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Abstract. This article considers the quasi-local energy in reference to a general static
spacetime. We follow the approach developed by the authors in [19, 20, 7, 9] and define
the quasi-local energy as a difference of surface Hamiltonians, which are derived from
the Einstein-Hilbert action. The new quasi-local energy provides an effective gauge in-
dependent measurement of how far a spacetime deviates away from the reference static
spacetime on a finitely extended region.

1. Introduction

Due to the lack of energy density by Einstein’s equivalence principle, the definition of
gravitational energy has been a challenging problem. One can at best hope to define
energy as a boundary integral instead of a bulk integral. The application of the Hamilton-
Jacobi theory [4, 11] to the Einstein-Hilbert action gives an expression that depends on
a reference term. For an isolated system with suitable decay at infinity, it is possible to
choose an asymptotically flat coordinate system to anchor the reference term, and this leads
to the celebrated definitions of the ADM energy [1], and the positive energy theorems of
Schoen-Yau [17], Witten [21], etc. However, for a finitely extended system, the choice of a
reference had remained subtle and ambiguous until [19, 20] in which isometric embeddings
into the Minkowski spacetime were applied to give a well-defined definition of quasi-local
energy. The idea is to utilize the surface Hamiltonian [4, 11] from the Einstein-Hilbert
action to pick up an optimal one among all such isometric embeddings. The resulting
definition of energy and conserved quantities have had several remarkable applications
[6, 7, 8] since then. This approach was subsequently generalized to define quasi-local
energy with respect to de Sitter/Anti-de Sitter reference recently [9]. In this paper, we
further generalize to allow the reference spacetime to be a general static spacetime. Such
an energy is not expected to have a straightforward positivity property as the Minkowski
reference case. The principal application seems to be to a perturbative configuration. For
example, although the black hole uniqueness theorem [12, 5] establishes the Schwarzschild
solution as the unique asymptotically flat static vacuum spacetime, a black hole in reality
will be a perturbation. The quasi-local energy provides an effective gauge independent
measurement of how far such a perturbation deviates away from the exact Schwarzschild
solution.
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Throughout this article, a spacetime is a time-oriented Lorentz 4-manifold. We impose
the static condition on the reference spacetime.

Definition 1.1. A static spacetime is a time-oriented Lorentz 4-manifold (with possibility
nonempty smooth boundary) such that there exists a coordinate system (t, x1, x2, x3) (static
chart) under which the Lorentz metric takes the form

ǧ = −V 2(x1, x2, x3)dt2 + gij(x
1, x2, x3)dxidxj , (1.1)

where V > 0 on the interior and V = 0 on the boundary.

Each time slice, i.e. the hypersurface defined by t = c for a constant c, is a smooth
Riemannian 3-manifold with possibly nonempty smooth boundary ∂M , such that V > 0
in the interior of M and V = 0 on ∂M . Denote the covariant derivative of the metric ǧ by
D and that of the metric g by ∇̄.

In the following, we recall the null convergence condition:

Definition 1.2. A spacetime with Lorentz metric ǧ satisfies the null convergence condition
if

Ricǧ(L,L) ≥ 0 (1.2)

for any null vector L, where Ricǧ is the Ricci curvature of ǧ.

Recall that L is a null vector if ǧ(L,L) = 0. By [18], a static spacetime satisfies the null
convergence condition (1.2) if and only if

∆̄V g − ∇̄2V + V Ric ≥ 0, (1.3)

on each time slice, where Ric is the Ricci curvature of the metric g.
In particular, static vacuum spacetimes satisfy the null convergence condition. These

spacetimes have been studied extensively. We summarize some basic properties as follows.
The static metric ǧ satisfies the vacuum Einstein equation with the cosmological constant
Λ if {

−ΛV g − ∇̄2V + V Ric = 0,
∆̄V + ΛV = 0.

(1.4)

From (1.4), it follows that (see [10, Proposition 2.3], [15, Lemma 2.1] for example)

(1) The scalar curvature of gij is constant,
(2) 0 is a regular value of V and {V = 0} is totally geodesic,
(3) |∇̄V | is a positive constant on each component of {V = 0}.
From here on, we pick a static spacetime S as in Definition 1.1 and refer to it as

the reference spacetime. Let S̊ denote the interior and ∂S denote the boundary of S,
respectively. In addition, we refer to the hypersurface t = c as a static slice and the
function V as the static potential.

The results in the paper are summarized as follows. The definition of quasi-local energy
is given in §2.2. For a surface in the reference spacetime, it is proved that the identity
isometric embedding not only has energy zero by definition, but also is a critical point
of the quasi-local energy (Theorem 2.6). The first variation of the quasi-local energy,
which characterizes an optimal isometric embedding, is derived in Theorem 2.8. At last,
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it is shown that the identity isometric embedding of a surface in the static slice is locally
energy-minimizing (Theorem 4.2).

2. Quasi-local energy with respect to a static spacetime reference

In this section, we define a new quasi-local energy allowing the reference spacetime to
be a general static spacetime, following the construction in [9].

2.1. Geometry of surfaces in a static spacetime. Let S be a reference spacetime.
Consider a surface Σ in S̊ defined by an embedding X of an abstract surface Σ0. In the
static chart, we denote the components of X by (τ,X1,X2,X3). Let σ be the induced
metric on Σ, H0 be the mean curvature vector of Σ, and J0 be the reflection of H0 through
the incoming light cone in the normal bundle of Σ. Denote the covariant derivative with
respect to the induced metric σ by ∇.

Given an orthonormal frame {e3, e4} of the normal bundle of Σ in S̊ where e3 is spacelike
and e4 is future timelike, we define the connection one-form associated to the frame

αe3(·) = 〈D(·)e3, e4〉. (2.1)

We assume the mean curvature vector of Σ is spacelike and consider the following connec-
tion one-form of Σ with respect to the mean curvature vector:

αH0
(·) = 〈D(·)

J0

|H0|
,
H0

|H0|
〉. (2.2)

Let Σ̂ be the surface in the static slice t = 0 given by X̂ = (0,X1,X2,X3) which is

assumed to be an embedding. The surfaces Σ and Σ̂ are canonically diffeomorphic through

the above identification. Let σ̂ be the induced metric on Σ̂, and Ĥ and ĥab be the mean

curvature and second fundamental form of Σ̂ in the static slice, respectively. Denote the
covariant derivative with respect to the metric σ̂ by ∇̂.

Let C be the image of Σ under the one-parameter family φt. The intersection of C with

the static slice t = 0 is Σ̂. Let ĕ3 be the outward unit normal of Σ̂ in the static slice t = 0.
Consider the pushforward of ĕ3 by the one-parameter family φt, which is denoted by ĕ3
again. Let ĕ4 be the future directed unit normal of Σ normal to ĕ3 and extend it along C

in the same manner. It is easy to see that Lemma 2.1, Proposition 2.2, Proposition 2.3 and
Proposition 3.2 of [9] hold for a general static spacetimes. We state them here for later
reference.

Lemma 2.1. Along C, we have

ĕ4 =
√

1 + V 2|∇τ |2
(

∂
∂t

V
+ V ∇̂τ

)
(2.3)

∂

∂t
=V
√

1 + V 2|∇τ |2ĕ4 − V 2∇τ. (2.4)
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Proposition 2.2. Along C,

Ĥ = −〈H0, ĕ3〉 −
V√

1 + V 2|∇τ |2
αĕ3(∇τ). (2.5)

Proposition 2.3. Along C, the connection one-form αĕ3 on Σ satisfies

(αĕ3)a =
√

1 + V 2|∇τ |2(V ∇̂bτ ĥab − ĕ3(V )τa) (2.6)

where ĥac on the right hand side is the extension of the second fundamental form of Σ̂ to
C by the one-parameter family φt.

Proposition 2.4. In terms of the connection one-form in mean curvature gauge αH0
, we

have∫
V ĤdΣ̂ =

∫ [√
(1 + V 2|∇τ |2)|H0|2V 2 + div(V 2∇τ)2 + div(V 2∇τ)θ − αH0

(V 2∇τ)
]
dΣ,

where

θ = − sinh−1 div(V 2∇τ)

|H0|V
√

1 + V 2|∇τ |2
(2.7)

and

− H0

|H0|
=cosh θĕ3 + sinh θĕ4

J0

|H0|
=sinh θĕ3 + cosh θĕ4.

(2.8)

In particular,

〈H0, ĕ4〉 = |H0| sinh θ, −〈H0, ĕ3〉 = |H0| cosh θ, and αH0
= αĕ3 − dθ. (2.9)

2.2. Definition of quasi-local energy. Let Σ be a surface in a general spacetime N

(not necessarily static). We assume the mean curvature vector H of Σ is spacelike and the
normal bundle of Σ is oriented. The data for defining the quasi-local energy consists of the
triple (σ, |H|, αH ) where σ is the induced metric, |H| is the norm of the mean curvature
vector, and αH is the connection one-form of the normal bundle with respect to the mean
curvature vector

αH(·) = 〈∇N
(·)

J

|H| ,
H

|H| 〉.

Here J is the reflection of H through the incoming light cone in the normal bundle. For
an isometric embedding X into the interior S̊ of a reference spacetime S with the static
potential V , we write X = (τ,X1,X2,X3) with respect to a fixed static chart. We define

X̂, Σ̂, Ĥ as in the last subsection. The quasi-local energy associated to the pair (X, ∂
∂t
) is

defined to be

E(Σ,X,
∂

∂t
) =

1

8π

{∫
V ĤdΣ̂ −

∫ [√
(1 + V 2|∇τ |2)|H|2V 2 + div(V 2∇τ)2

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H|
√

1 + V 2|∇τ |2
− V 2αH(∇τ)

]
dΣ
}
.

(2.10)
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Using Proposition 2.4, we rewrite the quasi-local energy as follows:

E(Σ,X,
∂

∂t
) =

1

8π

{∫ [√
(1 + V 2|∇τ |2)|H0|2V 2 + div(V 2∇τ)2

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H0|
√

1 + V 2|∇τ |2
− V 2αH0

(∇τ)
]
dΣ

−
∫ [√

(1 + V 2|∇τ |2)|H|2V 2 + div(V 2∇τ)2

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H|
√

1 + V 2|∇τ |2
− V 2αH(∇τ)

]
dΣ
}
.

(2.11)

The optimal isometric embeddings is defined as in [9].

Definition 2.5. Let S be a reference spacetime. An optimal isometric embedding for the
data (σ, |H|, αH ) is an isometric embedding X0 of σ into S̊ that is a critical point of the

quasi-local energy E(Σ,X, ∂
∂t
) among all nearby isometric embeddings X of σ into S̊.

We show that for a surface in the interior S̊ of the reference static spacetime, the identity
embedding is an optimal isometric embedding.

Theorem 2.6. The identity isometric embedding for a surface Σ in the interior S̊ of S
is a critical point of its own quasi-local energy. Namely, suppose Σ in S̊ is defined by an
embedding X0. Consider a family of isometric embeddings X(s), −ǫ < s < ǫ such that
X(0) = X0. Then we have

d

ds
|s=0E(Σ,X(s),

∂

∂t
) = 0.

Proof. Denote d
ds
|s=0 by δ and set

H1 =

∫
V ĤdΣ̂

and

H2 =

∫ [√
(1 + V 2|∇τ |2)|H0|2V 2 + div(V 2∇τ)2

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H0|
√

1 + V 2|∇τ |2
− V 2αH0

(∇τ)
]
dΣ.

It suffices to prove that δH1 = δH2, where for the variation of H2, it is understood that H0

and αH0
are fixed at their values at the initial surface X0(Σ) and only τ and V are varied.

It is convenient to rewrite H1 and H2 in terms of the following two quantities: A =
V
√

1 + V 2|∇τ |2 and B = div(V 2∇τ). In terms of A and B

H1 =

∫
ĤAdΣ

H2 =

∫ [√
|H0|2A2 +B2 −B sinh−1 B

|H0|A
− αH0

(V 2∇τ)

]
dΣ.
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As a result, we have

δH2 =

∫ [
δA(

|H0|2A√
|H0|2A2 +B2

+
B2

A
√

|H0|2A2 +B2
)

]
dΣ

−
∫ [

(δB) sinh−1 B

|H0|A
+ αH0

(δ(V 2∇τ))

]
dΣ

= I− II

By (2.9) and sinh θ = − B
|H0|A

, integrating by parts gives

II =

∫ [
δ(V 2∇τ) · ∇θ + αH0

(δ(V 2∇τ))
]
dΣ =

∫
αĕ3(δ(V

2∇τ))dΣ.

On the other hand, we simplify the integrand of I using (2.7),

|H0|2A√
|H0|2A2 +B2

+
B2

A
√

|H0|2A2 +B2
=

√
|H0|2A2 +B2

A
= −〈H0, ĕ3〉.

Therefore, by (2.5), I is equal to
∫

(−〈H0, ĕ3〉)δAdΣ

=

∫
[Ĥ +

V αĕ3(∇τ)√
1 + V 2|∇τ |2

]δAdΣ

=

∫
ĤδAdΣ +

∫ [
(δV )V 3|∇τ |2 + V 4∇τ∇δτ

1 + V 2|∇τ |2 (αĕ3(∇τ)) + (δV )V αĕ3(∇τ)

]
dΣ.

and

δH2 =

∫
ĤδAdΣ +

∫ [
(δV )V 3|∇τ |2 + V 4∇τ∇δτ

1 + V 2|∇τ |2 (αĕ3(∇τ))− αĕ3(V δV∇τ + V 2∇δτ)

]
dΣ

=

∫
ĤδAdΣ −

∫
(αĕ3)a(σ

ac − V 2∇aτ∇cτ

1 + V 2|∇τ |2 )(V δV τc + V 2δτc)dΣ

=

∫
ĤδAdΣ +

∫
−(αĕ3)aσ̂

ac(V δV τc + V 2δτc)dΣ.

(2.12)

Applying Proposition 2.3, the second integral in the last line can be rewritten as

∫ √
1 + V 2|∇τ |2(ĕ3(V )τa − V ∇̂bτ ĥab)σ̂

ac(V δV τc + V 2δτc)dΣ

=

∫
[ĕ3(V )σ̂ab − V ĥab](V δV τaτb + V 2τaδτb)dΣ̂

=
1

2

∫
[ĕ3(V )σ̂ab − V ĥab](δσ̂)abdΣ̂.
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On the other hand, as V dΣ̂ = AdΣ and δdΣ = 0,

δH1 =

∫
ĤδAdΣ +

∫
V δĤdΣ̂. (2.13)

To prove δH1 = δH2, by (2.12) and (2.13), it suffices to show
∫

V

[
δĤ +

1

2
ĥab(δσ̂)ab

]
dΣ̂ =

1

2

∫ [
ĕ3(V )σ̂ab(δσ̂)ab

]
dΣ̂. (2.14)

We decompose δX̂ into tangential and normal parts to Σ̂. Let

δX̂ = P a ∂X̂

∂va
+ βν.

For the first and second variations of the induced metric, we have

(δσ̂)ab = 2βĥab + ∇̂a(P
cσ̂cb) + ∇̂b(P

cσ̂ca) (2.15)

and

δĤ =− ∆̂β −Ric(e3, e3)β − βσ̂abσ̂dcĥacĥbd + P a∇̂aĤ

=− ∆̂β −Ric(e3, e3)β − βσ̂abσ̂dcĥacĥbd + P a∇̂bĥab − P cRic(
∂X̂

∂vc
, e3),

(2.16)

where the Codazzi equation is used.
We derive from (2.15) and (2.16)

δĤ +
1

2
ĥab(δσ̂)ab = −∆̂β −Ric(e3, e3)β + ∇̂b(P cĥcb)− P cRic(

∂X̂

∂vc
, e3). (2.17)

(2.14) is thus equivalent to
∫

V [−∆̂β −Ric(e3, e3)β + ∇̂b(P cĥcb)− P cRic(
∂X̂

∂vc
, e3)]dΣ̂ =

∫
ĕ3(V )[βĤ + ∇̂b(P cσ̂cb)]dΣ̂.

The above equality follows from the following two identities:
∫

ĕ3(V )βĤdΣ̂ =

∫
V [−∆̂β −Ric(e3, e3)β]dΣ̂ (2.18)

∫
ĕ3(V )∇̂b(P cσ̂cb)dΣ̂ =

∫
V [∇̂b(P cĥcb)−Ric(e3, c)]dΣ̂, (2.19)

which can be derived by integrating by parts and the static equation. �

We define the quasi-local energy density ρ with respect to the isometric embedding X.

Definition 2.7. The quasi-local energy density with respect to the isometric embedding X

is defined to be

ρ =

√
|H0|2 + (divV 2∇τ)2

V 2+V 4|∇τ |2
−
√

|H|2 + (divV 2∇τ)2

V 2+V 4|∇τ |2

V
√

1 + V 2|∇τ |2
. (2.20)
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An immediate consequence of Theorem 2.6 is the following formula for the first variation
of the quasi-local energy:

Theorem 2.8. Let Σ be a surface in a physical spacetime with the data (σ, |H|, αH ). Let

X0 be an isometric embedding of σ into the interior S̊ of the reference spacetime and let
(|H0|, αH0

) be the corresponding data on X0(Σ). Consider a family of isometric embeddings
X(s), −ǫ < s < ǫ such that X(0) = X0. Then we have

d

ds
|s=0E(Σ,X(s),

∂

∂t
)

=
1

8π

∫
δV

[
ρV (1 + 2V 2|∇τ |2)− 2V∇τ∇ sinh−1 ρdiv(V

2∇τ)

|H0||H| + (αH − αH0
)(2V∇τ)

]
dΣ

+
1

8π

∫
(δτ)div

[
V 2∇ sinh−1 ρdiv(V

2∇τ)

|H0||H| − ρV 4∇τ + V 2(αH0
− αH)

]
dΣ,

(2.21)

where δτ = d
ds
|s=0τ(s), δX

i = d
ds
|s=0X

i(s) and δV = δXi∇̄iV .

Proof. The proof is identical to the proof of Theorem 5.4 of [9] where Theorem 5.3 of [9]
is replaced by Theorem 2.6 above. �

3. A Reilly-type formula for static manifolds

In this section, we generalize Lemma 6.1 of [9] for de Sitter and anti-de Sitter spacetimes
to general static spacetimes. The proof of [9, Lemma 6.1] relies on a Reilly-type formula
for functions on space forms in [16]. We first prove a Reilly-type formula for a pair (V, Y )
of a positive function V and a one-form Y on a Riemannian manifold (M,g) following the
recent work of [14]. Then we apply the Reilly-type formula for the pair to the case where
V is the static potential of the reference spacetime.

Let (M,g) be a Riemannian n-manifold and ∇̄ and ∆̄ be the covariant derivatives and
the Laplace operator with respect to g. Let Ω be a bounded domain with smooth boundary
∂Ω in M . Let II and H be the second fundamental form and mean curvature of ∂Ω and
∇ be the covariant derivative on ∂Ω.

Proposition 3.1. Let V be a positive function on Ω and Y be a one-form on Ω. Let Y T

be the tangential component of Y to ∂Ω. We have the following integral identity
∫

∂Ω

[
− 1

V
II(Y T , Y T ) +

1

V 2

∂V

∂ν
|Y T |2 − 1

V
H〈Y, ν〉2 − 2

V
∇a(Y

T )a〈Y, ν〉
]
dA

=

∫

Ω

[
1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

4V
|∇̄iYj + ∇̄jYi|2 −

1

V
(∇̄iY

i)2

− V 3

4

∣∣∣∣∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)∣∣∣∣
2
]
dΩ.

(3.1)

where ν is the outward unit normal of ∂Ω.
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Proof. We write V i for ∇̄iV in the proof and apply the Bochner formula to 1
V
|Y |2:

1

2
∆̄

(
1

V
|Y |2

)

=− ∆̄V

2V 2
|Y |2 + |∇̄V |2

V 3
|Y |2 +

(
−3

2

1

V 2
V i∇̄i|Y |2 + 1

V 2
V i∇̄iYjY

j

)

︸ ︷︷ ︸
I

+
1

2V
∆̄|Y |2.

The last term can be treated as in the classical Bochner formula for one-form:

1

V
∇̄i∇̄jYiY

j +
1

V
∇̄i(∇̄iYj − ∇̄jYi)Y

j +
1

V
∇̄iYjD

iY j

=
1

V
∇̄j∇̄iYiY

j +
1

V
RjkY

kY j +
1

V
∇̄i(∇̄iYj − ∇̄jYi)Y

j +
1

V
∇̄iYj∇̄iY j

=∇̄j

(
1

V
∇̄iYiY

j

)
− 1

V
(∇̄iYi)

2 +
1

V 2
∇̄iYiY

jV j +
1

V
RjkY

kY j

+ ∇̄i

(
1

V
(∇̄iYj − ∇̄jYi)Y

j

)
+

1

V
∇̄iYj∇̄jY i +

1

V 2
(∇̄iYj − ∇̄jYi)V

iY j.

For term I, we have

I = −3

2
∇̄i

(
1

V 2
V i|Y |2

)
+

3

2

∆̄V

V 2
|Y |2 − 3

|∇̄V |2
V 3

|Y |2

+ ∇̄j

(
1

V 2
V iYiY

j

)
+

2

V 3
〈∇̄V, Y 〉2 − ∇̄i∇̄jV

V 2
Y iY j

− 1

V 2
〈∇̄V, Y 〉∇̄jY

j +
1

V 2
V i(∇̄iYj − ∇̄jYi)Y

j .

Collecting terms, we obtain

1

2
∆̄

(
1

V
|Y |2

)
=

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y )− 1

V
(∇̄iY

i)2

−2
|∇̄V |2|Y |2

V 3
+ 2

〈∇̄V, Y 〉2
V 3

+
2

V 2
(∇̄iYj − ∇̄jYi)V

iY j +
1

V
∇̄jYi∇̄iY j

︸ ︷︷ ︸
II

+ ∇̄i

(
1

V
(∇̄iYj − ∇̄jYi)Y

j

)
− 3

2
∇̄i

(
1

V 2
V i|Y |2

)

+ ∇̄j

(
1

V 2
〈∇̄V, Y 〉Y j

)
+ ∇̄j

(
1

V
∇̄iY

iY j

)
.

Making the substitution

∇̄iYj − ∇̄jYi =
2

V
(ViYj − VjYi) + V 2

[
∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)]
(3.2)
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and

∇̄iYj =
1

2

(
∇̄iYj + ∇̄jYi

)
+

1

2

(
∇̄iYj − ∇̄jYi

)
,

we get

II = 2
|∇̄V |2|Y |2

V 3
− 2

〈∇̄V, Y 〉2
V 3

+ 2

[
∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)]
V iY j

+
1

4V
|∇̄iYj + ∇̄jYi|2 −

1

4V
|∇̄iYj − ∇̄jYi|2

=
1

4V
|∇̄iYj + ∇̄jYi|2 −

V 3

4

∣∣∣∣∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)∣∣∣∣
2

.

Here (3.2) is used again in the last equality. In summary, we obtain

1

2
∆̄

(
1

V
|Y |2

)
=

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y )− 1

V
(∇̄iY

i)2

+
1

4V
|∇̄iYj + ∇̄jYi|2 −

V 3

4

∣∣∣∣∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)∣∣∣∣
2

+ ∇̄i

(
1

V
(∇̄iYj − ∇̄jYi)Y

j

)
− 3

2
∇̄i

(
1

V 2
V i|Y |2

)

+ ∇̄j

(
1

V 2
〈∇̄V, Y 〉Y j

)
+ ∇̄j

(
1

V
∇̄iY

iY j

)
.

Integrating by parts, we get
∫

∂Ω

[1
2

∂

∂ν

(
1

V
|Y |2

)
− 1

V
(∇̄iYj − ∇̄jYi)ν

iY j +
3

2V 2

∂V

∂ν
|Y |2

− 1

V 2
〈∇̄V, Y 〉〈Y, ν〉 − 1

V
∇̄iY

i〈Y, ν〉
]
dA

=

∫

Ω

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

4V
|∇̄iYj + ∇̄jYi|2 −

1

V
(∇̄iY

i)2

− V 3

4

∣∣∣∣∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)∣∣∣∣
2

dΩ.

Let’s turn to the boundary integral. We compute

1

2

∂

∂ν

(
1

V
|Y |2

)
= −1

2

1

V 2

∂V

∂ν
|Y |2 + 1

V
〈∇̄Y Y, ν〉+

1

V

(
〈∇̄νY, Y 〉 − 〈∇̄Y Y, ν〉

)
,

and the boundary integral becomes
∫

∂Ω

[
1

V
〈∇̄Y Y, ν〉+

1

V 2

∂V

∂ν
|Y |2 − 1

V 2
〈∇̄V, Y 〉〈Y, ν〉 − 1

V
∇̄iY

i〈Y, ν〉
]
dA.

Decomposing Y into tangential part and normal part to ∂Ω and using the identity

∇̄iY
i = ∇a(Y

T )a + 〈∇̄νY, ν〉+H〈Y, ν〉
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along ∂Ω, we have

1

V
〈∇̄Y Y, ν〉 −

1

V
∇̄iY

i〈Y, ν〉

=
1

V
〈∇̄Y T+〈Y,ν〉νY

T + 〈Y, ν〉ν, ν〉 − 1

V
∇̄iY

i〈Y, ν〉

=− 1

V
II(Y T , Y T ) +

1

V
Y T (〈Y, ν〉) + 1

V
〈∇̄νY, ν〉〈Y, ν〉 −

1

V
∇̄iY

i〈Y, ν〉

=− 1

V
II(Y T , Y T ) +

1

V
(Y T )a∇a〈Y, ν〉 −

1

V
∇a(Y

T )a〈Y, ν〉 − 1

V
H〈Y, ν〉2.

Integrating by parts the term 1
V
(Y T )a∇a〈Y, ν〉, we get

∫

∂Ω

[
1

V
〈∇̄Y Y, ν〉 −

1

V
∇̄iY

i〈Y, ν〉
]
dA

=

∫

∂Ω

[
− 1

V
II(Y T , Y T ) +

1

V 2
〈∇V, Y T 〉〈Y, ν〉 − 2

V
∇a(Y

T )a〈Y, ν〉 − 1

V
H〈Y, ν〉2

]
dA

=

∫

∂Ω

[
− 1

V
II(Y T , Y T ) +

1

V 2
〈∇̄V, Y 〉〈Y, ν〉 − 1

V 2

∂V

∂ν
〈Y, ν〉2 − 1

V
H〈Y, ν〉2

− 2

V
∇a(Y

T )a〈Y, ν〉
]
dA.

This finishes the proof of the Proposition. �

In particular, for any smooth function f on Ω, we apply Proposition 3.1 to the one-form
Y = V ∇̄f − f∇̄V and derive the following:

Corollary 3.2. Let f be a function on Ω and define the one-form Y = V ∇̄f − f∇̄V . We
have

∫

Ω

[
1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

V
|V ∇̄2f − f∇̄2V |2 − (V ∆̄f − f∆̄V )2

]
dΩ

=

∫

∂Ω

[
− 1

V
II(Y T , Y T )− 2

V
∇a(Y

T )a〈Y, ν〉 − 1

V
H〈Y, ν〉2 + 1

V 2

∂V

∂ν
|Y T |2

]
dA.

(3.3)

Proof. We observe that for Y = V ∇̄f − f∇̄V ,

∇̄i

(
Yj

V 2

)
− ∇̄j

(
Yi

V 2

)
=0,

∇̄iYj + ∇̄jYi =2(V ∇̄i∇̄jf − f∇̄i∇̄jV ).

The corollary follows immediately from Proposition 3.1. �

We apply Corollary 3.2 to obtain the following positivity result.
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Theorem 3.3. Suppose (M,g) is a Riemannian manifold and V is a smooth function such
that the triple (M,g, V ) satisfies the null convergence condition (1.3). Let Σ be a closed
connected mean convex hypersurface in M . Suppose Σ bounds a domain Ω in M such that
∂Ω = Σ ∪N where N is contained in ∂M. For any τ ∈ C∞(Σ), we have

∫

Σ

[∇a(V
2∇aτ)]2

V H
− V 3

II(∇τ,∇τ) + V 2 ∂V

∂ν
|∇τ |2dΣ ≥ 0. (3.4)

Proof. By Lemma 2.5 of [14], the Dirichlet boundary value problem




V ∆̄f − f∆̄V = 0 in Ω,
f = V τ on Σ,
f = 0 on N,

(3.5)

admits a unique solution f .
Consider the one-form Y = V ∇̄f − f∇̄V . By a direct computation, (3.4) is equivalent

to
∫

Σ

[∇a(Y
T )a]2

V H
− 1

V
II(Y T , Y T ) +

1

V 2

∂V

∂ν
|Y T |2dΣ ≥ 0,

where Y T = V∇f − f∇V .
On the other hand, Y = 0 on N and (3.3) is the same as

∫

Σ

[∇a(Y
T )a]2

V H
− 1

V
II(Y T , Y T ) +

1

V 2

∂V

∂ν
|Y T |2dΣ

=

∫

Σ

1

V

(√
H〈Y, ν〉+ ∇a(Y

T )a√
H

)2

dΣ

+

∫

Ω

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

V
|V ∇̄2f − f∇̄2V |2dΩ.

The assertion follows from (1.3). �

4. Positivity of the second variation

In this section, we prove that a convex surface in the static slice of the reference spacetime
is a local minimum of its own quasi-local energy. For this result, we assume that the
isometric embedding into the static slice is infinitesimally rigid and the reference spacetime
satisfies the null convergence condition.

Definition 4.1. An isometric embedding into the static slice is infinitesimally rigid if
the kernel of the linearized isometric embedding equation consists of the restriction of the
Killing vector fields of the static slice to the surface.

Theorem 4.2. Suppose the reference spacetime S satisfies the null convergence condition
(1.2). Let X(s) = (τ(s),Xi(s)), s ∈ (−ǫ, ǫ) be a family of isometric embeddings of the same
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metric σ into the interior S̊ such that the image of X(0) is a convex surface Σ0 in the
static slice, then

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) ≥0

if the isometric embedding of Σ0 into the static slice is infinitesimally rigid and Σ0 bounds
a domain in the static slice.

Proof. Let H0(X(s)) and αH0
(X(s)) be the mean curvature vector and the connection

one-form in mean curvature gauge of the image of X(s). For simplicity, set δ|H0| =
d
ds
|s=0|H0(X(s))| and δαH0

= d
ds
|s=0αH0

(X(s)). Let X̂(s) = (0,Xi(s)) be the projection

of X(s)(Σ) onto the static slice. X̂(s) is an isometric embedding of the metric

σ̂(s)ab = σab + V 2(s)τa(s)τb(s)

into the static slice and δσ̂ = d
ds
|s=0σ̂(s) = 0, as τ(0) = 0.

From the infinitesimal rigidity of the isometric embeddings into the static slice, there is
a family of isometries Â(s) of the static slice with Â(0) = Id such that

δÂ = δX̂

along the surface Σ0. Here we set δÂ = d
ds
|s=0Â(s) and δX̂ = d

ds
|s=0X̂(s). Moreover, there

is a family A(s) of isometries of the reference spacetime whose restriction to the static slice

is the family Â(s). Consider the following family of isometric embeddings of σ into the
reference spacetime:

X̆(s) = A−1(s)X(s).

Suppose X̆(s) = (τ̆(s), X̆i(s)) in the fixed static coordinate, we have

d

ds
|s=0X̆

i(s) = 0. (4.1)

We claim that

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) =

d2

ds2
|s=0E(Σ0, X̆(s),

∂

∂t
). (4.2)

Let H0(X̆(s)) and αH0
(X̆(s)) be the the mean curvature vector and the connection

one-form in mean curvature gauge of the images of X̆(s).

|H0(X(s))| =|H0(X̆(s))|
αH0

(X(s)) =αH0
(X̆(s))

(4.3)

since both are invariant under isometries of the reference spacetime. By (4.1), is easy to
see that

d

ds
|s=0|H̆0(s)| = 0. (4.4)

Moreover, while τ̆(s) is different from τ(s), we have

d

ds
|s=0τ̆(s) =

d

ds
|s=0τ(s) = f (4.5)
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since τ(0) = 0, A(0) = Id and the static slice is invariant under the action of A(s).

We apply Theorem 2.8 to each of X(s)(Σ) and X̆(s)(Σ) and use (4.3), (4.4) and (4.5) to
differentiate (2.21) one more time. Only the derivative of the term 1

8π

∫
Σ(δτ)div(V

2αH0
)dΣ

survives after the evaluation at s = 0. We thus conclude that both sides of (4.2) are the
same as

− 1

8π

∫
(δαH0

)(V 2∇f)dΣ0.

Differentiating (2.6), (2.7) and (2.9) with respect to s, we conclude that

(δαH0
)a = ∇a

(
div(V 2∇f)

V |H0|

)
+ V hab∇bf − fae3(V ).

As a result,

−
∫

(δαH0
)(V 2∇f)dΣ0

=−
∫

V 2fa[∇a

(
div(V 2∇f)

V |H0|

)
+ V hab∇bf − fae3(V )]dΣ0

=

∫ {
[div(V 2∇f)]2

|H0|V
− V 3habfafb + V 2|∇f |2e3(V )

}
dΣ0.

The theorem follows from Theorem 3.3. �

In [13, Theorem 4], it is proved that in a spherically symmetric 3-manifold with metric

g =
1

f2(r)
dr2 + r2dS2,

the sphere of symmetry r = c is not infinitesimally rigid unless g is a space form. From
the symmetry, it is easy to see that the sphere of symmetry is of constant mean curvature
(CMC). In the following theorem, we prove that the conclusion for Theorem 4.2 still holds
for the sphere of symmetry if it is a stable CMC surface.

Definition 4.3. A CMC surface Σ is stable if
∫ [

|∇f |2 − (|h|2 +Ric(ν, ν))f2
]
dΣ ≥ 0 (4.6)

for all functions f on Σ such that ∫
fdΣ = 0.

Here h denote the second fundamental form of the surface.

Theorem 4.4. Suppose the reference spacetime S satisfies the null convergence condition
(1.2), and the static slice is spherically symmetric (with a spherically symmetric static
potential). Let X(s) = (τ(s),Xi(s)), s ∈ (−ǫ, ǫ) be a family of isometric embeddings of the
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same metric σ into the interior S̊ such that Σ0 = X(0) is a sphere of symmetry in the
static slice. Then

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) ≥0

if Σ0 is a stable CMC surface and ν(V ) ≥ 0.

Proof. Let H0(X(s)) and αH0
(X(s)) be the mean curvature vector and the connection

one-form in mean curvature gauge of the image of X(s). For simplicity, set δ|H0| =
d
ds
|s=0|H0(X(s))| and δαH0

= d
ds
|s=0αH0

(X(s)). Let X̂(s) = (0,Xi(s)) be the projection

of X(s)(Σ) onto the static slice. X̂(s) is an isometric embedding of the metric

σ̂(s)ab = σab + V 2(s)τa(s)τb(s)

into the static slice and δσ̂ = d
ds
|s=0σ̂(s) = 0, as τ(0) = 0. Finally, let Ĥ(s) be the mean

curvature of X̂(s) in the static slice.
We apply Theorem 2.8 to each of X(s)(Σ) and conclude that

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) = − 1

8π

∫
(δαH0

)(V 2∇f)dΣ0 +
1

8π

∫
δV δ|H0|dΣ0.

The first integral is non-negative as in the proof of the Theorem 4.2. For the second
integral, we observe that

δ|H0| = δĤ.

We decompose δX̂ into tangential and normal parts to Σ0. Let

δX̂ = P a ∂X̂

∂va
+ βν.

The components β and P a satisfy

2βhab +∇aPb +∇bPa = 0 (4.7)

since δσ̂ = 0.
Taking the trace of (4.7) and integrating, we conclude that

∫
βH0dΣ0 = 0.

In particular,
∫
βdΣ = 0 since H0 is a constant. Since V , H0 and ν(V ) are constants on

Σ0, integrating over Σ0 gives
∫

δV δĤdΣ0 = ν(V )

∫
β(−∆β − (|h|2 +Ric(ν, ν))β)dΣ0.

Integrating by parts, we see that the right hand side is non-negative if Σ0 is a stable CMC
surface and ν(V ) is non-negative. �
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Remark 4.5. For a static spacetime with metric

ǧ = −V 2(r)dt2 +
1

V 2(r)
dr2 + r2dS2,

the null convergence condition and the stable CMC condition can be expressed explicitly in
terms of V (r) and its derivatives. See [3, 18].
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