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Abstract

We review some recent results on the mean curvature flows of La-

grangian submanifolds from the perspective of geometric partial dif-

ferential equations. These include global existence and convergence

results, characterizations of first-time singularities, and constructions

of self-similar solutions.

1 Introduction

1.1 The mean curvature flow

A distinguished normal vector field called the mean curvature vector field ex-
ists on any submanifold of a Riemannian manifold. It is characterized as the
unique direction along which the area or the volume the submanifold would
be decreased most effectively. A submanifold is minimal if the mean curva-
ture vector vanishes at each point. The mean curvature flow is an evolution
process that moves a submanifold by its mean curvature vector field. This
turns out to be a nonlinear parabolic system of partial differential equations
for the position functions of the submanifold. Brakke [BR] pioneered the
formulation of weak solutions of the mean curvature flow in the setting of
geometric measure theory in the seventies. In the eighties, Huisken and his

∗The author is partially supported by National Science Foundation Grant DMS 0605115

and an Alfred P. Sloan Research Fellowship.

1



coauthors [HU1] took up the geometric PDE approach to study the mean
curvature flow in Riemannian manifolds. There were also level set formu-
lations of viscosity solutions for hypersurfaces by Chen-Giga-Goto [CGG]
and independently by Evans-Spruck [ES1] later. Soon the mean curvature
flow joined the rank of most studied geometric evolution equations like the
Ricci flow and the harmonic map heat flows. Indeed, in many aspects, its
development paralleled that of the Ricci flow.

Suppose M is a m dimensional Riemannian manifold with a Riemannian
metric 〈·, ·〉. Let Σ be another n dimensional smooth manifold with n < m.
An immersion of Σ in M is given by a mapping F : Σ → M so that the
differential dF has full rank at each point of Σ. In terms of local coordinates
x1 · · ·xn on Σ, this is equivalent to the matrix gij = 〈 ∂F

∂xi ,
∂F
∂xj 〉 being positive

definite. Indeed, gij defines a Riemannian metric which makes the image
F (Σ) a Riemannian submanifold. The second fundamental form of F (Σ)
is given by the tensor A = (∇ ∂F

∂xi

∂F
∂xj )

⊥ where ∇ denotes the Levi-Civita

connection of M and ⊥ denotes the normal part of a vector in the bundle
TM |F (Σ). The mean curvature vector H is then the trace of the second
fundamental form, i.e.

H = gij(∇ ∂F

∂xi

∂F

∂xj
)⊥

where gij is the inverse of gij.
We recall the volume of F (Σ) is calculated by

V ol(F (Σ)) =

∫

Σ

√

det gijdx
1 ∧ · · · ∧ dxn.

Suppose F : Σ × [0, ǫ) → M is a family of immersion so the variation
field ∂F

∂s
is a normal vector field along F (Σ, s). The variation of the volume

is then given by

d

ds
V ol(F (Σ, s)) = −

∫

Σ

〈∂F
∂s

,H〉
√

det gijdx
1 ∧ · · · ∧ dxn.

The mean curvature flow deforms a submanifold in the direction of the
mean curvature vector field H . Namely, a family of immersion F : Σ ×
[0, T ) →M is said to form a mean curvature flow if

(
∂F

∂t
(x, t))⊥ = H(F (x, t)).
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The flow is a nonlinear weakly parabolic system for F and is invariant
under reparametrization of Σ. Indeed, by coupling with a diffeomorphism of
Σ, the flow can be made into a normal deformation, i.e. ∂F

∂t
(x, t) is always

in the normal direction. One can establish the short-time existence for any
smooth compact initial data. For a normal deformation, a simple calculation
shows

d

dt

√

det gij(F (x, t)) = −|H(F (x, t))|2
√

det gij(F (x, t)),

from which it follows that being a immersion is preserved by the mean cur-
vature flow. Integrating this equality gives

d

dt
V ol(F (Σ, t)) = −

∫

Σ

|H(F (x, t))|2
√

det gij(F (x, t))dx
1 ∧ · · · ∧ dxn. (1.1)

In the rest of the paper, when there is no confusion, we will not differenti-
ate between an immersed submanifold Σ and its image F (Σ). TΣ will denote
the tangent bundle and NΣ will denote the normal bundle of Σ. We shall
denote the image F (Σ, t) of a mean curvature flow by Σt and the volume
form

√

det gij(F (x, t))dx
1 ∧ · · · ∧ dxn by dvΣt

.

1.2 Co-dimension one vs. higher co-dimension

The Lagrangian mean curvature flow is a special case of the mean curvature
flow in general. They are mostly higher co-dimensional in the sense that
m > n + 1 where m is the dimension of the ambient manifold and n is the
dimension of the evolving submanifold. There are abundant results of hyper-
surface (i.e. m = n+1) mean curvatures flows, while relatively little is known
in the higher co-dimensional case. Indeed, many techniques and results for
hypersurface flows do not generalize to higher co-dimensions. The contrast
between the hypersurface and higher co-dimensional can be seen from two
points. Firstly, the hypersurface case corresponds to a scalar equation and
the maximum principle holds in the following sense. Two embedded hyper-
surfaces evolving by the mean curvature flow will avoid each other and an
embedded hypersurface remains embedded along the mean curvature flow.
These are no longer true for higher co-dimensional mean curvature flows.
Secondly, the second fundamental form of a hypersurface is a symmetric two
tensor and various convexity condition associated with this tensor has play
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an important role. However, for a higher co-dimensional submanifold, the
second fundamental is a symmetric two tensor valued in the normal bundle
and there is no natural convexity condition for such a tensor. Of course, both
these points are related to the complexity of the normal bundle. The nor-
mal bundle of an embedded orientable hypersurface is always trivial, while
the normal bundle of a higher co-dimensional submanifold could be highly
non-trivial.

The good news is that many great results like Brakke’s regularity theorem
[BR], Hamilton’s maximum principle for tensors [HA], Huisken’s monotonic-
ity formula [HU2], and White’s regularity theorem [WH] are valid in any
dimension and co-dimension.

1.3 What is special about being Lagrangian?

A Lagrangian submanifold sits in a symplectic manifold M . Recall a sym-
plectic manifold is a smooth manifold equipped with a closed non-degenerate
two-form ω(·, ·). A Lagrangian submanifold Σ is characterized by the van-
ishing of ω|Σ. To get the volume functional into the context, we consider on
M a Riemannian metric 〈·, ·〉 and a compatible almost complex structure J
in the sense that ω(·, ·) = 〈J(·), ·〉.

The simplest examples are Lagrangian submanifolds in the complex Eu-
clidean space Cn. Suppose zi = xi + yi, i = 1 · · ·n are complex coordi-
nates on Cn. Let ω =

∑n

i=1 dx
i ∧ dyi be the standard symplectic form on

Cn and J( ∂
∂xi ) = ∂

∂yi
be the standard almost complex structure. We have

ω(X, Y ) = 〈JX, Y 〉 where 〈·, ·〉 is the standard metric on Cn. Recall a La-
grangian subspace of Cn is a subspace on which ω restricts to zero. As the
form ω is invariant under the unitary group U(n), the set of all Lagrangian
subspaces in Cn, so called the Lagrangian Grassmannian, is isomorphic to
the homogeneous space U(n)/SO(n). Therefore a Lagrangian submanifold
is simply a submanifold whose tangent spaces are all Lagrangian subspaces
in Cn.

Two prominent classes of Lagrangian submanifolds are the followings.
1). Graphs of symplectomorphisms: In this case, the ambient space is the
product of two symplectic manifolds. Take a smooth map f : (Cn, ω1) →
(Cn, ω2) such that f ∗ω2 = ω1 and the graph of f in (Cn×Cn, ω1−ω2) is such
an example.
2). Graphs of one-forms: In this case, the ambient space is the cotangent
bundle of a symplectic manifold. Take a smooth map f : Rn → Rn such
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that f = ∇u for some scalar function u : Rn → R. Identify the first Rn with
the real part of Cn with coordinates xi and the second Rn as the imaginary
part with coordinates yi. The graph of f in (Cn = Rn ⊕

√
−1Rn, ω) with

ω = Σn
i=1dx

i ∧ dyi is such an example.
Two remarkable properties of Lagrangian mean curvature flow makes one

speculate that it perhaps behave in a better way than other mean curvature
flows in higher codimension. Firstly, the normal bundle of a Lagrangian
submanifold is canonically isometric to the tangent bundle by the almost
complex structure J : TΣ → NΣ. This gives a simpler description of the
second fundamental form as a fully symmetric three tensor in ⊙3TΣ, the
coefficients of which being

hijk = 〈∇ ∂F

∂xi

∂F

∂xj
, J(

∂F

∂xk
)〉.

As JH becomes a tangent vector, it is dual to a one-form σ on Σ; they
are related by σ(·) = ω(H, ·).

Secondly, when the ambient space is Kähler-Einstein, being Lagrangian is
a condition that is preserved along the mean curvature flow [SM1]. In many
occasions, one is tempted to compare the Lagrangian mean curvature flow
to the Kähler-Ricci flow. This will be elaborated in the next section when
we consider a Calabi-Yau ambient manifold.

1.4 Calabi-Yau case

The Lagrangian mean curvature flow is of particular interest when the am-
bient space is Calabi-Yau. Let (M, g, ω, J) be a real 2n dimensional Kähler-
Einstein manifold; i.e. the Ricci form is a multiple of the the Kähler form:

Ric = cω.

Let Σ be a n dimensional Lagrangian submanifold of M . By the Codazzi
equation, we have

dσ = Ric|Σ = cω|Σ = 0.

Thus σ is a closed one-form and defines a cohomology class [σ].
When M is Calabi-Yau with a canonical parallel holomorphic (n, 0) form

Ω. By suitable normalization, the restriction of Ω on Σ gives a multi-valued
function θ, called the phase function. Indeed, ∗ΣΩ = eiθ where ∗Σ denote the
Hodge star operator on Σ. It turns out the mean curvature form is σ = dθ.
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[σ] is called the Maslov class and can be defined through the Gauss map of
Σ.

Lagrangian submanifolds with vanishing mean curvature H are minimal

Lagrangian submanifolds. When M is Calabi-Yau, a connected minimal La-
grangian has constant phase and is called a special Lagrangian which cor-
responds to a class of calibrated submanifolds first studied by Harvey and
Lawson [HL]. They also play important roles in the SYZ [SYZ] conjecture
in Mirror symmetry. Roughly speaking, people expect special Lagrangians
behave much like holomorphic curves. It is thus desirable to have a gen-
eral method of constructing special (or minimal) Lagrangian submanifolds.
Schoen and Wolfson [SW1] studied the existence problem by the variational
method. Another approach more related to algebraic geometry and symplec-
tic topology has been investigated by Joyce.

Based on the duality between graded Lagrangian submanifolds and stable
vector bundles, Thomas and Yau [TY] made the following conjecture:

Conjecture 1 Let M be Calabi-Yau and Σ be a compact embedded La-

grangian submanifold with zero Maslov class, then the mean curvature flow

of Σ exists for all time and converges smoothly to a special Lagrangian sub-

manifold in the Hamiltonian isotopy class of Σ.

Suppose Σt is the mean curvature flow of Σ. The phase function θ on Σt

is evolved by the heat equation

dθ

dt
= ∆Σt

θ, (1.2)

where ∆Σt
is the Laplace operator of the induced metric on Σt. Thus being of

zero Maslov class is preserved along the flow. This is a rather bold conjecture
as it is easy to see that the mean curvature flow of any compact submanifold
of the Euclidean space develops finite time singularities. The most common
singularity is the so-called neck-pinching. Without the assumption on the
Maslov class, Schoen and Wolfson [SW2] construct example that develop
such singularities in finite time. We shall come back to this point in §2.3.

1.5 Overview of the article

In this paper, we review some recent results on the mean curvature flows
of Lagrangian submanifolds. The review is by no means comprehensive or
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complete and is subject to the author’s personal preference. Many other
interesting works on the Lagrangian mean curvature flow are not discussed
in the article, e.g. [GSSZ], [LW] ,[NE2], and [PA].

A fundamental question in geometric flows is under what conditions
on the initial data can we prove the global existence and convergence in
the smooth category. The mean curvature flow, as a quasi-linear system,
forms singularity exactly when the second fundamental form of the subman-
ifold blows up, i.e. Σt becomes singular as t approaches T if and only if
limt→T supΣt

|A|2 → ∞. In §2.1, we discuss global existence and conver-
gence results for special initial data that correspond to the two classes of
Lagrangian submanifolds discussed in §1.3.

For more general initial data set, we need to understand singularity for-
mations through the blow-up analysis. Suppose the flow exists on [0, T ) and
supΣt

|A|2 → ∞ as t→ T , we perform parabolic blow-up of the solution near
T . For simplicity, here we demonstrate the idea in the case when the ambient
space is the Euclidean space RN . This process depends on three parameters
ti(when), yi(where), and λi (how much) and eventually we let λi → ∞. Take
the space time track of the mean curvature flow M = ∪t∈[0,T )Σt in RN × R

and consider the map

R
N × [0, T ) → R

N × [−λ2i ti, λ2i (T − ti))

by sending (y, t) 7→ (λi(y − yi), λ
2
i (t− ti)) and thus (yi, ti) 7→ (0, 0).

The image of Σt can be described as

Σi
s = λi(Σti+

s

λ2
i

− yi)

in which s = λ2i (t − ti). It turns out the space-time track Mi = ∪sΣ
i
s forms

another mean curvature flow by the invariance of the scaling that lives in
[−λ2i ti, λ2i (T − ti)).

In order to obtain smooth limit, two types of parabolic blow-ups are often
used depending on how fast the second fundamental form blow up.

Type I blow-up: Also called a central blow-up where the center (ti, yi) =
(T, y0) is fixed and λi → ∞. When |A|2(T−t) is bounded, the limit is smooth.
Nevertheless, the limit always exists weakly in the sense of geometric measure
theory and is an ancient self-similar solution that lives in (−∞, 0]. This is
the parabolic analogue of a cone.

Type II blow up: The blow-up center (yi, ti) is at a point where |A|2(T−t)
almost achieves its maximum. The scale is proportional to |A|2 so we get a
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smooth limit that often lives on (−∞,∞) with uniformly bounded second
fundamental form, so called an eternal solution. In §2.2, we discuss the
characterization of first time singularity for Lagrangian mean curvature flow
under the Type I blow-up procedure.

The singularities are often classified into type I singularity or type II sin-

gularity according to whether supΣt
|A|2(T − t) is bounded or unbounded as

t→ T (not to be confused with the type I and type II blow-up procedures).
The simplest Lagrangian mean curvature flow reduces to the so-called curve
shortening flow on a two-dimensional orientable surface as any curve is La-
grangian. In this case, it can be proved that any type I singularity is a
shrinking circle and any type II singularity is a Grim Reaper, both are self-
similar solutions. It is thus concievable that the eventual understandings
of the singularities will rely on the classifications of self-similar solutions.
In §2.3, we discuss the constructions of self-similar solutions in Lagrangian
mean curvature flows.

The author would like to thank B. Andrews, K. Ecker, R. Hamilton, M.
Haskin, G. Huisken, T. Ilmanen, D. Joyce, Y.-I. Lee, N. C. Leung, A. Neves,
K. Smoczyk, M.-P. Tsui, T. Y. H. Wan, and B. White for helpful discussions
on this subject.

2 Results

2.1 Global existence and convergence

Given an immersed submanifold Σ0 of a Riemannian manifold M , we ask
when we can find a family of immersions that forms a mean curvature flow
Σt and when Σt → Σ∞ in C∞ for a smooth immersed submanifold Σ∞. As
was remarked in the overview of the article, this boils down to bounding
the second fundamental form for all t ∈ [0,∞) and as t → ∞. The one-
dimensional curve-shortening flow is a well-studied area and there are many
beautiful global existence and convergence results by e.g. Gage-Hamilton
[GH] and Grayson[GR1][GR2]. We refer to the book by Chou-Zhu [CZ] for
results in this direction.

The next simplest case will be two-dimensional Lagrangian surfaces in a
four-dimensional symplectic manifold. We recall that the graph of a sym-
plectomorphism is naturally a Lagrangian submanifold of the product space.
In this case, there is the following theorem:
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Theorem 2.1 Let (Σ(1), ω1) and (Σ(2), ω2) be two diffeomorphic compact

Riemann surface of the same constant curvature c. Suppose Σ is the graph

of a symplectomorphism f : Σ(1) → Σ(2) as a Lagrangian submanifold of

M = (Σ(1) × Σ(2), ω = ω1 − ω2) and Σt is the mean curvature flow with ini-

tial surface Σ0 = Σ. Then Σt remains the graph of a symplectomorphism ft
along the mean curvature flow. The flow exists smoothly for all time and Σt

converges smoothly to a minimal Lagrangian submanifold as t→ ∞.

The assumption on the curvatures of Σ(1) and Σ(2) makes M a Kähler-
Einstein manifold with the product metric. The long time existence for
all cases and the smooth convergence for c > 0 was proved in [WA2]. The
smooth convergence for c ≤ 0 was established in [WA4]

Assuming an extra angle condition, Smoczyk [SM2] proved the theorem
when c ≤ 0. Smoczyk’s proof of the global existence and convergence re-
sult is different from that of [WA2] and [WA4]. Instead of applying blow-up
analysis, he proved directly by the maximum principle that the second fun-
damental form is uniformly bounded independent of time. This gives the
global existence and the convergence at the same time.

We remark the existence of such minimal Lagrangian submanifold was
proved using variational method by Schoen [SC] (see also Lee [LE]).

In the following, we briefly describe the proof of the theorem. The proof
is divided into three parts.
1) Σt remains the graph of a symplectomorphism ft as long as the flow exists
smoothly.

Since M is Kähler-Einstein, Σt remains a Lagrangian surface. This can
indeed be shown by considering the evolution equation satisfied by the func-
tion ∗ω(p) = ω(e1, e2) where {e1, e2} is any oriented orthonormal basis for
TpΣ. Likewise, we can consider the heat equation satisfied by the function
∗ω1(p) = ω1(e1, e2). In an orthonormal basis, we can represent the second
fundamental form A by hijk = 〈∇eiej , J(ek)〉 and the mean curvature vector
by Hk = 〈H, J(ek)〉 =

∑2
i=1 hiik. It was computed in [WA2] that ηt = 2∗Σt

ω1

satisfies

d

dt
ηt = ∆ηt + ηt(2|A|2 − |H|2) + cηt(1− η2t ) (2.1)

where |A|2 =
∑

i,j,k h
2
ijk and |H|2 =

∑

kH
2
k are the squared norms of the

second fundamental form and the mean curvature vector, respectively. As
|H|2 ≤ 2|A|2, ηt > 0 is preserved along the flow by the maximum principle.
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Notice that ∗ω1 is in fact the Jacobian of π1|Σ where π1 : Σ
(1)×Σ(2) → Σ(1)

is the projection map onto the first factor. By the inverse function theorem,
∗ηt > 0 if and only if Σt can be locally written a graph over Σ1. Therefore
ηt > 0 implies Σt is the graph of a symplectomorphism.

Indeed, not only ηt > 0 but by comparing to solutions of the ordinary
differential equation d

dt
f = cf(1− f 2), we arrive at

ηt ≥
αect√

1 + α2e2ct

where α is a constant that satisfies α√
1+α2

= minΣ0
η. In particular, ηt → 1

as t→ ∞ uniformly when c > 0.
2) Global existence for all finite time

Utilizing the full symmetry of the second fundamental form hijk, one can
show that

|H|2 ≤ 4

3
|A|2.

Therefore,
d

dt
ηt ≥ ∆ηt +

2

3
ηt|A|2 + cηt(1− η2t ). (2.2)

We can apply the type I blow-up procedure to this solution at any space-
time point. Equation 2.2 and the positive lower bound of ηt at any finite time
will imply the integral of |A|2 vanishes on the type-I blow-up limit. It follows
from White’s regularity theorem [WH] that any such point is a regular point.
3). Convergence at t = ∞.

The aim is to bound |A|2 as t→ ∞ since Simon’s [SI] convergence theorem
for gradient flows is applicable in this case. Suppose supΣt

|A|2 → ∞, we
apply the type II blow-up procedure to the solution at t = ∞. Pick a
sequence of ti and point pi ∈ Σti such that the space-time track Mi, after
shifting (pi, ti) to (0, 0) and scaling by the factor |A|(pi, ti), has uniformly
bounded second fundamental form and |A|(0, 0) = 1.

By compactness, Mi → M∞, which is an eternal solution of the mean
curvature flow defined on (−∞,∞) with uniformly bounded second funda-
mental form and |A|(0, 0) = 1. When c > 0, recall ηt → 1 as t → ∞, this
implies η ≡ 1 on the limit M∞ and each time slice must be a flat space,
contradicting with |A|(0, 0) = 1.
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In case when c ≤ 0, ηt no longer converges to 1 as t → ∞ we consider
instead the evolution equation for |H|2. It was computed in [WA4] that

(
d

dt
−∆)|H|2 = −2|∇H|2 + 2

∑

ij

(
∑

k

Hkhkij)
2 + c(2− η2)|H|2.

Coupling with the equation for η (2.1) and integrating over Σt gives

d

dt

∫

Σt

|H|2
η

dvΣt
≤ c

∫

Σt

|H|2
η

dvΣt
.

This implies
∫

Σt
|H|2dvΣt

→ 0 as t → ∞ since
∫∞
0

∫

Σt
|H|dvΣt

dt < ∞.

The limit M∞ obtained earlier has
∫

|H|2 = 0 and thus each time slice is a
minimal area preserving map from C to C which must be flat by a result of
Ni [NI].

In general dimension, Smoczyk and the author [SW] proved a general
global existence and convergence theorem for Lagrangian graphs in T 2n, a
flat torus of dimension 2n.

Theorem 2.2 Let Σ be a Lagrangian submanifold in T 2n. Suppose Σ is the

graph of f : T n → T n and the potential function u of f is convex. Then the

mean curvature flow of Σ exists for all time, remains a Lagrangian graph,

and converges smoothly to a flat Lagrangian submanifold.

The flow in terms of the potential u is a fully nonlinear parabolic equation:

du

dt
=

1√
−1

ln
det(I +

√
−1D2u)

√

det(I + (D2u)2)
(2.3)

where D2u is the Hessian of u. Notice det(I+
√
−1D2u)√

det(I+(D2u)2)
is a unit complex num-

ber, so the right hand side is always real. This theorem generalizes prior
global existence and convergence results in general dimensions in [WA3] and
[SM3].

A important step in the proof is to show the convexity condition D2
iju >

0 is preserved which we describe in the rest of this section. This involve
interpreting the convexity condition as the positivity of some symmetric two
tensor on Σt and compute the parabolic equation with respect to the induced
(evolving metric) on Σt. It turns out if we denote π1 (π2) to be the projection
onto the first (second) factor of T n × T n. The condition D2

iju is the same as
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〈Jπ1(X), π2(X)〉 > 0

for any X ∈ TΣ. S(·, ·) = 〈Jπ1(·), π2(·)〉 defines a two-tensor on T 2n and
the Lagrangian condition implies the restriction of S to any Lagrangian sub-
manifold is a symmetric tensor.

Lemma 2.1 This positivity of S is preserved along the mean curvature flow,

i.e. S|Σt
> 0 for t > 0 as long as S|Σ0

> 0.

A direct approach is the calculate the evolution of S|Σt
and apply Hamil-

ton’s maximal principle for tensors, see equation (3.3) in [SW].
Another more systematic approach is to study how the tangent space of

Σt evolves as this contains the information of D2
iju. Since the tangent space

of T 2n can be identified with Cn. We may consider the Gauss map of Σt

given by γt : Σt → LG(n) = U(n)/SO(n), the Lagrangian Grassmannian,
by sending a point p ∈ Σ to the tangent space TpΣ ⊂ Cn. The following
theorem is prove in [WA5]

Theorem 2.3 γt is a harmonic map heat flow.

For an ordinary heat equation d
dt
f = ∆f , the conditions f > 0 and f = 0

are preserved by the maximum principle. For a harmonic map heat flow
into a Riemannian manifolds, the analogy is that the image of the map will
remain in a convex or totally geodesic set.

Since LG(n) is totally geodesic subset of the Grassmannian, this provides
an alternate way to show why being Lagrangian is preserved along the mean
curvature flow. Also the determinant map from U(n)/SO(n) to U(1) ≡ S1

is totally geodesic. Thus the composition γt ◦ det is a harmonic map heat
flow into S1. It is easy to see that γt ◦ det is exactly the phase function θ
and this is another way to derive (1.2).

To show {L ∈ LG(n), S|L > 0} is a convex subset, we study the geodesic
equation on LG(n) and the details can be found in [SW]. We remark that
as being a minimal Lagrangian in C

n is an invariant property under the
symmetry group U(n). The equation of u indeed enjoys more symmetric
than a general fully non-linear Hessian equation. This observation provides
more equivalent conditions under which the global existence and convergence
theorems can be proved (see the last section in [SW]).
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2.2 Characterization of first-time singularities

In [WA1], the author introduced the notion of almost calibrated Lagrangian
submanifolds in the study of characterizing the first time singularity. Recall
for a special Lagrangian, the Lagrangian angle (after a shifting) satisfies
cos θ = 1. A Lagrangian submanifolds in a Calabi-Yau manifold is said to
be “almost calibrated” if cos θ ≥ ǫ for some ǫ > 0. This has proved to be a
very useful condition in the study of Lagrangian mean curvature flow.

As cos θ satisfies

d

dt
cos θ = ∆cos θ + cos θ|H|2, (2.4)

being almost calibrated is another condition that is preserved along the La-
grangian mean curvature flow. The following theorem is proved in [WA1].

Theorem 2.4 An almost calibrated Lagrangian submanifold does not de-

velop any type I singularity along the mean curvature flow.

This is established by coupling equation (2.4) with Huisken’s monotonic-
ity formula. In particular, no “neck-pinching” will be forming in the Thomas-
Yau conjecture if this condition is assumed. To demonstrate the idea, let us
pretend the Lagrangian submanifolds are compact and lie in Rn. As along as
characterizing finite time singularity is concerned, this does not pose any seri-
ous restriction as the ambient curvature will be scaled away under a blow-up
procedure. Very mild assumption needs to be imposed at infinity to assure
the integration by parts work. Suppose the flow exists on [0,∞) and consider
the backward heat kernel at (y0, T ).

ρy0,T (y, t) =
1

(4π(T − t))
n
2

exp(
−|y − y0|2
4(T − t)

) (2.5)

Huisken’s monotonicity formula implies

d

dt

∫

Σt

ρy0,TdvΣt
= −

∫

Σt

|H +
1

2(T − t)
F⊥|2ρy0,TdvΣt

.

Coupling with the equation for cos θ (2.4), we obtain

d

dt

∫

Σt

ρy0,T (1− cos θ)dvΣt

=−
∫

Σt

ρy0,T |H|2 cos θdvΣt
−

∫

Σt

|H +
1

2(T − t)
F⊥|2(1− cos θ)dvΣt

.
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Both these equations are scaling invariant and continue to hold for the
type I blow-up at (y0, T ) (notice that θ is scaling invariant) and thus

d

ds

∫

Σi
s

ρ = −
∫

Σi
s

ρ|H − 1

2s
F⊥|2 (2.6)

d

ds

∫

Σi
s

ρ(1 − cos θ)

=−
∫

Σi
s

ρ|H|2 cos θ −
∫

Σi
s

ρ|H − 1

2s
F⊥|2(1− cos θ)

(2.7)

where ρ is the backward heat kernel at (0, 0) and s = −λ2i (T − t). Therefore
it is not hard to see that there exists a sequence of rescaled submanifold on
which both

∫

|H|2 and
∫

|H − 1
2s
F⊥|2 are approaching zero. Thus H = 0

and F⊥ = 0 weakly on each time slice of the limit. This indicates that each
time slice of the limit should be a union of minimal Lagrangian cones. If
we assume the singularity is of type I, then the limit flow is smooth and
thus must be a flat space. White’s regularity theorem implies the point is a
smooth point.

Notice that (2.6) implies local area bound and (2.7) implies local bound
for the L2 norm of mean curvatures on Σi

s. It follows from compactness
theorems in geometric measure theory that the limit is rectifiable and this
was carried out by Chen and Li in [CL]. As |H|2 = |∇θ|2, a natural ques-
tion arises whether the phase θ is a constant on this union of minimal La-
grangian cone. Notice that even a union of special Lagrangian cones may
have different phases and hence not necessarily area-minimizing. Chen and
Li [CL] claimed that the phase function is a constant on the limit by prov-
ing a Poincáre inequality for θ. Unfortunately, the proof of Theorem 5.1 in
[CL] overlooks some technical difficulties. Neves later give a different proof
assuming two extra conditions and using the evolution equation of the Liou-
ville form λ =

∑n

i=1 x
idyi−yidxi. We refer to his paper [NE1] for the precise

statement of the theorem (Theorem B). Neves [NE1] was also able to replace
the assumption of almost calibrated by zero Maslov class by observing that
the equation for cos θ can be replaced by

∂

∂t
θ2 = ∆θ2 − 2|H|2.
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2.3 Constructions of self-similar solutions

A important tool in the study of geometric flows is the blow-up analysis. A
blow-up solution of the mean curvature flow sits in the Euclidean space and
often enjoys more symmetry. It is important to study these special solutions
as singularity models. A mean curvature flow in the Euclidean space is said
to be self-similar if it is moved by an ambient symmetry. We may consider
ansatz of the type

F (x, t) = φ(t)F (x) (2.8)

and

F (x, t) = F (x) + ψ(t) (2.9)

which correspond to scaling symmetry and translating symmetry, respec-
tively. The ansatz coupled with the mean curvature flow equation gives an
elliptic equation for F (x). For solution of the form (2.8), F (x, t) is called an
expanding or a shrinking soliton depending on whether φ(t) is greater or less
than one, respectively. A mean curvature flow F (x, t) that satisfies (2.9) is
called a translating soliton.

Henri Anciaux constructed examples of Lagrangian shrinking and ex-
panding solitons in [AN]. All the examples are based on minimal Legendrian
immersions in S2n−1 and the solutions are asymptotic to the associated min-
imal Lagrangian cones.

Yng-Ing Lee and the author [LWA] constructed examples of self-similar
shrinking and expanding Lagrangian mean curvature flows that are asymp-
totic to Hamiltonian stationary cones. They were able to glue them together
to form weak solutions of the mean curvature flow in the sense of Brakke.
In a new preprint of Joyce, Lee and Tsui [JLT] constructed new examples
of self-similar solutions, in particular translating solitons. [NT] gave some
characterizations of translating solitons in the two dimensional case.

3 Prospects

There have been several attempts to find counterexamples of the Thomas-Yau
conjecture. Other than the examples of Schoen and Wolfson in [SW2], Neves
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[NE1] constructed almost calibrated complete non-compact Lagrangian sur-
faces in C2 that develop finite time singularities. However, there is still no
genuine counterexample to the Thomas-Yau conjecture as it was stated.

It should be noted that Schoen and Wolfson [SW3] proved the following
existence result of special Lagrangians in a K-3 surface.

Theorem 3.1 Let X be a K3 surface with a Calabi-Yau metric. Suppose

that γ ∈ H2(X ;Z) is a Lagrangian class that can be represented by an embed-

ded Lagrangian surface. Then γ can be represented by a special Lagrangian

surface.

A mean curvature flow proof of this theorem will confirm the Thomas-
Yau conjecture in two dimension. Since it was already shown that there is
no type-I singularity, we need to focus on type II singularities in the zero
Maslov class or almost calibrated case. A general type-II singularity can be
scaled to get an eternal solution with uniformly bounded second fundamental
form that exists on (−∞,∞). Such a solution of parabolic equation should
be rather special and we hope to say more about it in the near future.

For a general initial data, one is tempted to speculate that, just as in the
Ricci flow case, surgeries are necessary in order to continue the flow. It was
commented in Perelman’s paper [PE] that when the surgery scale goes to
zero, the solution with surgeries should converge to a “weak solution” of the
Ricci flow, a notion that has yet to established. Weak formulations for the
mean curvature flow are available. However, as weak solutions are no longer
unique, it is necessary to instruct the flow how to continue after singuarities.
The examples found in Lee-Wang [LWA] and Joyce-Lee-Tsui [JLT] start out
as shrinking solitons as t < 0, approach to Schoen-Wolfson cones as t → 0
and resolve to expanding solitons for t > 0. They altogether form a Brakke
flow. Notice that the Schoen-Wolfson cones are the only obstructions to the
existence of regular minimal Lagrangian in two dimensional. It would be
of great interest to glue in these models whenever such singularities form.
We believed such models will play important roles in the global existence of
surgery or weak solutions of the Lagrangian mean curvature flow.
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