THE STABILITY OF THE MEAN CURVATURE FLOW IN MANIFOLDS
OF SPECIAL HOLONOMY
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ABSTRACT. We study the uniqueness of minimal submanifolds and the stability of the mean
curvature flow in several well-known model spaces of manifolds of special holonomy. These in-
clude the Stenzel metric on the cotangent bundle of spheres, the Calabi metric on the cotangent
bundle of complex projective spaces, and the Bryant-Salamon metrics on vector bundles over
certain Einstein manifolds. In particular, we show that the zero sections, as calibrated sub-
manifolds with respect to their respective ambient metrics, are unique among compact minimal
submanifolds and are dynamically stable under the mean curvature flow. The proof relies on
intricate interconnections of the Ricci flatness of the ambient space and the extrinsic geometry

of the calibrated submanifolds.

1. INTRODUCTION

Calibrated submanifolds [9] in manifolds of special holonomy are not just minimal subman-
ifolds, they actually minimize the volume functional in their homology classes. Of particular
interests are special Lagrangians in Calabi—Yau, associatives and coassociatives in Gg, and
Cayley submanifolds in Spin(7). These geometric objects attracted a lot of attentions in recent
years. On the one hand, they are natural generalizations of algebraic subvarieties in algebraic
manifolds and thus are of immense geometric interest. On the other hand, they appear in vari-
ous proposals of string theory such as Mirror Symmetry and the M-theory. The most successful
construction of metrics of special holonomy is the Calabi—Yau case, where the celebrated the-
orem of Yau [27] shows the homological condition guarantees the existence of the metric. All
other constructions are based on deformation theory, symmetry reductions or gluing construc-
tions [11] (see also a recent flow approach for Go construction in [21[I5]). The scenario of the
construction of calibrated submanifolds is similar [I0,[I3]. Even in the Calabi-Yau case, the
understanding of special Lagrangians is still rather limited [17,12].
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Among all explicitly constructed manifolds of special honolomy, the most well-known ones
seem to be the Stenzel metric [20] on the cotangent bundles of spheres (or the Eguchi-Hanson
metric in dimension 4) and the Calabi metric [3] on the cotangent bundles of complex projective
spaces. Similar constructions of Bryant—-Salamon [I] produce Gy and Spin(7) metrics. All of
them are based on bundle constructions and the zero sections are calibrated submanifolds. In
the article, we study the uniqueness and the dynamical stability of the zero sections of these
manifolds. To be more specific, we consider the following manifolds of special honolomy in this
article.

Assumption 1.1. Throughout this article, M is a Riemannian manifold of special holonomy
that belongs to one of the followings:

(i) the total space of the cotangent bundle of S™ with the Stenzel metricEl with n > 1;
(ii) the total space of the cotangent bundle of CP" with the Calabi metric;
(iif) the total space of S(S%), A2 (S%), A% (CP?), or S_(S*) with the Ricci flat metric con-
structed by Bryant—Salamon.

In section 2 Bland (], we review the geometry of these metrics in details. In all these examples,
M is the total space of a vector bundle over a base manifold B. We identify B with the zero
section of the bundle, which is also considered to be an embedded submanifold of M. Let
m: M — B be the bundle projection, and let €2 be the pull-back of the volume form of B by
the projection . The smooth differential form €2 on M characterizes B by the condition that
Q(T,B) =1 for all p € B where T),B is the (oriented) tangent space of B as a submanifold of
M at a point p. Let d(-) denote the distance function to the zero section B with respect to the
Riemmanian metric on M. For a compact embedded submanifold ¥ of M with dim ¥ = dim B,
¥ is considered to be C° close to the zero section if d(p) is close to 0 for all p € ¥, and ¥ is
considered to be C! close to the zero section if Q(7,Y) is close to 1 for all p € ¥.

Our first result regards the uniqueness property of the zero sections.

Theorem 1.2. In each case considered in Assumption [, the zero section is the unique com-
pact minimal immersed submanifold of the given dimension.

The mean curvature flow is the parabolic PDE system that deforms a submanifold by its
mean curvature vector field, and thus the negative gradient flow of the volume functional.
Although a calibrated submanifold represents a local minimum of the volume functional, there
is no guarantee that it is stable along the mean curvature flow, due to the nonlinear nature and
the degeneracy the PDE system. The nonlinear stability of PDE systems such as the Einstein
equation or the Ricci flow is under intense study. Our next result concerns the nonlinear C!
stability of the zero sections.

When n = 1, the metric is not only Ricci flat, but flat. We have to exclude this flat case.
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Theorem 1.3. In each case considered in Assumption[I 1), there exists an € > 0 which depends
only on the geometry of M such that if ¥ is a compact embedded submanifold of M and

sgg (dp) +1—-QTLY)) < e, (1.1)

then the mean curvature flow of 3 exists for all time and converges to the zero section smoothly.

Remark 1.4. The Ricci flat metric on each manifold M considered in Assumption [I.] is
constructed under some symmetry Ansatz. From the constructions, one sees that the metric
turns out to be uniquely determined by the volume of the zero section B. That is to say, €
depends on the volume of the zero section (and also n in case (i) and (ii)).

Theorem [[.2]is proved in section Bl The main point is to prove the convexity of the distance
square to the zero section. It is also the key for the C° convergence in Theorem [[3], and plays

an important role for the C' convergence.

Such a nonlinear C! stability theorem for higher codimensional mean curvature flows has been
established for manifolds of reduced holonomy, namely manifolds that are locally Riemannian
products, see for examples [19,211222325]. Theorem [L3] to the best our knowledge, appears
to be the first one for manifolds of special holonomy.

Sections [0 and [[ are devoted to the proof of Theorem [I.3l In section [6, we establish estimates
on the covariant derivatives of Q, which is needed for proving the C' convergence. In section [7]
we put everything together to prove the stability of the zero section under the mean curvature
flow.

Remark 1.5. A general stability theorem of the mean curvature flow of compact smooth
submanifolds can be derived from [I8, Theorem 2| under the assumption that the initial data
is close enough to a stable minimal submanifold in the W22 Sobolev norm for large enough
I (which implies at least C? smallness). In addition, the smallness constant depends on the
functional, in this case the volume of submanifolds. Theorem is a C! stability theorem
in which the regularity requirement is lower and the dependence of the smallness constant is
explicit. The theorem can be turned into a Lipschitz stability theorem (by approximating the
initial Lipschitz submanifold by a family of C'! submanifolds, see [26]), which seems to be the
optimal result for the mean curvature flow.
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2. GEOMETRY OF THE STENZEL METRIC

2.1. The Calabi—Yau metric on 7%S5™. Consider the n-dimensional sphere S™ with the
standard metric for n > 1. Let {w"}}i_; be a local orthonormal coframe. Denote their connec-
tion 1-forms by w). We adopt the Einstein summation convention that repeated indexes are

summed. The convention here is that
dw' = —wh ANw” , V' = —wh @ w” .
As a space form with curvature equal to 1, its curvature tensor is
QF =dwl) —w) ANwh =wh AW .

Let {y,} be the coordinate for the fibers of 7*S™ induced by {w"}. The standard metric on
S™ induces the following metric on T*S™.
> (W + [y — v w))?) - (2.1)

p=1

2.1.1. Spherical coordinate for the fibers. There are two naturally defined 1-forms outside the
zero section:

1 1 1
Sy and o~y dy, = —y (dy, — g wp)

where r = (3 u(yu)2)%. The first one is the tautological 1-form rescaled by 1/r; the second one
is the exterior derivative of r. With respect to (2.I]), they are unit-normed and orthogonal to

each other.

It is more convenient to consider the metric (2.1 by another coframe, which is an extension
of the above two 1-forms. To start, extend the vector %(yl, -++,Yp) to an orthonormal frame
for R™. This can be done on any simply-connected open subset of R"\{0}. To be more precise,
choose a smooth map T}’ from a simply-connected open subset of R™\{0} to O(n) such that

1
T (y) = Y for v=1,2,...,n and y € Domain(7}') C R"\{0}.

v

For example, the standard spherical coordinate system on R™\{0} will do. When n = 3 with

o ; o _ 2 _ 19y 3 _ 1 9y
Y1 = rsinfsing,y2 = rsinfcos¢,ys = rcosf, one can take Ty = 7 and T} = Tsinga—(g,
uw=123.

The metric (ZI)) has the following orthonormal coframe

ot =Thw
- (2.2)
o" T =TH (dyy, — yyw)))

for pe {1,...,n}.



2.1.2. The Stenzel metric. With this coframe (2.2]), the Stenzel metric takes the form
n n 2
1)2 712 n+1\2 b(r) n+j 2.3
(c(r)oh)” + ]Z:; (a(r)o?)” + (c(r) o™ + ]Z:; <—7‘ o : (2.3)

The coefficient functions are defined by

1
a’ = Zh/(T) cothr |

1
v = Zh'(r) tanhr | (2.4)
1
02 == Zh”(r)
where h/(r) is the solution of the ODE
d n _
5@%»:&“%@m®w"1 with  h/(0) =0 . (2.5)

Here, prime ( )’ denotes the derivative with respect to 7. The function h is the Kéhler potential
in the paper of Stenzel [20 section 7]. We remark that the metric here differs from that in
[7, section 2] by a factor of 2"~!/n in (ZX). The normalization here is chosen such that the
restriction of metric (23] to the zero section is the round metric of radius 1, and hence the
volume of the zero section is 272 /T'(n/2).

2.1.3. Connection and Ricci flat equation. Take the orthonormal coframe:

. . b .
wh=c(r)ol', w=alr)o?, w"t=c(r)o"t =c(r)dr, "= Q o™t (2.6)

for j € {2,...,n}. The indices i, j, k, ... will be assumed to belong to {2,...,n}.

It is useful to introduce the new radial coordinate p by dp = c(r)dr = w™*!, and denote by

dot () the derivative with respect to p. This p coordinate is the distance to the zero section
with respect to (23]). Therefore,

. 1 ,
f=af

The connection 1-forms wl of (2.6]) can be found by a direct computation:

1 ¢ g ; a S '
Wpt1 = Ew ) w%—l—l = Ew] ) WZI{ = Ewn—m 5 (2 7)
wi-{-i = C(Si O.)l s O.)IH_] = AO.)J s w]l — Bw”'l']
where
2_p2_ 2 B2 _ a2 — 2 2 a2 _p2
pa=rr—r-c p=L_%-c c-¢~a-v (2.8)
2abc 2abc 2abc
The rest of the components wf and wZL] satisfy
w = Wi =TIl T, — (ATY) T, . (2.9)
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In [T section 2], Cvetic¢ et al. showed that the Ricci flat equations admit first integrals which
are given by

%+A:0, JyB=0, S+M—UO:0. (2.10)

They solved the equations ([2.4]) and reconstructed the Stenzel metric in the above form (2.3]).
The expressions of the Kéahler form and the holomorphic volume form are quite simple in terms
of the coframe (2.6]). The Kahler form is ZZ:I Wl A w™# and the holomorphic volume form
is (wh Fiw™ A (W2 +iw™2) A - (W™ +iw?™). With the above relations, one can check that
these two differential forms are parallel. With this understanding, the complex structure I in

terms of the dual frame {éy,...,é,} of (ZG) sends €, to €,4, and sends €,4, to —é, for any
pe{l,...,n}

2.2. Coefficient functions and curvature. The geometry of the Stenzel metric is encoded
in the functions A, B and C. In this subsection, we summarize the properties that will be used
later. Note that (28] implies that A’ > 0 and h” > 0 when r > 0. By (24) and (ZI0),

Lo
VW' \ W sinh(2r))

oL (M, 2 (2.11)
R\ W sinh(2r) ) ’
1 1 h///

Tn—1R R

Instead of r, we state the estimates in terms of p = for c(u)du.

Lemma 2.1. The functions A, B and C are negative when p > 0. Moreover, there exists
a constant K > 1 which depends only on n such that |A|/p, |C|/p and |Blp are all bounded
between 1/K and K for any point p with 0 < p(p) < 1.

Proof. Tt follows from (23] that
r' (sinh(27’))n_1
W fy (sinh(Zu))"_ldu ’
1 p"  2ncosh(2r) (for (sinh(2u))n_1du) — (sinh(2r))"

n—1n" n sinh(2r) (for (sinh(2u)) n_ldu>

(2.12)

To prove that C < 0, we estimate

2ncodm2r)<jﬁr(snﬂm2u»"’ldu> >-2njﬁrcogm2u)(snﬂm2u»"*ldu::(snﬂm2r»"
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for any r > 0. It follows that C' is negative. For A < 0,

B 2 (sinh(2r))" —2n [; (sinh(Zu))n_ldu
T

K sinh(2r) nsinh(2r) [ (sinh(2u))"" du
_ 2n I (sinh(2u))n_1(cosh(2u) —1)ds
nsinh(2r) [; (sinh(2u))n_1du

for any r > 0. It follows that A < 0. Since B < A, B is also negative.

>0

The second assertion is a direct consequence of the power series expansion at r = 0. It follows
from (Z3) that the Taylor series expansion of h/(r) near r = 0 is

2(n—1)

Bo=dr 1+ r? .

r< +3(n+2)7’ +O(r ))

Thus, p =7+ O(r?), A = —L5r + O(r?), C = —%4_27* + O(r?) and B = —r~t + O(1). This
finishes the proof of the lemma. O

We remark that (2.I0]) and the negativity of A, B and C imply that a, b and ¢ are increasing
functions. Other quantities we will encounter are the derivatives of A, B and C with respect
to p. It turns out that they are degree two polynomials in A, B and C.

Lemma 2.2. The functions A, B and C obey:
A=—-nBC+A(A+B+C),
B=-nAC+ B(A+B+0C),
C=-2AB+(n—-1)C(A+B+0C).

Proof. The equation (28] can be rewritten as

a b c

B+C=-2 Cra=—_ A+B=-". (2.13)
be ac ab
By using (ZI0),
B+C=(B+C)(-A+ B+ (n—1)C) ,
C+A=(C+A)(-B+A+(n-1)0C) ,
A+B=(A+B)(~(n-1)C+A+B) .
The lemma follows from these formulae. O

2.2.1. The Riemann curvature tensor. In [7l section 2], Cveti¢ et al. also computed the compo-
nents of the Riemann curvature tensor of the metric (2.3)).

Note that (ZI3]) implies that

A+B)A+C)= . BHABHO) =,  (CH+AC+B) =
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By applying (210), (ZI3) and Lemma to [7, (2.14)], we find that the components of the
Riemann curvature tensor are all degree two polynomials in A, B and C:
R(é1,€j,61,6;) = AB+ BC —nCA ,
R(é1,én+j,€1,nt;) = AB+CA—nBC

1 o _ o _ _
ﬁR(e:h en+17 €1, en—i—l) - R(el7 en-i—la en+j7 e])

— (n—1)(CA+ BC)—24B
R(&i, en ik €j,€nt1) = —AB(050p1 + 0udjr) + (BC + AC)0id51
R(&;,ex,¢j,e) = (AB + BC + CA)(6i501 — udjr)

and other inequivalent components vanish. Here, €1, ..., &s, is the dual frame of (2.4, and the

convention of the Riemann curvature tensor is
R(X,Y,Z,W) =(VzVwY =V VzY = VizwV, X) .
By equivalence we mean that the curvature is a quadrilinear map R satisfying the condition

R(X,Y,Z,W) = —R(X,Y,W,Z) = R(ZW,X,Y) = R(X,Y,12,IW) . (2.14)

The most important property of the Riemann curvature tensor of the Stenzel metric that will
be used later is R(€,, €ntv, Ents,ente) = 0 = R(Entp, €y, Es,€) for any p,v,6,e € {1,...,n}.

3. GEOMETRY OF THE CALABI METRIC

The Eguchi—-Hanson metric has another higher dimensional generalization. There exists a
hyper-Kéahler metric on the cotangent bundle of the complex projective space, T*CP". The
metric is thus Ricci flat. It was constructed by Calabi in [3| section 5] by solving the Kahler
potential under an ansatz. Since we are going to study the Riemannian geometric properties
of the metric, it is more convenient to describe the metric in terms of a moving frame.

3.1. The hyper-Kihler metric on T*CP". Consider the n-dimensional complex projective
space CP" with the Fubini-Study metric. Let {#*} be a local unitary coframe of type (1,0).
That is to say, the Fubini-Study metric is

n

> jenE

p=1
Denote by 6 the corresponding connection 1-forms. They are determined uniquely by the
relations:
doH = —08 NG and 0, + 0, =0 . (3.1)
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The curvature of the Fubini-Study metric is
O =dol — 0] NOY = 0" NGV + 6167 NG .

The curvature formula implies that its sectional curvature lies between 1 and 4, and is equal to
4 if and only if the 2-plane is complex. The detailed discussion of the Fubini—-Study metric in

terms of the moving frame can be found in [5 section §].

Let {z,} be the complex coordinate for the fibers of (7*CP")(19). Then, the Fubini-Study

metric induces the following metric on T*CP".
n
> (16412 + |z — 2, 00) (3.2)
n=1
The complex structure of CP™ induces a complex structure on T*CP", with respect to which
0# and dz, — 2, 0, are (1,0)-forms.

Remark 3.1. We briefly explain the convention of the correspondence between real and com-
plex moving frames. Write 8* as w?*~1 +iw?*. Then, {gz”_l}ﬁzl U {Q2M}Z:1 constitutes an
orthonormal coframe. Let {e,, 1}, U{es,};i—1 be the dual orthonormal frame. They satisfy
J(egu—1) = €, where J is the complex structure as an endomorphism on the (real) tangent
bundle. Denote by gﬁ the connection 1-forms, where 1 < A, B < 2n. Namely, Ve, = gﬁ ®ep.

: . 2u _ 2p—1 2u—1 2u ops . "o
Since J is parallel, w3, = wy;, | and w5, = = —w5, ;. The Hermitian connection ¢, is equal
to
2pu—1 s 2n _2n . 2p—1
Woy—1 T1Wy, 1 = Wy, —1Wy, - (3.3)

For the total space of the cotangent bundle, write z,, as x,—iy,. Under the (real) isomorphism
(T*CP)(10) =~ T*CP" (real cotangent bundle)
2y, 01 < Re(z,0") = 2, w1 +y, W,

the metric (B2 is equal to

n
S (@12 4 @) + (Ao — 2 wBiTh = owdi )P+ (g — mwdi ™ - pwd)?)
n=1

3.1.1. Spherical coordinate for the fibers. Let r = | /ZH |z4]? be the distance to the zero section
with respect to the metric (8.2)). Again, the exterior derivative of r and the tautological 1-form
are two naturally defined 1-forms on T*CP". In terms of the complex coordinate, they read

1
Re (;ZH (dzy — 2 91:)) and Re (z,60") ,

respectively. Their images under the complex structure give another two 1-forms, which are

the imaginary part of the above two (1,0)-forms multiplied by —1.
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With this understood, consider the complex version of the spherical change of gauge. It
means an extension of %(21, .-+, zp) to a unitary frame for C", which can be done on any
simply connected open subset of C*\{0}. More precisely, choose a smooth map T}’ from a
simply connected open subset of C"\{0} to U(n) such that

1
T/}(z) =~ for p=1,2,...,n and 2 € Domain(7})) C C"\{0}.

It follows that the following 1-forms also constitute a unitary coframe of type (1,0) for (B:2])
ot =THo" ,
_ (3.4)
ot =T/ (dzy — 2, 0))
where p € {1,...,n}.

3.1.2. The Calabi metric. In terms of this coframe, the Calabi metric is of the following form

o+ 3 o) o+ () ar)? + (Q mo "“) - B
j=2
where
o = sinh(r) c= li :. hco;h(Zr) ; (36)
b = cosh(r) , f= _M |

2 \/cosh(2r)

In [§], Dancer and Swann found an easy way to construct the hyper-Kéhler metric. They
wrote down the ansétze for the three hyper-Kéahler forms, and imposed the d-closed condition.
The three Kéhler forms are

h
f dr Alm o™t + ;c ol Aol + b2§:20] Aod + —— Za"ﬂ Aonti | (3.7
J
and the imaginary and real part of
hcdr/\crl—l—if—c(lmanﬂ)/\al—a—bzn:aj/\o*"ﬂ (3.8)
. , 2 . .

If (37) and (B.8)) are annihilated by the exterior derivative, the coefficient functions must obey

2 2
08 oy 392y, ar=c,
dr dr dr (3.9)
d(ab) = hec , d(fe) =hc, and ab= fc.
dr dr

It is a straightforward computation to check that (3.6) does solve (3.9]). One can consult

[6l section 4] for the discussion on solving ([B.9]).
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For the connection and curvature computation in the following subsubsections, it is more
transparent to simplify the expressions by using the hyper-Kéahler equation B3) than by plug-
ging in the explicit solution ([B.6). Note that (3.9) implies that b> — a? is a constant, which is 1
for the explicit solution (B.0I).

3.1.3. Connection 1-forms. To compute the connection 1-forms of the metric, it is easier to
choose a complex structure and take a unitary frame. With respect to the complex structure
corresponding to the Kéhler form (3.7]), we have the unitary coframe:

¢ =cot, & =bol e = hdr + %Imo”“’1 , et = ganﬂ (3.10)

for j € {2,...,n}. Denote by & the Hermitian connection 1-forms. They can be found by the
structure equation (BII):

1 2 n n
5% =1 <C_§ - ?) Im g = Sn—ti ’ n+1 f g = gn—l—] )
‘ _ f ' (3.11)
Ehir = € L =0, = Tei= gt

The hyper-Kéahler equation ([3.9) is used to simplify the above expressions. The components 5;“

and SZI;“ are related to the connection of the Fubini—-Study metric as follows:
f

=~ —ThenT] - (dT’f)TJ+1b—26§“ Im g™t (3.12)

3.1.4. Riemann curvature tensor. In terms of the unitary coframe ([B.I0)), the curvatures are as

follows:
O = 2 (AT - AgT) + o (6 AT - 9 ngH) =~
. 1 o _ .
o= (&J NE - AT ) = -t

Q?'ﬁ‘j _ _C_4 <§n+J /\g_i_fn-i-l /\5__7> — Q;H-l 7
2 —
Q?—l—l _ _C_G gn—i—l A 51 ,

1 > - -
ntk _ = (gntd gk gntk p gl
Q; 2 (5 NER+ € /\5) ,

2
kol
|

1 — R
iT @ (fk NE — &M 5"““)
1 — S 1 /. — , '
k 1 1 +1 1 + n+j)
+0; <C—4<f NEL =& Af"+)+c—2<flAfZ—£nZ/\5"+Z)>__Qn+k
The equality between different curvature components is a consequence of the hyper-Kahler

geometry.
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4. GEOMETRY OF LOCAL Gg AND LOCAL Spin(7)

In [I], Bryant and Salamon constructed complete manifolds with special holonomy. They
constructed three examples with holonomy Gs, and one example with holonomy Spin(7), each
of which is the total space of a vector bundle.

4.1. Bryant—Salamon manifolds. This subsection is a brief review on the construction of
Bryant and Salamon. We first review the general framework of the metric construction on a
vector bundle, and then specialize in their examples.

4.1.1. Bundle construction. Let (B",g) be a Riemannian manifold, and E = B be a rank m
vector bundle. Suppose that F carries a bundle metric and a metric connection. Then, these
datum naturally induce a Riemannian metric on the total space E. The construction goes as
follows. With the connection, the tangent space of E decomposes into vertical and horizontal
subspaces. These two subspaces are defined to be orthogonal to each other. The metric on the
vertical subspace is given by the original bundle metric; the metric on the horizontal subspace
is the pull-back of the metric g.

This metric can be seen explicitly in terms of the moving frame. Take a local orthonormal
coframe {w’ }—; on an open subset U C B, and a local orthonormal basis of sections {s, }};
that trivializes E|y. Denote by V4 a metric connection for E. Let A% be the the connection
1-forms of V 4 with respect to s,, namely, Vs, = E,T:l Als,. Thus, [A)] is an o(m)-valued
I-forms on U. Let {y"}]'; be the coordinate for the fibers of E|y induced by {s,};.,. The
Riemannian metric g, on E induced by the bundle metric is

g= 3 WP+ (dyt + Al y")? (4.1)
j=1 pn=1

In our discussion on the bundle construction, the indices i,j,k are assumed to belong to
{1,2,...,n = dim B}, and the indices p, v, 7, o are assumed to belong to {1,2,...,m = rank E'}.

Here is a relation that will be used later. The exterior derivative of dy* + AL y” can be
written as Fy'y” — Ay A (dy” + A% y7), where
1 . .
Bl =dA) + AR NA) = §Flf‘2] w' A w’ (4.2)

is the curvature of V4.

4.1.2. Rescaling the metric. Let s = Zu(y“)2 be the distance square to the zero section with
respect to the Riemannian metric g, in (1]). For any two smooth, positive functions «(s), 3(s)
defined for s > 0,
i\ 2 2
gap =D (aw’)"+ D (B(dy" + AL y")) (43)
m

J
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also defines a Riemannian metric on E. Let
W =aw and W' =B (dyt + AL yY) . (4.4)

They form an orthonormal coframe of the metric (£3]). Their exterior derivatives read

. . . 20 .
dw’ = —w! Aw' — —yFw! Aw"TH
7 (45)
, )
dw™tH = BFly” — AP A" — @y” WTH A WY

where gg is the connection 1-form of the Levi-Civita connection of (B, g). By a direct compu-
tation, we find that the connection 1-forms of the Levi-Civita connection of (E, g, 3) are

: B
w] = w] + ﬁFﬁlij y Wt (4.6)
ﬁ . 20 .
with = WF&']' Y w — @y“ w', (4.7)
2 !/
with = A# 4 ﬁ(y” W — P W™t | (4.8)

The mixed component w?ﬂ‘ is different from the other two components; it involves only the
n—+p

curvature but not the connection. That is to say, w, " is a tensor:
) n—+pu i 20505/ m
WRw T @su = BE( )W su) = =5 g )W se)  HXH SV

where H = 7*TB is the horizontal subspace, and V = 7n*F is the vertical subspace over the
total space of E.

4.1.3. Ezamples of Bryant and Salamon. For the examples of Bryant and Salamon, the base
manifold B is either a sphere or a complex projective space. The metric g is the standard
metric. The vector bundle F is constructed from the tangent bundle or the spinor bundle,
and the metric connection is induced from the Levi-Civita connection. In what follows, « is the
sectional curvature of the round metric when the base is the sphere, and is half the holomorphic
sectional curvature of the Fubini-Study metric when the base is CP?.

The first example [T}, p.840] is the spinor bundle over the 3-sphere, S(S?). The Gy metric has

and  B(s) =2(1+s)75 . (4.9)

o=

a(s) = (3k)3(1 + s)

The next two examples [I, p.844] are the bundle of anti-self-dual 2-forms over the 4-sphere
and the 2-dimensional complex projective space, A2 (§%) and A% (CP?). They have

als)= (2k)2(1+s)1  and  B(s)=(1+s)71. (4.10)
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The last example [I p.847] is the spinor bundle of negative chirality over the 4-sphere,
S_(S*). The Spin(7) metric has
a(s) = (5/4)%(1 + s)% and B(s) =2(1+ s)_% . (4.11)
We will refer S(S%), A2 (S*), A2 (CP?) and S_(S*) with the Ricci flat metric as the Bryant-
Salamon manifolds.

The above coefficient functions are derived from the special holonomy equation, which is a
first order elliptic system. According to their paper, the special holonomy equation reduces to

the following equation:
o =Ky ﬁ—z and B = —ko 5_2 (4.12)
a o'
for some positive constants s, and k. For S(S%), k1 = k/4 and ko = k/8. For A?(S*) and
A% (CP?), ki = ky = K/2. For S_(S%), k1 = 3x/8 and ky = K/4.
One can easily construct some functional equations from ([{I2]). Here are two relations that
will be used later:

<g_z>/ =2mtm) = Z—i - <%>2 +2(k1 + R2)s ; (4.13)
% = —(2k1 + k) ﬁ—4 : (4.14)
(%) -

5. THE UNIQUENESS OF THE ZERO SECTION

We first prove a general lemma regarding the location of a compact minimal submanifold.

Lemma 5.1. Let (M, g) be a Riemannian manifold. Suppose that 1) is a smooth function on
M whose Hessian is non-negative definite. Then, any compact, minimal submanifold of M
must be contained in where Hessys v degenerates. In addition, i takes constant value on the
submanifold if it is connected.

Proof. Let ¥ C M be a compact submanifold, and p be a point in X. Choose an orthonormal
frame {e;} for T'Y on some neighborhood of p in ¥. Consider the trace of the Hessian of 1 on
T:

0 < try, Hess ) = Z Hess(ej,e;) = Z (6]’(6]’(1/})) — (Vejej)(l/}))

J J
= A%y — H(y)
where V is the covariant derivative of (M,g), A* is the Laplace Beltrami operator of the
induced metric on X, and H = 3 ,(V, ej)t is the mean curvature vector of . When ¥ is

minimal, it implies that A*1) > 0. The lemma follows from the compactness of ¥ and the

maximum principle. O
14



5.1. The Stenzel metric case. In this subsection, we apply Lemma [5.1] to show that the zero
section is the only compact, special Lagrangian submanifold in 7%5™.

Theorem 5.2. When n > 1, any compact, minimal submanifold in T*S™ with the Stenzel
metric must belong to the zero section.

Proof. Consider the smooth function 1) = p?, which is the square of the distance to the zero

section (with respect to the Stenzel metric). Due to Lemma [5.1], it suffices to show that the

Hessian of ¢ is positive definite outside the zero section. Since Hess(p) = Vdp and dp = w1,

we compute
Hess(¥) = 20" @ W™t 4 2pVw !
By the third equation in (6.6]), we obtain
Hess(1)) = 20" @ W™ — 2p(n — 1)Cw! @ w — 2pA Zwﬂ ®w! —2pB Z W't @ Wt
j=2 j=2
(5.1)
According to Lemma 2] Hess(v)) is positive definite when r > 0 (equivalently, when p > 0).
This finishes the proof of the theorem. O

5.2. The Calabi metric case. In this subsection, we prove that the zero section is the only
compact, special Lagrangialﬂ submanifold in 7*CP".

Theorem 5.3. Any compact, minimal submanifold in T*CP"™ with the Calabi metric must
belong to the zero section.

Proof. The function p = [ \/cosh(2u)du is the distance function to the zero section with
respect to the Calabi metric and dp = Re&™*! by ([@.8) and @I0). Consider the smooth
function 1) = p? and compute as in the last theorem,

Hess () = 2 (Re &™) @ (Re €™ + 2p Re(VE™T) .

By the third equation in (612]),

Re(VE™ ) = Z 1P + 55 D197+ (5 = ) e @ (mg™ ) + 5 5[]
=2 j=2
According ([B.6]), it is not hard to see that Hess(¢) is positive definite when » > 0, and the
theorem follows from Lemma [5.1] O

2The zero section is Lagrangian with respect to any Kéhler structure orthogonal to (B1). Equivalently, it is

holomorphic with respect to the complex structure corresponding to the Kahler form (B7)).
15



5.3. The Bryant—Salamon metric case. In this subsection, we examine the uniqueness of
the zero section as a minimal submanifold.

Lemma 5.4. Let (B",g) be a Riemannian manifold. Let E — B be a rank m vector bundle
with a bundle metric and a metric connection. Denote by s the square of the distance to the zero
section with respect to the metric g, [@I) on E. For any two smooth positive functions a(s)
and (s), endow E the Riemannian metric g, p defined by [A3). Then, the Hessian of s with
respect to go g is positive definite outside the zero section if and only if o/ > 0 and § > 2s|f'|
for s > 0.

Proof. Suppose that v is a smooth function on E depending only on s = > u(y“)z. Its exterior
derivative is

/
diyp = ¢’ ds = 2¢'y* dyt = %y“ WwhTH (5.2)

Let {€;}]_; U{€n+u},zy be the frame dual to the coframe ([&4). The Hessian of ¢ along (€;, €;)
is
Hess(y) (i, e;) = €i(¢;(¥)) — (Ve &) (¥)

40/1#/ i T[), 5 40/,[[)/ i
=25 s0] + —yly" Flly; = a253(5l]- (5.3)

where equality uses the fact that [F}'] is skew-symmetric. It is not hard to see that the Hessian

of 1 along (€y,+,,€;) vanishes. Along (€n4p,Entv),

Hess(w)(én—i-u, entv) = én+u(én+u(¢)) - (Vén+ﬂén+V)(¢)

2y, , 2 (207 JABYAply
= (Forrr 3 (%)) - (rrs - T5en)

2 4B Lo (AN
Substituting 1) = s, the lemma follows from (B3], (5.4) and the fact that the eigenvalues of
[y* y”] are s and 0, where 0 has geometric multiplicity k — 1. O

Applying this lemma to the Bryant—Salamon manifolds leads to the following theorem.

Theorem 5.5. Any compact minimal submanifold of the Bryant—Salamon manifolds must be
contained in the zero section.

Proof. This follows directly from ([@I2]), [@I3) and Lemma [£.4] with ¢y = s. Moreover, by
([@I13), we have

/8 . 7 7 2 Oé(O) ? S n n
Hess(¢)) > 451$s;w Quw' + ) ((W) +2/€13> ;w TH @ TR (5.5)
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This Hessian estimate will be needed later. O

6. FURTHER ESTIMATES NEEDED FOR THE STABILITY THEOREM

In this section, we begin preparations for the proof of Theorem [[.31 Each manifold in
Assumption [[T] is the total space of a vector bundle © : E — B. The base B naturally sits
inside E as the zero section. The pull-back of the volume form on the zero section defines a
differential form 2 on F. We are going to calculate the covariant derivatives of €2, which will
be applied to derive C! estimate of the mean curvature flow.

6.1. Estimates from linear-algebraic decomposition. Each metric in Assumption [[.T] ad-
mits a local orthonormal coframe {w’ }p_g U{w 3R such that (j_, ker wl = m*E. Asin
section LTIl The subbundle 7*E C TE will be called the wvertical subspace, and will be de-
noted by V. The orthogonal subbundle H C TE is given by ﬂZL:l ker w™™#, and is isomorphic
to 7*T'B. This bundle H will be referred as the horizontal subspace. For each manifold in
Assumption [I.T], the dimension of the base manifold, n, is no less than the rank of the vector
bundle, m.

In terms of the frame, the n-form Q is w!' Aw? A--- Aw™. Let p € E, and suppose that
L C T,FE is an oriented n-dimensional subspace with (L) > 0. Then, L can be regarded as
the graph of a linear map from #, to V,. By the singular value decomposition, there exist
orthonormal bases {u;}"_; for Hp, {v,}}L, for Vp, and angles 6; € [0, ) such that

{ej = cosOju; +sind;v;} and {entp = —sinf,u, +cos, v} (6.1)

constitute an orthonormal basis for L and L+, respectively. For j > m, v; is set to be the zero
vector, and 6; is set to be zero.

Note that neither the frame {e;}U{e,1,} nor {u;}U{v,} is necessarily dual to {w’ }U{w™#}.
In any event, [w’(u;);; is an n x n (special) orthogonal matrix, and [w" ™ (v,)],,, is a m x m
orthogonal matrix. Denote by

§ = max |sin 0;] . (6.2)
J

The following estimates are straightforward to come by:

n
<n, Z (W™ A w!) (e, ei)| < 2ns (6.3)
i=1
17
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and

|(w1/\---/\wn)(6n+u,€1,“‘,€i7"‘7en)|§57
|(w1/\---/\wn)(en+u7€n+u,€17“‘7€i="'7€j“‘aen)|§52=
‘(w"wAwlA-.-/\JiA---/\w")(el,---,en) <ns, (6.4)
‘(wnJ’“/\wl/\---A&/\---Awn)(enw,elw“veAj"'ven) <1,
‘(wn+u/\wn+u/\w1/\,,,/\(;i/\,,./\;;/\.../\w")(el,...7en) < n(n—1)s?

for any 7,5,k € {1,...,n} and p,v € {1,...,m}.

Suppose that 3 C E is an oriented, n-dimensional submanifold with ©(7},3) > 0. Applying
the above construction to 7,3 gives a continuous function s on ¥. With this understanding,
the remainder of this section is devoted to estimating

Ve, and  (try,s ViO)(T,%) = Z(ng,e]ﬂ)(el, ceeen)
j=1

in terms of s and the distance to the zero section. These estimates will be used in the proof of
Theorem

6.2. The Stenzel metric case. Consider the Stenzel metric on 7%5", and adopt the notations
introduced in section Bl The n-form Q = w! Aw? A--- Aw™ is not parallel. In order to establish
the estimates on V{2 and V2(), it is convenient to introduce the following notations:

q)j:L(ej)@:(—1)jw2/\~-/\;}/\'~/\w”,
‘ - - (6.5)
(1R W2 A AWEA AW A AW ifR<

L e he
(_1)J++w AN AWI A AwWEA-- AW if k>

for any j, k € {2,...,n}.
By 1), 29) and (2I0)), the covariant derivatives of the coframe 1-forms are as follows.

Vw!' = -Buw" @w 4+ (n-1)Cuw' @w"™ + A’ @™ |

Vol = -0l 9w + Bu" @uw! + Aw! @™ — Cwl @ W™ |
V"™l = —(n-1)Cuw'@w' — 4w @w — Bw"V @ w7 |
Vo't = —Aw @l + Cwl @ W/ + B @t — ] @ wnth
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We compute the covariant derivative of ® and ®7.

Vo = (Vi) A DI
= (Bw") @ (WA ) - (Cwl) @ (W AD) + (Aw?) @ (WA DY) | (6.7)
= (Vb)) A oIF
(B wn-l—k) (wl A (I)jk) + (Awk) ® (wn-l—l A (I)jk)
. " P (6.8)
— (Cwh) @ (WA D7F) + 65 @ & .
Putting (6.6) and (G7) together gives the covariant derivative of .
VQ=mn-1)Cw)® W™ A®)+ (Aw) @ (W A D) ©9)
6.9

—(CuwH) @ W AW ADT) + (Aw!) @ (W AW A DY)

We also compute the second covariant derivative of 2 by computing the covariant derivative
of the four terms on the right hand side of ([6.9]). By (6.06]), ([6.7)) and (6.8):

VZQ = (n— )T+ I+ T+ 1V
where
=V ((Cw") ® (" A D))
—(n—-1D(C?*w'@w)®Q - (BCW" @w') @ (W AP+ w! Aw™ A dY)
+ <C’w”+1 Qw!' —BCW" @uw +(n—-1)C*w @ " + ACW ® w”“) ® (WA @)

—(C?w' @wh) @ (W AW A BT |

1=V ((Aw)) ® (w7 A D))
— (A% @) @A+ (ABW" Y @ W) @ (WA @) 4+ (ABW" ™ @ W) @ (W A w! A BF)
+ (A Wt @w + A?w @ W + ABW" @w! - ACW!' ® w"+j> ® (WA D)

— (AC W' ® W) @ (W AW™F A BF) 4+ (A2WF @ W) @ (W AT A DR |

II=-V ((Cuw") ® W' Aw"™ A P))
= (C*w'eu) 0 - (C?uw ouwh® <(n — D" AW A DT 4w AW A WTTRE A @jk)
- (C’w"“ Qw!—BCw" 7 @uw +(n—1)C?w! @ + ACW ® w"”) ® (wh A wtE A DF)
— (ACW* @ wh) @ (WTE AWM A DT 4+ Wl AW AW A @R

—(BCW" Y @w) @ W AD+w AT ADT)
19



IV=V ((Aw) ® (w' A"t A 7))
= (A2 )0+ (A2WF @ W) @ (WTF AW A @)
+ <Aw”+1 ®@uw + AW @t + ABWw"Y @ w! — AC W' ®w”+j) ® (wh AW A DY)
+ (ABWw" @ ) @ (WA ®) — (ABW"F @ W) @ (W A w™ R A B
—(AC W' @ W) ® (W AW AWTR A BIF) |

By examining the coefficient functions carefully, we conclude the following lemma. Recall
that the p coordinate is the distance to the zero section.

Lemma 6.1. Consider M = T*S™ with the Stenzel metric [23), and consider the n-form
Q=w' A~ Aw". There exists a constant K > 0 depending only on n with the following

property. Suppose that X is an oriented n-dimensional submanifold of M such that p(p) < 1
and Q(T,X) > 0 for any p € . Then,

IVxQ|(p) < Kp(p)|X| forany X € T,M , and

— K (P*(p) +5°(p)) < (trps VQ)(T,%) < K 5°(p) — % P (p) -

Here, |V xQ| means the metric norm of Vx§Q as a section of (AN"T*M)|s with respect to the
metric induced by the Stenzel metric.

Proof. In ([6.9]), the coefficient functions consist of multiples of A and C', which are of order p
by the second assertion of Lemma 211

There are three types of terms in the formula of V2().
(i) The first type is in the direction of Q. The first term of each of I, II, III, IV is of this
type and their sum is

n
—(n? =204 2)C%w @ w! — 2A2ij Rw | ®Q.
j=2
The two-tensor in the bracket is clearly semi-negative definite, and is of order p? by
Lemma 211
(ii) The second one is the linear combination of

n=(wrMeuw) e WA /\---/\ajl/\---/\w") and (W' ® w") ® (same)

for i,j,k,1 € {1,,...,n}. By ([@3) and the first line of (@4), |(trz,x n)(TpX)| < 2ns?.
On the other hand, the coefficient functions are constant multiples of AB, BC, AC, C?, A
or C. They are at most of order 1 by Lemma 2] and

(iii) The third one is the linear combination of

n= (W @w) @ W AW AW A AWEA - AGEA - Aw™)
20



for i,4,k,l,p,q € {1,,...,n}. By (63) and the last line of ([6.4)), |(tr7,=n)(TpX)| <
n3s2. In these terms, the coefficient functions are multiples of A%, AC' and C?. They
are of order p? by Lemma 211

By the triangle inequality, it finishes the proof of this lemma. U

6.3. The Calabi metric case. For the Calabi metric, we follow the notations introduced in
section [3l and consider the 2n-form

Q= () (E@AEAEVNEAER AT (6.10)

Its restriction to the zero section coincides with the volume form of the zero section. Let i, be
the complexified tangent vector defined by &*(u,) = d5 and £#(u,) = 0. Similar to the case of
the Stenzel metric, let

E=E A AL,

= )2 = (1Y A AG A AE

_ ~ ~ (6.11)
. _ (1R A ANERA NG A ANET iR <,
=0 = (g )u(w))E = . ~ ~
(—1)IHRFLEZ AL NETN - NERAN AN iR >
for any j, k € {2,...,n}.
By (31I) and (B12), the covariant derivative of the unitary coframe reads:
L2 1 b - - 2f a ,
1:_ < - n+1 1  en+tyg A ! n+l % &g n+j
\%3 i(3 f)ﬂmf )@+ el -5 08l IS
. h— : )
Ve = __5n+9®51_5z®5k_bizgy @ ntl
21?‘3 ; 2 1 s (6.12)
Vel = ied + pded tilg - pmeTh ety Gt et
verti = L gel - Lgnti gt gh g gnth
be a? J
It follows that the covariant derivative of = and =7 are as follows:
VE = (VZ)NE
:—ﬁfnﬂ'@(ngj)—§i®5—i§j®(§"+m5j) (6.13)
ac J b2 '
vEl = (Ve A ik
b ‘ ‘ .
:—%@%®www%—$®?+$®#—§ﬁ®wmAwﬂ- (6.14)
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By combining (612) and (6.13]), the covariant derivative of ¢! AZ = ¢ AE2A - A€M is

1 2 2
VE D) =i - ) e 0 (€ A5) - G ¢l e (€ AT

f (6.15)

—FOETTAE) g (EAE) - @ E AT

Since f;? is skew—Hermitian,
2fl inn—i—l—\_: a s inn—i—'r—_:
Vl=-—¢© <(§) § A:Aslm> —b—g@((—) 3 JA:AglA:>
c 2

(6.16)

- béﬁj ® <(%)"£1 AETTLANET AET A E) + (their conjugates) .

Note that by (B3), the second coefficient, a/(bc), is equal to f/b>. The next step is to
calculate the second order derivative of 2, which is a sum of the covariant derivative of the six

terms on the right hand side of (GI6). Due to (612), (613), ([6.I4), (6I5) and the relations
B.9):

Vi = —(%)” ((T+ 114 III) + (—1)"(T + 1T + III))

where

[=V (‘55 ®<£"+1/\EA§_1/\§)>
f oo (glAEAFAEJré"“AE/\W/\E)

+<(§)h( e el + (c——?>(1m£ +1)®£1_c—4£1®£+1
2 2
+%§"+j®§j_2c%§j®§n+j>®<§n+l/\E/\§—l/\§)
—i—ﬁ(@@il)@({nﬂ'/\:/\{_l/\f)_2;“2(§®§1)®<§n+1/\:/\ﬁ/\5)
ct - = A = =
W o 2 S
+2Ci4(§"+j®§1)®<§1A§n+1/\Eﬂ/\§l/\E)—26%(53'@51)@<§n+1/\5/\§1/\§n+1/\5j) 7

22



II:V(%H@ (£"+jAE/\§_1/\§)>
f2 (§J®§9) (51/\5/\5/@) —ciz(g"*j@fj)@ (§"+1AEA§/\§>

r 8@5"“) (5“”/\5/\5_1/@)

2a2

—4(5_1®£j)®(£"+jAEAWA§) r

o) o (e ASATTEAE)

+i(W®§j)® (§1A§n+j/\5k/\§/\§> +£_4(§k®§j)® <§n+1/\§n+j/\5k/\§_1/\
f2

[11
N—

T @) e (e AEATATTTAEF)

III:V<i2£j® ({1/\£"+1/\Ej/\§_1/\§)>

2
f - (Fed)e (51/\5/\?/@) —0—12(£"+j®£j)® (5"*1/\5/\?/\?)

+<(;;> (Re §n+1)®51+1i<2c_-§_?) (Im §n+1)®§]__§n+]®§1

—Féj ®£”+1> ® (51 NETENET Ag_lAE)

2 - . . _
f - (Fed)e (£"+1A£"+kAEjA§A§)+i(£"+k®5ﬂ)®(51A5“+’MEJA§1 AE)
__ . . - f2
——(£1®£J)®(51/\5"“/\5]/\5"“/\5)
f2

 EF o) e (AT AT AETEAE)
- (Fod)® (§1A§"+1/\EJ'A§_1AWA§>.

Recall that the distance to the zero section with respect to the Calabi metric is p =

Jo \/cosh(2u)du. With the help of ([@3), 6.4) and the coefficients [B.6]), a completely par-
allel argument as that in the proof of Lemma leads to the following lemma.

Lemma 6.2. Consider M = T*CP" with the Calabi metric D)), and consider the 2n-form )
defined by ([6I0)). There exists a constant K > 0 depending only on n which has the following
property. Suppose that ¥ is an oriented 2n-dimensional submanifold of M such that p(p) < 1
and Q(T,X) > 0 for any p € . Then,

IVxQ| < Kp(p)|X| for any X € T,M , and

= K (p*(0) +°(p) < (b7, VZQT,Y) < K 5%(p) = 2 p*(p) -
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6.4. The Bryant—Salamon metric case. Consider the n-form Q = w! Aw? A --- Aw”. The
notations in this subsection follow those in section [ Similar to the case of the Stenzel metric,

it is convenient to introduce the following shorthand notations:
Y =1(ej)= (1) A AW A AW (6.17)

. (—1)j+kw1/\---/\Z)\k/\u-/\;}/\---/\w” ifk <y,
OF = 1(ep)u(e)Q = , — —~ (6.18)
’ (1) TR GIA AW A AWR A AW iFE >

The covariant derivative of € is
VQ = (Vw) A =i @ (W A Q) . (6.19)

For V22, one expects that the covariant derivative of the curvature, V4F € C®(B;T*B ®
(A’T*B ® End E)), will show up. The coefficient 1-form of V4 F is

(VaF) = dFl + AL F) L — Ff 0 AY — Fi wh — Fwl (6.20)

We are now ready to calculate the second order derivative of €. Since

V" =~ @wl —wl TP @ W™ and (6.21)
VO = (VuP) AP =0k @ OF + 0™ @ (" A Q7F) (6.22)

the covariant derivative of (6.19)) is

V2Q _ ( nA4-p ® wn-l—,u) @O+ ( n+v ® wﬂ+u) ® (wn-‘ru A wn-i—l/ A Q]k)
n+p n+u n+v np n+pu j (623)
+ (Vw7 +wp )y ® Wy —i—wk@w ® (WA .

The first two coefficients on the right hand side of (623]) can be substituted by (41). We
compute the coefficient in the second line of (623)). By ([@.7),

V't =v iF BLE v o Yl .
J 202" vik raf

With the help of (4], (@6, (52) and (6.2I]), we have

B LBy 1
V<ﬁFlﬁ‘jky”wk =5 (50 Flyy o @ wh + 53 S @ Wk

5 2 '
2 2F kY wk—iﬁ ® W't + ﬁ(F kY )(F,(;Zkyﬂy) w7 @ W (6.24)
+iy (dF“ —F'. AY — i)@wk
202 vik vijk V]’L Wik s
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and

o , 1 o\ - o -
i v Pt ) = — Mo VY J _ n+p J
<7’aﬂ > r3 <T045> yyw Hw T@BQw ww

/ /
v + + +

b gy ek - S e w629
o , o ,
Y AH J Ko k
+raﬁy 5 ®w +raﬁy wy Qw

Due to (£0) [@T) and (ZS),

/
n—l—u ® wn—i—l/ _ B (yu wn-l—u _ yu wn—i—u) ® wn-i—l/

n+1/ TB2 7 (6 26)
P . V(AL F) ) © W |
raﬂy v 2027 v ik ’
and
—wh ®w”+#__2£F’Y]ky wn-i—'y@w +hu
e o (627
1% 7
+ rag? Y wi @ w ~ 5aaY V(W) @wT

To summarize the above computations, note that

e the sum of the last terms of (6.24]), ([6.26]) and (6.27)) is a multiple of V4 F' by (6.20));
e the last term of (6.25)) cancels with the second-last term of (6.27));

e the second-last term of ([G.25]) cancels with that of (G.26]).

The above computation is for a general bundle construction. We now examine the expressions
for the Bryant-Salamon metric. It is more convenient to use the function s = 3 M(y“)z. On

any compact region, it is equivalent to the distance square to the zero section.

Lemma 6.3. Consider the n-form Q = w' A--- Aw™ on the Bryant-Salamon manifolds. There
exists a constant K > 0 which has the following property. Suppose that ¥ is an oriented
n-dimensional submanifold of M such that s(p) < 1 and QT,X) > 0 for any p € . Then,

VxQ| < K+/s(p)|X| forany X € T,M , and
K (5(p) + £2(0)) < (11,5 V) (T,5) < K8°(p) — o5(p)

Proof. The coefficient functions o and 3 have explicit expressions, (£3), (£I0) and (IT]). The
estimate on Vx( follows directly from (£7) and (6.19).

For V2(, observe that:
e The first coefficient 2-tensor on the right hand side of ([6.23]) is non-positive definite,

and in the order of s when s(p) < 1.

e The second term on the right hand side of ([6.23]) carries w™ ™ A W™V A - -
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e As explained in Appendix [Adl V4F = 0. Thus, each term of the third coefficient
2-tensor on the right hand side of ([G:23) carries at least one w"#-codirection.

Then, the lemma follows from (63]) and (G.4]). O

7. THE STABILITY OF ZERO SECTIONS

Suppose Y; is a mean curvature flow of n-dimensional compact submanifolds in an ambient
Riemannian manifold M and  is an n-form on M. For any point p € Xy, let {e1,--- ,e,}
be an orthonormal frame of TY; near p and {e,4+1, -+ ,€n+m} be an orthonormal frame of the
normal bundle of ¥; near p. In the following, the indexes %, j, k range from 1 to n, the indexes
«, 3,7 range from n +1 to n +m, and repeated indexes are summed. hqij = (Ve,€j,€q) denote
the coefficients of the second fundamental form of ;. Here, V is the Levi-Civita connection of
the ambient manifold M.

We first recall the following proposition from [25, Proposition 3.1]

Proposition 7.1. Along the mean curvature flow ¥y in M, *Q = Q(ey,--- ,e,) satisfies
d
T ¥ Q=A% xQ+ *Q(Z:khi“f
-2 Z [Qaﬁ3---nha1khﬁ2k + Qa2ﬁ---nha1khﬁ3k +e Ql---(n—2)aﬁho¢(n—1)khﬁnk]
a,B,k (7.1)
- 2(VekQ)(eaa T 7en)ha1k - 2(V5kQ)(el, T 7ea)homk
Y [Qa2n Rkt + -+ Qetnt)aRarkn] — (V2, o, Qe+ en)
a,k
where A¥t denotes the time-dependent Laplacian on Y, Qaps..n = Qea,ep,e3, -+ ,en) etc.,

and Rakr1 = R(eq, ek, ex,e1), ete. are the coefficients of the curvature operators of M.

When ) is a parallel form in M, VQ = 0, this recovers an important formula in proving the
long time existence result of the graphical mean curvature flow in [24].

Remark 7.2. In [25], the frame {ey}}_, is the geodesic frame at some p € M, i.e. Vezjei
vanishes at p. Thus, the last term of (1)) is

(ng,ekQ) (61, e ’e") = _(vekv%g)(elv e 7en) + (VHQ)(eh to 7en)
at p € M. This is exactly the formula in [25, Proposition 3.1].

7.1. Proof of Theorem for the Stenzel metric.

Proof. We deal with the Stenzel metric first. Let € be the constant to be determined and X

be a compact submanifold of M that satisfies the assumption (LI). Throughout the proof,
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K;,i =0,1,2,--- denotes a positive constant that depends only on the dimension n. Denote
by ¥; the mean curvature flow in M with > as the initial data.

We first prove the CY estimate. As in the proof of Theorem [5.2] let 7 be the distance square
to the zero section with respect to the Stenzel metric, or the square of the p coordinate. Its
evolution equation along the mean curvature flow X; reads (see the proof of Theorem C in [23])

d
&1/1 = A¥q) — try, Hess 1) | (7.2)

where try, Hess ¢ is the trace of the Hessian of ¢ over 3; and is always non-negative by Theorem
By the maximum principle, the maximum of ¢ on ¥; is non-increasing, and thus ¥; remains
close to the zero section along the flow.

Next, we derive the C! estimate which amounts to showing that *Q = Q(7,3;) remains close
to one. We claim that there exists a small enough € € (0, %) and a large enough Ky > 1, both
depending only on the dimension n, such that if the inequality *2 — Ky > 1 — € holds on
the initial data, then it remains true on X; at any subsequent time as long as the flow exists
smoothly.

For the argument of contradiction, suppose *€2 — Kg > 1 — ¢ holds initially, and *Q — Ky1) =
1 — € for the first time at 7. Our goal is to apply equation (7.IJ) and the estimates in section
to show that for certain € and Ky,

d 1
E(*Q — Kotp) > A (+Q — Ko) + F (2~ Kop)|A* . (7.3)
where |A|? = ik h?,, . Therefore, the minimum of *Q2— K1 is non-decreasing in the interval

[0,Tp) and *Q — K is indeed strictly greater than 1 — € at Tp.
By (Z1) and (7.2)), the evolution equation of *2 — Ky is:

w0 — Kop) — A% (x0 — Ko))

dt
= * Q(Z hizk) -2 Z [Qaﬁ3---nha1khﬁ2k + Qa2ﬁ---nha1khﬁ3k +-+ Ql---(n—2)aﬁha(n—l)khﬁnk]
i,k o, B,k
- Z(VekQ)(eay te aen)hoelk — Z(VekQ)(ela T yea)homk
— Z[Qa2---nRakk1 o Qe Rakkn] — (V2 0, Q) (€1, en) + Ko trs, Hess 1) .
a,k
(7.4)

We aim at using the first and last term on the right hand side of (7.4]) to control the rest terms.
At any p € ¥y, T,¥ and (T,%)* have the following orthonormal basis constructed in section
0. 1]

{ej = cosOjuj +sinbjv;} and {en4; = —sinbju; + cosbjv;} ,
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respectively. Recall that {u;,v;}j=1,..n, is an orthonormal basis for 7,,M such that w'(vj) =
W (u;) = 0 for any 4,7, and [w'(u;)];; and [W""(v;)];; are both n x n orthogonal matrices.
As in ([G.2)), set s to be max; |sin ;.

It follows from *Q — Koy > 1 — € that ¢ = p? < ¢/Kp < 1. In what follows, the point

p is always assumed to have distance less than 1 from the zero section. It also follows from
xQ — Kop > 1 — e that «Q = Q(ey, -+ ,e,) = H?ZlcOSHj > 1—e. Hence, cosf; >1—¢€> %
1
and sin?0; < 2¢ for any j € {1,...,n}, and s < 2¢2.
We now analyze the terms on the right hand side of (4]

(i) By (6.1)) and Lemmal2.T] Hess ¢ > - Z (P W @w! +w" T @w™ ) for some constant
Ky > 0. It follows that

try, Hess¢> — Zcos 0; —I—Zsm 65) ( p°+s?) . (7.5)

(ii) With the second line of (64]) and the Cauchy-Schwarz inequality, [Qqs3...nha1xhs2k| 18
bounded by s2|AJ2. Thus,

2 ) " (Qagsnhatrhpor + -+ Qeinoggapham_1irhenk) | < K25 A]”
a, B,k

for some constant Ko > 0.
(iii) Due to the first assertion of Lemma [6.1],

2|(Ve, Q) (ear - sen)hatr + -+ (Ve Q) (e, -+ s ea)hank| < KsplA] < K3p* + \A\2

for some constant K3 > 0.

(iv) According to the curvature computation in section 2:2.1] the Riemann curvature tensor
of the Stenzel metric satisfies R(u;,vj, vk, v;) = 0 = R(vj, uj, ug, w;) for any i, j, k,1 €
{1,...,n}. Tt follows that

|R(€ntj, €k ek, €i)| < Ku(]sinb;| + [sin O] + |sin;]) < 3Kys
for some constant K4 > 0. This together with the first line of (G.4]) implies that

Z(QonnRakkl 4+ Ql---(n—l)aRakkn) < 3713K4 52
a,k

(v) By Lemma [6.T] there exists a constant K5 > 0 such that

2
E ek ek 617"' 7en) > —Kss
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It follows that the right hand side of (4] is greater than
Ko, 1 1
*Q|A]* + %(ZpQ +5%) — Kos?|A]? — K3p* — Z\A\z — (3n3K4 + K5)s” .
1
It is clear that by taking e to be sufficiently small and K to be sufficiently large, the expression

is greater than 3 x QA% > 2(xQ — Ko1)|A[%. This proves the differential inequality (Z-3).

Finally, we prove the C? estimate, which amounts to bounding the norm of the second
fundamental form from above. The evolution equation for the norm of the second fundamental
form for a mean curvature flow in a general Riemannian manifold is derived in [22], Proposition
7.1]. In particular, |A]?> = ik h2,, satisfies the following equation along the flow:

d
AP = A AP = 2]V AP + 2[(Ve, R)aiji + (Ve, R)akilhais

— 4Ryjkhaikhaij + 8Ragjkhgichai; — 4Rikikhaijhaij + 2Rakgrhgijhaig (7.6)
+ 2 Z (Z haikhymk - hamkhyik)z + 2 Z (Z haijhamk)2 .
ay,im k i,7,mk o

In particular, we have
d
AP < ATAP = 2]V AP + Ko Al + K7 AP

where Kg, K7 are positive constant that only depend on the geometry of M. Combining this
with equation (7.4]) and applying the method in [24] p.534-542] yield the boundedness of the
second fundamental form. Standard estimates for second order quasilinear parabolic system
imply all higher derivatives are bounded, and we can apply Simon’s convergence theorem [I8]
to conclude the smooth convergence as t — oo. It follows from (ZE) and (T2 that ¢|s,
converges exponentially to zero. Similarly, it follows from (73] that (1—*Q+ Kyv)|x, converges
exponentially to zero, and thus %) converges exponentially to 1.

O

7.2. Proof of Theorem for the other cases. The proof for the Calabi metric and the
Bryant—Salamon metric is almost the same as above. We just highlight where needs to be

modified. For the Calabi metric, the function 1 is taken to be the distance square to the zero
section, ( for \/Mdu)2. For the Bryant-Salamon metric, the function ¢ is taken to be
s =2, ")

First of all, due to Theorem [5.3] and [5.5}, the C° estimate follows from the same argument.
Moreover, as can be seen in their proofs, there exists a constant Kg > 0 such that

Hess(v) > Kig(w + 5?)

provided ¢ < 1. This is item (i) in the proof of the C! estimate. For the rest items,
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e one simply has to replace Lemma by Lemma and [6.3] respectively;
e according to the curvature computation in section B.I.4] and appendix [A.2] their Rie-
mann curvatures also admit the property that R(H,V,V,V) =0= R(V,H,H,H).

For C? and all higher derivative estimates, the argument is completely the same.

APPENDIX A. CURVATURE OF BRYANT-SALAMON MANIFOLDS

This appendix is a brief summary on the curvature properties of the Bryant—Salamon man-
ifolds. For these bundle manifolds, the isometry group of the base acts transitively, and the
action lifts the total space of the vector bundle isometrically. Hence, it suffices to examine the

curvature at a particular fiber.

Fix a point p in the base, and let w’/ be the geodesic frame at p. Thus, the Levi-Civita
connection of the base metric vanishes, gg |l = 0. Since the bundle is either the spinor bundle
or the bundle of anti-self-dual 2-forms, {w’} induces an orthonormal trivialization {s,} of
the bundle by representation theory. In other words, the bundle connection A% is a linear
combination of gg , and also vanishes at p. It follows that (dgg )p = Qg |p and (dAY)[, = FY'[p.

A.1. The bundle curvature of the connection. In order to use ([4L6), (1) and (3] to
compute the curvature of ([£3]) over the fiber at p, we also need to know the exterior derivative of

"
I P
or the Fubini-Study metric, these locally defined functions are actually locally constants. The

They are locally defined functions on the base. Since the metric here is the round metric

readers are directed to [I] for the detail of the curvature computation. We simply write down

the answer.

For S(S?),
WwAw?  —wl AW —wWPAW? 0

It is understood as an endomorphism-valued 2-form with respect to the trivialization {s, }. The
components of the curvature can be read from the matrix. For instance, F7,5 = K/2.

For A2 (S%) and A2 (CP?),

0 —w AW+ WA W AW+ WAL
F=k | w Aw'—w?Awd 0 —w' Aw? + wd AW (A2)



For S_(S%),

0 wWwAw? —wI AWt WA+ At W AWt —w? AW

=3 1 3 2 4 1 4 2 3 1 2 3 4
2 |—w AW —w AWt w AW - wt AW 0 —w' Aw* +w’ Aw
(A.3)

By (©20)), it is clear that V 4F vanishes at p. Since the argument applies to any p € B,
VaF =0.

A.2. The Riemann curvature tensor of the bundle metric. We are now ready to compute
the curvature of Bryant—Salamon metric (£3]) over the fiber at p. Abuse the notation by still

denoting |,. The Levi-Civita connection of (£3]) is discussed in section 4l

By @.0), &.5), @12) and &.I14),

2
(dw)|, = Q7 — 5 TV G Py WP AW+ Q—F[jw WY A
252 [ e QU (% ol n-+p
P (k1 + /ig)Fm]y Yy w Aw ,
koo g B
(—wi Aw)lp = wFfiky” WA Fvnjky“’ W™t
. 452 ) ) 52
(_W;H—u /\wgz+u)|p = ?/ﬁ%pwl ANw! — 1Y VFVsz ]ly BLNAL
and thus
1 432
Rjiri = < Rjig — —4%%0(5%521 — 0;10;k)
o) @
g2 (A.4)
o 4a4y (2F;1:2]nyk FV F«/]l Fule»”k) )
| 2ﬁ2 B 5
Rji(""‘#)(""‘”) = _gFuij + ?(Hl + 52)( Fyz] F’w])
,82 (A5)
Tty Y aEy e — Fyin )y

In the above expression, R;;; is the Riemann curvature tensor of (B,g) along (e;,¢;, ey, €),

where {e;} is the dual frame of {w}.
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For the curvature component Q7

(™) lp = =g W™ AW+ —Ffzg Wt AW + —64%1(/11 + Ko)yty? WY A W
@ «
2
— (R4 ) Fyy Ty W™ AW
2 2
( /\ n+,u)| — ﬁ_ FI/ Y M TL+I//\ 7 + B—FV F n+1//\ j
w w p = a4/€1 vij¥ YW w o ViKY ]ky w W’ |

4 2 ) 4 2 ) 2 )
(—wi ™ Awp iy = —Th1kap WA W' — — TRy W AW+ e Ey Ty AW
and then
2/11 4/11/12,82 1 /82
R(n-‘ru) (n+v)j — — <§ - TP 5#1/5ij + 20 2F52] Y yuaz]
(A.6)
62 v [ nl% o7 ﬁ2 Yy v 14 n
+ (k1 + /42)—4(y“ij Y Er Y + 1oV FY )y
For the curvature component QZiﬁ )
ntp L J B i VI NoY (yf A ]
(dwn+u)|P:2—Flzzgw Aw +/{2J(y F’Yij_y F’YZ])y W AW
4’%2 n—+p n+v 62 vy, n+y m, n+v v, ntp
+§w Aw —8/12(/{1—1—/12)@1/ WA (Y™ — Y WTH)
: + B 8 o
n
(_w;L-H//\wi M)’p:ﬂyﬂyF Fnyky O.) /\w]_’%l_( VF#z] MF’I;Z])y’YwZ/\w] )
n+ n+ 2 4ﬁ2 2 ﬁ2 2
(—wnin ANwpi )y = K3 —pw™ AW — k3 —yP YT WY AW — drgytyY WP A WY
«
and
4/{2 4/{%ﬁ2
Rnt ) (netv) (nt) (nebm) = (y — 0 ") Guydun = Gundiy)
) (A7)

B
+ 4ro(2k1 + /-62) WY 0 = Y Y 0y + Y Y 00y — Y )
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