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Abstract

Mean curvature flows of hypersurfaces have been extensively studied and there
are various different approaches and many beautiful results. However, relatively
little is known about mean curvature flows of submanifolds of higher codimen-
sions. This notes starts with some basic materials on submanifold geometry, and
then introduces mean curvature flows in general dimensions and co-dimensions.
The related techniques in the so called “blow-up” analysis are also discussed.
At the end, we present some global existence and convergence results for mean
curvature flows of two-dimensional surfaces in four-dimensional ambient spaces.
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1. Basic materials

1.1 Connections, curvature, and the Laplacian

A Riemannian manifold is a differentiable manifold equipped with a smooth
inner product on the tangent bundle. Suppose M is a Riemannian manifold of
dimensional N with a Riemannian metric (-, -).

There is a unique Levi-Civita connection V on the tangent bundle of M that
is compatible with the differentiable structure, i.e.

VxY - VyX =[X,Y]=XY -YX
and with the metric, i.e.

XY, Z)=(VxY,Z)+{(Y,VxZ).
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We can extend this connection to the sections of any tensor bundles by
requiring the Leibnitz rule and the compatibility with contractions of tensors.

Suppose X, Y, Z W, U, and V are tangent vector fields on M. The Rieman-
nian curvature tensor is defined to be

R(X,Y)Z = -VxVyZ+VyVxZ+Vxy]Z.
R(X,Y,Z W)= (R(X,Y)Z,W) has the following symmetries:
R(X,Y,Z,W)=—R(Y,X,Z,W) and R(X,Y,Z,W) = R(Z,W,X,Y).
The first Bianchi identity:
R(X,Y,Z, W)+ R(X,Z,W,Y)+ R(X,W,Y, Z) = 0.
The second Bianchi identity:
(VxR)(U VY, Z)+ (VyR)(U,V,Z,X)+ (VzR)(U,V,X,Y) = 0.

Given a smooth function f on M, the gradient of f, Vf, is a tangent vector
field that satisfies (V f, X) = df(X) for any X. The Hessian of f, denoted by
V2f, is a symmetric (0,2)-tensor defined by

Viyf = XY [ = (VxY)f.
For a (k,1) tensor T, we define a (k,l + 2) tensor V2T by

ViyT =VxVyT —Vy, yT.

This is no longer symmetric in X and Y and the commutator is the Riemannian
curvature tensor.

New tensors can be constructed by contracting old ones. We can pick any or-
thonormal basis {e 4 }2Y_, of the tangent bundle for contractions. The contracted
tensor will be independent of the choice of such e4. Notice that the summa-
tion convention, i.e. repeated indexes are summed, is followed throughout the
article. From the Riemannian curvature tensor, we define the Ricci curvature
Ric(X,Y) = R(X,ea,Y,e4) and the scalar curvature R = Ric(ea,ea).

The Laplacian of f is defined to be the trace of V2f, i.e.

Af=tr(V2f) = V2, o, f = (Ve VF.ea) = (Veadf)(ea).
The rough Laplacian of T is then

_ 2 2
AT =trvV°T =V, . T
We can always use normal coordinates to simplify the expression of a ten-
sor at a given point p. Given any orthonormal basis of T, M, there exists a
coordinate {y1} near p and such that e4 = a%‘ and V.,ep = 0 at the point p.



1.2 Immersed submanifolds and the second fundamental
forms

Given an immersion F' : 3 — M of an n-dimensional smooth manifold ¥ into
M. Suppose {y?}Y_, is a local coordinate system on M with metric tensor
Aap = (6%, 8%). Because F' is an immersion, the tangent space of X at p,
T,% can be identified with F,T,%, the vector subspace of Tr )M spanned by

[ (2} We denote 4 =y o F, then Fu(,2) = 222 10 The metri

A 4p induces a Riemannian metric g;; on 3 defined by

0 0 OFA OFB
Ozt ) (3x1 2 ozt Ogi AP
The orthogonal complement of F.T,% in T, M, denoted by N,¥ is called
the normal space of ¥ in M at the point p. Given a vector V' € Tp,) M, we
can define the projections of V onto F,T,% and N,X, called the tangential
component V' T and the normal component V-, respectively. They are

& . i 0
9
o V07 F(5 ) € BT,

gij = (Fi(

V= <V7F*(

and
V=V -VTenN,.
The Levi-Civita connection VM on M induces a connection on ¥ by
VY = (VEY)T,

for X and Y tangent to 3. It is not hard to check that V* is the Levi-Civita
connection of the induced metric g;; on X.

Given a normal vector field V along ¥. The induced connection on the
normal bundle, the normal connection, is defined to be

ViV = (VYV)*
The curvature of the normal bundle is
RY(X,Y)V = —VxVyV + Vy ViV + Vix 3 V.
The second fundamental form is defined to be

I(X,Y) = (VYY)

as a section of the tensor bundle T*X ® T*> ® NX. Choose orthonormal bases
{e;}r for T,¥ and {eq}2_, 11 for N,¥, the components of the second funda-
mental form are

haij = <V£Z[6j7€a> = <II(€Z'7€]'),€Q>.

The mean curvature vector is the trace of the second fundamental form,



H=1(e;,e;) = gif(v;{(%)m(%))%
Suppose the ambient space M is R and let
F=(Ftz', -z, FN(t, - 2™)
be the position vector of the immersion. In this case, we have
AF = A®(FY,...  FN) = (A®F',... A*FN)=H,

where A* is the Laplace operator with respect to the induced metric gij on .
Denote the Riemannian curvature tensor of g;; by R*. We recall the Gauss
equation

(R*(X,Y)Z,W) = (RM(X,Y) Z, W)+(IL(X, Z),11(Y, W))— (II(X, W), 11(Y, Z)),
(1.1)

and the Codazzi equation
(VxID(Y, Z) — (VyID(X, Z) = —(RM(X,Y)Z)". (1.2)
Here V on II is the connection on the tensor bundle 7Y ® T*YX ® NX, thus
(VxIN(Y, Z) = VII(Y, Z) - 1(VXY, Z) - 1I(Y, V%, Z). (1.3)

1.3 First variation formula

Recall the volume of 3 with respect to the metric g is

Vol(2) = / Vdet gijdzt A - A da”
b

Take a normal vector field V' along ¥ and consider a family of immersion F' :
¥ x [0,€) = M such that 2E(,_y = V. Denote &, = F(%, s).
To consider the change of volume

d d n
£|S:0VOI(ES) = £‘S:0/2 \/detgij(s)dxl A ANdx™,

we compute
/det g;; = 1(det )—%( --)(det )
lS gl] - 2 92] ngZ] g’bj )

d M b
4579 = "2V VE ey Bl )

and

Therefore,

d
$|S:0VOZ(ZS) =— /Z<V, H)\/det g;;dx* A -+ Adx™

and the mean curvature vector is formally the gradient of the negative of the
volume functional on the space of submanifolds.



2. Mean curvature flow

2.1 The equation
Let Fy : ¥ — M be a smooth immersion. Consider F : ¥ x [0,7) — M that

satisfies
oF _
S =H
F(,O) = FO()

F is called the mean curvature flow of Fp(2) (in the normal direction). By the
first variation formula, we have

d
% detgij:—|H|2\/detgij.

Denote F(-,t) by F, : ¥ — M. Because detg;; > 0 at ¢t = 0, F; remains an
immersion as long as |H|? is bounded.

It is not hard to established the short time existence of the flow in the case
of ¥ is compact. Notice that the mean curvature flow is not strictly parabolic,
suppose ¢; , t € [0,T) is a family of diffeomorphism of 3. Consider F; =
F,0¢, : ¥ — M, the image of F} is the same as that of F,. But % has both
the tangential and normal components. Therefore the general form of mean

curvature flow is
oF

(E)L =H.

9FVL — [, we can

On the other hand, given a general mean curvature flow (5
always find a reparametrization ¢, so that F;, = F; o ¢, satisfies %—f =H.

Suppose M = R"™*! and X is the the graph of a function f(z!,---,z")

on {z"*! = 0}. We can represent the hypersurface in the parametric form
F(xt,- o™ t) = (zt, - 2™, f(zt,--- 2™ t)). Denote by v the upward unit
normal ~=Y£1_ on the graph, by the mean curvature flow equation (Q—f)l- =

VIHIVF?

H, we derive

OF
<§,1/>1/7H.

The mean curvature flow of the graph of f becomes a quasi-linear parabolic
equation for f:

L of _ vf
Jirnpor Ree

This equation was studied extensively in [2] and [3].
In general, suppose F : ¥ x [0,7) — RN and F(x!,--- 2", t) is a mean
ij _O’F
9" 5270w

div( ).

curvature flow. As H = ( )L, the mean curvature flow equation is

OF . O°F

T (g¥ 1
ot (g 3zi8xj) ’




Given any vector V € RV, we compute

vi=vovT=v - v, 2 moE

0 L pOF” OFC 0
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Therefore, the mean curvature flow can be expressed as

OFF . 92F4 " _oF? klé)FA)
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2.2 Finite time singularity

Suppose Fy is the standard imbedding of the unit sphere S™ in RY and F(z,t) =
@(t)Fo(x) is a mean curvature flow in the normal direction. As

oF _
ot

and the mean curvature vector of F(x,t) is

M(_Fo(x))a

the mean curvature flow is reduced to the ordinary differential equation

¢t = -

¢ (t)Fo(x)

H(x,t) =

We solve ¢(t) = \/r5 — 2nt where rq is the radius of F(z,0). Therefore,

F(z,t) = \/r2 — 2ntFy().

F(x,t) shrinks to a point at ¢ = % This is the limiting behavior of the mean
curvature flow of any compact convex hypersurface in RY, see [4] and [5].
Indeed, it is very easy to show the mean curvature flow of any compact
submanifolds in R must develop finite time singularity. Let F : ¥ x [0,7) —
R” be such a flow for a compact n-dimensional ¥. By the formula of the mean
curvature vector, we have %F = AF, where A; is the Laplace operator with

respect to the induced metric on F3(3). We compute

d
a|F|2 = A¢|F|? — 2n. (2.1)

Therefore |F|? 4 2nt satisfies the heat equation:

%(|F|2 + 2nt) = Ay(|F|? + 2nt). (2.2)

Suppose Fy(X) is contained in a sphere SN ~1(rq) of radius ry centered at the
origin and thus |F|?> < rZ at ¢t = 0. It follows from the maximum principle
that |F|? 4+ 2nt < r2 must be preserved as long as the flow exists smoothly. In

2
particular, the flow must develop singularity before the time ¢ = ;—%



3. Blow-up analysis

3.1 Backward heat kernel and monotonicity formula

Fix yo € RY and ty € R and consider the backward heat kernel at (yo, to),

_ 1 ly — wol?
Pyosto (Y t) = Wexp (—4(250_0”) (3.1

defined on RY x (—o0, ).
Suppose F : ¥ x [0,t9) — RY is a mean curvature flow, then Huisken’s
monotonicity formula [5] says

it J, ot == |
dt 5, Pyo,to Gt = s, Pyo,to

Hence lim;_,, fEt Pyo.todfie €xists.

For a general ambient manifold M of dimensional N, we fix an isometric
embedding i : M — R¥*™  Given an immersion F : ¥ — M, we consider
F = jio F as an immersed submanifold in RV*™. Denote by H the mean
curvature vector of ¥ with respect to M, i.e.

2

FJ_

—— + H
2o —1)

H=(VMe)t eTMm

for an orthonormal basis {e;} of TY. Denote by H the mean curvature vector
of ¥ with respect to RV i.e.

H=(VE""e)t e TRN*™,

Therefore, -
H—H=1"(e;e;) = —E, (3.3)
where 1" is the second fundamental form of M in RN*™. |E| is bounded if M
has bounded geometry. The equation of the mean curvature flow becomes
OF

— =H+E. 4
T + (3-4)

The following monotonicity formula for a general ambient manifold was derived
by White in [I§].

Proposition 3.1 For the mean curvature flow on [0,ty), if we isomet-
rically embed M into RNT™ and take the backward heat kernel Pyo,to JOT Yo €
RN*+™ then

1 2

_ E
H+ — Ft4 = d .
+ 2(t0 _ t) + D) Pyo,to Glbt (3 5)

d
dt~/2t pyo’todyu’t SC— s,

for some constant C. Here F- is the component of the position vector F €
RN*™ in the normal space of ¥y in RN+™,




Definition 3.1 The density at (yo,to) is defined to be O(yo, to) = limy_yy, fEf, Puyo,to Albt-

We will use the following pointwise formula which can be found in [14]

i LA s S
dtpyo’to - Pyo,to — Pyo,to 4(t0 — t)2 to—t 2(t0 — t)

(3.6)

The minus sign in front of the Laplacian in equation (3.6 indicates that
Pyo,to Satisfies the backward heat equation.
3.2 Synopsis of singularities

Definition 3.2 Given a mean curvature flow F' : ¥ x [0,ty) — M, the image
F of the map
Fx1l: Y¥x|[0,t)) - MxR
(z,1) = (F(x,t),t)

i M xR is called the space-time track of the flow. If M is isometrically embed-
ded into RNT™  we can take the image in RNT™ x R as the space-time track.

Definition 3.3 The parabolic dilation of scale A > 0 at (yo,to) is given by

Dy: RNtm xR — RN*™ xR
(ya t) = ()‘(y - yO)» )‘z(t - tO))
t€0,tg) = s=N(t—ty) € [-A%,0)
Set X2 = Da(X¢ — o) = /\(Zto-kfz —yo) fort =to+ 5. f M = RY the mean

curvature flow equation is preserved by Dy. That is, if F is the spacetime track
of a mean curvature flow, so is DyF.

e
/LZQL\ Ll e

| K b

Proposition 3.2 fEr Pyo.to @it s tnvariant under the parabolic dilation. That

18 to say,
/ Pyostodite = / po,0diy
=, =2

where 11 is the volume form of the X2.

1




The mean curvature flow extends smoothly to tg+0 if the second fundamental
form is bounded supy, |II] < C as t — to. Therefore if a singularity is forming
at to, then supy, |II] — oo as t — to.

Definition 3.4 (type I singularity) A singularity t = to is called a type T
singularity if there is a C' > 0 such that

C
m? < ——
Sgplﬂ P—

for all t < tg.

The shrinking sphere F(x,t) = +/r3 — 2t Fy(z) is a type I singularity at
to = %. For any ¢ < t¢, the radius of the sphere is r = \/r2 — 2nt and thus the
principal curvature k satisfies

e 11 1
r2  r3—2nt 2n(t0 —t)

Consider the parabolic dilation of the spacetime track of a type I singularity,
we calculate

1 -1 -1
% (2)) = F|H|2(2,f) = ?(to — )%, < ?C , for s € [-\?t,0).

Hence for any fixed s, the second fundamental form |II|?(£?) is bounded. By
Arzela-Ascoli theorem, on any compact subset of space time, there exists smoothly
convergent subsequence of {D)\F} as A — co. We thus have:

Proposition 3.3 If there is a type I singularity at t = tg, there exists a subse-
quence {\;} such that Dy, F — Foo, the spacetime track of a smooth flow that
exists on (—00,0).

After the parabolic dilation, with ¢ = ¢o+ 37, the monotonicity formula (3.5

becomes
d C
— duy < — —
ds Ang,O Hs = 2 /Ei‘

Consider the sy < 0 slice and integrate both sides from sy — 7 to sg for 7 > 0
and A large:

-1 _
H} + —(F) "+ —

2
HA —(FM)* po,o dpdds

2\
sz - po,o il + po.odpd,
)\ A ZA
2 Soor
Take A — co. Because [y, poodu, = f Pyosto dity Where t = to + 3%,
s0
lim £0.,0 d,ug‘o = tlim / Pyo.to Az = hm £0,0 dui‘ofT.
—to Et

A—o0 [ya A—oo Jya
s0 s

o—T



Therefore,

2

1 - E
H?—%(Fﬁ)lﬂLﬁ po,o dpyds = 0

S0
lim / /
A—o0 so—T J X2
Therefore if ¢ is a type I singularity, a subsequence Dy, F — Fo, smoothly and
H = £ F+ on F for s € (sg —7,50). Take so — 0 and 7 — oo, we obtain
Huisken’s theorem [5]:

Theorem 3.1 If the singularity is of type I, then there exists a subsequence \;
such that Dy, F — Foo smoothly and H = ;—SFL, —00 <5< 0 on Fy.

Let F be a solution of the mean curvature flow that satisfies H(x,s) =
LF+(z,s) on —0o < s < 0 then F must be of the form F(z,s) = /—=sF(z).
Even if the singularity is not of type I (so the scaled |II| is not necessarily
bounded), we still get weak solution with H = 5-F~* (see [7]). A theorem of
Huisken [5] shows any compact smooth convex hypersurface in RY satisfying
H = —F" is the unit sphere.

4. Applications to deformations of symplectomor-
phisms of Riemann surfaces

4.1 Introduction

We apply the mean curvature flow to obtain a result of the deformation retract
of symplectomorphism groups of Riemann surfaces.

Theorem 4.1 Let ' and X2 be two compact closed Riemann surfaces with
metrics of the same constant curvature c. Let wy and wy be the volume forms of
Y1 and X2, respectively. Consider a map f : £* — X2 that satisfies f*wy = w1,
i.e. f is an area-preserving map or a symplectomorphism. Denote by X; the
mean curvature flow of the graph of f in M = X! x 2. We have

1. 34 exists smoothly for all t > 0 and converges smoothly to Yo, as t — oo.

2. Each X, is the graph of a symplectomorphism f; : ¥' — %2 and f, con-
verges smoothly to a symplectomorphism foo : ' — X2 as t — 0o.

Moreover,
an isometry ifc>0
foo 18 a linear map ifc=0
a harmonic diffeormophism if ¢ <0

The existence of such minimal symplectic maps in the ¢ < 0 case was proved
by Schoen in [I0] (see also [§]). This theorem was proved in [I5] and [16]. A
different proof in the case ¢ < 0 was proved by Smoczyk [13] assuming an extra
angle condition.

10



Both w; and ws can be extended to parallel forms on M. Denote wy — wo
by w’' and w; + ws by w”, which are parallel forms on M as well. That X,
is the graph of a symplectomorphism f; can be characterized by *x,w’ = 0,
*n,w” > 0 where *y, is the Hodge star operator on ;. To prove that f;
being a symplectomorphism is preserved, it suffices to show both conditions are
preserved along the mean curvature flow. In the following, we compute the
evolution equations of these quantities.

4.2 Derivation of evolution equations

In this section, we assume M is a four-dimensional Riemannian manifold and
Y is a closed Riemann surface embedded in M.

Lemma 4.1 Let w be a parallel 2-form on M and n = xyw, then
AEn = —p|I* + w(leH, es) + w(eq, VéH)
— wW((RM(e1, er)er)t, ea) — wler, (RM (eg, ex)er)t) + 2w(Il(er, e1), I(ey, e2))

where {e;} = {e1,e2} € T,X and {eq} = {e3,e4} € N,X are oriented orthonor-
mal bases and Il(e;, e;) = (VY e;) L is the second fundamental form of 3.

Proof. The right hand side is independent of the choice of frames and thus a
tensor (it does depend on the orientation though). At any p € 3, we can choose
an orthonormal frame {ej, e2} such that Vezi e; = 0 at p. It is not hard to check
that A¥n = *A”w where the A* on the right hand side is the rough-Laplacian
on two forms. Therefore A¥7 is equal to

(Ve Vew)(er,e2) =ex ((VZ w)(er, e2)) — (Ve,w)(Ve,er, e2) — (Ve,w)(er, Ve, e2)
=ep (er(wler, e2)) —w(VE e1,e2) —wler, VZ e2)).

Since w is parallel on M, we derive

AZp =ey, (w(Véwel, e2) + w(eq, Vé\feg) — w(kael, es) —wleq, kaeg))

k

=ei, (w(II(eg, 1), €2) + w(er, (ex, e2))).

Applying VMw = 0 again, the last expression can be decomposed into

w(Vé\fII(ek, e1),e2) +w((eg,e1), Vﬁf@) + w(Vé\fel, I(ex, e2)) + wles, Vé\fﬂ(ek, e2))
:w((Vé\;[II(ek, 61))T, e2) + w(Vi‘kII(ek, e1),€e2)
+w(er, (VETI(ex, €2)) 1) + wler, Vi, I(ex, €2)) + 2w(Il(ex, €1), (e, €2)).

We compute

2

w((Vé\fII(ek, 61))T, eg) = (V%Il(ek, e1),e1)n = — Z [II(e, 61)|2’I7
k=1

11



and likewise for the other term w(ey, (V¥1I(ex, e2)) ). On the other hand,

w(ijH(ek, e1),e2) = w((Ve D) (eg, e1),e2) = w((Ve, IT) (e, ex), e2)

where the formula for the connection on II (1.3)) is used. Applying the Codazzi
equation (1.2)), we see this is equal to

W((Ve, I (eg, ex), e2)—w((RM (er, e1)er)t, e2) = w(Vj‘lH, ea)—w((RM (er, e1)er) ™, e2).

The formula is proved.
O

We compute the evolution equation of *s5,w along a mean curvature flow.

Proposition 4.1 Let X; be mean curvature flow of a closed embedded Riemann
surface in M. Let w be a parallel 2-form on M and n = xx,w, then
d
(% — ARy = |I*n — 2w(II(eg, e1), I(ex, e2))
+w((RM(ex, ex)ex) ™, e2) +w(er, (R (ea, ex)ex) ™)

Proof. 'We parametrize ¥; by F : ¥ x [0,T) — M with %—f = H and fix a local

1 .2 : _ 1 o o
,x° on X. Write n = detg,;jw(F*(W)’F*(W))

oriented coordinate system x

and compute

d

%77
Combine this with the formula of A¥7 in Lemma 4.1, we obtain the desired
formula. a

= w((Ve, H)be2) = w((Ve, H) T en).

Definition 4.1 Given a Riemannian manifold M, we say a two-form w is of
Kdhler type on M if w(X,Y) = (JX,Y) for a parallel complex structure J(J* =
—1I) that is compatible with the metric, i.e (JX,JY) = (X,Y).

Both w’ and w” in the previous section are of Kihler type on M = X1 x 32

Lemma 4.2 If w is of Kahler type on M and J is the corresponding complex
structure, then

W((RM(e1,ex)er) ™, e2) + wler, (RM (eg, ex)er)t) = (1 — n?)Ric™ (Jey, e2).
Proof. Recall the following identity

4
RicM(JX,Y) 52 (X,Y,en,Jen)

for any orthonormal frame {€A}fl4:1 of T,M. Denote w(ea,ep) = wap and
RM(eq,ep,ec,ep) = Rapcp. When i # 1, we can choose an oriented or-
thonormal frame {eq, ez, e3,e4} with e1,es € T,3 and e3, eq4 € NpX, such that

W12 = W34 = 1,W13 = —W24 = \/ 1-— ’I’}27 and W23 = W14 = 0. (41)

12



We compute

. 1
RlCM(Jel,eg) = iRM(el,eg,eA,JeA) = Z wapR124B.
A<B

Plug in (4.1)), we obtain
RicM (Je1,e2) = n(Ri212 + Riss) + /1 — n2(Ri213 — Ri2o4).

The J invariance of the curvature operator implies RM (ey, ea, €1, e2) = RM(e1, €2, Jey, Jea).
Plug in (4.1) again, we obtain

(1 —n?)(Ri212 + Riaza) = 0/ 1 — n2(Ri213 — Ri224).

Therefore,
1

W

RicM(Jel7 €2) = (Ri213 — R1224).

On the other hand,

w((RM(e1,er)ex)t, e2) +wler, (RM (e, ex)er) ™) = Rigrawaz + Rarkawis.

The lemma is proved by recalling (4.1)) again. o
The terms that involve the second fundamental form in Prop 4.1 can also be

simplified using (4.1))
72w(ha1kea, hﬁgkeﬁ) = *2ho¢1khﬁ2kw(eaa eﬂ)
= (—2h31kh42k + 2h41kh32k)w(637 64)
= (—2h31kh42k + 2h41kh32k)77-

We have thus proved the following theorem.

Theorem 4.2 Suppose w is of Kdihler type on M and J is the corresponding
complex structure, then

d .
(@ — APy = ((haik — haow)? + (haik + haae)®)n + (1 — n?)Ric™ (Jeq, e2)

In particular, if the Riemannian metric g on M is Einstein with Ric™ = cg,

d
(% — APy = ((haik — haow)? + (haik + haa)®)n + en(1 — n?). (4.2)

4.3 Long time existence

We apply Theorem [4.2/to M = 3! x £2 on which both «’ and w” are of Kahler
type. The maximum principle implies #x,w’ = 0 is preserved along the mean
curvature flow and thus ¥, remains Lagrangian. We remark that in [I3] Smoczyk

13



proved that being Lagrangian is preserved by the mean curvature flow in any
Kahler-Einstein manifold.

Set n = #x,w” and apply the maximum principle, we see that n > 0 is
preserved, or X; remains the graph of a symplectomorphism. Compare 7 with
the solution of the ordinary differential equation

d _ _p2
%f*cf(l f)7

we deduce
B> o h 0 is defined by————— = mj 43
n(x,)_W,werea> is define yﬁ—nxuonn. (4.3)

Let J' be the parallel complex structure associated with w’ and {eq, e2} be an
oriented orthonormal basis on ;. Take e3 = J'(e1),eq = J'(e2), then {e3,e4}
is an orthonormal basis for the normal space N¥;. The second fundamental has
the following symmetries

(KX, Y),J'Z) = I(X,J'Y),Z) = I(J'X,Y), Z).

These symmetries imply

4
HP < Sl (4.4)
The evolution equation ) becomes
d
(7 =A% )0 =n[ = [H?) + en(1 = 7?). (4.5)

We fix an isometric embedding i : M — RY. Let F be the mean curvature flow
of ¥ in M and denote i o F' by F. We use the notation in §3.1.

For 3y € RY, suppose (yo,t0) is a singularity of the mean curvature. We
consider the backward heat kernel p,, ¢+, defined in §3.1.

Denote @ = 1 —n = and P = —n(2]l1|%> — |H|?) — en(1 — n?). Recalling
equations and 7 we derive

d o
G | @omndi = | (A Qe Pyt~ [ @y - (7 + By

PP FLH | FRE
to—1)2  to—t  2(to—t

+ Q(*AZt Pyo,to — py07t0(4( ))d,ut
3t

where we also use £du, = —|H|*dp, = —H - (H + E)dp.
Integrating by parts, collecting terms and completing squares, we obtain

d
dt/& QPyo,to dpt
P2 FL.g FL.E

=/ (P - H?+H-E))d
/Ef,( Pyo,to pro7to(4(t0_t)2+ to—t +2(t0—t)+‘ |*+ )) He

oL

_ F
= [ (Powts — Qo1 + 5
Py

m +E|* - |E|2))d,ut-
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Recall ij 0 <@ <1, and that lim_, fEf Pyo.todiie €xists, we arrive at

d

2
G | 0= < 0= 3 [ a0y i

for some constant C' > 0. Moreover, for ¢ < co, we know that n > § > 0, thus

d
@ ) (L =m)pyotodpr < C = Cs . P pyo,todpe ¥t € [0,20) (4.6)
t t

From here we deduce that tlirgl S5, (1 = 0)pyo o dpe exists.
—to t :

Consider the parabolic dilation at (yo,to):

D, : RN x [O,to) — RN x [—Azto,O)
(yvt) = ()‘(y_yo)?)‘z(t_tO)) ’

Notice that 7 is invariant under Dy. The inequality (4.6) on ¥ becomes

d c
— 1— d’\<——C/ 11|% po odp?.
ds/zg( 7)P0,0 e < 35— Cs zz.‘ I“po.odis

Fix sg < 0,7 > 0, for X large, we integrate both sides over the interval [sg —T, s¢]
and obtain

S0 C/
/ /p 1% po o dpsg ds < vl C”/A (1 —n)po,odpy,—, — C"/E (1 = m)poodis3,-
So—T A

A
So—T 50

Since the limit lim;_,, fEf (1 — 1) pyo,todps exists, argue as before we can pick a
sequence )\; — oo such that ¥ — X2 for all s € (—00,0). In fact, we have

S0
[ mPaadids < ¢
so—T J X5
o(

where C(i) — 0 as i — oco. We first choose 7; — 0 such that T—Z) — 0, and then
choose s; € [sg — T4, So] so that

i
/ M2 po0diy < S 0
i ! Ti
Suppose E;" is given by F‘SA’ : ¥ —= RV, thus
1 [Fi|?

pO,O(F;:-i) — m exp ( 4(—81'))'

Then for any R > 0,
27 X\ 27 A R? 2 i
poo[I|"dps, = po,o[11|*dpg, > Cexp(——-) I dps,
s 22N BRO) 2 72N BR(0) '
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Hence, on any compact set K C RY,
lim TI2dp) =0

We can take a coordinate neighborhood €2 of 71 (y) € X! where m; : M — X!
is the projection onto the first factor. E? is the graph of @; : \;Q — \;2s. Since
1 is bounded and [ », [II[2dpdi — 0,

|Dii;| < C and / |D?@;|* — 0
Q
Therefore @; — oo in C*(\W2, @ is a linear map, and

lim [ po,odp)t = /Poyodﬂg =1

1—00 noi
1

We thus found a sequence such that limy, s, [ pyo,¢,dpe exists and equals to 1.
By White’s regularity theorem [I9], the second fundamental form |II| is bounded
ast — to.

4.4 Smooth convergence as t — >

By the general convergence theorem of Simon [I1], it suffices to have an uniform
bound on supy;, |II|? as ¢ — co.
We first prove the following differential inequality.

d H|? H|?
d[HE, < c/ HE
dt Js, n s, N

Lemma 4.3

Proof. Tt is not hard to derive:

d
(7~ DIHP = 2VHP +23 (37 Hahai)? + (2 —0°)| H

i,j o«
where H = H,e,, for an orthonormal basis e, of the normal space of ¥;. Com-
bining this equation with and applying the inequalities Z” (>, Hahaij)? <
[11|?|H|? and |V|H|| < |VH]|, the inequality follows. O
The following proposition, which follows from a standard point-picking lemma,
will be useful in the proof too.

Proposition 4.2 Suppose supy;, |11)? is not bounded ast — oo, then there exists
a blow-up flow Soe C R* x R defined on the whole (—o00,00) with uniformly

bounded second fundamental form and |f]] (0,0) = 1. Indeed, each t slice of Seo
is a graph of a symplectomorphism from C to C.
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4.5 ¢ > 0 case

We prove by contradiction and look at the blow-up flow Seo . ) impliesn =1
on Sso. The t = 0 slice of S is a graph of a symplectomorphism from C to C
given by

(z,y) = (f(=,9),9(x,v))

and satisfies

2
feg9y — fyg: =1 and =1
NN RN R R

We derive that h = f++/—1g must be holomorphic with |%| =1,z=a+v-1y.
Thus h is of the form h = eV~ + C where 6 and C are constants. The graph
of h has zero second fundamental form and this contradicts with |1I|(0,0) = 1.

4.6 c¢=0 case

In this case by (4.3), n has a positive lower bound. We have

H2
/ H Py, < / A 4 <o [ 1m1Pdp (4.7)
5, s, N s,

for some constant C.

Since fooo fg |H |?dudt < oo, there exists a subsequence t; such that fz |H |2dps, —

0 and thus fz |H‘ dut, — 0 as well. Because fz ‘ dy; is non-increasing, this

implies fz d,ut — 0 for the continuous parameter t as it approaches co. To-
gether with l.b this implies th |H|?dy; — 0 as t — oo. By the Gauss-Bonnet
theorem, [i, [II[*du, = [y, [H|*dp — 0. The € regularity theorem in [6] (see
also [1]) implies supg, [I1]? is uniformly bounded.

4.7 ¢ <0 case

We may assume ¢ = —1. In this case we have

|H|?

d |H|?
@ dpy < — d
dt )y, n M /z n

H 2
/ ] dps < Ce™*
s N

IN

or

for some constant C.
Since < 1, we have

|H|?dp; < Ce™
PP

17



Suppose the second fundamental form is unbounded. Since fEf |H|2dy; <

Ce™t, the integral of |H|? on each time-slice of the blow-up flow S, vanishes.
Therefore, we obtain a minimal area-preserving map. A result of Ni [9] shows
this is a linear diffeomorphism. This contradicts to the fact that |II/(0,0) = 1
again.
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