
Limit of quasilocal mass at spatial infinity

Mu-Tao Wang and Shing-Tung Yau

May 31, 2009, this version Jun 8, 2009

Abstract

We study the limit of quasilocal mass defined in [4] and [5] for
a family of spacelike 2-surfaces in spacetime. In particular, we show
the limit coincides with the ADM mass at spatial infinity. The limit
for coordinate spheres of a boosted slice of the Schwarzchild solu-
tion is computed explicitly and shown to give the expected energy-
momentum four-vector.

1 Review of the definition of quasilocal en-

ergy

1 2 In [4] and [5], we define a notion of quasilocal mass for spacelike 2-surfaces
in a spacetime. Given an isometric embedding of a 2-surface into R

3,1 and
a future timelike unit vector (observer) in R

3,1, we associated a quasilocal
energy with respect to a canonical gauge. Minimizing among the reference
data gives the quasilocal mass and the quasilocal energy-momentum four-
vector. We prove that the mass has the important positivity property and
it vanishes for surfaces in R

3,1. The expression for the mass is nevertheless
rather nonlinear and complicated. In this article, we show that for a family of
surfaces going out to spatial infinity, the expression indeed gets “linearized”
and gives a well-defined energy-momentum four-vector.

1We would like to thank PoNing Chen for his help in checking the correctness of the
calculations in §3.

2The first author is supported by NSF grant DMS-0605115 and the second author is
supported by NSF grant DMS-0628341.
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First of all, we recall the definition of quasilocal energy in [4]. Let Σ be
a spacelike 2-surface in a time-orientable spacetime N . Consider a reference
isometric embedding Σ →֒ R

3,1. Fix a future timelike unit vector tν0 in R
3,1.

We decompose tν0 along Σ ⊂ R
3,1 into tν0 = N0u

ν
0+Nν

0 in which N0 is the lapse
function, Nν

0 is the shift vector, and uν
0 is the future timelike unit normal

vector field along Σ ⊂ R
3,1 determined by this decomposition. We also take

the spacelike outward pointing unit normal vν
0 that is orthogonal to uν

0 along
Σ ⊂ R

3,1. (uν
0, v

ν
0 ) is the reference gauge for Σ ⊂ R

3,1 with respect to tν0 .
To compute the quasilocal energy, we also need the canonical gauge (ūν , v̄ν)
along Σ ⊂ N . ūν is characterized as the unique future timelike unit normal
vector field along Σ ⊂ N such that

hν ū
ν = (h0)νu

ν
0, (1.1)

where hν is the mean curvature vector of Σ ⊂ N and hν
0 is the mean curvature

vector of Σ ⊂ R
3,1. v̄ν is the spacelike unit normal vector that is orthogonal

to ūν and satisfies v̄νhν < 0. Take a spacelike hypersurface Ω0 ⊂ R
3,1 spanned

by Σ ⊂ R
3,1 and vν

0 , and a spacelike hypersurface Ω̄ ⊂ N spanned by Σ ⊂ N

and v̄ν . Let k0 be the mean curvature of Σ with respect to Ω0 and k̄ be the
mean curvature of Σ with respect to Ω̄. Also denote by (K0)µν and K̄µν the
extrinsic curvatures of Ω0 and Ω̄, respectively. These data depend only on
the gauges along Σ but not on the hypersurfaces. Quasilocal energy in the
canonical gauge (see equation (6) in [4]) is defined to be

1

8π

∫

Σ

(k0 − k̄)N0 − (vµ
0 (K0)µν − v̄µK̄µν)N

ν
0 . (1.2)

We shall rewrite the quasilocal energy in terms of the mean curvature
gauge. In order to do so, we adopt a different set of notations from [5].
Set T0 = tν0 , H0 = hν

0, H = hν , ĕ3 = vν
0 , ĕ4 = uν

0, ē3 = v̄ν , ē4 = ūν .
Denote by X : Σ → R

3,1 the position vector of the isometric embedding
and by τ = 〈X, T0〉 the restriction of the time function associated with T0.
T0 =

√

1 + |∇τ |2ĕ4 − ∇τ and thus N0 =
√

1 + |∇τ |2 and Nν
0 = −∇τ . The

quasilocal energy becomes

1

8π

∫

Σ

(−〈H0, ĕ3〉+〈H, ē3〉)
√

1 + |∇τ |2−(〈∇R
3,1

−∇τ ĕ4, ĕ3〉−〈∇N
−∇τ ē4, ē3〉). (1.3)

Suppose the mean curvature vector H0 of Σ in R
3,1 is spacelike. Let eH0

3 =
−H0

|H0|
be the unit vector in the direction of −H0 and eH0

4 the future-directed
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time-like unit normal vector with 〈eH0

3 , eH0

4 〉 = 0. The relation between the
two gauges is

eH0

3 = cosh θ0ĕ3 + sinh θ0ĕ4, and eH0

4 = sinh θ0ĕ3 + cosh θ0ĕ4

for some θ0 ∈ R. Since ∆τ = −〈H0, T0〉, we derive

sinh θ0 =
−∆τ

|H0|
√

1 + |∇τ |2
. (1.4)

Therefore,
〈∇R

3,1

∇τ ĕ4, ĕ3〉 = −∇θ0 · ∇τ + 〈∇R
3,1

∇τ eH0

4 , eH0

3 〉.
The canonical gauge condition (1.1)

〈H0, ĕ4〉 = 〈H, ē4〉

implies eH = −H
|H|

is given by

eH
3 = cosh θē3 + sinh θē4 with sinh θ =

−∆τ

|H|
√

1 + |∇τ |2
.

Expression (1.3) can now be rewritten in terms of the mean curvature gauge.
To summarize, let Σ ⊂ N be a spacelike 2-surface in a spacetime N and

let X : Σ →֒ R
3,1 be a reference isometric embedding of Σ into the Minkowski

space. For any given future timelike constant unit vector T0 ∈ R
3,1, the time

function on Σ is denoted by τ = −〈X, T0〉. Let H be the mean curvature
vector of Σ in N , we assume H is spacelike. Let J be the future timelike unit
normal vector field along Σ in N which is dual to H along the light cone in
the normal bundle of Σ in N . Denote by H0 and J0 the corresponding data
on the isometric embedding in R

3,1. Again, H0 is assume to be spacelike in
R

3,1. The quasilocal energy of Σ with respect to the pair (X, T0) is given by

E(Σ, X, T0) =
1

8π

∫

Σ

√

|H0|2(1 + |∇τ |2) + (∆τ)2 −
√

|H|2(1 + |∇τ |2) + (∆τ)2

− ∆τ

[

sinh−1(
∆τ

√

1 + |∇τ |2|H0|
) − sinh−1(

∆τ
√

1 + |∇τ |2|H|
)

]

− 〈∇R
3,1

∇τ

J0

|H0|
,

H0

|H0|
〉 + 〈∇N

∇τ

J

|H| ,
H

|H|〉dvΣ,

(1.5)
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where ∆τ is the Laplacian of τ on Σ (with respect to the induced metric),
and ∇N and ∇R

3,1

are the covariant derivatives on N and R
3,1, respectively,

and ∇τ is the gradient of τ on Σ (with respect to the induced metric again),
considered as a tangent vector field on Σ. In the expressions for the last two
integrands, we push forward ∇τ by the embeddings and identify it as vector
fields along Σ in R

3,1 and N , respectively.

2 General formula for the limit of quasilocal

energy

Fix R > 0 and suppose Σr, R < r < ∞, is a family of closed 2-surfaces in N ,
and Xr is a family of isometric embeddings of Σr into R

3,1. In the following
theorem, we derive an expression for the limit of E(Σr, Xr, T0).

Theorem 2.1 Suppose the mean curvature vectors of Σr and of the image
of Xr in R

3,1 are both spacelike for r > R0 and |H|
|H0|

→ 1 as r → ∞. Then

the limit of E(Σr, Xr, T0) as r → ∞ (if exists) is the same as the limit of

1

8π

∫

Σr

−〈T0,
J0

|H0|
〉(|H0| − |H|) − 〈∇R

3,1

∇τ

J0

|H0|
,

H0

|H0|
〉 + 〈∇N

∇τ

J

|H| ,
H

|H|〉dvr.

Proof. We compute

∆τ = −H0 · T0 = |H0|〈eH0

3 , T0〉 (2.1)

and
|∇τ |2 = −1 + 〈eH0

4 , T0〉2 − 〈eH0

3 , T0〉2 (2.2)

where eH0

3 = −H0

|H0|
and eH0

4 = J0

|H0|
is the future timelike unit normal dual to

eH0

3 along the image of X in R
3,1.

Rationalize the expression

√

|H0|2(1 + |∇τ |2) + (∆τ)2 −
√

|H|2(1 + |∇τ |2) + (∆τ)2

as

(|H0| − |H|) (|H0| + |H|)(1 + |∇τ |2)
√

|H0|2(1 + |∇τ |2) + (∆τ)2 +
√

|H|2(1 + |∇τ |2) + (∆τ)2
.
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By assumption |H|
|H0|

→ 1 at infinity, the limit as r → ∞ is thus the same
as the limit of

1

8π

∫

Σr

〈eH0

4 , T0〉2 − 〈eH0

3 , T0〉2
−〈eH0

4 , T0〉
(|H0| − |H|)dvΣr . (2.3)

Next we study the term

−∆τ

[

sinh−1(
∆τ

√

1 + |∇τ |2|H0|
) − sinh−1(

∆τ
√

1 + |∇τ |2|H|
)

]

by rewriting it as

−∆τ

[

sinh−1(
∆τ

√

1 + |∇ρ|2|H0|
) − sinh−1(

∆τ
√

1 + |∇τ |2|H0|
|H0|
|H| )

]

.

Note that
sinh−1 A − sinh−1(A(1 + x))

x
→ −A√

1 + A2

as x → 0. With x = |H0|
|H|

− 1 → 0, the limit of the second term is thus the
same as the limit of

1

8π

∫

Σr

〈eH0

3 , T0〉2
−〈eH0

4 , T0〉
(|H0| − |H|)dvr. (2.4)

The theorem is proved by combining (2.3) and (2.4). 2

Suppose the image of the isometric embedding lies Xr in R
3 ⊂ R

3,1, then
eH0

4 = J0

|H0|
is a constant vector and the 〈∇R

3,1

∇τ
J0

|H0|
, H0

|H0|
〉 term vanishes. In this

case, eH0

3 coincide with the outward unit normal of the embedding in R
3.

Corollary 2.1 Suppose the reference isometric embedding is in R
3 ⊂ R

3,1

and |H|
|H0|

→ 1 as r → ∞, then the limit of the quasilocal energy with respect

to T0 = (
√

1 + |a|2, a1, a2, a3) with |a|2 =
∑3

i=1(a
i)2 is

(
√

1 + |a|2) 1

8π

∫

Σr

|H0| − |H|dvr +
1

8π

∫

Σr

〈∇N
∇τ

J

|H| ,
H

|H|〉dvr. (2.5)
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Suppose the isometric embedding for Σr is given by Xr = (X1, X2, X3) :
Σ → R

3 and consider X i, i = 1, 2, 3 as functions on Σr. Thus ∇τ =
−

∑3
i=1 ai∇X i and we obtain a limiting quasilocal energy-momentum four-

vector (e, p1, p2, p3) as the limit of

e = lim
r→∞

1

8π

∫

Σr

|H0| − |H|dvr

pi = lim
r→∞

1

8π

∫

Σr

〈∇N
−∇Xi

J

|H| ,
H

|H|〉dvr, i = 1, 2, 3.

(2.6)

3 Relating to ADM energy-momentum

Let (M, gij, pij) be an asymptotically flat hypersurface in a spacetime N .
Thus there exists a compact set K ⊂ M such that M\K is diffeomorphic
to a union of complements of balls in R

3 (ends) such that gij = δij + aij

with aij = O(1
r
), ∂k(aij) = O( 1

r2 ), ∂l∂k(aij) = O( 1
r3 ), and pij = O( 1

r2 ),
∂k(pij) = O( 1

r3 ) on each end of M\K.
The ADM energy momentum (Arnowitt-Deser-Misner) of an end of M is

the four vector (E, P1, P2, P3) where

E = lim
r→∞

1

16π

∫

Sr

(∂jgij − ∂igjj)ν
idvr

is the total energy and

Pk = lim
r→∞

1

16π

∫

Sr

2(pik − δikpjj)ν
idvr

is the total momentum. Here Sr is a coordinate sphere of radius r on the
end and ν is the outward unit normal of Sr.

The positive mass theorem (Schoen-Yau [3], Witten [6]) asserts that un-
der the dominant energy condition, the four-vector (E, P1, P2, P3) is future
timelike, i.e.

E ≥ 0 and − E2 + P 2
1 + P 2

2 + P 2
3 ≤ 0.

In the following, we prove that for coordinate spheres of radius r, the
limit of the quasilocal energy momentum (2.6) is the same as the ADM
energy-momentum.
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Theorem 3.1 Suppose Sr is the coordinate sphere of radius r in an end of
an asymptotically flat three-manifold (M, gij, pij) and (E, P1, P2, P3) is the
ADM energy-momentum four vector of this end, then

lim
r→∞

E(Sr, Xr, T0) =
√

1 + |a|2E +

3
∑

i=1

aiPi

where Xr is the (unique) isometric embedding of Sr into R
3 ⊂ R

3,1 and
T0 = (

√

1 + |a|2, a1, a2, a3) is an arbitrary constant timelike unit vector.

Proof. Denote by e0 the future timelike unit normal of the hypersurface M

and ν the unit outward normal of the coordinate sphere Sr. Let (y1, y2, y3)
be the asymptotically flat coordinates on the end. Sr is given by (y1)2 +
(y2)2 + (y3)2 = r2 and we denote the embedding of Sr into M by Y . Since
pij = O( 1

r2 ), we have 〈H, e0〉 = O( 1
r2 ). It is known that 〈H, ν〉 = 2

r
+ O( 1

r2 )
(see for example [1]). Since H = 〈H, ν〉ν − 〈H, e0〉e0, we estimate

|H| − |〈H, ν〉| = O(
1

r3

).

Therefore,

lim
r→∞

∫

Sr

|H0| − |H|dvr = lim
r→∞

∫

Sr

|H0| − |〈H, ν〉|dvr,

i.e, the Brown-York energy and the Liu-Yau energy have the same limit
at spatial infinity. It is known that (see for example [1] and the reference
therein) the Brown-York energy approaches the ADM energy E at spatial
infinity.

Now it suffices to prove

3
∑

i=1

aiPi =

3
∑

i=1

aipi =
1

8π

∫

Σr

〈∇N
∇τ

J

|H| ,
H

|H|〉dvr.

By definition, the ADM momentum is

3
∑

i=1

aiPi =
1

8π

∫

Sr

p(ai ∂

∂yi
, ν) − (trp)〈ai ∂

∂yi
, ν〉dvr.
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We decompose ai ∂
∂yi = (ai ∂

∂yi )
⊤ + 〈ai ∂

∂yi , ν〉ν and the integrand becomes

p((ai ∂

∂yi
)⊤, ν) + 〈ai ∂

∂yi
, ν〉(p(ν, ν) − (trp)).

By the definition of the mean curvature vector H , we obtain p(ν, ν)−(trp) =
〈H, e0〉. Therefore the ADM momentum term is

3
∑

i=1

aiPi =
1

8π

∫

Sr

〈∇N

(ai ∂

∂yi )⊤
e0, ν〉 + 〈H, e0〉〈ai ∂

∂yi
, ν〉dvr. (3.1)

Now we turn to the limit of the quasilocal energy momentum. We can
express the normal vector fields H and J in terms of ν and e0 as

H = 〈H, ν〉ν − 〈H, e0〉e0 and J = −〈H, ν〉e0 + 〈H, e0〉ν.

We compute

〈∇N
∇τ

J

|H| ,
H

|H|〉 = −∇τ · ∇ sinh−1(
〈H, e0〉
|H| ) − 〈∇N

∇τe0, ν〉.

Integrating by parts gives

1

8π

∫

Sr

〈∇N
∇τ

J

|H| ,
H

|H|〉dvr =
1

8π

∫

Sr

−〈∇N
∇τe0, ν〉 + ∆τ sinh−1(

〈H, e0〉
|H| )dvr.

Plug in (2.1), the second integrand on the right hand side becomes

〈eH0

3 , T0〉|H0| sinh−1(
〈H, e0〉
|H| ).

Recall the asymptotics

〈H, e0〉 = O(
1

r2
), |H| =

2

r
+ O(

1

r2
), |H0| =

2

r
+ O(

1

r2
)

and sinh−1 x ∼ x if x << 1. We see the limit of 1
8π

∫

Sr
〈∇N

∇τ
J
|H|

, H
|H|

〉dvr is the
same as

lim
r→∞

1

8π

∫

Sr

−〈∇N
∇τe0, ν〉 + 〈H, e0〉〈eH0

3 , T0〉dvr. (3.2)
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Now we can compare (3.1) and (3.2). Write out the tangential part of
ai ∂

∂yi ,

(ai ∂

∂yi
)⊤ = 〈ai ∂

∂yi
,
∂Y

∂ua
〉σab ∂Y

∂ub
= aigij

∂Y j

∂ua
σab ∂Y

∂ub
.

On the other hand, as τ = −aiX i, and the push-forward of ∇τ becomes

∇τ = −ai ∂X i

∂ua
σab ∂Y

∂ub
.

The isometric embeddings satisfy (see for example [1])

|X i − Y i| = O(1) and |eH0

3 − ν| = O(
1

r
).

From these, we deduce that (3.2) is the same as the limit of the right hand
side of (3.1) and the theorem is proved.

2

4 Explicit computation in a boosted slice of

Schwarzchild’s solution

In this section, we compute the limit of quasilocal energy-momentum for
coordinate spheres of a boosted slice of Schwarzchild’s solution.

4.1 Asymptotics of the geometry of coordinate spheres

Let (y0, y1, y2, y3) be the isotropic coordinates of Schwarzchild’s solution in
which the spacetime metric is of the form:

Gαβdyαdyβ = − 1

F 2
(dy0)2 +

1

G2

3
∑

i=1

(dyi)2

with

F 2 =
(1 + M

2ρ
)2

(1 − M
2ρ

)2
, G2 =

1

(1 + M
2ρ

)4

and ρ2 =
∑3

i=1(y
i)2. Given γ > 0 and β which satisfy γ2−β2γ2 = 1, consider

the surface Σr0
defined by

γy0 − βγy3 = 0
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and
(y1)2 + (y2)2 + (γy3 − βγy0)2 = r2

0

with r0 → ∞. With the coordinate change (y0)′ = γy0 − βγy3 and (y3)′ =
γy3 − βγy0, these surfaces are coordinate spheres of radius r0 in the asymp-
totically flat slice γy0 − βγy3 = 0

We parametrize the 2-surfaces Σr0
by

y0 = βγr0 cos θ

y1 = r0 sin θ sin φ

y2 = r0 sin θ cos φ

y3 = γr0 cos θ.

Denote the embedding of Σr0
into Schwarzchild’s solution by Y = (y0, y1, y2, y3).

In terms of local coordinates u1 = θ and u2 = φ on the surface, the induced
metric on Σr0

is

σab = r2
0[1+

2M

ρ
(1+2β2γ2 sin2 θ)]dθ2 + r2

0(1+
2M

ρ
) sin2 θdφ2 +O(r0), (4.1)

and
√

det σab = r2
0| sin θ|[1 +

2M

ρ
(1 + β2γ2 sin2 θ)] + O(r0). (4.2)

The mean curvature vector H = Hγ ∂
∂yγ of Σr0

is by definition:

Hγ = σab(
∂2yγ

∂ua∂ub
+ Γγ

αβ

∂yα

∂ua

∂yβ

∂ub
)(δγ

β − Πγ
β)

where Γγ
αβ are the Christoffel symbols of the metric Gαβ and Πγ

β = Gβασab ∂yα

∂ua

∂yγ

∂ub

is the projection operator on the tangent space of Σr0
. The asymptotic ex-

pansion of Γγ
αβ can be computed from the asymptotic expansion of Gαβ.

Denote by ỹα = yα

r0

and ρ̃ = ρ

r0

, which are both scaling invariant now.
We shall use the following frames along Σr0

to express the mean curvature
vector:

N = ỹα ∂

∂yα
,

B = γ(
∂

∂y0
+ β

∂

∂y3
), and

T =
∂ỹα

∂θ

∂

∂yα
.
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We notice that T is a tangent vector field to Σr0
while N and B are only

asymptotically normal in the sense that 〈N, T 〉 = O( 1
r0

) and 〈B, T 〉 = O( 1
r0

).

We also have 〈N, N〉 = 1 + O( 1
r0

), 〈B, B〉 = −1 + O( 1
r0

), and 〈T, T 〉 =

1 + O( 1
r0

).
A straightforward calculation gives

Lemma 4.1

H =
−2

r0
N +

1

r2
0

(nN + tT + bB) + O(
1

r3
0

)

with

n =
M

ρ̃3
(6 + 6β2γ2 + 2β4γ4 sin2 θ cos2 θ),

t =
M

ρ̃3
(−8ρ̃2)(β2γ2 sin θ cos θ), and

b =
M

ρ̃3
(2βγ2 cos θ)(β2γ2 sin2 θ − 1).

From here, we compute the norm of |H|,

Proposition 4.1

|H| =
2

r0
+

1

r2
0

[
2M

ρ̃
(1 + 2β2γ2 cos2 θ) − n] + O(

1

r3
0

).

Let J be the future-directed timelike normal vector that is dual to H along
the light cone in the normal bundle.

Lemma 4.2 J is given by

2

r0

B − 1

r2
0

[
−2M(1 + 2β2γ2 cos2 θ + γ2 + β2γ2)

ρ̃
+ n]B

+
1

r2
0

[
8M

ρ̃
(βγ2 sin θ)T − (b +

8Mβγ2 cos θ

ρ̃
)N ].

Proof. The coefficients of J are determined by the following equations:

−〈J, J〉 = 〈H, H〉,
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〈J, H〉 = 0

and
〈J, T 〉 = 0.

2

With this explicit formula, we compute the coefficients of the connection
form of the normal bundle in the mean curvature vector gauge:

Proposition 4.2

〈∇ ∂Y
∂θ

J, H〉 =
1

r3
0

(2b′ +
8M

ρ̃
βγ2 sin θ) + O(

1

r4
0

)

and

〈∇ ∂Y
∂φ

J, H〉 = O(
1

r4
0

).

It turns out the second term does not contribute to the limit of the quasilocal
energy.

4.2 Total mean curvature of isometric embedding

We consider the isometric embedding of a general axially symmetric metric
into R

3. The metric is of the form

r2
0P

2(r0, θ)dθ2 + r2
0Q

2(r0, θ) sin2 θdφ2

with

P (r0, θ) = 1 + O(
1

r0

), and Q(r0, θ) = 1 + O(
1

r0

).

Suppose the isometric embedding is given by

X = (u(r0, θ) sinφ, u(r0, θ) cosφ, v(r0, θ)).

Thus
∂X

∂θ
= (

∂u

∂θ
sin φ,

∂u

∂θ
cos φ,

∂v

∂θ
)

and
∂X

∂φ
= (u cosφ,−u sin φ, 0).

It is not hard to see
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Lemma 4.3 u and v are given by

(
∂u

∂θ
)2 + (

∂v

∂θ
)2 = r2

0P
2

and
u2 = r2

0Q
2 sin2 θ.

Proposition 4.3 The mean curvature of the isometric embedding of the
metric r2

0P
2(r0, θ)dθ2 + r2

0Q
2(r0, θ) sin2 θdφ2 into R

3 is given by

H0 = −(
1

r3
0P

3
)(

∂2u

∂θ2

∂v

∂θ
+

∂2v

∂θ2

∂u

∂θ
) + (

1

r2
0PQ sin θ

)
∂v

∂θ
.

where
u(r0, θ) = r0Q(r0, θ) sin θ,

and

(
∂v

∂θ
)2 = r2

0P
2 − (

∂u

∂θ
)2 = r2

0[P
2 − (

∂Q

∂θ
sin θ + Q cos θ)2].

Now suppose

P = 1 +
p

r0

+ O(
1

r2
0

), p = p(θ)

and

Q = 1 +
q

r0
+ O(

1

r2
0

), q = q(θ).

The asymptotic expansion of the mean curvature is found to be

H0 =
2

r0
− 1

r2
(2p +

cos θ

sin θ
(2q′ − p′) + q′′). (4.3)

Comparing with (4.1), we deduce that in our case

p =
M

ρ̃
(1 + 2β2γ2 sin2 θ) and q =

M

ρ̃
.

u and v can be solved explicitly:

u = r0 sin θ +
M

ρ̃
sin θ and v = r0 cos θ +

M

ρ̃
cos θ + 2Mβγ sinh−1(βγ cos θ).

(4.4)
Plug in the expression of p and q into (4.3) and integrate by parts, we

obtain
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Proposition 4.4

∫

Σr0

H0dvr0
= 8πr0 + 2πM

∫ 2π

0

1 + β2γ2 sin2 θ

ρ̃
| sin θ|dθ + O(

1

r0
).

This calculation is compatible with Lemma 2.4 in [1].

4.3 Evaluating the quasilocal energy

We are ready to compute the limit of the Liu-Yau mass:

Proposition 4.5
∫

Σr0

(H0 − |H|)dvr0
= 8πγM + O(

1

r0

).

Proof. Combine Proposition 4.1 and Proposition 4.4, we obtain
∫

Σr0

(H0−|H|)dvr0
= πM

∫ 2π

0

2 + 4β2γ2 − 6β2γ2 cos2 θ − 4β4γ4 cos4 θ

ρ̃
| sin θ|dθ+O(

1

r0
).

The integral can be evaluate by the substitution βγ cos θ = sinh y. 2

Now we turn to the momentum part. Suppose T0 = (
√

1 + |a|2, a1, a2, a3),

|a|2 =
∑3

i=1(a
i)2 is a future timelike unit vector and the isometric embedding

into R
3 ⊂ R

3,1 is given by X = (0, u sinφ, u cosφ, v). We know from (4.4)
that u = r sin θ + O(1) and v = r cos θ + O(1). The gradient of τ is given by
∇τ = ∂τ

∂ua σab ∂Y
∂ub . We compute

∫

Σr0

〈∇∇τ

J

|H| ,
H

|H|〉dvr0
= −a1

∫

Σr0

1

|H|2 (u sin θ)′σθθ〈∇ ∂Y
∂θ

J, H〉dvr0

− a2

∫

Σr0

1

|H|2 (u cos θ)′σθθ〈∇ ∂Y
∂θ

J, H〉dvr0

− a3

∫

Σr0

1

|H|2v′σθθ〈∇ ∂Y
∂θ

J, H〉dvr0
+ O(

1

r0
).

(4.5)

These integrals can be evaluated and we obtain

Proposition 4.6
∫

Σr0

〈∇N
∇τ

J

|H| ,
H

|H|〉dvr0
= a38πβγM + O(

1

r0
).
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Proof. By Proposition 4.2, 〈∇ ∂Y
∂θ

J, H〉 is of the order 1
r3

0

while u and v are

both of order r0, we have
∫

Σr0

1

|H|2 (u sin θ)′σθθ〈∇ ∂Y
∂θ

J, H〉dvr0

=

∫ π

0

∫ 2π

0

r2
0

4
(r0 sin2 θ)′

1

r2
0

〈∇ ∂Y
∂θ

J, H〉r2
0| sin θ|dθdφ

=
π

4

∫ 2π

0

(sin2 θ)′[r3
0〈∇ ∂Y

∂θ
J, H〉]| sin θ|dθ.

Therefore the first integral on the right hand side of (4.5) is

−a1 π

4

∫ 2π

0

(sin2 θ)′(2b′ +
8M

ρ̃
βγ2 sin θ)| sin θ|dθ

where

b =
M

ρ̃3
(2βγ2 cos θ)(β2γ2 sin2 θ − 1),

and the second one is

−a2 π

4

∫ 2π

0

(sin θ cos θ)′(2b′ +
8M

ρ̃
βγ2 sin θ)| sin θ|dθ.

Both integrate to zero as they are of the form
∫ 2π

0
(cos θ)F (cos2 θ)| sin θ|dθ

or
∫ 2π

0
(sin θ)F (cos2 θ)| sin θ|dθ for some smooth function F of cos2 θ. The last

integral becomes

a3 π

4

∫ 2π

0

sin θ(2b′ +
8M

ρ̃
βγ2 sin θ)| sin θ|dθ

which can be simplified as

a34πMβγ2

∫ π

0

sin θ

ρ̃3
dθ.

Using the same substitution βγ cos θ = sinh y, the integral is

a38πβγM.

2
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Therefore the limit of the quasilocal energy (1.5) is

(
√

1 + |a|2)γM + a3βγM.

Recall that γ2 − β2γ2 = 1. Minimizing this expression among all T0 =
(
√

1 + |a|2, a1, a2, a3), we see the minimum is achieved at (γ, 0, 0,−βγ) and
the minimum value is M . The limit of the quasilocal energy-momentum is
thus M(γ, 0, 0,−βγ).
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