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Abstract

Let M = Σ1 × Σ2 be the product of two compact Riemannian

manifolds of dimension n ≥ 2 and two, respectively. Let Σ be the

graph of a smooth map f : Σ1 7→ Σ2, then Σ is an n-dimensional

submanifold of M . Let G be the Grassmannian bundle over M whose

fiber at each point is the set of all n-dimensional subspaces of the

tangent space of M . The Gauss map γ : Σ 7→ G assigns to each

point x ∈ Σ the tangent space of Σ at x. This article considers the

mean curvature flow of Σ in M . When Σ1 and Σ2 are of the same

non-negative curvature, we show a sub-bundle S of the Grassmannian

bundle is preserved along the flow, i.e. if the Gauss map of the initial

submanifold Σ lies in S, then the Gauss map of Σt at any later time

t remains in S. We also show that under this initial condition, the

mean curvature flow remains a graph, exists for all time and converges

to the graph of a constant map at infinity . As an application, we show

that if f is any map from Sn to S2 and if at each point, the restriction

of df to any two dimensional subspace is area decreasing, then f is

homotopic to a constant map.

1 Introduction

The maximum principle has proved to be a powerful tool in partial differential
equations. In particular, the maximum principle of parabolic systems for
tensors developed by R. Hamilton [4] plays an important role in the study
of geometric evolution equations. The guiding principle is the following: an

1



invariant convex subset in the space of curvature tensors preserved by the
associated ordinary differential equations is preserved by the parabolic partial
differential equations. This has been applied to the study of Ricci flow and
curvature flow of hypersurfaces. In this article, we apply this idea to higher
codimension mean curvature flow.

Let M = Σ1 × Σ2 be the product of two compact Riemannian manifolds
of dimension n ≥ 2 and two, respectively. Let Σ be the graph of a map
f : Σ1 7→ Σ2, then Σ is an n-dimensional submanifold of M . Let G be
the Grassmannian bundle over M whose fiber at each point is the set of all
n-dimensional subspaces of the tangent space. The Gauss map γ : Σ 7→ G

assigns to each point x ∈ Σ the tangent space of Σ at x. The tangent space of
M at x splits as Tπ1(x)Σ1 ×Tπ2(x)Σ2. Let G′ ⊂ G be the sub-bundle consisted
of the graphs of linear transformations from Tπ1(x)Σ1 to Tπ2(x)Σ2. We show
there exists a sub-bundle S ⊂ G′ that is preserved along the mean curvature
flow.

Theorem A Let M = Σ1×Σ2 be the product of two compact flat Riemannian

manifolds and suppose Σ2 is two-dimensional. If the gauss map of a compact

oriented submanifold Σ of M lies in S, then along the mean curvature flow

the gauss map of Σt remains in S. The flow of exists smoothly for all time

and converges to a totally geodesic submanifold.

This in particular implies Σt is the graph of a map ft. The sub-bundle S

is best described in terms of ft. In fact, if we denote the singular values of ft

by λ1 and λ2, then the Gauss map of Σt lies in S if and only if |λ1λ2| < 1.
When Σ1 is of positive curvature, we prove the following.

Theorem B Let M = Sn(k1) × Σ2 be the product of a sphere of curvature

k1 > 0 and a two-dimensional compact Riemannian manifold Σ2 of constant

curvature k2 and k1 ≥ |k2|. If the gauss map of a compact oriented subman-

ifold Σ of M lies in S, then along the mean curvature flow the gauss map of

Σt remains in S. The flow exists smoothly for all time and converges to a

totally geodesic submanifold.

Theorem A and B are proved by calculating the evolution equations of the
Gauss map and applying maximum principle. The prototype is the following
equation in the hypersurface case

d

dt
N = ∆N + |A|2N
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where N denotes the unit normal vector and |A|2 is the norm of the second
fundamental form. If we take inner product of N with a constant vector ν,
it is not hard to see that minΣt

< N, ν > is non-decreasing in time. This is
one of the key observation in [1] and [2] where the mean curvature flow of
of entire graph of codimension one was studied. In codimension one case, N

contains all the information of the Gauss map. While in higher codimension,
a whole parabolic systems is needed in order to describe the evolution of the
Gauss map.

The following is an application to higher homotopy groups of S2.

Corollary If f is any map from Sn to S2, n ≥ 2 and if at each point, the

restriction of df to any two dimensional subspace is area decreasing, then f

is homotopic to a constant map along the mean curvature flow.

When n = 2, this is the same as saying the Jacobian of f is less than 1.
In this case, f is of degree 0 and thus homotopic to a constant map. This
homotopy can be realized through the mean curvature flow as was proved in
[8]. As a contrast, the standard Hopf map from S3 to S2 has |λ1λ2| = 4.

I am indebted to Professor D. H. Phong and Professor S.-T. Yau for their
constant encouragement and unending support. I have benefitted greatly
from the conversation I have with Professor R. Hamilton and Professor M-P
Tsui.

2 Analysis of Grassmannian bundle

Let us first describe the sub-bundle S. Let V1 be an n-dimensional inner
product space and V2 a two-dimensional inner product space. Let G(n, n+2)
be the Grassmannian of all n-dimensional subspaces of V1 × V2. Let G′ ⊂
G(n, n + 2) be the set of all n-dimensional subspaces that can be written as
graphs over V1. For any P ∈ G′, P is the graph of a linear transformation p :
V1 7→ V2. Then (p)T p is self-adjoint and thus diagonalizable. The eigenvalues
are denoted by {λ2

1, λ
2
2}. λ1 and λ2 are the singular values of p. We now define

S.

S = {P ∈ G′| 1 − |λ1λ2| > 0}
This is equivalent to saying p is area decreasing on any two dimensional

subspace of V1.
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Now let M be the product of two Riemannian manifolds Σ1 × Σ2 of
dimension n and 2 respectively. Let G be the Grassmannian bundle on M

whose fibers are isomorphic to G(n, n + 2). At each point x, TxM splits
as the product of Tπ1(x)Σ1 and Tπ2(x)Σ2. The Riemannian structures on
Tπ1(x)Σ1 = V1 and Tπ2(x)Σ2 = V2 defines the subset S of the fiber of G

at x.

Definition 2.1 S is the sub-bundle of the Grassmannian bundle G whose

fiber at each point consists of S.

Let Σ be the graph of a smooth map f : Σ1 7→ Σ2. TxΣ is the graph of
the differential of f at x, df : Tπ1(x)Σ1 7→ Tπ2(x)Σ2. Notice that we abuse the
notation so that TxΣ, Tπ1(x)Σ1 and Tπ2(x)Σ2 all denote subspaces of TxM . At
any point x, let λ1,λ2 be the singular values of df . They are well-defined up
to a sign. Define

η(x) =
1 − |λ1λ2|

√

(1 + λ2
1)(1 + λ2

2)

η is a function on Σ.

Proposition 2.1 η > 0 on Σ if and only if the Gauss map of Σ lies in S.

Later we shall give a characterization of η in terms of differential forms
on M . Any differential form Ω on a Riemannian manifold can be considered
as a function on the Grassmannian bundle G of appropriate dimension. The
comass of Ω at x is defined to be the supremum of Ω on Gx, the fiber of G

at x. This is an important concept in calibrated geometry, see Federer [3] or
Harvey-Lawson [5]. Another description of S can be given in terms of the
comass.

Proposition 2.2 If Σ is the graph of f : Σ1 7→ Σ2, then the Gauss map of

Σ lies in S if and only if the comass of f ∗Ω2 is less than one.

Here Ω2 is the volume form on Σ2 and f ∗Ω2 is considered as a 2-form on
Σ1. Of course the comass is taken over all two-dimensional subspaces of the
tangent space of Σ1.
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3 Evolution equation of n form

In this section, we calculate the evolution equation of the restriction of an
n-form to an n-dimensional submanifold moving by the mean curvature flow.
The case for a parallel form was calculated in [10]. Here we need to keep
track of the terms that involve covariant derivatives of Ω.

We assume M is an n + m dimensional Riemannian manifold with an n

form Ω. Let F : Σ 7→ M be an isometric immersion of an n-dimensional
submanifold. We shall compute near a point p ∈ Σ. We choose arbitrary
orthonormal frames {ei}i=1···n for TΣ and {eα}α=n+1,··· ,n+m for NΣ. ∇M de-
notes the covariant derivative on M and ∇Σ denotes the covariant derivative
on Σ, which is simply the tangent part of ∇M . ∇MΩ is the covariant deriva-
tive of Ω on M and ∇ΣΩ will denote the covariant derivative of the restriction
of Ω to Σ.

We first calculate the covariant derivative of the restriction of Ω on Σ.

(∇Σ
ek

Ω)(ei1 , · · · , ein)

= ek(Ω(ei1 , · · · , ein)) − Ω(∇Σ
ek

ei1 , · · · , ein) − · · · − Ω(ei1 , · · · ,∇Σ
ek

ein)

= (∇M
ek

Ω)(ei1 , · · · , ein) + Ω(∇M
ek

ei1 −∇Σ
ek

ei1 , · · · , ein) + · · ·+ Ω(ei1 , · · · ,∇M
ek

ein −∇Σ
ek

ein)

This equation can be abbreviated using the second fundamental form of
F , hαij =< ∇M

ei
ej , eα >.

Ωi1···in,k = (∇M
ek

Ω)(ei1 , · · · , ein) + Ωαi2···inhαi1k + · · ·+ Ωi1···in−1αhαink (3.1)

Likewise, in Ω(eα, ei2 , · · · , ein), Ω is considered as a section of (NΣ)∗ ∧
(∧(TΣ)∗).

Ωαi2···in,k = (∇M
ek

Ω)(eα, ei1 , · · · , ein)−Ωji2···inhαjk+Ωαβi3···inhβi2k+· · ·+Ωαi2···in−1βhβink

(3.2)
Now we calculate the second covariant derivative of the restriction of Ω

on Σ.

(∇Σ
ek
∇Σ

ek
Ω)(e1, · · · en)

= ek((∇Σ
ek

Ω)(e1, · · · en)) − (∇Σ
ek

Ω)(∇Σ
ek

e1, · · · , en) − · · · − (∇Σ
ek

Ω)(e1, · · · ,∇Σ
ek

en)

5



The term (∇Σ
ek

Ω)(∇Σ
ek

e1, · · · , en) equals zero because ∇Σ
ek

e1 is a tangent
vector perpendicular to e1 and thus a linear combination of e2, · · · , en. Like-
wise, other similar terms vanish.

(∇Σ
ek
∇Σ

ek
Ω)(e1, · · · en)

=ek[(∇M
ek

Ω)(e1, · · · , en) + Ωα2···nhα1k + · · ·+ Ω1···n−1αhαnk]

=(∇M
ek
∇M

ek
Ω)(e1, · · · , en) + (∇M

ek
Ω)(∇M

ek
e1, · · · , en) + · · ·+ (∇M

ek
Ω)(e1, · · · ,∇M

ek
en)

+ Ωα2···n,khα1k + · · · + Ω1···n−1α,khαnk

+ Ωα2···nhα1k,k + · · · + Ω1···n−1αhαnk,k

(3.3)

Now ∇M
ek

ei = hαikeα + ∇Σ
ek

ei and (∇M
ek

Ω)(∇Σ
ek

e1, · · · , en) = 0
Therefore,

Ω1···n,kk = (∇M
ek
∇M

ek
Ω)(e1, · · · , en)

+ (∇M
ek

Ω)(eα, · · · , en)hα1k + · · · + (∇M
ek

Ω)(e1, · · · , eα)hαnk

+ Ωα2···n,khα1k + · · ·+ Ω1···n−1α,khαnk

+ Ωα2···nhα1k,k + · · ·+ Ω1···n−1αhαnk,k

(3.4)

Plug equation (3.2) into (3.4) and apply the Codazzi equation hαki,k =
hα,i + Rαkki where R is the curvature operator of M .

(∆ΣΩ)1···n = −Ω12···n

∑

α,k

(h2
α1k + · · ·+ h2

αnk)

+ 2
∑

α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k + · · · + Ω1···(n−2)αβhα(n−1)khβnk]

+
∑

α,k

Ωα2···nhα,1 + · · ·+ Ω1···(n−1)αhα,n

+
∑

α,k

Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn

+ (∇M
ek
∇M

ek
Ω)(e1, · · · , en)

+ 2(∇M
ek

Ω)(eα, · · · , en)hα1k + · · ·+ 2(∇M
ek

Ω)(e1, · · · , eα)hαnk

(3.5)
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We notice that (∆ΣΩ)1···n = ∆(Ω(e1, · · · , en)), where the ∆ on the right hand
side is the Laplacian of functions on Σ.

The terms in the bracket are formed in the following way. Choose two
different indexes from 1 to n, replace the smaller one by α and the larger one
by β. There are a total of n(n−1)

2
such terms.

Now we consider when Σ = Σt is a time slice of a mean curvature flow
in M by d

dt
Ft = Ht. Notice that here we require the velocity vector is in the

normal direction. We can extend e1, · · · , en to a local coordinate {∂i = ∂
∂xi}

on Σ, then

d

dt
Ω(∂1, · · · , ∂n)

= (∇M
H Ω)(∂1, · · · , ∂n) + Ω((∇∂1

H)N , ∂2, · · · , ∂n) + · · ·+ Ω(∂1, ∂2, · · · , (∇∂n
H)N)

+ Ω((∇∂1
H)T , ∂2, · · · , ∂n) + · · ·+ Ω(∂1, ∂2, · · · , (∇∂n

H)T )

Since d
dt

gij =< (∇∂i
H)T , ∂j >, if we choose a orthonormal frame and evolve

the frame with respect to time so that it remains orthonormal, the terms in
the last line vanish.

d

dt
∗ Ω = ∗(∇M

H Ω) + Ωα2···nhα,1 + · · · + Ω1···(n−1)αhα,n

Combine this with equation (3.5) we get the parabolic equation satisfied
by ∗Ω.

Proposition 3.1 If Σt is a time slice of an n-dimensional mean curvature

flow in M and Ω is an n-form on M . For any point p ∈ Σt, let {e1, · · · , en} be

an orthonormal frame of TΣt near p and {en+1, · · · , en+m} be an orthonormal
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frame of the normal bundle of Σt near p. Then ∗Ω = Ω(e1, · · · , en) satisfies

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω(

∑

α,i,k

h2
αik)

− 2
∑

α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k + · · ·+ Ω1···(n−2)αβhα(n−1)khβnk]

−
∑

α,k

[Ωα2···nRαkk1 + · · ·+ Ω1···(n−1)αRαkkn]

+ ∗(∇M
H Ω) − (∇M

ek
∇M

ek
Ω)(e1, · · · , en)

− 2(∇M
ek

Ω)(eα, · · · , en)hα1k − · · · − 2(∇M
ek

Ω)(e1, · · · , eα)hαnk

(3.6)

where ∆ denotes the time-dependent Laplacian on Σt.

4 Proof of Theorem

Let us prove Theorem A now. We recall the statement.

Theorem A Let M = Σ1×Σ2 be the product of two compact flat Riemannian

manifolds of dimension n and 2 respectively. If the gauss map of a compact

oriented submanifold Σ of M lies in S, then along the mean curvature flow

the gauss map of Σt remains in S. The flow exists smoothly for all time and

converges to a totally geodesic submanifold.

Proof. Let Σt be the mean curvature flow of Σ given by a family of immersions
F : Σ × [0, T ) 7→ M . In the following calculation, it is useful to consider the
total space of the mean curvature flow as Σ × [0, T ). At each instant t, Σ is
equipped with the induced metric by Ft. All geometric quantities defined on
the image of F (·, t) are considered as defined on Σ.

Let Ω1 and Ω2 be the volume form of Σ1 and Σ2 respectively. They can be
considered as parallel forms on M . Suppose initially the image of the Gauss
map of Σ is in S. We may assume Σ is the graph of a map f : Σ1 7→ Σ2.
This implies η1 = ∗Ω1 > 0 and η > 0 on Σ at t = 0 by Proposition 2.1.

We shall characterize η in terms of differential forms. Consider Ξ the
collection of n forms on M of the following type.
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Ξ = {Ω1−Ω2∧ω |ω is any parallel simple (n − 2) form of comass one on Σ1}

At any point x, by Singular Value Decomposition we can take an or-
thonormal basis {ai}i=1···n for Tπ1(x)Σ1 and {aα}α=n+1,n+2 for Tπ2(x)Σ2 so that
df(ai) = λian+i, a∗

1 ∧ · · · ∧ a∗
n is the volume form of Tπ1(x)Σ1 and a∗

n+1 ∧ a∗
n+2

is the volume form for Tπ2(x)Σ2 . Therefore,

{e1 =
1

√

1 + λ2
1

(a1+λ1an+1), e2 =
1

√

1 + λ2
2

(a2+λ2an+2), e3 = a3, · · · , en = an}

(4.1)
forms an orthonormal basis for TxΣ and

{en+1 =
1

√

1 + λ2
1

(an+1 − λ1a1), en+2 =
1

√

1 + λ2
2

(an+2 − λ2a2)} (4.2)

an orthonormal basis for NxΣ. Thus,

∗(Ω1 − Ω2 ∧ ω) = (Ω1 − Ω2 ∧ ω)(e1, · · · , en)

=
1

√

(1 + λ2
1)(1 + λ2

2)
(1 − λ1λ2ω(a3, · · · , an))

(4.3)

On the other hand

η1 =
1

√

(1 + λ2
1)(1 + λ2

2)

Recall

η =
1 − |λ1λ2|

√

(1 + λ2
1)(1 + λ2

2)

It is not hard to see

η(x) = min
Ω∈Ξ

∗Ω(x)

Suppose at t = t0, the image of the Gauss map hits the boundary of S

for the first time. Therefore each Σt, t < t0 can be written as the graph of
ft : Σ1 7→ Σ2 and the singular values of ft satisfy |λ1λ2| < 1.
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We claim Σt0 remains a graph. Indeed, since Ω1 is a parallel form, η1

satisfies the following equation by equation ( 3.6).

d

dt
η1 = ∆η1 + η1[

∑

α,i,k

h2
αik − 2

∑

k

λ1λ2(hn+1,1khn+2,2k − hn+2,1khn+1,2k)]

(4.4)

where we use

Ω1(en+1, en+2, e3, · · · , en) =
Ω1(an+1 − λ1a1, an+2 − λ2a2, a3, · · · , an)

√

(1 + λ2
1)(1 + λ2

2)
= λ1λ2η1

Notice this equation is valid at any point x. Since |λ1λ2| < 1 for 0 ≤
t < t0, applying maximum principle to equation (4.4) implies minΣt

η1 is
non-decreasing in t and thus η1 > 0 at t0.

Now η is well-defined at t0. Take any p so that η(p, t0) = 0, we shall show
that d

dt
|t=t0η ≥ 0 at p.

It is clear that λ1λ2 6= 0 at p. Otherwise, η1 = η = 0, a contradiction.
By the previous characterization of η and Hamilton’s maximum principle

[4] , we only need to show d
dt
|t=t0 ∗ Ω ≥ 0 at the point p for any Ω ∈ Ξ such

that ∗Ω(p) = η(p). At p, we apply Singular Value Decomposition to get an
orthonormal basis {ai}i=1,···n for Tπ1(p)Σ1 as before. Such Ω is of the form
Ω1 − Ω2 ∧ ω with ω(a3, · · · , an) = 1 or ω = a∗

3 ∧ · · · ∧ a∗
n by equation (4.3).

∗Ω satisfies

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω(

∑

α,i,k

h2
αik)

− 2
∑

α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k + · · ·+ Ω1···(n−2)αβhα(n−1)khβnk]

(4.5)

At this point p,

(Ω1−Ω2∧ω)(en+1, en+2, ei1 , · · · ein−2
) =

1
√

(1 + λ2
1)(1 + λ2

2)
(λ1λ2−1)ω(ei1 , · · · , ein−2

)

Thus
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d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω[|A|2 + 2(hn+1,1khn+2,2k − hn+1,2khn+2,1k)]

This can be completed square and we get

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω[

∑

α,2<i≤n,k

h2
αik +

∑

k

(hn+1,1k + hn+2,2k)
2 +

∑

k

(hn+1,2k − hn+2,1k)
2]

Therefore d
dt
∗Ω ≥ 0 at (p, t0). Since this is true for any Ω that achieves the

minimum of ∗Ω in Ξ, we have d
dt

η ≥ 0. Thus the sub-bundle S is preserved
along the mean curvature flow.

Now we prove long time existence and convergence. By a similar argu-
ment, we can show if min η = δ > 0 at t = 0, then this is preserved along the
flow. This implies in particular,

|λ1λ2| ≤ 1 − δ, (4.6)

and

√

(1 + λ2
1)(1 + λ2

2) ≤
1

δ
(4.7)

Since |λ1λ2| ≤ 1 − δ, we have

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1 + δ ∗ Ω1|A|2 (4.8)

In particular, ∗Ω1 has a uniform lower bound, each Σt can be written as
the graph of a map ft : Σ1 7→ Σ2, and ft has uniform gradient bound.

Integrating d
dt
∗ Ω1 ≥ ∆ ∗Ω1 + δ ∗Ω1|A|2 over space and time from t = 0

to t = ∞ we get

δ

∫ ∞

0

∫

Σt

∗Ω1|A|2 ≤
∫ ∞

0

∫

Σt

∗Ω1|H|2

For a mean curvature flow,
∫ ∞

0

∫

Σt
|H|2 < ∞, thus

∫ ∞

0

∫

Σt
|A|2 < ∞. We

can extract a subsequence ti → ∞ such that
∫

Σti

|A|2 → 0. Because each

fi has bounded gradient, this is the same as
∫

Σ1

|∇dfi|2 → 0. Therefore dfi
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is in W 1,2 which is compactly imbedded in L
2n

n−2 . We can further extract a

convergent subsequence which converges in Cα ∩ W 1, 2n

n−2 norm. Apply the
Sobolev inequality shows dfi converges to a constant and the limit of fi is a
totally geodesic submanifold. The uniform convergence of ft follows as the
proof of Theorem C in [9], which uses the property that distance function to
any totally geodesic submanifold in a Riemannian manifold of non-positive
sectional curvature is convex. We remark that in this case, the limit is
actually the graph of a linear map.

2

Theorem B Let M = Sn(k1) × Σm
2 be the product of a sphere of curvature

k1 > 0 and a compact Riemannian manifold Σ2 of constant curvature k2 and

k1 ≥ |k2|. If the gauss map of a compact oriented submanifold Σn of M lies

in S, then along the mean curvature flow the gauss map of Σn
t remains in

S. The flow exists smoothly for all time and converges to an Sn(k1) slice in

M .

Proof.

The proof follows the same strategy as that of Theorem A. We actually
show the image of the Gauss map never hits the boundary of S. Suppose the
contrary happens at t = t0. Again, we look at the equation of ∗Ω1. Using
|λ1λ2| ≤ 1 for 0 ≤ t < t0 and Proposition 3.2 in [10], we see

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1

+ ∗Ω1

∑

i

λ2
i

1 + λ2
i

[k1(
∑

j 6=i

2

1 + λ2
j

) + k2(1 − n +
∑

j 6=i

2

1 + λ2
j

)]
(4.9)

The last term comes from the curvature of M . Rewrite

k1(
∑

j 6=i

2

1 + λ2
j

)+k2(1−n+
∑

j 6=i

2

1 + λ2
j

) =
k1 − k2

2
(n−1)+

k1 + k2

2
(
∑

j 6=i

2

1 + λ2
j

+1−n)

We claim the curvature term is always non-negative under our assump-
tion. Since k1 − k2 ≥ 0, k1 + k2 ≥ 0, we only need to show

n
∑

i=1

λ2
i

1 + λ2
i

(1 − n +
n

∑

k 6=i

2

1 + λ2
k

) ≥ 0
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This is indeed

λ2
1

1 + λ2
1

(n − 3 +
2

1 + λ2
2

) +
λ2

2

1 + λ2
2

(n − 3 +
2

1 + λ2
1

)

This can be rewritten as

(n − 2)
λ2

1 + λ2
2 + 2λ2

1λ
2
2

(1 + λ2
1)(1 + λ2

2)
+

λ2
1 + λ2

2 − 2λ2
1λ

2
2

(1 + λ2
1)(1 + λ2

2)

which is non-negative under the assumption |λ1λ2| ≤ 1.
Therefore, at t0, Σt0 remains a graph and minΣt0

η = 0. Take any p so
that η(p, t0) = 0. We may assume λ1 > 0, λ2 > 0 at p.

As before, we choose orthonormal basis at p that corresponds to the
singular value decomposition of df . We can extend the orthonormal basis
{ai}i=1···n at Tπ1(p)Σ1 to an orthonormal frame field in a neighborhood U1 ⊂
Σ1 such that at this point p, ∇Mai = 0, i = 1 · · ·n. This is possible because
the Riemannian structure is a product and each Σ1 slice is totally geodesic
in M . Take

Ω = Ω1 − Ω2 ∧ ω

where ω = a∗
3 ∧ · · · ∧ a∗

n.
Ω is an n form defined on U = U1 × Σ2 that satisfies ∇MΩ = 0 at p.
Now we extend Ω to a global form on M . Take a cut-off function φ such

that φ ≡ 1 in a neighborhood of p and φ has compact support. Then

Ω = Ω1 − φΩ2 ∧ ω

is such a global extension. Now ∗Ω(p, t0) = 0 and (p, t0), ∗Ω > 0 for 0 ≤ t <

t0 and ∗Ω ≥ 0 at t0. Therefore d
dt
∗ Ω ≤ 0 and ∆ ∗ Ω ≥ 0 at(p, t0).
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We recall the evolution equation from equation (3.6).

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω(

∑

α,i,k

h2
αik)

− 2
∑

α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k + · · ·+ Ω1···(n−2)αβhα(n−1)khβnk]

−
∑

α,k

[Ωα2···nRαkk1 + · · ·+ Ω1···(n−1)αRαkkn]

+ ∗(∇M
H Ω) − (∇M

ek
∇M

ek
Ω)(e1, · · · , en)

− 2(∇M
ek

Ω)(eα, · · · , en)hαi1k − · · · − 2(∇M
ek

Ω)(e1, · · · , eα)hαink

(4.10)

By the way Ω is constructed, ∇MΩ = 0 at p. We claim the term
(∇M

ek
∇M

ek
Ω)(e1, · · · , en) also vanishes at p.

In fact, consider

∇M
ek
∇M

ek
(Ω2 ∧ ω)(e1, · · · , en)

= (Ω2 ∧ ∇M
ek
∇M

ek
ω)(e1, · · · , en)

=
λ1λ2

√

(1 + λ2
1)(1 + λ2

2)
(∇M

ek
∇M

ek
ω)(a3, · · · , an)

For i = 3, · · · , n, (∇M
X ∇M

Y a∗
i )(ai) = X(∇M

Y a∗
i (ai)) − (∇M

Y a∗
i )(∇M

X ai).
(∇M

Y a∗
i )(ai) =< ∇M

Y ai, ai >=< ∇Σ1

Y ai, ai > is zero, so X(∇M
Y a∗

i (ai)) =
0. Therefore ∇M

X ∇M
Y a∗

i (ai) = 0 at p. Since ω = a∗
3 ∧ · · · ∧ a∗

n, we get
(∇M

ek
∇M

ek
ω)(a3, · · · , an) = 0.

Now the left hand side of equation (4.10) is non-positive, we shall show
the curvature term

−
∑

α,k

[Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn]

is strictly positive, thus achieves contradiction because all other terms on the
right hand side are non-negative.

We calculate the curvature term.

Ω(eα, e2, · · · , en) = −δα,n+1
λ1 + λ2

√

(1 + λ2)(1 + λ2
2)

14



Likewise,

Ω(e1, eα, e3 · · · , en) = −δα,n+2
λ1 + λ2

√

(1 + λ2)(1 + λ2
2)

and
Ω(e1, e2, eα, e4 · · · , en) = 0

We assume Σ1 and Σ2 are of constant curvature k1 and k2 respectively,
by the calculation in [10] we have

∑

k

R(eα, ek, ek, ei)

= k1[
∑

k

< π1(eα), π1(ek) >< π1(ek), π1(e1) > − < π1(eα), π1(e1) >
∑

k

< π1(ek), π1(ek) >]

+ k2[
∑

k

< π2(eα), π2(ek) >< π2(ek), π2(e1) > − < π2(eα), π2(e1) >
∑

k

< π2(ek), π2(ek) >]

=k1[
∑

k

< π1(eα), π1(ek) >< π1(ek), π1(ei) > − < π1(eα), π1(ei) >
∑

k

|π1(ek)|2]

+ k2[(n − 1) < π1(eα), π1(ei) >

+
∑

k

< π1(eα), π1(ek) >< π1(ek), π1(e1) > − < π1(en+1), π1(e1) >
∑

k

|π1(ek)|2]

Because en+i = 1√
1+λ2

i

(an+i − λiai), π1(en+i) = −λ1√
1+λ2

i

ai. Likewise,

π1(ek) = 1√
1+λ2

k

ak.

Therefore,

Rn+i,kki =
λi

1 + λ2
i

[k1(
∑

k 6=i

1

1 + λ2
k

) + k2(1 − n +
∑

k 6=i

1

1 + λ2
k

)]

Therefore the curvature term −
∑

α,k[Ωα2···nRαkk1 + · · ·+Ω1···(n−1)αRαkkn]
in equation (3.6) becomes

(λ1 + λ2)
√

(1 + λ2
1)(1 + λ2

2)

2
∑

i=1

λi

1 + λ2
i

[k1(
n

∑

j 6=i

1

1 + λ2
j

) + k2(1 − n +
n

∑

j 6=i

1

1 + λ2
j

)]
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k1(
∑

j 6=i

1

1 + λ2
j

)+k2(1−n+
∑

j 6=i

1

1 + λ2
j

) =
k1 − k2

2
(n−1)+

k1 + k2

2
(
∑

j 6=i

2

1 + λ2
j

+1−n)

Since λ1 + λ2 > 0 and k1 − k2 ≥ 0, k1 + k2 ≥ 0, we only need to show

n
∑

i=1

λi

1 + λ2
i

(1 − n +

n
∑

k 6=i

2

1 + λ2
k

) ≥ 0

This is indeed

λ1

1 + λ2
1

(n − 3 +
2

1 + λ2
2

) +
λ2

1 + λ2
2

(n − 3 +
2

1 + λ2
1

)

This can be rewritten as

(n − 2)
(λ1 + λ2)(1 + λ1λ2)

(1 + λ2
1)(1 + λ2

2)
+

(λ1 + λ2)(1 − λ1λ2)

(1 + λ2
1)(1 + λ2

2)

which is strictly positive under the assumption |λ1λ2| < 1.
Now we turn to long-time existence and convergence. As in Theorem A,

we can show

|λ1λ2| ≤ 1 − δ, (4.11)

Recall the equation satisfied by ∗Ω1,

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1 + δ ∗ Ω1|A|2

+ ∗Ω1{
k1 − k2

2
(n − 1)[

∑

i

λ2
i

1 + λ2
i

] +
k1 + k2

2
[(n − 2)

λ2
1 + λ2

2 + 2λ2
1λ

2
2

(1 + λ2
1)(1 + λ2

2)
+

λ2
1 + λ2

2 − 2λ2
1λ

2
2

(1 + λ2
1)(1 + λ2

2)
]}

(4.12)

In fact,
∑

i

λ2

i

1+λ2

i

=
λ2

1
+λ2

2
+2λ2

1
λ2

2

(1+λ2

1
)(1+λ2

2
)
. Since ∗Ω1 = 1√

(1+λ2

1
)(1+λ2

2
)
, we have 1 −

∗Ω2
1 =

λ2

1
+λ2

2
+λ2

1
λ2

2

(1+λ2

1
)(1+λ2

2
)
. It is not hard to see there exists a constant c′ such that

λ2
1 + λ2

2 − 2λ2
1λ

2
2 ≥ c′(λ2

1 + λ2
2 + λ2

1λ
2
2) if |λ1λ2| ≤ 1 − δ.

Therefore,

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1 + δ ∗ Ω1|A|2 + c ∗ Ω1(1 − ∗Ω2

1) (4.13)
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for some constant c > 0.
As in the proof of Theorem A in [10], this equation implies long time

existence by blowing up argument and White’s regularity Theorem [11].
By maximum principle, minΣt

∗Ω1 → 1 as t → ∞, then we can use the
estimate in the proof of Theorem B in [10] to show maxΣt

|A|2 → 0 and
apply Simon’s Theorem. We get smooth convergence in this case. In the
limit, ∗Ω1 = 1 and thus λ1 = λ2 = 0.

2

Corollary If f is any smooth map from Sn to S2 and if at each point, the

restriction of df to any two dimensional subspace is area decreasing, then f

is homotopic to a constant map along the mean curvature flow.

Again, we remark the condition is equivalent to the comass of f ∗Ω2 is less
than one, where Ω2 is the area form on S2.
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