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HAMILTONIAN STATIONARY CONES AND SELF-SIMILAR

SOLUTIONS IN HIGHER DIMENSION

YNG-ING LEE AND MU-TAO WANG

Abstract. In an upcoming paper by Lee and Wang, we construct examples of
two-dimensional Hamiltonian stationary self-shrinkers and self-expanders for
Lagrangian mean curvature flows, which are asymptotic to the union of two
Schoen-Wolfson cones. These self-shrinkers and self-expanders can be glued
together to yield solutions of the Brakke flow - a weak formulation of the mean
curvature flow. Moreover, there is no mass loss along the Brakke flow. In this
paper, we generalize these results to higher dimensions. We construct new
higher-dimensional Hamiltonian stationary cones of different topology as gen-
eralizations of the Schoen-Wolfson cones. Hamiltonian stationary self-shrinkers
and self-expanders that are asymptotic to these Hamiltonian stationary cones
are constructed as well. They can also be glued together to produce eternal
solutions of the Brakke flow without mass loss. Finally, we show that the same
conclusion holds for those Lagrangian self-similar examples recently found by
Joyce, Tsui and the first author.

1. Introduction

The existence of special Lagrangians in Calabi-Yau manifolds recently received
much attention due to the critical role they play in the T-duality formulation of
Mirror symmetry of Strominger-Yau-Zaslow [14]. Special Lagrangians are cali-
brated submanifolds and thus are volume minimizers [3]. One potential approach
to the construction of special Lagrangians is the mean curvature flow - the negative
gradient flow of the volume functional. However, the long-time existence of such
flows can only be verified in some special cases; see for example [11], [12], [15], and
[16]. In this article, we construct special weak solutions of the Lagrangian mean
curvature flows.

Our ambient space is always the complex Euclidean space Cn with coordinates
zi = xi+

√
−1yi, the standard symplectic form ω =

∑n
i=1 dx

i∧dyi, and the standard

almost complex structure J with J( ∂
∂xi ) = ∂

∂yi . A Lagrangian submanifold is an

n-dimensional submanifold in Cn on which the symplectic form ω vanishes. On a
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1492 YNG-ING LEE AND MU-TAO WANG

Lagrangian submanifold L the mean curvature vector H is given by

(1.1) H = J∇θ,

where θ is the Lagrangian angle and ∇ is the gradient on L. The Lagrangian angle
θ can be defined by the relation that

∗L(dz1 ∧ · · · ∧ dzn) = eiθ,

where ∗L is the Hodge *-star operator on L. We recall

Definition 1. A Lagrangian submanifold L is called Hamiltonian stationary if the
Lagrangian angle is harmonic; i.e. ∆θ = 0, where ∆ is the Laplace operator on L.
L is a special Lagrangian if θ is a constant function.

A Hamiltonian stationary Lagrangian submanifold is a critical point of the vol-
ume functional among all Hamiltonian deformations, and a special Lagrangian is a
volume minimizer in its homology class.

By the first variation formula, the mean curvature vector points to the direction
where the volume is most rapidly decreased. As the special Lagrangians are volume
minimizers, it is thus natural to use the mean curvature flow in the construction
of special Lagrangians. Equation (1.1) implies that the mean curvature flow is a
Lagrangian deformation, i.e. a Lagrangian submanifold remains Lagrangian along
the mean curvature flow. In a geometric flow, the singularity often models on a
soliton solution. In the case of mean curvature flows, one type of soliton solution of
particular interest is the one moved by scaling in the Euclidean space. We recall:

Definition 2. A submanifold of the Euclidean space is called a self-similar solution
if

F⊥ = 2cH

for some nonzero constant c, where F⊥ is the normal projection of the position
vector F in the Euclidean space and H is the mean curvature vector. It is called a
self-shrinker if c < 0 and a self-expander if c > 0.

It is not hard to see that if F is a self-similar solution, then Ft defined by Ft =√
t
cF is moved by the mean curvature flow. By Huisken’s monotonicity formula

[6], any central blow up of a finite-time singularity of the mean curvature flow is
a self-similar solution. In this article, we obtain higher-dimensional Hamiltonian
stationary cones with different topology as generalizations of the Schoen-Wolfson
cones. We also obtain Hamiltonian stationary self-shrinkers and self-expanders
which are asymptotic to these cones. Altogether they form solutions of the Brakke
flow (see §3.1), which is a weak formulation of the mean curvature flow proposed
by Brakke in [1]. To be more precise, we prove:

Theorem 1.1. Assume that λj > 0 for 1 ≤ j ≤ k < n and λj < 0 for k < j ≤ n
are integers satisfying

∑n
j=1 λj > 0. Define

Vt={(x1e
iλ1s, · · · , xne

iλns) : 0≤s < π,
n∑

j=1

λjx
2
j =(−2t)

n∑
j=1

λj , (x1, · · · , xn)∈R
n}.

Then Vt is Hamiltonian stationary. It is a self-shrinker for t < 0, a self-expander
for t > 0, and a cone for t = 0. Moreover, the varifold

⋃
t Vt, −∞ < t < ∞, forms

an eternal solution for Brakke flow without mass loss.
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HAMILTONIAN STATIONARY CONES AND SELF-SIMILAR SOLUTIONS 1493

Our construction of Lagrangian self-similar solutions is generalized to the non-
Hamiltonian stationary case by Joyce, Tsui and the first author in [9]. These
examples can also be glued together to yield eternal solutions of the Brakke flow
without mass loss.

Theorem 1.2. Let k be a positive integer less than n. Given λj > 0 for 1 ≤ j ≤
k < n and λj < 0 for k < j ≤ n, let w1(s), · · · , wn(s) : R → C\{0} be those periodic
functions with period T , which are obtained in Theorem F in [9] with α = 1. Define

Vt = {(x1w1(s), · · · , xnwn(s)) : 0 ≤ s < T,

n∑
j=1

λjx
2
j = 2t, (x1, · · · , xn) ∈ R

n}.

Then Vt is a Lagrangian self-shrinker for t < 0, a Lagrangian self-expander for
t > 0, and a Lagrangian cone for t = 0. Moreover, the varifold

⋃
t Vt, −∞ < t < ∞,

forms an eternal solution for Brakke flow without mass loss.

The choice of α = 1 in Theorem 1.2 is arbitrary; there is a lot of freedom to
rescale the constants as discussed in [9, Remark 3.2]. Indeed, choosing α = −1
instead will perhaps make the statement more consistent with Theorem 1.1. When
λj are all positive, our construction gives Hamiltonian stationary self-shrinkers Vt

for t < 0. This case can also be included in Theorem 1.1 by taking Vt to be the
origin for t ≥ 0. More general examples for λj > 0, which include self-expanders
with arbitrarily small Lagrangian angle, are constructed in [9].

Theorems 1.1 and 1.2 are analogous to the Feldman-Ilmanen-Knopf [2] gluing
construction for the Kähler-Ricci flows. Unlike the mean curvature flow, a notion
of weak solutions of Ricci flow has not yet been established.

This article is organized as follows. The Hamiltonian stationary examples in
Theorem 1.1 and their geometry and topology are presented in §2. In §3, we recall
the formulation of Brakke flow and prove Theorem 1.1. The proof of Theorem 1.2
and the discussion of the geometric properties of these examples are given in §4.

2. Hamiltonian stationary examples

2.1. The constructions. For any n nonzero integers λ1, · · · , λn, consider the sub-
manifold L of Cn defined by

{(x1e
iλ1s, · · · , xne

iλns) | 0 ≤ s < 2π,
n∑

j=1

λjx
2
j = C, (x1, · · · , xn) ∈ R

n}

for some constant C.
It is not hard to check that L is Lagrangian in Cn with the Lagrangian angle

given by θ = (
∑n

j=1 λj)s+
π
2 . It follows that L is special Lagrangian if

∑n
j=1 λj = 0.

In general, a direct computation shows that the induced metric on L is independent
of s. Hence ∆Lθ = 0 and L is Hamiltonian stationary.

Such special Lagrangians were studied by M. Haskins in [4], [5] (for n = 3) and
D. Joyce in [7] (for general dimensions). We are informed by D. Joyce that the
Hamiltonian stationary examples may also be obtained by applying his method of
“perpendicular symmetries” in [8].

When C = 0, the examples are Hamiltonian stationary cones, which generalize
the two-dimensional Schoen-Wolfson cones. We will study the geometry of these ex-
amples in the next subsection. Now assume the constant C in the defining equation
is nonzero.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1494 YNG-ING LEE AND MU-TAO WANG

If
∑n

j=1 λj 
= 0, a direct computation shows that

F⊥ =
−C∑n
j=1 λj

H.

That is, the submanifold L is a Hamiltonian stationary self-similar solution of the
mean curvature flow.

We summarize the calculations in this subsection in the following proposition.

Proposition 2.1. For any n nonzero integers λ1, · · · , λn, consider the submanifold
L of Cn defined by

{(x1e
iλ1s, · · · , xne

iλns) | 0 ≤ s < 2π,

n∑
j=1

λjx
2
j = C, (x1, · · · , xn) ∈ R

n}

for some constant C. It is special Lagrangian when
∑n

j=1 λj = 0. If
∑n

j=1 λj 
= 0,
it is Hamiltonian stationary and the normal projection of the position vector satisfies

F⊥ =
−C∑n
j=1 λj

H.

Without loss of generality, we can assume that
∑n

j=1 λj > 0 in this case. Then L is
a Hamiltonian stationary self-shrinker when C > 0, a Hamiltonian stationary cone
when C = 0, and a Hamiltonian stationary self-expander when C < 0. Moreover,
the Hamiltonian stationary self-expander and the self-shrinker are asymptotic to
the Hamiltonian stationary cone.

Remark 2.1. The same results hold for any real numbers λ1, · · · , λn which are not
all zeros.

2.2. The geometry of the examples. Denote

F (x1, · · · , xn, s) = (x1e
iλ1s, · · · , xne

iλns).

It is easy to see that

F (x1, · · · , xn, s+ π) = F ((−1)λ1x1, · · · , (−1)λnxn, s).

As a result, the map F is generically two-to-one. To solve this problem, we re-
strict the domain to 0 ≤ s < π. The tangent planes at F (x1, · · · , xn, s + π) and
F ((−1)λ1x1, · · · , (−1)λnxn, s) agree. They are both spanned by the vector

(iλ1(−1)λ1x1, · · · , iλn(−1)λnxn)

and the (n− 1) plane in Rn which is perpendicular to the vector

(λ1(−1)λ1x1, · · · , λn(−1)λnxn).

Define a diffeomorphism ψ : Rn → Rn by

ψ(x1, · · · , xn) = ((−1)λ1x1, · · · , (−1)λnxn)

and a submanifold Σ in Rn by

Σ = {(x1, · · · , xn) :
n∑

j=1

λjx
2
j = C}.
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The restriction of ψ on Σ is a diffeomorphism onto itself. The restriction map is an
orientation-preserving map if and only if

∑n
j=1 λj is even. It follows that for any n

nonzero integers λ1, · · · , λn, the Lagrangian submanifold L′

{(x1e
iλ1s, · · · , xne

iλns) | 0 ≤ s < π,

n∑
j=1

λjx
2
j = C, (x1, · · · , xn) ∈ R

n}

is oriented if and only if
∑n

j=1 λj is even. Assume that λj > 0 for 1 ≤ j ≤ k < n
and λj < 0 for k + 1 ≤ j ≤ n. Then the ansatz of our examples can be written as

k∑
j=1

|λj |x2
j =

n∑
j=k+1

|λj |x2
j + C.

The topology of L′ is Rk × Sn−k−1 × S1 when C < 0, is Sk−1 × Rn−k × S1 when
C > 0, and is a cone with link Sk−1×Sn−k−1×S1, with an isolated singular point
at 0, when C = 0. When λj > 0 for all j, we can only consider the case C > 0 and
the topology is Sn−1 × S1.

To avoid other possible self-intersections, we require that |λ1|, · · · , |λn| are pair-
wise co-prime. This condition is sufficient to guarantee that the Hamiltonian sta-
tionary cone (C = 0) is embedded. In addition, we require that λj = 1 for 1 ≤ j ≤ k
when C > 0 and λj = −1 for k + 1 ≤ j ≤ n when C < 0 in order to obtain an
embedded L′ in each case.

Only when C > 0, k = 1, or C < 0, k = n − 1, the real hypersurface Σ is
disconnected. However, if λ1 is odd in the first case, the factor eiλ1s becomes −1
at s = π and thus L′ will still be connected. If λn is odd in the second case, the
Lagrangian submanifold L′ will also be connected for the same reason.

We summarize these discussions in the following proposition.

Proposition 2.2. For any constant C and n nonzero integers λ1, · · · , λn, the
Lagrangian submanifold L′ defined by

{(x1e
iλ1s, · · · , xne

iλns) | 0 ≤ s < π,
n∑

j=1

λjx
2
j = C, (x1, · · · , xn) ∈ R

n}

is oriented if and only if
∑n

j=1 λj is even.
Assume that λj > 0 for 1 ≤ j ≤ k and λj < 0 for k + 1 ≤ j ≤ n. The topology

of L′ is Rk × Sn−k−1 × S1 when C < 0, is Sk−1 × Rn−k × S1 when C > 0, and
is a cone with link Sk−1 × Sn−k−1 × S1 when C = 0. If C > 0, k = 1 and λ1 is
even, or C < 0, k = n− 1 and λn is even, there are two connected components in
L′. The submanifold L′ is connected for all other cases.

Suppose that |λ1|, · · · , |λn| are pairwise co-prime. Then the corresponding cones
in the case C = 0 are embedded. However, one also needs to require λj = 1 for
1 ≤ j ≤ k to make L′ embedded in the case C > 0 and to require λj = −1 for
k + 1 ≤ j ≤ n to make L′ embedded in the case C < 0.

Remark 2.2. Theorem 1.1 holds without these extra assumptions on λj .

Remark 2.3. It is worth noting that the case
∑n

j=1 λj = 0 corresponds to a special
Lagrangian. Hence the proposition shows that there are two families of smooth
special Lagrangians which have different topologies but converge to the same special
Lagrangian cone (C = 0). The element in one family has topology Rk×Sn−k−1×S1
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1496 YNG-ING LEE AND MU-TAO WANG

(for the case C < 0), and the element in the other family has topology Sk−1×Rn−k×
S1 (for the case C > 0).

3. Proof of Theorem 1.1

Assume λj are nonzero integers and
∑n

j=1 λj > 0. Define

Vt={(x1e
iλ1s, · · · , xne

iλns)| 0≤s < π,
n∑

j=1

λjx
2
j =(−2t)

n∑
j=1

λj , (x1, · · · , xn)∈R
n}.

The varifold Vt for t 
= 0 is smooth, and V0 is a cone with an isolated singularity
at the origin. As discussed in the previous sections, Vt are Hamiltonian stationary
self-shrinkers for t < 0 and Hamiltonian stationary self-expanders for t > 0. As
t → 0, Vt converges to the Hamiltonian stationary cone V0. The geometry of Vt is
discussed in Proposition 2.2. What is left in the proof of Theorem 1.1 is to show
that the varifolds Vt for −∞ < t < ∞ form an eternal solution of Brakke flow
without mass loss. We first recall the definition of Brakke flow.

3.1. Brakke flow. A family of varifolds Vt is said to form a solution of the Brakke
flow [1] if

(3.1) D̄||Vt||(φ) ≤ δ(Vt, φ)(h(Vt))

for each φ ∈ C1
0 (R

n) with φ ≥ 0, where D̄||Vt||(φ) is the upper derivative defined by

limt1→t
||Vt1

||(φ)−||Vt||(φ)
t1−t and h(Vt) is the generalized mean curvature vector of Vt. In

the setting of this paper,

δ(Vt, φ)(h(Vt)) = −
∫

φ|h(Vt)|2d||Vt||+
∫

Dφ · h(Vt)d||Vt||.

In our case, the family Vt satisfy mean curvature flow for t < 0 and t > 0 and the
singularity only happens at the t = 0 slice. The following proposition is formulated
in [10] as a criterion to check the solutions of Brakke flow in this situation.

Proposition 3.1. Suppose the varifold Vt, a < t < b, forms a smooth mean cur-
vature flow in Rn except at t = c ∈ (a, b) and ||Vt|| converges in Radon measure to
||Vc|| as t → c. If limt→c−

d
dt ||Vt||(φ) and limt→c+

d
dt ||Vt||(φ) are both either finite or

−∞ and

(3.2) lim
t→c±

d

dt
||Vt||(φ) ≤ δ(V0, φ)(h(V0))

for any φ ∈ C1
0 (R

n), then Vt forms a solution of the Brakke flow.

Definition 3. If Vt forms a solution of the Brakke flow for −∞ < t < ∞, we
call it an eternal solution for the Brakke flow. Moreover, if the equality in (3.1) is
achieved for all −∞ < t < ∞, we say the solution has no mass loss.

3.2. Completion of the proof. For a smooth mean curvature flow, we have

d

dt
||Vt||(φ) = δ(Vt, φ)(h(Vt)) = −

∫
φ|h(Vt)|2d||Vt||+

∫
Dφ · h(Vt)d||Vt||.
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To apply Proposition 3.1 and prove that the equality in the Brakke flow is achieved,
it suffices to show that

lim
t→0−

−
∫

φ |h(Vt)|2d||Vt||+
∫

Dφ · h(Vt)d||Vt||

= −
∫

φ |h(V0)|2d||V0||+
∫

Dφ · h(V0)d||V0||
(3.3)

and

lim
t→0+

−
∫

φ |h(Vt)|2d||Vt||+
∫

Dφ · h(Vt)d||Vt||

= −
∫

φ |h(V0)|2d||V0||+
∫

Dφ · h(V0)d||V0||.
(3.4)

A direct calculation shows that

|Vt|2 =

n∑
j=1

x2
j ,(3.5)

|h(Vt)|2 =

∑n
j=1 λ

2
j∑n

j=1 λ
2
jx

2
j

,(3.6)

and

(3.7) d||Vt|| =

√√√√ n∑
j=1

λ2
jx

2
j dSt ds,

where dSt is the volume form of the hypersurface

Σt = {(x1, · · · , xn)|
n∑

j=1

λjx
2
j = (−2t)

n∑
j=1

λj}

in Rn.
We can parameterize Σt by rewriting the defining equation as

k∑
j=1

|λj |x2
j =

n∑
j=k+1

|λj |x2
j − 2t

n∑
j=1

λj ,

where λj > 0 for j = 1 · · · k and λj < 0 for j = k + 1, · · · , n.
Suppose X2 = (0, · · · , 0, xk+1, · · · , xn) gives the embedding of the surface

n∑
j=k+1

|λj |x2
j = 1

andX1 = (x1, · · · , xk, 0, · · · , 0) gives the embedding of the surface
∑k

j=1 |λj |x2
j = 1.

Then the hypersurface Σt for t < 0 can be parameterized by

X =

⎛
⎝r2 − 2t

n∑
j=1

λj

⎞
⎠

1
2

X1 + rX2,

where r2 =
∑n

j=k+1 |λj |x2
j .
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It is not hard to check that the volume form of Σt, t < 0, is given by
(3.8)

dSt = rn−k−1(r2 − 2t
n∑

j=1

λj)
k−1
2

(
r2

r2 − 2t
∑n

j=1 λj
|X⊥

1 |2 + |X⊥
2 |2

) 1
2

drdS−
t dS+

t ,

where dS−
t is the volume form of

{(xk+1, · · · , xn)|
n∑

j=k+1

|λj |x2
j = 1} ⊂ R

n−k,

and dS+
t is the volume form of {(x1, · · · , xk)|

∑k
j=1 |λj |x2

j = 1} ⊂ Rk.

From (3.5), (3.6), (3.7) and (3.8), we have∫
φ |h(Vt)|2d||Vt||

=

∫
φ
∑n

j=1 λ
2
j√∑n

j=1 λ
2
jx

2
j

rn−k−1(r2 − 2t

n∑
j=1

λj)
k−1
2

×
(

r2

r2 − 2t
∑n

j=1 λj
|X⊥

1 |2 + |X⊥
2 |2

) 1
2

drdS−
t dS+

t ds.

(3.9)

Because t < 0, and
∑n

j=1 λj > 0, it follows that

rn−k−1(r2 − 2t
n∑

j=1

λj)
k−1
2 < (2r2 − 2t

n∑
j=1

λj)
n−2
2

= (

n∑
j=1

|λj |x2
j )

n−2
2

≤ (

n∑
j=1

λ2
jx

2
j)

n−2
2 ,

(3.10)

and the integrand in (3.9) is bounded by the function

φ

n∑
j=1

λ2
j (

n∑
j=1

λ2
jx

2
j )

n−3
2

(
|X⊥

1 |2 + |X⊥
2 |2

) 1
2 .

Moreover, the function φ has compact support and {λj}nj=1 is fixed, so this is an
integrable function when n ≥ 3. By the dominate convergence theorem, we thus
have

lim
t→0−

−
∫

φ |h(Vt)|2d||Vt|| = −
∫

φ |h(V0)|2d||V0||.

The same estimates also show

lim
t→0−

∫
Dφ · h(Vt)d||Vt|| =

∫
Dφ · h(V0)d||V0||.

We thus prove (3.3). Note that when k = 1 or n−1, the expression above is slightly
different, but the same argument works.
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When t > 0, we rewrite the defining equation as

k∑
j=1

|λj |x2
j + 2t

n∑
j=1

λj =

n∑
j=k+1

|λj |x2
j ,

where λj > 0 for j = 1, · · · , k and λj < 0 for j = k+1, · · · , n. Then the hypersurface
Σt for t > 0 can be parameterized by

X = rX1 +

⎛
⎝r2 + 2t

n∑
j=1

λj

⎞
⎠

1
2

X2,

where r2 =
∑k

j=1 |λj |x2
j .

Similar computations as in the case t < 0 show that the volume form of Σt,
t > 0, is given by
(3.11)

dSt = rk−1(r2 + 2t
n∑

j=1

λj)
n−k−1

2

(
|X⊥

1 |2 + r2

r2 + 2t
∑n

j=1 λj
|X⊥

2 |2
) 1

2

drdS−
t dS+

t .

Therefore, ∫
φ |h(Vt)|2d||Vt||

=

∫
φ
∑n

j=1 λ
2
j√∑n

j=1 λ
2
jx

2
j

rk−1(r2 + 2t
n∑

j=1

λj)
n−k−1

2

×
(
|X⊥

1 |2 + r2

r2 + 2t
∑n

j=1 λj
|X⊥

2 |2
) 1

2

drdS−
t dS+

t ds.

(3.12)

Because t > 0 and
∑n

j=1 λj > 0, we can similarly show that the integrand in

(3.12) is bounded by the function

φ
n∑

j=1

λ2
j (

n∑
j=1

λ2
jx

2
j )

n−3
2

(
|X⊥

1 |2 + |X⊥
2 |2

) 1
2 ,

which is an integrable function if n ≥ 3 and φ has compact support. By the
dominate convergence theorem, we thus have

lim
t→0+

−
∫

φ |h(Vt)|2d||Vt|| = −
∫

φ |h(V0)|2d||V0||.

The same estimates also show

lim
t→0+

∫
Dφ · h(Vt)d||Vt|| =

∫
Dφ · h(V0)d||V0||.

We thus prove (3.4). Again, when k = 1 or n − 1, the expression above needs
slight modification, but the same argument gives the conclusion. Since the two-
dimensional case is already proved in [10], this completes the proof of Theorem
1.1.
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4. Proof of Theorem 1.2

Recall [9, Theorem A] that if

(4.1)

dwj

ds
= λje

iθ(s) w1 · · ·wj−1wj+1 · · ·wn, j = 1, · · · , n,
dθ

ds
= α Im(e−iθ(s)w1 · · ·wn),

then the submanifold L in C
n given by

L =
{(

x1w1(s), · · · , xnwn(s)
)
: s ∈ I, x1, · · · , xn ∈ R,

∑n
j=1 λjx

2
j = C

}
is Lagrangian, with Lagrangian angle θ(s) at (x1w1(s), · · · , xnwn(s)), and its posi-
tion vector F and mean curvature vector H satisfy αF⊥ = CH.

Because there is a lot of freedom to rescale the constants (see [9, Remark 3.2]),
we can assume α = 1 for simplicity. From Theorem F of [9], there is a dense set of
initial data such that the solutions w1(s), · · · , wn(s) and θ(s) of (4.1) are periodic.
Suppose the period is T . Then Vt, which is defined by

Vt = {(x1w1(s), · · · , xnwn(s)) : 0 ≤ s < T,

n∑
j=1

λjx
2
j = 2t, (x1, · · · , xn) ∈ R

n},

is a Lagrangian self-shrinker for t < 0, a Lagrangian self-expander for t > 0, and a
Lagrangian cone for t = 0.

To show this family forms an eternal solution of Brakke flow without mass loss,
as in the proof of Theorem 1.1, it remains to check (3.3) and (3.4).

Denote wj(s) = rj(s)e
i ϕj(s) and ϕ(s) =

∑n
j=1 ϕj(s), where rj(s) = |wj(s)|.

Remember that rj has positive lower and upper bounds. A direct calculation shows
that

|Vt|2 =
n∑

j=1

r2jx
2
j ,(4.2)

|h(Vt)|2 =
( n∑
j=1

λ2
jx

2
j

r2j

)−1
sin2(ϕ− θ),(4.3)

and

(4.4) d||Vt|| =
r21 · · · r2n√∑n

j=1 λ
2
jx

2
j

n∑
j=1

λ2
jx

2
j

r2j
dSt ds,

where dSt is the volume form of the hypersurface

Σt = {(x1, · · · , xn)|
n∑

j=1

λjx
2
j = 2 t}

in Rn. When t < 0, we can parameterize Σt by rewriting the defining equation as

k∑
j=1

|λj |x2
j − 2 t =

n∑
j=k+1

|λj |x2
j .

Suppose X1 = (x1, · · · , xk, 0, · · · , 0) gives the embedding of the surface
∑k

j=1 |λj |x2
j

= 1 and X2 = (0, · · · , 0, xk+1, · · · , xn) gives the embedding of the surface
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∑n
j=k+1 |λj |x2

j = 1. Then the hypersurface Σt for t < 0 can be parameterized
by

X = rX1 + (r2 − 2 t)
1
2X2,

where r2 =
∑k

j=1 |λj |x2
j .

It is not hard to check that the volume form of Σt, t < 0, is given by

(4.5) dSt = rk−1(r2 − 2 t)
n−k−1

2

(
|X⊥

1 |2 + r2

r2 − 2 t
|X⊥

2 |2
) 1

2

drdS−
t dS+

t ,

where dS−
t is the volume form of

{(xk+1, · · · , xn)|
n∑

j=k+1

|λj |x2
j = 1} ⊂ R

n−k

and dS+
t is the volume form of {(x1, · · · , xk)|

∑k
j=1 |λj |x2

j = 1} ⊂ Rk.

From (4.2), (4.3), (4.4) and (4.5), we have∫
φ |h(Vt)|2d||Vt||

=

∫
φ sin2(ϕ− θ)r21 · · · r2n√∑n

j=1 λ
2
jx

2
j

rk−1(r2 − 2t)
n−k−1

2

×
(
|X⊥

1 |2 + r2

r2 − 2t
|X⊥

2 |2
) 1

2

drdS−
t dS+

t ds.

(4.6)

Similar to (3.10), we have

(4.7) rk−1(r2 − 2t)
n−k−1

2 <
( n∑
j=1

|λj |x2
j

)n−2
2 ≤

( n∑
j=1

λ2
jx

2
j

)n−2
2 .

Here for simplicity we use the normalization in [9, Remark 3.2] and assume |λj | ≥ 1
for all j. Because φ is a C1 function with compact support, t < 0, and r1, · · · , rn
are bounded, the integrand in (4.6) is bounded by the function

C(

n∑
j=1

λ2
jx

2
j)

n−3
2

(
|X⊥

1 |2 + |X⊥
2 |2

) 1
2 .

This is an integrable function when n ≥ 3. By the dominate convergence theorem,
we thus have

lim
t→0−

−
∫

φ |h(Vt)|2d||Vt|| = −
∫

φ |h(V0)|2d||V0||.

The same estimates also show

lim
t→0−

∫
Dφ · h(Vt)d||Vt|| =

∫
Dφ · h(V0)d||V0||.

We thus prove (3.3) when n ≥ 3. Again, when k = 1 or n− 1, the expression above
needs slight modification, but the same argument works.

When n = 2, a direct computation gives∫
φ |h(Vt)|2d||Vt|| =

∫
φ sin2(ϕ− θ)r21r

2
2√∑2

j=1 λ
2
jx

2
j

(
1 +

x2
1

|λ2|x2
2

) 1
2

dx1ds,(4.8)
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where |λ1|x2
1 − 2 t = |λ2|x2

2. We proceed as in [10] by dividing it into two cases,

φ(0) = 0 or φ(0) 
= 0. When φ(0) = 0, we have φ(Vt) ≤ C|Vt| ≤ C ′(
∑2

j=1 λ
2
jx

2
j)

1
2 .

With this extra power, the integrand becomes bounded and (3.3) follows from the
dominate convergence theorem.

If φ(0) 
= 0, we have
∫
φ |h(V0)|2d||V0|| = ∞. We can also prove that

lim
t→0−

∫
φ |h(Vt)|2d||Vt|| = ∞

and that both limt→0−
∫
Dφ · h(Vt)d||Vt|| and

∫
Dφ · h(V0)d||V0|| are finite. Hence

(3.3) holds trivially. Now we give the proof for these facts. Given any ε > 0, there
exist a δ > 0 such that |φ| ≥ ε in Bδ(0). Using the normalization in [9, Remark 3.2],
we can assume λ1 = 1 and λ2 = −1 for simplicity. Thus x2

1 − 2t = x2
2 and, because

r1, r2 and sin2(ϕ− θ) all have positive lower bound, from (4.8) and 0 ≤ s ≤ T we
have ∫

φ |h(Vt)|2d||Vt|| ≥ Cε

∫ a

0

1√
2x2

1 − 2t
dx1.(4.9)

Note that |Vt|2 = x2
1r

2
1 + x2

2r
2
2 ≤ δ2 implies x2

1(r
2
1 + r22)− 2tr22 ≤ δ2. Hence when t

is close to 0−, this set contains a uniform interval [0, a] where a depends only on δ.

Since
√
2x2

1 − 2t ≤
√
2|x1|+

√
2
√
−t, (4.9) becomes∫

φ |h(Vt)|2d||Vt|| ≥ C ′ε ln
a+

√
−t√

−t
,(4.10)

which tends to ∞ as t tends to 0−. A direct computation gives∫
Dφ · h(Vt)d||Vt|| ≤

∫ |Dφ| r21r22√
2x2

1 − 2t

√
x2
1

r2l
+

x2
1 − 2t

r22

(
1 +

x2
1

x2
1 − 2t

) 1
2

dx1ds.

The integrand is bounded, and hence we can use the dominate convergence theorem
to show that the limit is finite. This proves (3.3) when n = 2.

When t > 0, similar arguments give (3.4) for n ≥ 3 and n = 2. Thus Theorem
1.2 is proved.

Remark 4.1. Similar to the discussions in §2.2 (and also see [9, Theorem A and
Theorem F]), Vt is a closed, nonsingular, immersed Lagrangian self-expander in Cn

diffeomorphic to Sk−1×Rn−k×S1 when t > 0, and a closed, nonsingular, immersed
Lagrangian self-shrinker in C

n diffeomorphic to R
k ×Sn−k−1×S1 when t < 0, and

V0 is a closed, immersed Lagrangian cone in Cn with link Sk−1×Sn−k−1×S1, with
an isolated singular point at 0. To study the embeddedness of these examples, one
needs to have a better understanding of γj , which is defined in [9, Theorem E].
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