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Abstract. We prove a sharp inequality for hypersurfaces in the n-
dimensional Anti-deSitter-Schwarzschild manifold for general n ≥ 3.
This inequality generalizes the classical Minkowski inequality [19] for
surfaces in the three dimensional Euclidean space. The proof relies on
a new monotonicity formula for inverse mean curvature flow, and uses
a geometric inequality established in [4].

1. Introduction

The classical Minkowski inequality for a closed convex surface Σ in R
3

states that
∫

Σ
H dµ ≥

√

16π |Σ|,

where H is the mean curvature, the trace of the second fundamental form,
and |Σ| is the area of Σ. For a convex hypersurface Σ in R

n, we have
∫

Σ
H dµ ≥ (n− 1) |Sn−1|

1
n−1 |Σ|

n−2
n−1 .

This was generalized to a mean convex and star-shaped surface using the
method of inverse mean curvature flow (cf. [13]). Very recently, Huisken
[14] showed that the assumption that Σ is star-shaped can be replaced by
the assumption that Σ is outward-minimizing. Gallego and Solanes [9] have
obtained a generalization of Minkowski’s inequality to the hyperbolic three
space; however, this result does not seem to be sharp.

In this paper, we extend Minkowski’s inequality to the case of surfaces in
the Anti-deSitter Schwarzschild manifold. Let us recall the definition of the
Anti-deSitter-Schwarzschild manifold. We fix a real number m > 0, and let
s0 denote the unique positive solution of the equation 1 + s20 −ms2−n

0 = 0.
We then consider the manifold M = Sn−1 × [s0,∞) equipped with the
Riemannian metric

ḡ =
1

1 + s2 −ms2−n
ds⊗ ds+ s2 gSn−1 ,
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where gSn−1 is the standard round metric on the unit sphere Sn−1. The sec-
tional curvatures of (M, ḡ) approach −1 near infinity, so ḡ is asymptotically
hyperbolic. Moreover, the scalar curvature of (M, ḡ) equals −n(n− 1). The
boundary ∂M = Sn−1 × {s0} is referred to as the horizon.

The Anti-deSitter Schwarzschild spaces are examples of static spaces. If
we define

(1) f =
√

1 + s2 −ms2−n,

then the function f satisfies

(2) (∆̄f) ḡ − D̄2f + f Ric = 0.

Taking the trace in (2) gives ∆̄f = nf .
In general, a Riemannian metric is called static if it satisfies (2) for

some positive function f . The condition (2) guarantees that the Lorentzian
warped product −f2 dt⊗ dt+ ḡ is a solution of Einstein’s equations.

We now state the main result of this paper:

Theorem 1. Let Σ be a compact mean convex, star-shaped hypersurface Σ
in the AdS-Schwarzschild space, and let Ω denote the region bounded by Σ
and the horizon ∂M . Then

∫

Σ
f H dµ − n(n− 1)

∫

Ω
f dvol

≥ (n− 1) |Sn−1|
1

n−1
(

|Σ|
n−2
n−1 − |∂M |

n−2
n−1

)

.

Moreover, equality holds if and only if Σ is a coordinate sphere, i.e. Σ =
Sn−1 × {s} for some number s ∈ [s0,∞).

If we send m → 0, then s0 → 0 and the AdS-Schwarzschild metric reduces
to hyperbolic metric

g =
1

1 + s2
ds⊗ ds+ s2 gSn−1 .

Moreover, the static potential becomes f =
√
1 + s2 = cosh r, where r

denotes the geodesic distance from the origin.

The rescaled metrics m
−

2
n−2 ḡ converge to the standard Schwarzschild

metric

g =
1

1− s2−n
ds ⊗ ds + s2 gSn−1

as m → 0. Furthermore, the static potential f converges to the static po-
tential of the standard Schwarzschild manifold. Hence, Theorem 1 implies a
sharp Minkowski-type inequality for surfaces in the Schwarzschild manifold.

Theorem 2. Let Σ be a compact mean convex hypersurface Σ in the hy-

perbolic space H
n which is star-shaped with respect to the origin, and let Ω
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denote the region bounded by Σ. Then

∫

Σ
(f H − (n− 1) 〈∇̄f, ν〉) dµ

≥ (n− 1) |Sn−1|
1

n−1 |Σ|
n−2
n−1 .

Moreover, equality holds if and only if Σ is a geodesic sphere centered at the

origin.

After this paper was submitted for publication, we learned of a preprint
by L. Lopes de Lima and F. Girão [16], where a related inequality for hy-
persurfaces in hyperbolic space is proved.

When the surface Σ is very close to the origin, Theorem 2 reduces to the
classical Minkowski inequality in R

n.
The classical Minkowski inequality in R

n has important applications in
general relativity, see [12]. In particular, the total mean curvature integral
appears in the definition of the Brown-York mass and Liu-Yau mass (cf. [17],
[18]). Our motivation came from the work [23] in which a generalization of
the positivity of Brown-York and Liu-Yau mass was considered when the
reference space is a hyperbolic space. It was observed in [23] that the mean
curvature integral should be replaced by a weighted one in order to recover
the right expression of mass (see [23], Theorem 1.4). The weighting factor is
related to the coordinate functions of the embedding of a hyperboloid into
the Minkowski space. The time component of the embedding can be chosen
to be cosh r which is the same as the static potential here. In fact, the same
weighting factor was considered in [22] where another quasilocal mass with
the hyperbolic space as reference was studied. We remark that the total
mass for asymptotically hyperbolic manifolds has been considered by many
authors, see e.g. [1], [6], [7], [20], [24], [25].

An important tool in our proof is the inverse mean curvature flow which
has some amazing connections to general relativity as well. It was first
employed by Huisken and Ilmanen [15] to prove the Riemannian Penrose
inequality in general relativity. Bray and Neves [3] used it to obtain a
classification theorem of three-manifolds by the Yamabe invariant. Neves
[21] studied the inverse mean curvature flow on asymptotically hyperbolic
spaces in connection to the Penrose inequality on such spaces.

We now give an outline of the proof of Theorem 1. We start from a given
mean convex, star shaped hypersurface Σ0, and evolve it by the inverse mean
curvature flow. We show that the inverse mean curvature flow exists for all
time, and that the evolving surfaces Σt remain star shaped for all t ≥ 0.
Moreover, we estimate the mean curvature and second fundamental form of

Σt. More precisely, we prove that |hji − δ
j
i | ≤ O(t2e−

2
n−1

t). We note that
the extra factor of t2 can be removed, but we will not need this stronger
estimate.
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We next consider the quantity

Q(t) = |Σt|−
n−2
n−1

(
∫

Σt

f H dµ− n(n− 1)

∫

Ω
f dvol + (n− 1) sn−2

0 |Sn−1|
)

,

where f is the static potential defined above. It turns out that Q(t) is
monotone decreasing along the inverse mean curvature flow. The proof of
this monotonicity property uses the fact that (M, ḡ) is static. We also use
the inequality

(n− 1)

∫

Σt

f

H
dµ ≥ n

∫

Ωt

f dvol + sn0 |Sn−1|

(cf. [4]). This inequality was used in [4] to prove a generalization of Alexan-
drov’s theorem (see also [5]).

Finally, we study the limit of Q(t) as t → ∞. The roundness estimate for
Σt is not strong enough to calculate the limit of Q(t), and we expect that
the limit of Q(t) depends on the choice of the initial surface Σ0. A similar
issue arose in the work of Neves [21], where the limit of the Hawking mass
was studied. However, we are able to give a lower bound for the limit of
Q(t). Using our estimate for the second fundamental form of Σt, we show
that

Q(t) ≥ (n − 1)

(
∫

Sn−1

λn−1 dvolSn−1

)

−
n−2
n−1

·
(

1

2

∫

Sn−1

λn−4 |∇λ|2g
Sn−1

dvolSn−1 +

∫

Sn−1

λn−2 dvolSn−1

)

− o(1),(3)

where λ is a positive function on Sn−1 which depends on t. In order to
estimate the right hand side in (3), we use a sharp version of the Sobolev
inequality on Sn−1 due to Beckner [2]. Using this inequality, we obtain

lim inf
t→∞

Q(t) ≥ (n− 1) |Sn−1|
1

n−1 .

SinceQ(t) is monotone decreasing, we conclude thatQ(0) ≥ (n−1) |Sn−1|
1

n−1 .
From this, Theorem 1 follows immediately.

2. Star-shaped hypersurfaces in the AdS-Schwarzschild

manifold

Lemma 3. By a change of variable, the AdS-Schwarzschild metric can be

rewritten as

g = dr ⊗ dr + λ(r)2 gSn−1

where λ(r) satisfies the ODE

(4) λ′(r) =
√

1 + λ2 −mλ2−n

and the asymptotic expansion

λ(r) = sinh(r) +
m

2n
sinh−n+1(r) +O(sinh−n−1(r)).
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Proof. We define

r(s) =

∫ s

s0

1√
1 + t2 −mt2−n

dt− b,

where

b =

∫

∞

s0

( 1√
1 + t2 −mt2−n

− 1√
1 + t2

)

dt−
∫ s0

0

1√
1 + t2

dt.

With this understood, the metric g can be written as g = dr ⊗ dr +
λ(r)2 gSn−1 , where λ(r(s)) = s.

The function r(s) can be rewritten as

r(s) =

∫ s

0

1√
1 + t2

dt−
∫

∞

s

( 1√
1 + t2 −mt2−n

− 1√
1 + t2

)

dt

= arsinh(s)−
∫

∞

s

(m

2
t−n−1 +O(t−n−3)

)

dt

= arsinh(s)− m

2n
s−n +O(s−n−2).

Hence, by Taylor expansion, we have

sinh(r(s)) = s− m

2n
s−n+1 +O(s−n−1)

= s− m

2n
sinh−n+1(r(s)) +O(sinh−n−1(r(s))).

From this, the assertion follows. �

We calculate the asymptotic expansion of Riemannian curvature tensors
in the next lemma.

Lemma 4. Let eα, α = 1, 2, . . . , n be a orthonormal frame and Rαβγµ is

the Riemannian curvature tensor of the AdS-Schwarzschild metric. Then

(5) Rαβγµ = −δβµδαγ + δβγδαµ +O(e−nr)

and

(6) D̄ρRαβγµ = O(e−nr).

Moreover, the Ricci tensor satisfies

Ric(∂r, ∂r) = −(n− 1)−m
(n− 1)(n− 2)

2
sinh−n(r) +O(e−(n+2)r)

and

λ−2 Ric(∂θi , ∂θj ) =
(

− (n − 1) +m
n− 2

2
sinh−n(r)

)

σij +O(e−(n+2)r),

where σij = gSn−1(∂θi , ∂θj ).

Proof. Each level set of r is a round sphere with induced metric λ(r)2 gSn−1

and second fundamental form λ(r)λ′(r) gSn−1 . Applying the Gauss equa-
tion, we compute

R(∂θi , ∂θj , ∂θk , ∂θl) = λ(r)2 (1− λ′(r)2) (σikσjl − σilσjk).
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Since the level set of r is umbilic, from the Codazzi equation, we derive

R(∂θi , ∂θj , ∂θk , ∂r) = 0.

The remaining components of the curvature tensors are

R(∂θi , ∂r, ∂θj , ∂r) = 〈(∇̄i∇̄r − ∇̄r∇̄i)∂r, ∂θj 〉
= −〈∇̄r∇̄i∂r, ∂θj 〉

= −
〈

∇̄r

(λ′

λ
∂θi

)

, ∂θj
〉

= −λ(r)λ′′(r)σij .

From this, (5) and (6) follow easily.
Moreover, we have

Ric(∂r, ∂r) = −(n− 1)
λ′′(r)

λ(r)

= −(n− 1)−m
(n− 1)(n − 2)

2
sinh−n(r) +O(e−(n+2)r).

As the scalar curvature is −n(n− 1), the expression of Ric(∂θi , ∂θj ) follows.
�

Let θ = {θj}j=1,2,...,n−1 be a coordinate system on Sn−1 and ∂θj be the
corresponding coordinate vector field in M . A star-shaped hypersurface
Σ ⊂ M can be parametrized by

Σ = {(r(θ), θ) : θ ∈ Sn−1}
for a smooth function r on Sn−1. We next define a new function ϕ : Sn−1 →
R by

ϕ(θ) = Φ(r(θ)),

where Φ(r) is a positive function satisfying Φ′(r) = 1
λ(r) .

Let ϕi = ∇iϕ and ϕij = ∇j∇iϕ denote the covariant derivatives of ϕ
with respect to the round metric gSn−1 . Moreover, let

v =
√

1 + |∇ϕ|2
Sn−1 .

In the next lemma, we express the metric and second fundamental form of
Σ in terms of covariant derivatives of ϕ as in [8]:

Proposition 5. Let gij be the induced metric on Σ and hij be the second

fundamental form in term of the coordinates θj. Then

gij = λ2 (σij + ϕiϕj)

and

hij =
λ

v

(

λ′ (σij + ϕiϕj)− ϕij

)

.
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Proof. A basis of tangent vector fields of Σ is of the form rj∂r + ∂θj . We
compute

gij = 〈ri∂r + ∂θi , rj∂r + ∂θj 〉
= λ2(r)σij + rirj

= λ2(r)(σij + ϕiϕj).

The unit normal vector ν is given by

ν =
1

v

(

∂r −
rj

λ2
∂θj

)

.

Thus, the second fundamental form is given by

hij = −
〈

∇̄ri∂r+∂
θi
(rj∂r + ∂θj ), ν

〉

= −
〈

(rij − λλ′) ∂r +
λ′

λ
rj ∂θi +

λ′

λ
ri ∂θj , ν

〉

=
1

v

(

λλ′ σij +
2λ′

λ
ri rj − rij

)

=
λ

v

(

λ′ (σij + ϕiϕj)− ϕij

)

,

where ∇̄ denotes the Levi-Civita connection in the ambient AdS-Schwarzschild
manifold. �

3. The inverse mean curvature flow

Let Σ0 be a mean convex star-shaped hypersurface in M which is given
by an embedding

F0 : S
n−1 → M

Let Ft : S
n−1 → M , t ∈ [0, T ), be the solution of inverse mean curvature

flow with initial data F0. In other words,

(7)
∂F

∂t
=

1

H
ν,

where ν is the unit outer normal vector and H is the mean curvature. We
shall call (7) the parametric form of the flow. The evolution of the mean
curvature is given by

(8)
∂H

∂t
=

∆H

H2
− 2

|∇H|2
H3

− |A|2
H

− Ric(ν, ν)

H
.

We can write Σ0 as the graph of a function r̃0 defined on the unit sphere:

Σ0 = {(r̃0(θ), θ) : θ ∈ Sn−1}.
If each Σt is star-shaped, it can be parametrized them as the graph

Σt = {(r̃(θ, t), θ) : θ ∈ Sn−1}.
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In this case, the inverse mean curvature flow can be written as a parabolic
PDE for r̃. As long as the solution of (7) exists and remains star-shaped, it
is equivalent to

(9)
∂r̃

∂t
=

v

H
,

where v is defined as above.
The equation (9) will be referred as the non-parametric form of the inverse

mean curvature flow. Notice that the velocity vector of (7) is always normal,
while the velocity vector of (9) is in the direction of ∂r. To go from one to
the other, we take the difference which is a (time-dependent) tangential
vector field and compose the flow of the reparametrization associated with
the tangent vector field.

Notice that associated with r̃, we define

ϕ(θ, t) := Φ(r̃(θ, t)),

where Φ(r) is a positive function satisfying Φ′(r) = 1
λ(r) . Then ϕ satisfies

(10)
∂ϕ

∂t
=

v

λH
.

In the sequel, we use the non-parametric form to derive C0 and C1 estimates
of r̃. Some of theses estimates can be found in [8] or [11] (see also [10]). For
completeness, we derive all the estimates here.

Lemma 6. Let r̄ = supSn−1 r̃(·, t) and r(t) = infSn−1 r̃(·, t). Then

λ(r̄(t)) ≤ e
1

n−1
t λ(r̄(0))

and

λ(r(t)) ≥ e
1

n−1
t λ(r(0)).

Proof. Recall that
∂r̃

∂t
=

v

H
.

Moreover, we have

H =
(n − 1)λ′

λv
− σ̃ij

λv
ϕij ,

where σ̃ij = σij − ϕiϕj

v2
. At the point where the function r̃(·, t) attains its

maximum, we have H ≥ (n−1)λ′

λ
. This implies

d

dt
r̄(t) ≤ λ(r̄(t))

(n− 1)λ′(r̄(t))
,

hence
d

dt
λ(r̄(t)) ≤ λ(r̄(t))

n− 1
.

From this, the first statement follows. The second statement follows simi-
larly. �

Lemma 7. We have H ≤ n− 1 +O(e−
2

n−1
t).
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Proof. Note that |Ric+(n−1) g| ≤ O(e−nr). This implies |Ric+(n−1) g| ≤
O(e−

n
n−1

t) on Σt. Using (8) and the inequality |A|2 ≥ 1
n−1 H

2, we obtain

d

dt
H2

max ≤ − 2

n− 1
H2

max + 2(n − 1) +O(e−
n

n−1
t).

This implies

Hmax(t)
2 ≤ (n− 1)2 + C e

−
2

n−1
t
.

From this, the assertion follows easily. �

We next consider the function

F =
λH

v
=

(n− 1)λ′ − σ̃ijϕij

v2
.

where σ̃ij = σij − ϕiϕj

v2
. The non-parametric form of the equation is

(11)
∂ϕ

∂t
=

1

F
.

First, we derive the evolution of the first space and time derivatives of ϕ.

Lemma 8. The evolution equation of ω = 1
2 |∇ϕ|2g

Sn−1
is

∂ω

∂t
=

σ̃ij

v2F 2
ωij −

1

F 2

∂F

∂ϕi
ωi −

2(n− 2)ω

v2F 2

− σ̃ij

v2F 2
σkl ϕik ϕjl −

2(n− 1)λλ′′

v2F 2
ω.(12)

Proof. If we differentiate (11) with respect to ϕk ∇k, we get

∂ω

∂t
= − 1

F 2

( ∂F

∂ϕij
∇kϕij ϕ

k +
∂F

∂ϕi
ϕik ϕ

k +
(n− 1)λ′′

v2
rk ϕ

k
)

= − 1

F 2

(

− σ̃ij

v2
∇kϕij ϕ

k +
∂F

∂ϕi
ωi +

2(n − 1)λλ′′

v2
ω
)

.

We next observe

ωij = ϕkij ϕ
k + ϕki ϕ

k
j

= ϕijk ϕ
k + (δpkσij − δ

p
jσik)ϕp ϕ

k + ϕki ϕ
k
j

= ϕijk ϕ
k + σij |∇ϕ|2g

Sn−1
− ϕi ϕj + ϕki ϕ

k
j ,

where the covariant derivatives are taken with respect to gSn−1 . Putting
these facts together, we conclude

∂ω

∂t
=

σ̃ij

v2F 2
ωij +

1

F 2

∂F

∂ϕi
ωi −

σ̃ij

v2F 2
(σij |∇ϕ|2g

Sn−1
− ϕiϕj)

− σ̃ij

v2F 2
σkl ϕik ϕjl −

2(n − 1)λλ′′

v2F 2
ω.

Since
σ̃ij (σij |∇ϕ|2g

Sn−1
− ϕiϕj) = 2(n − 2)ω,

the equation (12) follows. �
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Proposition 9. We have |∇ϕ|g
Sn−1 = O(e−

1
n−1

t) or, equivalently, |∇r|g
Sn−1 =

O(1) and |∇r|g = O(e−
1

n−1
t).

Proof. Using Lemma 7, we obtain

2(n − 1)λλ′′

v2F 2
=

2(n − 1)λλ′′

λ2H2
≥ 2

n− 1
−C e

−
2

n−1
t
.

Using (12) and the maximum principle, we conclude

d

dt
ωmax ≤ −

( 2

n− 1
− C e

−
2

n−1
t
)

ωmax,

where ωmax = 1
2 supSn−1 |∇ϕ|2g

Sn−1
. Thus

ωmax(t) = O(e−
2

n−1
t).

This implies

|∇r|2g
Sn−1

= λ2 |∇ϕ|2g
Sn−1

= O(1)

and

|∇r|2g = λ2 |∇ϕ|2g =
(

σij − ϕi ϕj

v2

)

ϕi ϕj =
|∇ϕ|2g

Sn−1

1 + |∇ϕ|2g
Sn−1

= O(e−
2

n−1
t).

�

Proposition 10. The function ϕ̇ = v
λH

is uniformly bounded from above.

In particular, H ≥ c e
−

1
n−1

t
for some positive constant c.

Proof. If we differentiate (11) with respect to t, we obtain

∂ϕ̇

∂t
=

σ̃ij

v2F 2
ϕ̇ij −

1

F 2

∂F

∂ϕi
ϕ̇i −

(n− 1)λλ′′

v2F 2
ϕ̇.

Hence, the assertion follows from the maximum principle. �

4. Estimates for the mean curvature and second fundamental

form

In this section, we prove estimates for the mean curvature and second
fundamental form. From now on, we will always work with the parametric
form of the flow. We begin by computing the evolution equations for the
function

χ =
1

〈ν, λ ∂r〉
=

v

λ

and the function λ.

Lemma 11. We have

(13)
∂ logχ

∂t
=

∆ log χ

H2
− 1

H2
|∇ log χ|2 − |A|2

H2
+

1

H2
O(e−

n
n−1

t)
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and

∂ log λ

∂t
=

∆ log λ

H2
− λλ′′

λ′2H2
|∇ log λ|2 + 2

|∇ log λ|2
H2

− 1

n− 1

((n− 1)λ′

λH

)2
+

2

(n− 1)v

( (n− 1)λ′

λH

)

.(14)

Proof. We first calculate the equation for χ. The vector field λ∂r satisfies
the property that

(15) ∇̄X(λ∂r) = λ′X.

Then
∂χ

∂t
= −χ2

( 〈∇H,λ ∂r〉
H2

+
λ′

H

)

.

Let ∂i, i = 1, 2, . . . n− 1 be coordinate vector fields on Σt, we derive

Diχ = −χ2 hki 〈∂k, λ ∂r〉

and

DjDiχ = −2χχj h
k
i 〈∂k, λ ∂r〉 − χ2Djh

k
i 〈∂k, λ ∂r〉

+ χ2 hki hkj 〈ν, λ ∂r〉 − χ2 hki 〈∂k, λ′ ∂j〉.

Using the Codazzi equations and Lemma 4, we obtain

∆χ = 2
|∇χ|2
χ

− χ2 λ 〈∇H, ∂r〉+ χ |A|2 − χ2 λ′ H + λχ2O(e−nr).

Since r = O( t
n−1), the identity (13) follows.

We next derive (14). The parametric form of the equation implies

∂r

∂t
=

〈∂r, ν〉
H

=
1

Hv
.

Using (15) and the identity ∇̄r = ∂r, we derive

∆r = (n− 1)
λ′

λ
− λ′

λ
|∇r|2 − H

v
.

We thus have

∂r

∂t
=

∆r

H2
+

2

Hv
− (n− 1)

λ′

λH2
+

λ′

λH2
|∇r|2,

hence

∂λ

∂t
=

∆λ

H2
−

(λλ′′ − λ′2

λH2

)

|∇r|2 − (n− 1)λ′2

λH2
+ 2

λ′

Hv
.

The identity (14) follows by taking log of the last equation. �

Proposition 12. H is uniformly bounded from below globally in time.
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Proof. We derive

(16)
∂ logH

∂t
=

∆ logH

H2
− 1

H2
|∇ logH|2 − |A|2

H2
+

n− 1

H2
+

1

H2
O(e−

n
n−1

t).

Combining (13) and (16), we obtain

∂

∂t
(log χ− logH) ≤ 1

H2
∆(logχ− logH)− 1

H2
|∇ logχ|2 + 1

H2
|∇ logH|2

− n− 1

H2
(1− Le

−
n

n−1
t)

for some positive constant L which does not depend on t. Let us fix a real

number τ > 0 such that Le
−

n
n−1

τ
< 1. By Proposition 10, the function H is

uniformly bounded from below on [0, τ ]. Using Lemma 7, we conclude that

∂

∂t
(log χ− logH) ≤ 1

H2
∆(logχ− logH)− 1

H2
|∇ logχ|2 + 1

H2
|∇ logH|2

− 1

n− 1
− C e

−
2

n−1
t

for t ≥ τ . By the maximum principle, χ
H

≤ O(e−
1

n−1
t). Since χ = v

λ
, we

conclude that 1
H

≤ O(1). �

We next study the second fundamental form of Σt. The second funda-
mental form satisfies the evolution equation

∂h
j
i

∂t
=

∆h
j
i

H2
+

|A|2
H2

h
j
i − 2

hki h
j
k

H
− 2

HiH
j

H3

+
2

H2
gkl gsj Rmiks h

m
l − 1

H2
gkl gsj Rmksl h

m
i − 1

H2
gkl Rmkil h

mj(17)

+
1

H2
Ric(ν, ν)hji −

2

H
gmj Rνiνm.

Combining (8) and (17), we obtain the following evolution equation for the

tensor M j
i = H h

j
i :

∂M
j
i

∂t
=

∆M
j
i

H2
− 2

DkHDkM
j
i

H3
− 2

DiHDjH

H2
− 2

Mk
i M

j
k

H2

+
2(n− 1)M j

i

H2
+

( |M |
H2

+ 1
)

O(e−
n

n−1
t).(18)

Proposition 13. The second fundamental form is uniformly bounded glob-

ally in time.

Proof. Let µ be the maximal eigenvalue of the tensor M
j
i = H h

j
i . As H

is uniformly bounded we have |M | ≤ C(µ + 1) for some constant C. From
(18) we have

(19)
dµ

dt
≤ −2µ2

H2
+

2(n− 1)µ

H2
+ (µ+ 1)O(e−

n
n−1

t).

So µ is uniformly bounded from above. Again from uniform boundedness of

H we know M
j
i and h

j
i are both uniformly bounded. �
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Corollary 14. The solution of the inverse mean curvature flow is defined

on [0,∞).

We now establish an improved lower bound for the mean curvature.

Proposition 15. We have H = n− 1 +O(te−
2

n−1
t).

Proof. Combining (13), (14), and (16), we obtain

∂

∂t
(log χ+ log λ− logH)

=
1

H2
∆(logχ+ log λ− logH)

+
1

H2
|∇ logH|2 − 1

H2
| log χ|2 − λλ′′

λ′2H2
|∇ log λ|2 + 2

|∇ log λ|2
H2

− n− 1

H2
− 1

n− 1

((n− 1)λ′

λH

)2
+

2

(n− 1)v

((n− 1)λ′

λH

)

+O(e−
n

n−1
t).

At a critical point of the function logχ+ log λ− logH, we have ∇ logH =
∇ logχ+∇ log λ. Using Proposition 9 and Proposition 13, we obtain

|∇ log λ|2 = λ′2

λ2
|∇r|2 = O(e−

2
n−1

t)

and

|∇ log χ|2 + |∇ log λ|2 − |∇ logH|2

= −2 〈∇ log χ,∇ log λ〉 = 2χλ′ hij r
j rj = O(e−

2
n−1

t).

Thus the gradient terms can be estimated by O(e−
2

n−1
t). Moreover, we have

− n− 1

H2
− 1

n− 1

((n− 1)λ′

λH

)2
+

2

(n− 1)v

((n − 1)λ′

λH

)

=
2

n− 1
− 2

H
− 1

n− 1

(n− 1

H
− 1

)2

− 1

n− 1

((n− 1)λ′

λH
− 1

)2
− 2

n− 1

(n − 1)λ′

λH

(

1− 1

v

)

≤ 2

n− 1
− 2

H

≤ 2

n− 1
− 2χλ

H
+O(e−

2
n−1

t)

where we have used the fact that χλ = v = 1+O(e−
2

n−1
t). Hence, if we put

ρ(t) = supSn−1
χλ
H
, then

d

dt
log ρ(t) ≤ 2

n− 1
− 2ρ(t) +O(e−

2
n−1

t).

This implies

d

dt
ρ(t) ≤ 2

n− 1

( 1

n− 1
− ρ(t)

)

+O(e−
2

n−1
t)
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whenever ρ(t) ≥ 1
n−1 . From this, we deduce that ρ(t) ≤ 1

n−1 +O(te−
2

n−1
t).

Since χλ = O(e−
2

n−1
t), we conclude that 1

H
≤ 1

n−1 +O(te−
2

n−1
t). �

Finally, we estimate second fundamental form more precisely.

Proposition 16. We have |hji − δ
j
i | ≤ O(t2e−

2
n−1

t).

Proof. As above, we denote by µ the maximal eigenvalue of M j
i = H h

j
i .

Using (19), we obtain

dµ

dt
≤ −2µ2

H2
+

2(n− 1)µ

H2
+ (µ+ 1)O(e−

n
n−1

t)

= −2(n − 1)

H2
(µ − n+ 1)− 2

H2
(µ− n+ 1)2 + (µ+ 1)O(e−

n
n−1

t)

≤ − 2

n− 1
(µ − n+ 1) +O(te−

2
n−1

t),

where in the third line we have used that µ is uniformly bounded and H =

n− 1 +O(te−
2

n−1
t). Thus,

µ− n+ 1 ≤ O(t2e−
2

n−1
t).

As M
j
i = Hh

j
i and H = n − 1 + O(te−

2
n−1

t), we conclude that the largest

eigenvalue of the second fundamental form is less than 1+O(t2e−
2

n−1
t). Since

H = n− 1+O(te−
2

n−1
t), the smallest eigenvalue of the second fundamental

form is greater than 1−O(t2e−
2

n−1
t). �

5. The monotonicity formula

As above, we consider a family of star-shaped surfaces Σt evolving by
inverse mean curvature flow. We define

Q(t) = |Σt|−
n−2
n−1

(
∫

Σt

f H dµ− n(n− 1)

∫

Ω
f dvol + (n− 1) sn−2

0 |Sn−1|
)

,

where f is defined by (1).
We first evaluate the limit of Q(t) as t → ∞. To that end, we need the

following auxiliary result:

Proposition 17. For every positive function u on Sn−1, we have

1

2

∫

Sn−1

un−4 |∇u|2g
Sn−1

dvolSn−1 +

∫

Sn−1

un−2 dvolSn−1

≥ |Sn−1|
1

n−1

(
∫

Sn−1

un−1 dvolSn−1

)
n−2
n−1

.

Moreover, equality holds if and only if u is constant.
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Proof. It follows from Theorem 4 in [2] that

2

(n − 2)(n − 1)

∫

Sn−1

|∇w|2g
Sn−1

dvolSn−1 +

∫

Sn−1

w2 dvolSn−1

≥ |Sn−1|
1

n−1

(
∫

Sn−1

w
2(n−1)
n−2 dvolSn−1

)
n−2
n−1

for every positive smooth function w. Hence, if we put u = w
2

n−2 , we obtain

n− 2

2(n − 1)

∫

Sn−1

un−4 |∇u|2g
Sn−1

dvolSn−1 +

∫

Sn−1

un−2 dvolSn−1

≥ |Sn−1|
1

n−1

(
∫

Sn−1

un−1 dvolSn−1

)
n−2
n−1

.

From this, the assertion follows. �

Proposition 18. We have lim inft→∞Q(t) ≥ (n− 1) |Sn−1|
1

n−1 .

Proof. Using the inequalities

f = λ+O(e−
1

n−1
t),

H − n+ 1 = O(te−
2

n−1
t),

√

det g = (λn−1 +O(e
n−3
n−1

t))
√

det gSn−1 ,

we obtain

(20)

∫

Σt

f (H − n+ 1) dµ =

∫

Sn−1

λn (H − n+ 1) dvolSn−1 +O(te
n−4
n−1

t).

By Proposition 5, the metric and second fundamental form on Σt are given
by

gij = λ2 (σij + ϕiϕj)

and

hij =
λ′

λv
gij −

λ

v
ϕij .

Here, σij is the round metric on Sn−1 and ϕij is the Hessian of ϕ with

respect to gSn−1 . By Proposition 16, we have |h− g|g ≤ O(t2e−
2

n−1
t). This

implies
∣

∣

∣
h− λ′

λv
g
∣

∣

∣

g
≤ O(t2e−

2
n−1

t),

hence
∣

∣

∣
h− λ′

λv
g
∣

∣

∣

g
Sn−1

≤ O(t2).

From this, we deduce that |D2ϕ|g
Sn−1 ≤ O(t2 e−

t
n−1 ), where D2ϕ denotes

the Hessian of ϕ with respect to gSn−1 . Using Proposition 9, we obtain

σ̃ij ϕij = ∆Sn−1ϕ+O(t2e−
3

n−1 ).
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This implies

H =
(n− 1)λ′

λv
− 1

λv
σ̃ij ϕij

=
(n− 1)λ′

λv
− 1

λv
∆Sn−1ϕ+O(t2e−

4
n−1

t).

Since λ′ = λ+ 1
2 λ

−1 +O(e−
2

n−1
t) and 1

v
= 1− 1

2 |∇ϕ|2g
Sn−1

+O(e−
4

n−1
t), we

conclude that

H = n− 1 +
n− 1

2λ2
− n− 1

2
|∇ϕ|2g

Sn−1
− 1

λ
∆Sn−1ϕ+O(e−

3
n−1

t).

Substituting this identity into (20), we obtain

∫

Σt

f (H − n+ 1) dµ

=

∫

Sn−1

(n− 1

2
λn−2 − n− 1

2
λn |∇ϕ|2g

Sn−1
− λn−1 ∆Sn−1ϕ

)

dvolSn−1 +O(e
n−3
n−1

t)

=

∫

Sn−1

(n− 1

2
λn−2 − n− 1

2
λn |∇ϕ|2g

Sn−1
+ (n− 1)λn−2 〈∇λ,∇ϕ〉Sn−1

)

dvolSn−1

+O(e
n−3
n−1

t).

By Proposition 9, we have |∇ϕ|g
Sn−1 ≤ O(e−

1
n−1 t). Since ∇λ = λλ′∇ϕ, it

follows that |∇λ− λ2 ∇ϕ|g
Sn−1 ≤ O(e−

1
n−1 t). This implies

∫

Σt

f (H − n+ 1) dµ

=

∫

Sn−1

(n− 1

2
λn−2 +

n− 1

2
λn−4 |∇λ|2g

Sn−1

)

dvolSn−1 +O(e
n−3
n−1

t).(21)

On the other hand, the static potential satisfies

f − 〈∇̄f, ν〉 ≥ f − |∇̄f |

=
√

1 + λ2 −mλ2−n − (λ+
m(n− 2)

2
λ−n+1)

=
1

2
λ−1 +O(e−t).

This gives

(22) (n− 1)

∫

Σt

(f − 〈∇̄f, ν〉) dµ ≥ n− 1

2

∫

Sn−1

λn−2 dvolSn−1 −O(1).
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Adding (21) and (22), we obtain

∫

Σt

(f H − (n− 1) 〈∇̄f, ν〉) dµ

≥ n− 1

2

∫

Sn−1

λn−4 |∇λ|2g
Sn−1

dvolSn−1

+ (n − 1)

∫

Sn−1

λn−2 dvolSn−1 −O(e
n−3
n−1

t).

Moreover,

|Σt| =
∫

Sn−1

λn−1 dvolSn−1 +O(e
n−3
n−1

t).

Using Proposition 17, we conclude that

lim inf
t→∞

|Σt|−
n−2
n−1

∫

Σt

(f H − (n− 1)〈∇̄f, ν〉) dµ ≥ (n− 1) |Sn−1|
1

n−1 ,

hence

lim inf
t→∞

|Σt|−
n−2
n−1

(
∫

Σt

f H dµ− n(n− 1)

∫

Ωt

f dvol

)

≥ (n − 1) |Sn−1|
1

n−1 .

This completes the proof. �

Finally, we show that Q(t) is monotone along the flow:

Proposition 19. The quantity Q(t) is monotone decreasing in t.

Proof. The evolution of the mean curvature is given by

∂

∂t
H = −∆

( 1

H

)

− 1

H
(|A|2 +Ric(ν, ν)).

This implies

∂

∂t
(f H) = −f ∆

( 1

H

)

− f

H
(|A|2 +Ric(ν, ν)) + 〈∇̄f, ν〉.
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Using the identity ∆f = ∆̄f − (D2f)(ν, ν)−H 〈∇̄f, ν〉, we obtain

d

dt

(
∫

Σt

f H dµ

)

= −
∫

Σt

f ∆
( 1

H

)

dµ−
∫

Σt

f

H
(|A|2 +Ric(ν, ν)) dµ

+

∫

Σt

(〈∇̄f, ν〉+ f H) dµ

= −
∫

Σt

1

H
∆f dµ −

∫

Σt

f

H
(|A|2 +Ric(ν, ν)) dµ

+

∫

Σt

(〈∇̄f, ν〉+ f H) dµ

= −
∫

Σt

1

H
(∆̄f − (D2f)(ν, ν)) dµ(23)

−
∫

Σt

f

H
(|A|2 +Ric(ν, ν)) dµ

+

∫

Σt

(2 〈∇̄f, ν〉+ f H) dµ

= −
∫

Σt

f

H
|A|2 +

∫

Σt

(2 〈∇̄f, ν〉+ f H) dµ

≤
∫

Σt

(

2 〈∇̄f, ν〉+ n− 2

n− 1
f H

)

dµ.

Using the divergence theorem, we obtain
∫

Σt

〈∇̄f, ν〉 dµ =

∫

Ωt

∆̄f dvol +
(n− 2)m+ 2sn0

2
|Sn−1|

= n

∫

Ωt

f dvol +
(n− 2)m+ 2sn0

2
|Sn−1|.

Moreover, it was shown in [4] that

(n− 1)

∫

Σt

f

H
dµ ≥ n

∫

Ωt

f dvol + sn0 |Sn−1|.

Putting these facts together, we conclude that

d

dt

(
∫

Σt

f H dµ − n(n− 1)

∫

Ωt

f dvol

)

≤
∫

Σt

(

2 〈∇̄f, ν〉 dµ+
n− 2

n− 1
f H − n(n− 1)

f

H

)

dµ

≤ n− 2

n− 1

∫

Σt

f H dµ− n(n− 2)

∫

Ωt

f dvol

+ ((n − 2)m+ 2sn0 ) |Sn−1| − n sn0 |Sn−1|

=
n− 2

n− 1

(
∫

Σt

f H dµ− n(n− 1)

∫

Ωt

f dvol + (n− 1) sn−2
0 |Sn−1|

)

.
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Thus, we conclude that d
dt
Q(t) ≤ 0, and equality holds when the surfaces Σt

are coordinate spheres. �

Corollary 20. We have
∫

Σ0

f H dµ − n(n− 1)

∫

Ω0

f dvol

≥ (n− 1) |Sn−1|
1

n−1
(

|Σ0|
n−2
n−1 − |∂M |

n−2
n−1

)

.

Proof. Since Q(t) is monotone decreasing, we have

Q(0) ≥ lim inf
t→∞

Q(t) ≥ (n− 1) |Sn−1|
1

n−1 .

This implies
∫

Σ0

f H dµ− n(n− 1)

∫

Ω0

f dvol

≥ (n− 1) |Sn−1|
1

n−1 |Σ0|
n−2
n−1 − (n− 1) sn−2

0 |Sn−1|.
Since |∂M | = sn−1

0 |Sn−1|, the assertion follows. �

It remains to discuss the case of equality. Suppose that
∫

Σ0

f H dµ − n(n− 1)

∫

Ω0

f dvol

= (n− 1) |Sn−1|
1

n−1
(

|Σ0|
n−2
n−1 − |∂M |

n−2
n−1

)

.

In this case, the function Q(t) is constant. In particular, we must have
equality in (23). Consequently, the surface Σ0 is umbilic. If the mass m is
positive, it follows that Σ0 is a coordinate sphere, as claimed. On the other
hand, if the mass m vanishes, then Σ0 must be a geodesic sphere centered
at some point x0. If x0 is not the origin, then the function λ converges to a
non-constant function on Sn−1 after rescaling. Using the equality statement

in Proposition 17, we conclude that lim inft→∞Q(t) > (n − 1) |Sn−1|
1

n−1 ,
contrary to our assumption. Thus, Σ0 must be a geodesic sphere centered
at the origin.
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