
of the three-dimensional Anti-deSitter-Schwarzschild manifold 1. We fix a
real number m > 0, and let s0 denote the unique positive solution of the
equation

(9) 1− 2ms−1
0 + λ2s20 = 0.

1The definition here is slightly different from [2] and [3], as we use 2m as the mass
parameter instead of m
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We then consider the manifold M = S2 × [s0,∞) equipped with the Rie-
mannian metric

ḡ =
1

1− 2ms−1 + λ2s2
ds2 + s2 gS2 ,

where gS2 is the standard round metric on the unit sphere S2. The sectional
curvatures of (M, ḡ) approach −1 near infinity, so ḡ is asymptotically hyper-
bolic. Moreover, the scalar curvature of (M, ḡ) equals −6. The boundary
∂M = S2 × {s0} is referred to as the horizon.

Now we return to the Schwarzschild spacetime. Consider a function ρ =
ρ(s) that satisfies

ρ′(s) =
λs

(1− 2m
s
)
√

1− 2m
s

+ λ2s2

for some constant λ > 0. Take the embedding of (2m,∞) × S2 into the
Schwarzschild space-time by Ψ(s, θ, φ) = (ρ(s), s, θ, φ) in Schwarzschild coor-

dinates (t, r, θ, φ) and denote the image by M̂ = {(t, r, θ, φ) : t = ρ(s), r = s}.
Substituting t = ρ(s) and r = s in (5), it follows that the induced metric

on M̂ is given by
1

1− 2m
s

+ λ2s2
ds2 + s2 gS2 ,

which is isometric to the one on an Anti-deSitter-Schwarzschild three-manifold
M .

Remark 5. The function ρ appears to be only defined on (2m,∞). How-

ever, we can extend M̂ in an extension of Schwarzschild space-time so that
the domain of definition of s extends to (s0,∞) where s0 is the unique posi-
tive root of 1− 2m

s
+λ2s2. We refer to Section 6 of [9] where such an extension

is carried out by using advanced Eddington-Finkelstein coordinates. In any
case, we shall denote by M the one that is extended to (s0,∞) which is re-

ferred as the Anti-deSitter-Schwarzschild manifold in [3]. Note that M̂ ⊂ M

is an isometric embedding.

Proposition 6. The hypersurface M̂ is umbilical, i.e the second fundamen-
tal form is proportional to the induced metric.

Proof. Let b(s) = 1− 2m
s

and f(s) =
√

1− 2m
s

+ λ2s2. We have the following

relation:

b−1 − (ρ′)2b = f−2.

An orthonormal coframe adapted to the hypersurface M̂ is given by

θ0 =
1

√

b−1 − b(ρ′)2
(dt− ρ′ dr) = f(s) (dt− ρ′ dr),

θ1 =
1

√

b−1 − b(ρ′)2
(bρ′ dt− b−1 dr) = f(s) (bρ′ dt− b−1 dr),



PENROSE INEQUALITY 7

θ2 = s dθ,

and
θ3 = s sin θ dφ,

where θ0 is the unit conormal that is dual to the unit future timelike normal

(10) e0 =
f(s)

b(s)

∂

∂t
+ λs

∂

∂r
.

The second fundamental form can be computed using this coframe and we
derive

p11 =
d

ds
(

bρ′
√

b−1 − b(ρ′)2
),

p22 = p33 =
1

s

bρ′
√

b−1 − b(ρ′)2
.

We check that
bρ′

√

b−1 − b(ρ′)2
= λs.

Thus, p11 = p22 = p33 = λ and M̂ is umbilical. �

Proposition 7. For a spacelike 2-surface Σ in M̂ that is mean convex and
star-shaped, the inequality (6) holds.

Proof. We assume λ = 1 for simplicity. (The general case can be reduced
to this special case by scaling.) Consider a spacelike 2-surface Σ in the

umbilical hyersurface M̂ . Let ν be the outward unit normal of Σ in M̂ , and
let L = e0+ν and L = −e0+ν be the two null normals. The mean curvature

vector ~H is given by −Hν + 2e0 where H is the mean curvature of Σ in M̂

with respect to ν. Consequently, the dual mean curvature vector is

~J = 〈 ~H, e0〉 ν − 〈 ~H, ν〉 e0 = He0 − 2ν.

This implies

−

∫

Σ

〈 ~J,
∂

∂t
〉 dµ = −

∫

Σ

H 〈e0,
∂

∂t
〉 dµ+ 2

∫

Σ

〈ν,
∂

∂t
〉 dµ.

As above, we identify the hypersurface M̂ with a region in the three-dimensional
Anti-deSitter-Schwarzschild manifold. The function

−〈e0,
∂

∂t
〉 = θ0(

∂

∂t
) =

√

1−
2m

s
+ λ2s2 = f(s)

is exactly the static potential for the Anti-deSitter-Schwarzschild space-time.
Let us denote by ( ∂

∂t
)⊤ the component of ∂

∂t
that is tangential to M̂ . From

(10) and Ψ∗(
∂
∂s
) = ρ′(s) ∂

∂t
+ ∂

∂r
, we derive

(
∂

∂t
)⊤ = −sf(s)Ψ∗(

∂

∂s
),

hence

〈ν,
∂

∂t
〉 = −〈ν, s f(s)Ψ∗(

∂

∂s
)〉.
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Putting these facts together, we obtain

−

∫

Σ

〈 ~J,
∂

∂t
〉 dµ =

∫

Σ

H f dµ− 2

∫

Σ

〈ν, sf(s)
∂

∂s
〉 dµ.

The can be viewed as an equation on M through the isometry. Recall (M, ḡ)
is defined for s ∈ [s0,∞) with

ḡ =
1

f(s)2
ds2 + s2 gS2 .

Applying the divergence theorem on M gives
∫

Σ

〈ν, sf(s)
∂

∂s
〉 dµ =

∫

Ω

divḡ(sf(s)
∂

∂s
) dvol +

∫

∂M

〈ν, sf(s)
∂

∂s
〉 dµ

where ∂M is the horizon and Ω is the region enclosed by ∂M and Σ. A
straightforward computation shows

divḡ(sf
∂

∂s
) = 3f.

In fact, sf(s) ∂
∂s

is the conformal Killing field used in [2]. On the other hand,

on a level surface of s, ν = f(s) ∂
∂s

and 〈ν, sf(s) ∂
∂s
〉 = s. Taking the limit

s ց s0, we obtain
∫

∂M

〈ν, sf(s)
∂

∂s
〉 dµ = 4πs30.

In summary, we have shown that
∫

Σ

〈ν, sf(s)
∂

∂s
〉 dµ =

∫

Ω

3f dvol + 4πs30,

hence

−

∫

Σ

〈 ~J,
∂

∂t
〉 dµ =

∫

Σ

H f dµ−

∫

Ω

6f dvol− 8πs30.

Now recall from [3] that for such a surface in the Anti-deSitter-Schwarzschild
space M ,

∫

Σ

fH dµ − 6

∫

Ω

f dvol ≥
√

16π|Σ| − 8πs0.

Therefore, inequality (6) follows by combining the last two inequalities and
the defining equation (9) of s0, which implies s30 + s0 = 2m. �

3.3. Surfaces in a null cone. Let Σ be a spacelike 2-surface which is
contained in the null hypersurface

N = {(t, r, θ, φ) : t = s+ 2m log(
s

2m
− 1), r = s, s > 2m}.

Let L and L be the null normal vectors to Σ. Note that the future outward
null normal L is tangential to the null hypersurface N . Since Σ is spacelike,
Σ can be written as a radial graph

Σ = {(t, r, θ, φ) : t = r + 2m log(
r

2m
− 1), r = u(θ, φ), (θ, φ) ∈ S2}

for some function u : S2 → (2m,∞).
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For each λ > 0, we denote by ρλ the unique solution of the ODE

ρ′(s) =
λs

(1− 2m
s
)
√

1− 2m
s

+ λ2s2

such that ρλ(4m) = 4m. It is easy to see that the functions ρλ(s) converge
smoothly to the function s + 2m log( s

2m
− 1) as λ → ∞ for s in compact

subintervals of (2m,∞). Let

M̂λ = {(t, r, θ, φ) : t = ρλ(s), r = s, s > 2m}.

We have seen above that M̂λ is an umbilic hypersurface which is isometric
to the 3-dimensional Anti-deSitter-Schwarzschild manifold. Moreover, the
surface

Σλ = {(t, r, θ, φ) : t = ρλ(r), r = u(θ, φ), (θ, φ) ∈ S2}

can be viewed as a star-shaped surface within the Anti-deSitter-Schwarzschild
manifold M̂λ.

As λ → ∞, the hypersurfaces M̂λ converge smoothly to the null hyper-
surface N . Moreover, the surfaces Σλ converge smoothly to the original
spacelike 2-surface Σ. In particular, the mean curvature vector of Σλ con-
verges to the mean curvature vector of Σ as λ → ∞, and the dual mean
curvature vector of Σλ converges to the dual mean curvature vector of Σ.

Finally, the unit normal vector field to Σλ within M̂λ converges to the
future outward normal vector L after suitable rescaling. Since the null ex-
pansion of Σ along L is strictly positive, we conclude that the mean curvature
of Σλ (viewed as a hypersurface in M̂λ) is strictly positive when λ is suf-
ficiently large. Therefore, Proposition 7 implies that the Gibbons-Penrose
inequality (6) holds for Σλ when λ is sufficiently large. Taking the limit as
λ → ∞, we conclude that the Gibbons-Penrose inequality (6) also holds for
the original surface Σ.

3.4. Surfaces in a convex static timelike hypersuface. Let us consider
a spacelike 2-surface Σ in the Schwarzschild spacetime. For abbreviation, we
put Σ̂ = π(Σ), where π : (t, r, θ, φ) 7→ (r, θ, φ) denotes the projection to the
t = 0 slice along the Killing vector field ∂

∂t
. Let us choose parametrizations

F and F̂ for Σ and Σ̂ so that F (x) = (τ(x), F̂ (x)). Clearly,

∂F

∂xa
=

∂F̂

∂xa
+

∂τ

∂xa

∂

∂t

Hence, the induced metric on Σ is related to the metric on Σ̂ by

ĝab = gab + f2 ∂aτ ∂bτ,

where, as usual, f =
√

1− 2m
r
. This gives

ĝab = gab −
f2 gac gbd ∂cτ ∂dτ

1 + f2 |∇τ |2
,
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where |∇τ |2 = gab ∂aτ ∂bτ .
We next relate the second fundamental form of Σ to the second funda-

mental form of the projected surface Σ̂. Consider the timelike hypersurface
B = {(t, x) : t ∈ R, x ∈ Σ̂}, and let ν denote the outward-pointing unit
normal vector to B. We may extend ν to a vector field defined in an open
neighborhood of B such that [ν, ∂

∂t
] = 0 and 〈ν, ∂

∂t
〉 = 0.

Note that ν is a normal vector field along both Σ and Σ̂. Moreover, we
have

〈
∂F

∂xa
,D ∂F

∂xb

ν〉 = 〈
∂F̂

∂xa
,D ∂F̂

∂xb

ν〉+
∂τ

∂xa

∂τ

∂xb
〈
∂

∂t
,D ∂

∂t

ν〉

+
∂τ

∂xa
〈
∂

∂t
,D ∂F̂

∂xb

ν〉+
∂τ

∂xb
〈
∂F̂

∂xa
,D ∂

∂t

ν〉

= 〈
∂F̂

∂xa
,D ∂F̂

∂xb

ν〉+
∂τ

∂xa

∂τ

∂xb
〈
∂

∂t
,Dν

∂

∂t
〉

+
∂τ

∂xa
〈
∂

∂t
,D ∂F̂

∂xb

ν〉+
∂τ

∂xb
〈
∂F̂

∂xa
,Dν

∂

∂t
〉

= ĥab −
∂τ

∂xa

∂τ

∂xb
f ν(f),

where ĥab is the second fundamental form of the projected surface Σ̂. This
implies

−〈 ~H, ν〉 = gab 〈
∂F

∂xa
,D ∂F

∂xb

ν〉

= gab ĥab − |∇τ |2 f ν(f)

= ĝab ĥab +
f2 gac gbd ∂cτ ∂dτ

1 + f2 |∇τ |2
ĥab − |∇τ |2 f ν(f)

= Ĥ +
f2 gac gbd ∂cτ ∂dτ

1 + f2 |∇τ |2
(ĥab − f−1 ν(f) ĝab),

where Ĥ = ĝab ĥab denotes the mean curvature of Σ̂. If B is convex static
in the sense of Definition 3, then the tensor ĥab − f−1 ν(f) ĝab is positive
semidefinite, and we obtain

−〈 ~H, ν〉 ≥ Ĥ.

On the other hand, we have

−〈 ~J,
∂

∂t
〉 = −〈 ~H, ν〉

√

−〈
( ∂

∂t

)⊥

,
( ∂

∂t

)⊥

〉 = −〈 ~H, ν〉 f
√

1 + f2 |∇τ |2,

where |∇τ |2 = gab ∂aτ ∂bτ . Putting these facts together, we obtain the
pointwise inequality

−〈 ~J,
∂

∂t
〉 ≥ Ĥ f

√

1 + f2 |∇τ |2.
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The volume elements of Σ and Σ̂ are related by dµ̂ =
√

1 + f2 |∇τ |2 dµ.
Hence, integrating the last equation gives

−

∫

Σ

〈 ~J,
∂

∂t
〉 dµ ≥

∫

Σ̂

Ĥ f dµ̂.

On the other hand, since B is convex static, the surface Σ̂ is star-shaped
and convex. Using our results above, we obtain

∫

Σ̂

Ĥ f dµ̂ ≥

√

16π|Σ̂| − 16πm.

Hence, the desired inequality follows by observing that |Σ̂| ≥ |Σ|.
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