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Abstract

An n dimensional minimal submanifold Σ of R
n+m is called non-

parametric if Σ can be represented as the graph of a vector-valued

function f : D ⊂ R
n 7→ R

m. This note provides a sufficient condition

for the stability of such Σ in terms of the norm of the differential df .

1 Introduction

A minimal submanifold is stable if the second derivative of the volume func-
tional with respect to any compact supported normal variational field is non-
negative. A non-parametric minimal hypersurface in the Euclidean space
R

n+1 is always stable. This is no longer true when the codimension is greater
than one. A non-stable non-parametric minimal surface in four dimension
was constructed by Lawson and Osserman in [5]. It seems very little is known
about the stability of higher codimension minimal submanifolds except for
calibrated ones. Recall a submanifold Σ is calibrated by a calibrating form Ω
if Ω|Σ is the volume form of Σ, or ∗Ω = 1 where ∗ is the Hodge star operator.
In particular, a non-parametric hypersurface in R

n+1 is calibrated by the n

form i(N)dx1 · · · dxn+1 where N is a extension of the unit normal vector field
of Σ.

In [8], the second author constructs solutions to the Dirichlet problem
of minimal surface systems in higher dimension and codimension and the
solutions satisfies ∗Ω > 1

2
for Ω the volume form of an n-dimensional sub-

space. When Σ is the graph of f : D ⊂ R
n 7→ R

m and Ω is the volume
form of the domain R

n extending to the whole R
n+m, we have the relation
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∗Ω = 1√
det(I+(df)T df)

. ∗Ω is actually the Jacobian of the projection map

π : Σ 7→ D. In particular, a lower bound on ∗Ω implies an upper bound
on the norm of df . In this paper, we discover a criterion for the stability of
minimal submanifolds in terms of such condition.

Theorem A. Let Σ be the graph of f : D ⊂ R
n 7→ R

m. If Σ is minimal

and ||df || ≤
√

1+c−1√
c

, then Σ is stable. Here the norm ||df || is defined to be

sup|V |=1 |df(V )| and c is a constant which is 1 if m ≤ 2 or n ≤ 2, and is

min (m − 1, n − 1) in other cases.

Since ∗Ω = 1√
det(I+(df)T df)

= 1√
∏

(1+λ2

i )
, it is not hard to see the following

consequence.

Corollary. Let c be the constant as in Theorem A. If Σ is minimal and

∗Ω ≥ c

2(c+1−
√

1+c)
, then Σ is stable

In particular, when m ≤ 2 or n ≤ 2, if Σ is minimal and ∗Ω ≥ 2+
√

2
4

,
then Σ is stable. The condition ∗Ω > c

2(c+1−
√

1+c)
corresponds a region in

the Grassmannian. For minimal surfaces in R
3, Barbosa and Do Carmo

[1],[2] proved if the area of the image of the Gauss map is less than 2π
then D is stable. Their result was also obtained by D. Fischer-Colbrie and
R. Schoen in [4] by a different method. This raises the general question of
how to characterize stability by the Gauss map of a minimal submanifold.
We remark the condition is not sharp in view of the codimension one case.

The proof of Theorem A utilizes a second variation formula of R. Mclean
[6] for calibrated submanifolds. The corresponding formula for complex sub-
manifolds of Kähler manifolds was derived by J. Simons [7].

Part of this paper is completed while both authors were visiting the Na-
tional Center of Theoretical Science in National Tsing-Hua University, Hsin-
Chu, Taiwan. The authors wish to express their gratitude for the excellent
support provided by the center during their stays. The second author would
like to thank Ben Andrews, Bob Gulliver and Brian White for inspring dis-
cussions.
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2 Second Variation Formula

We first recall the second variation formula for minimal submanifolds. Let
F0 : Σ 7→ R

n+m be a minimal submanifold and let F : Σ× [0, 1) 7→ R
n+m be a

one-parameter family of immersions with F (·, 0) = F0. We may assume the
variation field V = F∗(

∂
∂s

) is normal and of compact support. For simplicity,
we will identify F0(Σ) with Σ and denote F (·, s) by Fs. A coordinate system
{xi} in a neighborhood of p ∈ Σ is fixed. Let gij(s) be the induced metric and
dvs =

√

det gij(s) dX be the volume form on Fs(Σ). At s = 0, the volume
form will be written as dv instead.

We recall the second variation formula from [3]:

d2

ds2
|s=0

∫

Σ

dvs =

∫

Σ

(||∇NV ||2 − B(V, V )) dv

where ∇NV is the covariant derivative of V as a section of the normal bundle
and B(V, V ) =

∑

ijkl g
ikgjl〈 ∂2F

∂xi∂xj , V 〉〈 ∂2F
∂xk∂xl , V 〉. The minimal submanifold

Σ is stable if and only if

∫

Σ

||∇NV ||2 dv ≥
∫

Σ

B(V, V ) dv

for any normal vector field with compact support. Since the second variation
formula does not depend on ∂2F

∂s2 , we may consider only the case ∂2F
∂s2 is zero

at s = 0. In this case, the following equation holds at every point.

∂2

∂s2
|s=0

√

det gij(s) = (||∇NV ||2 − B(V, V ))
√

det gij (2.1)

In [6], a different second variation formula is derived in the presence of a
calibrating form Ω. In the following, we derive the formula for completeness.
We shall assume Ω is locally an exact form.

Now
∫

Fs(Σ)
Ω =

∫

Σ
F ∗

s Ω is a constant . Write F ∗
s Ω = ∗Ω(s)

√

det gij(s) dX,

where ∗Ω = 1√
det gij

Ω( ∂F
∂x1 , · · · ∂F

∂xn ).

Since

0 =
d2

ds2

∫

Σ

F ∗
s Ω

=

∫

Σ

[(
∂2

∂s2
∗ Ω)

√

det gij(s) + 2(
∂

∂s
∗ Ω)(

∂

∂s

√

det gij(s))

+ ∗Ω ∂2

∂s2

√

det gij(s)] dX
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and ∂
∂s
|s=0

√

det gij(s) = 0 by the minimal condition, at s = 0 we have

∫

Σ

∗Ω ∂2

∂s2

√

det gij(s) dX = −
∫

Σ

(
∂2

∂s2
∗ Ω) dv

That is,
∫

Σ

∗Ω(||∇NV ||2 − B(V, V )) dv = −
∫

Σ

(
∂2

∂s2
|s=0 ∗ Ω) dv (2.2)

We shall compute ∂2

∂s2 ∗ Ω using the formula ∗Ω = 1√
det gij

Ω( ∂F
∂x1 , · · · ∂F

∂xn ).

Thus

∂2

∂s2
∗ Ω =

∂2

∂s2
(

1
√

det gij

)Ω(
∂F

∂x1
, · · · ∂F

∂xn
)

+ 2
∂

∂s
(

1
√

det gij

)
∂

∂s
Ω(

∂F

∂x1
, · · · ∂F

∂xn
)

+ (
1

√

det gij

)
∂2

∂s2
Ω(

∂F

∂x1
, · · · ∂F

∂xn
)

(2.3)

At s = 0, the minimal condition implies the second term vanishes and the
first term becomes

∂2

∂s2
|s=0(

1
√

det gij

) = −(det gij)
−1 ∂2

∂s2
|s=0(

√

det gij)

Because ∂2F
∂s2 is zero at s = 0, the third term is

∂2

∂s2
Ω(

∂F

∂x1
, · · · ∂F

∂xn
) = 2[Ω(

∂2F

∂s∂x1
,

∂2F

∂s∂x2
· · · ∂F

∂xn
) + · · · ] (2.4)

Denote ∂F
∂xi by ∂i, then ∂2F

∂s∂xi = ∂2F
∂xi∂s

= ∇∂i
V where ∇ is the connection

on R
n+m and V = ∂F

∂s
is the variation field . In the following computation

(·)T and (·)N denote the tangent and normal part of vector respectively.

Ω(
∂2F

∂s∂x1
,

∂2F

∂s∂x2
· · · ∂F

∂xn
)

= Ω((∇∂1
V )T + (∇∂1

V )N , (∇∂2
V )T + (∇∂2

V )N , · · ·∂n)

= Ω((∇∂1
V )T , (∇∂2

V )T , · · ·∂n) + Ω((∇∂1
V )T , (∇∂2

V )N , · · ·∂n)

+ Ω((∇∂1
V )N , (∇∂2

V )T , · · ·∂n) + Ω((∇∂1
V )N , (∇∂2

V )N , · · ·∂n)
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We can assume {xi} is a normal coordinate system in a neighborhood of
p with respect to the induced metric on Σ. Hence gij(0) = δij at p. We do
the computation at point p and get

Ω((∇∂1
V )T , (∇∂2

V )T , · · ·∂n) = ∗Ω(〈V,∇∂1
∂1〉〈V,∇∂2

∂2〉 − 〈V,∇∂1
∂2〉2)

Continue from equation (2.4), we derive

2[Ω(
∂2F

∂s∂x1
,

∂2F

∂s∂x2
· · · ∂F

∂xn
) + · · · ]

= 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )T , · · · (∇∂j

V )N , · · ·∂n)

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )N , · · · (∇∂j

V )T , · · ·∂n)

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )N , · · · (∇∂j

V )N , · · ·∂n)

+ 2 ∗ Ω(
∑

i<j

〈V,∇∂i
∂i〉〈V,∇∂j

∂j〉 − 〈V,∇∂i
∂j〉2)

It thus follows from (2.3) that

∂2

∂s2
|s=0 ∗ Ω = − ∗ Ω||∇NV ||2 + ∗Ω

∑

i,j

〈V,∇∂i
∂j〉2

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )T , · · · (∇∂j

V )N , · · ·∂n)

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )N , · · · (∇∂j

V )T , · · ·∂n)

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )N , · · · (∇∂j

V )N , · · ·∂n)

+ 2 ∗ Ω(
∑

i<j

〈V,∇∂i
∂i〉〈V,∇∂j

∂j〉 − 〈V,∇∂i
∂j〉2)

However,

∗ Ω
∑

i,j

〈V,∇∂i
∂j〉2 + 2 ∗ Ω(

∑

i<j

〈V,∇∂i
∂i〉〈V,∇∂j

∂j〉 − 〈V,∇∂i
∂j〉2)

= ∗Ω(
∑

i

〈V,∇∂i
∂i〉)2 = 0
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Therefore,

∂2

∂s2
|s=0 ∗ Ω = − ∗ Ω||∇NV ||2 + 2

∑

i<j

Ω(∂1, · · · (∇∂i
V )T , · · · (∇∂j

V )N , · · ·∂n)

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )N , · · · (∇∂j

V )T , · · ·∂n)

+ 2
∑

i<j

Ω(∂1, · · · (∇∂i
V )N , · · · (∇∂j

V )N , · · ·∂n)

Combine equations (2.1) and (2.2), we obtain

Proposition 2.1 Let Ω be an exact parallel n-form and Σ be an n dimen-

sional minimal submanifold in R
n+m. Assume that V is a normal variation

field and ∇V V = 0 along Σ. Then one has

∫

Σ

∗Ω(||∇NV ||2 − B(V, V )) dv

=

∫

Σ

[∗Ω||∇NV ||2

− 2
∑

i<j

Ω(∂1, · · · , (∇∂i
V )T , · · · , (∇∂j

V )N , · · · , ∂n)

− 2
∑

i<j

Ω(∂1, · · · , (∇∂i
V )N , · · · , (∇∂j

V )N , · · · , ∂n)

− 2
∑

i<j

Ω(∂1, · · · , (∇∂i
V )T , · · · , (∇∂j

V )N , · · · , ∂n)] dv

(2.5)

3 Proof of Theorem A

The idea now is to show the right hand side of equation (2.5) is greater than
or equal to

δ

∫

Σ

∗Ω(||∇NV ||2 − B(V, V )) dv

for some δ < 1. We shall express the integrand in the right hand side of
equation (2.5) in terms of a particular orthonormal basis. At any point p,
we consider the singular value decomposition of df : R

n 7→ R
m. We have

df(ai) = λian+i
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where λi ≥ 0 are the singular values of df , or eigenvalues of
√

(df)Tdf .

{ai}i=1,··· ,n is an orthonormal basis of eigenvectors of
√

(df)Tdf . The set
{an+i} can be completed to form an orthonormal basis {aα}α=n+1,··· ,n+m for
R

m. (In case m < n, we will have λi = 0 for i > m and {an+i}i=1,··· ,m
forms an orthonormal basis for R

m.) Now {ei = 1√
1+λ2

i

(ai + λian+i)} and

{en+i = 1√
1+λ2

i

(an+i − λiai)} can be completed to give orthonormal basis of

the tangent and normal space. The orthonormal basis for the normal space is
denoted by {eα}α=n+1,··· ,n+m. In these bases we denote (∇ei

V )N =
∑

α V α
i eα

and (∇ei
V )T = −

∑

α,j V αhαijej. We shall assume m ≥ n in the following
calculation, the other case can be treated similarly.

At the point p in these bases, the integrand of the right hand side of
equation (2.5) can be written as

∗ Ω[
∑

i,α

(V α
i )2 − 2

∑

i<j

λiλjV
n+i
i V

n+j
j + 2

∑

i<j

λiλjV
n+j
i V n+i

j

+ 2
∑

α

∑

i<j

V αhαiiV
n+j
j λj − 2

∑

α

∑

i<j

V αhαijV
n+i
j λi

+ 2
∑

α

∑

i<j

V αhαjjV
n+i
i λi − 2

∑

α

∑

i<j

V αhαijV
n+j
i λj ]

which is the same as

∗ Ω[
∑

i,α

(V α
i )2 −

∑

i6=j

λiλjV
n+i
i V

n+j
j +

∑

i6=j

λiλjV
n+j
i V n+i

j

+ 2
∑

α

∑

i6=j

V αhαiiV
n+j
j λj − 2

∑

α

∑

i6=j

V αhαijV
n+i
j λi]

By minimality, we have

2
∑

i6=j

V αhαiiV
n+j
j λj = −2

∑

j

V αhαjjV
n+j
j λj

Define Ξ by

Ξ =
∑

i,α

(V α
i )2 −

∑

i6=j

λiλjV
n+i
i V

n+j
j +

∑

i6=j

λiλjV
n+j
i V n+i

j

− 2
∑

α

∑

i,j

V αhαijV
n+i
j λi
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If we can show

Ξ ≥ δ[
∑

i,α

(V α
i )2 −

∑

ij

(
∑

α

V αhαij)
2]

for some δ < 1, then we are done in review of equation (2.5).
By Cauchy-Schwarz inequality, for any ǫ > 0 to be determined,

−2
∑

i,j,α

V αhαijV
n+i
j λi ≥ −ǫ

∑

i,j

(
∑

α

V αhαij)
2 − 1

ǫ

∑

i,j

(V n+i
j λi)

2

Therefore

Ξ ≥
∑

iα

(V α
i )2 −

∑

i6=j

λiλjV
n+i
i V

n+j
j +

∑

i6=j

λiλjV
n+j
i V n+i

j − 1

ǫ

∑

i,j

(V n+i
j λi)

2

− ǫ
∑

i,j

(
∑

α

V αhαij)
2

Now assume each λi ≤ η, then

Ξ ≥
∑

i,α

(V α
i )2 − η2

∑

i6=j

|V n+i
i ||V n+j

j | − η2
∑

i6=j

|V n+j
i ||V n+i

j | − η2

ǫ

∑

i,j

(V n+i
j )2

− ǫ
∑

i,j

(
∑

α

V αhαij)
2

(3.1)

By Cauchy-Schwarz inequality
∑

i6=j

|V n+i
i ||V n+j

j | ≤ (n − 1)
∑

i

(V n+i
i )2

and
∑

i6=j

|V n+j
i ||V n+i

j | ≤
∑

i6=j

(V n+j
i )2

In a general case, the coefficient in the right hand side of the first inequality
should be min (m− 1, n− 1). Let c = 1 if m ≤ 2 or n ≤ 2 and c = min (m−
1, n − 1) in other cases. Plug into equation (3.1), we obtain,

Ξ ≥(1 − η2

ǫ
− cη2)

∑

i,α

(V α
i )2 − ǫ

∑

i,j

(
∑

α

V αhαij)
2

(3.2)
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We need to have 1 − η2

ǫ
− cη2 ≥ ǫ which is η2 ≤ ǫ(1−ǫ)

1+cǫ
. It is not hard

to see max0<ǫ<1
ǫ(1−ǫ)
1+cǫ

= (
√

c+1−1)2

c
when ǫ =

√
1+c−1

c
. Thus if we assume

||df || ≤
√

1+c−1√
c

, then each |λi| ≤
√

1+c−1√
c

and

Ξ ≥
√

1 + c − 1

c
[
∑

i,α

(V α
i )2 −

∑

i,j

(
∑

α

V αhαij)
2]

Theorem A is proved.

4 Examples

The construction in [8] supplies examples for such stable minimal subman-
ifolds. Given any φ : D ⊂ R

n 7→ R
m defined on a convex domain D, we

can scale φ so that on the graph of φ, ∗Ω ≥ c

2(c+1−
√

1+c)
and the derivative

of φ satisfies the requirement in [8]. It was proved in [8] that the Cauchy-
Dirichlet problem of the mean curvature flow for initial data φ is solvable
and ∗Ω ≥ c

2(c+1−
√

1+c)
is preserved along the flow. The flows converges to a

minimal submanifold which is stable by the Corollary.
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