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1. Introduction

The study of the minimal surface equation

(1.1) div(
∇f

√

1 + |∇f |2
) = 0 , f : D ⊂ R

n → R

is responsible for the progress of nonlinear elliptic PDE theory in the last century.
Indeed, most early works on nonlinear elliptic problems focused on this particular
equation. There are many beautiful existence, uniqueness, regularity theorems for
the minimal surface equation, see for example [13].

The graph of a solution to (1.1) is naturally a minimal hypersurface in R
n+1.

In general, we can consider a vector-valued function whose graph is a minimal
submanifolds of the Euclidean space; the function then satisfies a nonlinear elliptic
system. Indeed, a C2 vector-valued function f = (f1, · · · fm) : D → R

m is said to be
a solution to the minimal surface system (see Osserman [16] or Lawson-Osserman
[13]) if

(1.2)

n
∑

i,j=1

∂

∂xi
(
√

ggij ∂fα

∂xj
) = 0 for each α = 1 · · ·m

where gij = (gij)
−1, gij = δij +

∑m
β=1

∂fβ

∂xi

∂fβ

∂xj , and g = det gij .

The graph of f , consisting of all points (x1, · · · , xn, f1(x), · · · , , fm(x)) with
x = (x1, · · · , xn) ∈ D, is then a minimal submanifold of R

n+m of dimension n and
codimension m.

The minimal surface system was first studied in Osserman [16], [17] and
Lawson-Osserman [13]. In contrast to the codimension one case, Lawson and Os-
serman [13] discovered remarkable counterexamples to the existence, uniqueness
and regularity of solutions to the minimal surface system in higher codimension.
It is thus interesting to identify natural conditions under which theorems for the
minimal surface equation can be generalized. In this article, we shall discuss a
special class of solutions to the minimal surface system. They are vector-valued
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functions that “decrease area” and are natural generalization of scalar functions.
After defining area-decreasing maps in the next section, we show several classical
results for the minimal surface equation can be generalized within this category.

2. Area-decreasing maps

Let L : R
n → R

m be a linear transformation, recall the norm of L, |L| is defined
by

|L| = sup
|v|=1

|L(v)|.

L induces a liner transformation, ∧2L, from the wedge product R
n∧R

n = ∧2
R

n

to ∧2
R

m by

(∧2L)(v ∧ w) = L(v) ∧ L(w).

To write ∧2L more explicitly, we pick a basis {vi}i=1···n for R
n and a basis

{uα}α=1···m for R
m, then {vi ∧ vj}, with (i, j) ranges all double indexes i < j,

forms a basis for ∧2
R

n. Likewise {uα ∧ uβ}α<β forms a basis for R
m. Suppose

L(vi) = Liαuα, in these bases ∧2L is represented by

(∧2L)(vi∧vj) = L(vi)∧L(vj) =
∑

α,β

LiαLjβuα∧uβ =
∑

α<β

(LiαLjβ−LiαLjβ)uα∧uβ .

With this we define

| ∧2 L| = sup
|v∧w|=1

|(∧2L)(v ∧ w)|.

In particular, | ∧2 L| = 0 if L is of rank one.
The norms |L| and | ∧2 L| can be expressed by the singular values of L, or

the eigenvalues of (L)T L. If we denote the singular values by λi, then there exist
orthonormal bases {vi} and {uα} such that

L(vi) = λiui

if i is less than or equal to the rank of L. It is now easy to see

|L| = sup
i

λi

and

| ∧2 L| = sup
i<j

λiλj .

|∧2 L| can also be interpreted as the maximum of the Jacobian of L when restricted
to any two-dimensional subspace of R

n.
For a vector-valued function f : D → R

m, the differential of f , df(x) at each

x ∈ D is a linear transformation from R
n to R

m represented by the matrix ∂fα

∂xi .

Definition 2.1. A Lipschitz map f : D → R
m is said to be area-decreasing if

| ∧2 df |(x) < 1 for almost every x ∈ D.

In particular, any scalar function, i.e. m = 1, is an area-decreasing map.



REMARKS ON A CLASS OF SOLUTIONS TO THE MINIMAL SURFACE SYSTEM 3

3. Recent results

In this section, we discuss some recent results on area-decreasing minimal maps.
The well-known Bernstein theorem asserts any complete minimal surface that

can be written as the graph of an entire function on R
2 must be a plane. This

result has been generalized to R
n, for n ≤ 7 and general dimension under various

growth condition, see [3] [5] [20] and the reference therein for the codimension one
case. In particular, the following classical result ( see [2], [4], [15]) is an important
case of the Bernstein theorem.

Theorem 3.1. Let f : R
n → R be a entire solution to (1.1). If f has bounded

gradient then f is a linear function.

For higher codimension Bernstein type problems, there are general results
of Simons [21], Reilly [18], Barbosa [1], Ficher-Colbrie [7], Hildebrandt-Jost -
Widman,[9] and Jost-Xin[11]. Because of the example of nonparametric minimal
cone discovered by Lawson and Osserman [13], all these results seek for optimal
conditions under which Bernstein type theorems hold. In [27], we prove the follow-
ing theorem that improves all known results in higher codimensions. This theorem
also generalizes Theorem 3.1 as any scalar function is area-decreasing.

Theorem 3.2. Let f : R
n → R

m be a entire solution to (1.2). If f has bounded
gradient and | ∧2 df | < 1 − ǫ for some ǫ > 0 then f is a linear map.

We remark that this is still not the sharpest condition in view of Lawson-
Osserman’s example.

If we require the graph of f to be a Lagrangian submanifold, (1.2) reduces to
a fully nonlinear scalar equation for the potential of f . Bernstein type results for
such minimal submanifolds have been obtained by many authors, we refer to the
recent articles of Yuan[32] and Tsui-Wang [24] and the reference therein.

A corollary of the Bernstein-type result is the following regularity theorem
proved in [30].

Corollary 3.3. If f : D → R
m is a Lipschitz solution to (1.2) and |∧2df | < 1,

then f is smooth.

The proof of the Bernstein type theorem is based on calculating the Laplacian
of the following quantity:

∗Ω =
1

√

det(δij +
∑m

β=1

∂fβ

∂xi

∂fβ

∂xj )
.

We notice
√

det(δij +
∑m

β=1

∂fβ

∂xi

∂fβ

∂xj ) is indeed the volume element of the graph

of f .
When m = 1, i.e. the codimension one case, ∗Ω = 1√

1+|∇f |2
is the angle made

by the normal vector of the graph of f and the xn+1 axis. This quantity satisfies a
very nice identity in the codimension one case.

∆
1

√

1 + |∇f |2
+

1
√

1 + |∇f |2
|A|2 = 0

where ∆ is the Laplace operator of the induced metric on the graph of f and A is
the second fundamental form.
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This is an important identity that has been used in the codimension-one Bern-
stein problem, see for example [5] in a slightly different form. In the higher codi-
mension case, we derive in [27] [29]( see also [26]) the following equation for ln ∗Ω:

∆(ln ∗Ω) = −
∑

α,l,k

h2
αlk −

∑

i,j,k

λiλjhn+i,jkhn+j,ik(3.1)

where λi are singular values of df and hαlk are coefficients of the second funda-
mental form in special bases adapted to the singular valued decomposition of df .
In particular,

∑

α,l,k h2
αlk = |A|2 is the square norm of the full second fundamental

form.
The right hand side can be rewritten as

−
∑

α,l,k

h2
αlk −

∑

i,k

λ2
i h

2
n+i,ik − 2

∑

i<j,k

λiλjhn+i,jkhn+j,ik.

It is clear now if λiλj < 1 for i 6= j, or f is area-decreasing, the righthand side
is always non-positive by completing square. The proof of Theorem 3 is based on
blow-up analysis of this inequality.

Next we discuss the interior gradient bound for solutions to the minimal surface
system (1.2). For solutions to (1.1), this was discovered, in the case of two variables,
by Finn [6] and in the general case by Bombieri , Di Giorgi and Miranda [2]. The
a priori bound is a key step in the existence and regularity of minimal surface
theory. The estimate has been generalized to other curvature equations and proved
by different methods. We refer to the note at the end of chapter 16 of [8] for
literature in these directions and Theorem 16.5 of [8] for the precise statement in
the codimension-one case. In [29], we generalize the interior gradient estimate to
higher codimension:

Theorem 3.4. Let D be a domain in R
n and f : D → R

m a C2 solution to
equation (1.2) such that | ∧2 df | < 1. If each fα is non-negative, then for any point
x0 ∈ D, we have estimate

|df(x0)| ≤ C1 exp{C2|f(x0)|/d}
where d = dist(x0, ∂D) and C1, C2 are constants depending on n.

The proof of Theorem 5 again uses (3.1). Indeed, if λiλj ≤ 1 for i 6= j then we
derive

∆ ln ∗Ω ≤ − 1

n
|∇ ln ∗Ω|2

where ∇ denotes the gradient of the induced metric on the graph of f . In [29],
we provide two arguments to derive the gradient estimate, the first one follows the
approach developed by Michael-Simon [14] and Trudinger [22][23] as was presented
in [8] and the second one generalizes Korevvar’s [12] using the maximum principle
(see also [31]).

The underlying principle in deriving (3.1) is discussed in [28]. It turns out
|λiλj | < 1 for i 6= j defines a region on the Grassmannian of n-planes in R

n+m on
which − ln Ω is a convex function. That ln ∗Ω is superharmonic follows directly from
Ruh-Vilms’ [19] theorem which states the Gauss map of a minimal submanifold is
always a harmonic map.
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To get a feeling of what the region |λiλj | < 1 looks like on the Grassmannian,
we demonstrate the case n = m = 2 in the following . In this case, G(2, 2) =
S2( 1√

2
)×S2( 1√

2
), where S2( 1√

2
) is a two-sphere of radius 1√

2
. Write R

4 = R
2 ⊕R

2

and denote the coordinates on the first summand R
2 by x1, x2 and the coordinates

on second summand R
2 by y1, y2. Then the forms ω1 and ω2

ω1 =
1√
2
(dx1 ∧ dx2 − dy1 ∧ dy2)

ω2 =
1√
2
(dx1 ∧ dx2 + dy1 ∧ dy2)

are viewed as functions on G(2, 2), see for example section 3 in [28]. We may identify
ω1 and ω2 with the height functions on the first and the second factor in S2( 1√

2
),

respectively. For a linear transformation L, the condition |λ1λ2| < 1 corresponds
to |dy1 ∧ dy2| < dx1 ∧ dx2 or ω1 > 0 and ω2 > 0 on the graph of L. Therefore, the
area-decreasing condition on f is equivalent to the image of the Gauss map of the
graph of f lies in the product of two hemispheres of S2( 1√

2
) × S2( 1√

2
). Recall in

the codimension-one case, a hypersurface in R
n+1 is the graph of a scalar function

f if and only the Gauss map lies in a hemisphere of Sn. This also indicates why the
area-decreasing condition is a natural generalization of being codimension-one. We
conjecture most classical theorems for solutions to the minimal surface equation
should hold for this class of maps. In particular,

Conjecture 3.5. Let D be a C2 convex domain in R
n. If φ : D → R

m is
an area-decreasing map, then the Dirichlet problem of the minimal surface system
(1.2) for φ|∂D is solvable in smooth maps. The solution is volume-minimizing and
is unique among all area decreasing maps with the same boundary condition.

The Dirichlet problem for the minimal surface equation (1.1) was solved by
Jenkin-Serrin [10] for mean convex domains. The solution of Conjecture 6 will
be a natural generalization of Jenkin-Serrin’s theorem to systems. In [30], we
use the mean curvature flow to prove the existence part of conjecture under a
stronger condition on φ. It is shown in [28] that the set of area-decreasing linear
transformations is a convex subset of the Grassmannian; we believe this will be
useful in attacking Conjecture 6.
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