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Abstract

Let F : Σn × [0, T ) → R
n+m be a family of compact immersed

submanifolds moving by their mean curvature vectors. We show the
Gauss maps γ : (Σn, gt) → G(n,m) form a harmonic heat flow with
respect to the time-dependent induced metric gt. This provides a more
systematic approach to investigating higher codimension mean curva-
ture flows. A direct consequence is any convex function on G(n,m)
produces a subsolution of the nonlinear heat equation on (Σ, gt). We
also show the condition that the image of the Gauss map lies in a to-
tally geodesic submanifold of G(n,m) is preserved by the mean curva-
ture flow. Since the space of Lagrangian subspaces is totally geodesic
in G(n, n), this gives an alternative proof that any Lagrangian sub-
manifold remains Lagrangian along the mean curvature flow.

1 Introduction

The maximum principle has been exploited by S-T. Yau and his coauthors to
obtain gradient estimates for various geometric nonlinear partial differential
equations since the ’70. The principal idea is to identify a suitable expression
of the gradient of the solution to which the differential operator (usually
Laplace or heat operator) is applied. The prototype is the so-called Bochner
formula and the geometry (curvature) of the manifold arises naturally in the
calculation. Such techniques were extended by R. Hamilton to Ricci flows
which are nonlinear parabolic systems. The curvature as second derivatives of
the metric satisfies a certain parabolic system and the geometry of the space
of curvature is used to derived estimates. A powerful theorem of Hamilton
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says any convex invariant subset of the space of curvature is preserved by
the Ricci flow.

Such curvature estimates were extended to the mean curvature flow of
hypersurfaces by G. Huisken. Recall a mean curvature flow is an evolution
equation under which a submanifold deforms in the direction of its mean
curvature vector. The mean curvature flow of an immersion F : Σn → Rn+m

is a family of immersions parametrized by t, F : Σ × [0, T ) → Rn+m that
satisfies

d

dt
F (x, t) = H(x, t)

F0 = F.

We shall denote the image F (·, t) by Σt, then H(x, t) is the mean curvature
vector of Σt at F (x, t).

Codimension-one mean curvature flows have been studied by Huisken et
al and many beautiful results are obtained. In this paper, we shall focus on
higher codimension mean curvature flows, i.e. the m > 1 case.

Consider a system with n variables and n + m functions. The configura-
tion space of the differentials of the solutions consists of n vectors in Rn+m.
If we assume the n vectors are linear independent, up to isometry this is
parametrized by the Grassmannian G(n, m) of the space of n-dimensional
subspaces in Rn+m. In this paper, we investigate the geometry of Grass-
mannian to obtain estimates on first derivatives of the mean curvature flow.
Recall the Gauss map γ maps (Σ, gt) into the Grassmannian G(n, m) by
sending x ∈ Σ to TxΣt ⊂ Rn+m, the tangent space of Σ at x .

Theorem A. The Gauss maps of a mean curvature flow γ : (Σ, gt) →
G(n, m) form a harmonic map heat flow, i.e.

d

dt
γ = tr∇dγ

where dγ is considered as a section of T ∗Σt ⊗ γ−1TG(n, m) and the trace is
taken with respect to the induced metric gt.

Theorem A was conjectured by R. Hamilton and T. Ilmanen in private
communications with the author. This generalizes a famous theorem of Ruh-
Vilms [13] which states the Gauss map of a minimal submanifold is a har-
monic map.
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An immediate corollary of Theorem A is

Corollary A. If ρ is any convex function on G(n, m), then γ ◦ ρ is a subso-
lution of the (nonlinear) heat equation.

(
d

dt
− ∆)γ ◦ ρ ≤ 0

where ∆ is the Laplace operator of the induced metric gt on Σ.

In the stationary case, a convex function on G(n, m) gives a subhar-
monic function on a minimal submanifold. This approach was developed
by Fischer-Colbrie[7], Hildebrandt-Jost-Widman[10], Jost-Xin[11][12], Tsui-
Wang[15] and [20] to obtain Bernstein type results for higher codimension
minimal submanifolds .

When Σ is compact, it follows from the maximum principle that if γ(Σ0)
lies in a convex set of G(n, m), so does γ(Σt) as long as the flow exists
smoothly. In the codimension-one case, the Grassmannian is a sphere and
any hemisphere is a convex subset. This implies that the condition of being a
graph over an affine hyperplane is preserved along the mean curvature flow,
a key step in Ecker-Huisken’s [4] [5] estimates for hypersurface flows.

Any n form on Rn+m naturally defines a function on G(n, m). We identify
a class of convex functions on G(n, m) in the following theorem.

Theorem B. Let Ω be a simple unit n form on Rn+m, then − ln Ω, as a
function on G(n, m) is convex on a set Ξ which properly contains {Ω ≥ 1

2
}.

The set Ξ will described explicitly in §3. That − ln Ω is convex on the set
{Ω ≥ 1

2
} was proved implicitly by Jost-Xin in [11]. Instead of calculating the

function Ω, the authors considered the distance function on G(n, m). Our
approach makes the calculation simpler and more explicit, thus a stronger
version is obtained.

We remark that although Theorem A and B are conceptually easier to
understand, all applications rely on explicit formulae. More important in-
formation is contained in the “extra” terms. The explicit formula is derived
in [19] and has been applied to study long-time existence and convergence
of mean curvature flows [19] and Bernstein-type problems for minimal sub-
manifolds in [15] and [20].

We give another example to illustrate Theorem A. On R4, take three or-
thonormal self-dual two-forms α1, α2, α3 and anti-self-dual two-forms β1, β2, β3
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as in §3 of [17]. These forms serve as coordinate functions on G(2, 2) under
the identification

x ∈ G(2, 2) → (αi(x), βi(x))

An element x in G(2, 2) satisfies
∑3

i=1(αi(x))2 =
∑3

i=1(βi(x))2 = 1
2
. There-

fore G(2, 2) ⋍ S2
+( 1√

2
)×S2

−( 1√
2
). It is clear that each αi is a convex function

on the hemisphere where αi > 0. Each αi can be considered as a Kähler form
and a surface is called symplectic with respect to αi if the Gauss map lies
in the region {αi > 0}. This fact is implicit in the derivation of [17] where
we show being symplectic is preserved along the mean curvature flow in a
Kähler-Einstein four manifold, see also Chen-Tian[3].

Indeed, the condition that the image of the Gauss map lies in the set
{αi = 0} which corresponds to a great circle on S2

+ is also preserved. It is a
special case of the following general theorem.

Theorem C. Suppose Σt ⊂ Rn+m , t ∈ [0, T ) are compact immersed sub-
manifolds evolving by the mean curvature flow. If γ(Σ0) lies in a totally
geodesic submanifold of G(n, m), so does γ(Σt) for t ∈ [0, T ).

A compact Lagrangian submanifold remains Lagrangian under the mean
curvature flow in a Kähler-Einstein manifold, see for example Smoczyk [14].
When the ambient space is Cn, since the Lagrangian Grassmannian U(n)/
SO(n) is totally geodesic in G(n, n), this also follows from Theorem C.

Theorem A and C are proved in §2. Theorem B is proved in §3. In §4, we
prove Ξ (see Theorem B) is a convex subset of the Grassmannian. In §5, we
discuss briefly the necessary adaption when the ambient space is a general
Riemannian manifold.

I am grateful to Professor S.-T. Yau for his constant support. I have
benefitted from inspiring discussions with B. Andrews, R. Hamilton, T. Il-
manen, and M-P. Tsui. I would like to thank G. Huisken who encouraged
me to write up this paper.

Part of this paper was completed while the author was visiting the FIM
in ETH, Zürich. The author would like to thank the institute for their
hospitality during his stay.
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2 Gauss Maps

We refer to [22], [7], [10], [?] for general facts on Grassmannnian geometry.
We shall adopt the description G(n, m) = SO(n+m)/SO(n)×SO(m). The
tangent space of G(n, m) at the identity can be identified with the space of
block matrices of the form

[

0 A
−At 0

]

where A is an n × m matrix. The homogeneous metric on G(n, m) is ds2 =
∑

A2
iα.

Let P ∈ G(n, m) be an n-dimensional subspace and TP G = TP G(n, m)
be the tangent space of G(n, m) at P . Let e1(s)∧· · ·∧en(s) represent a one-
parameter family of n planes with {e1(s), · · · , en(s)} as their orthonormal
bases so that e1(0) ∧ · · · ∧ en(0) = e1 ∧ · · · ∧ en represents P . We have

d

ds
|s=0e1(s) ∧ · · · ∧ en(s) = e′1(0) ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ e′n(0).

By the identification TP G ≡ Hom(P, P⊥), we may assume e′i(0) lies in
the orthogonal complement P⊥. The length of this tangent vector in ∧n

R
n+m

is (
∑

|e′i(0)|2) 1

2 . This element is identified with
∑

e∗i ⊗ e′i(0) ∈ Hom(P, P⊥)
by the natural pairing through e1 ∧ · · · ∧ en. It is clearly an isometry.

Now suppose Σ is an immersed submanifold in Rn+m with Gauss map
γ : Σ → G(n, m). Thus we have a canonical identification of bundles

γ−1TG ≡ T ∗Σ ⊗ NΣ. (2.1)

We recall the statement of Theorem A and present the proof.

Theorem A. The Gauss maps of a mean curvature flow γ : (Σ, gt) →
G(n, m) form a harmonic map heat flow, i.e.

d

dt
γ = tr∇dγ

where dγ is considered as a section of T ∗Σt ⊗ γ−1TG(n, m) and the trace is
taken with respect to the induced metric gt.

Proof. Recall from Ruh-Vilms[13], the tension field tr∇dγ of the Gauss map
γ can be identified with ∇H , where ∇ is the connection on the normal bundle.
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We can identify dγ ∈ Γ(T ∗Σ ⊗ γ−1(TG)) with the second fundamental form
A ∈ Γ(T ∗Σ ⊗ T ∗Σ ⊗ NΣ) through (2.1). Now tr∇A = ∇H by the Codazzi
equation.

It suffices to show d
dt

γ = ∇H . Express each element in T ∗Σ ⊗ NΣ as
∑

i e
∗
i ⊗ vi, vi ∈ NΣ, the corresponding tangent vector in the Grassmannian

is

v1 ∧ e2 ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ en−1 ∧ vn.

With the identification, it is clear that the element correspond to ∇H is

∇ei
H ∧ e2 ∧ · · · ∧ en + · · ·+ e1 ∧ · · · ∧ ∇en

H.

To calculate dγ

dt
at any space-time point (p, t), we fix a coordinate system

x1, · · ·xn on Σ.
The Gauss map is determined by

γt =
1

√

det gij

∂Ft

∂xi
∧ · · · ∧ ∂Ft

∂xn
.

We may assume ∂F
∂xi

= ei forms an orthonormal basis at (p, t). Recall the
following evolution equation of the volume element:

d

dt

√

det gij = −|H|2
√

det gij.

On the other hand, d
dt

∂Ft

∂xi = ∂H
∂xi . By decomposition into tangent and

normal parts, we have

∂H

∂xi
= 〈∂H

∂xi
,
∂F

∂xj
〉gik ∂F

∂xk
+ ∇ ∂F

∂xi
H.

Using 〈 ∂H
∂xi ,

∂F
∂xj 〉 = −〈H, ∂2F

∂xi∂xj 〉, it is not hard to check

d

dt
|t=0γt = ∇ei

H ∧ e2 ∧ · · · ∧ en + · · · e1 ∧ · · · ∧ ∇en
H

and the theorem is proved.
2

Now let ρ be any function on G(n, m), the composite function ρ ◦ γ :
(Σ, gt) → R satisfies the following equation
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d

dt
ρ ◦ γ = dρ(

d

dt
γ) = dρ(tr∇dγ)

where tr∇dγ is the tension field. The following calculation can be found in
Proposition (2.20) of Eells-Lemaire[6]

∆t(ρ ◦ γ) = tr∇dρ(dγ, dγ) + dρ(tr∇dγ)

where ∆t is the Laplace operator on Σt.
Therefore

(
d

dt
− ∆)ρ ◦ γ = −tr∇dρ(dγ, dγ). (2.2)

In case ρ is convex, ∇dρ is a positive definite quadratic form and Corollary
A follows from this equation. The following theorem is a direct consequence
of the maximum principle of parabolic equations.

Theorem 2.1 Suppose Σt ⊂ R
n+m are compact immersed submanifolds evolv-

ing by mean curvature flow. If γ(Σ0) lies in a convex set of G(n, m), so does
γ(Σt) for t ∈ [0, T ).

Next we recall the statement of Theorem C and present the proof.

Theorem C. Suppose Σt ⊂ Rn+m, t ∈ [0, t) are compact immersed subman-
ifolds evolving by the mean curvature flow. If γ(Σ0) lies in a totally geodesic
submanifold of G(n, m), so does γ(Σt) for t ∈ [0, T ).

Proof. Let T be a totally geodesic submanifold and d(·, T) be the distance
function to T. We consider the second derivative of the square of the distance
function, r(·) = d2(·, T). Fix p0 /∈ T, we assume p0 lies in a sufficiently small
tubular neighborhood of T without focal points. Let α0(t), 0 ≤ t ≤ 1 be
a minimizing geodesic from p0 to p ∈ T which realizes the distance to T.
We assume α0(t) is parametrized so that |α′

0(t)| = d(p0, p) = d(p0, T). Let
v(s),−ǫ ≤ s ≤ ǫ be a normal geodesic through p0 = v(0) such that X = v′(0)
is perpendicular to α′(0).

Following Proposition (3.11) of Eells-Lemaire [6] (see also Bishop-O’Neill[1]),
there exists a parametrization

α : [−ǫ, ǫ] × [0, 1] → G(n, m)

7



such that each αs(t) = α(s, t), 0 ≤ t ≤ 1 is a minimizing geodesic from v(s)
to T and α(s, 0) = v(s). Denote T = ∂α

∂t
and V = ∂α

∂s
, then V is a Jacobi

field, i.e. ∇T∇T V = −R(T, V )T .
Thus V (0, 0) = v′(0) and V (s, 1) is tangent to T because α(s, 1) is con-

tained in T. Also notice that

〈V, T 〉 = 0 at both p0 = α(0, 0) and p = α(0, 1). (2.3)

The second variation can be calculated as in Eells-Lemaire [6] and we
obtain

∂2r

∂s2
|s=0 = 〈∇V V, T 〉|10 +

∫ 1

0

〈∇TV,∇T V 〉 − 〈R(T, V )T, V 〉 dt. (2.4)

Now 〈∇V V, T 〉 = 0 at p0 = α(0, 0) because v(s) is a geodesic. At p =
α(0, 1), T is normal to T and V is tangent to T, therefore 〈∇V V, T 〉 represents
a second fundamental form of T; this terms vanishes as well because T is
totally geodesic .

We claim 〈V, T 〉 = 0 along α0. Indeed, taking derivative of 〈V, T 〉 with
respect to t twice, we obtain

T 〈∇TV, T 〉 = 〈∇T∇T V, T 〉 = −〈R(T, V )T, T 〉 = 0.

Thus 〈∇T V, T 〉 = T 〈V, T 〉 is a constant function in t, or 〈V, T 〉 is a linear
function in t along α0. Since 〈V, T 〉 = 0 at p0 and p, we conclude 〈V, T 〉 = 0
along α0.

From 〈V, T 〉 = 0, we deduce 〈R(T, V )T, V 〉 ≤ K1|V |2|T |2 along α0, where
K1 is an upper bound of the sectional curvature of G(n, m). Moreover,
along α0 we have |V |2 ≤ K2|X|2 for a constant K2 that depends on the
sectional curvature and the size of the tubular neighborhood by a comparison
argument. Now (2.4) implies

∂2r

∂s2
|s=0 ≥ −K3|X|2

or

∇dr(X, X) ≥ −K3|X|2

at any point p0 in a sufficiently small tubular neighborhood of T.
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Combine this equation with equation (2.2), we derive

(
d

dt
− ∆)(r ◦ γ) ≤ K ′r ◦ γ. (2.5)

K ′ involves the second fundamental form (recall A = dγ), but as long as
the flow exists smoothly K ′ is bounded. The assumption implies r ◦ γ = 0
initially and this remains true afterwards by applying the maximum principle
to (2.5). 2

3 Applications

Note the summation convention, repeated indices are summed over, is adopted
in the rest of this article. We first define the set Ξ in the statement of The-
orem B. Ω, as a simple unit n-form, is dual to an n-subspace Q. Given any
P that can be written as the graph of a linear transformation LP : Q → Q⊥

over Q. Denote by λi(P ) the singular values LP or the eigenvalues of the
symmetric matrix

√

LT
P LP . Ξ is then defined by

Ξ = {P ∈ G(n, m) | P is a graph over Q and |λiλj | ≤ 1 for any i 6= j.}
(3.1)

It is not hard to see Ω(P ) = 1√
∏

(1+λ2

i
)
. Therefore

Ω ≥ 1

2
implies |λiλj| ≤ 1.

Theorem B. Let Ω be a simple unit n form on Rn+m, then − ln Ω, as a
function on G(n, m) is convex on Ξ which properly contains the set {Ω ≥ 1

2
}.

Proof. Given P = e1 ∧ · · · ∧ en ∈ G(n, m) and suppose the orthogonal
complement P⊥ is spanned by {en+α}α=1···m. By a formula of Wong[22],
a geodesic through P parametrized by arc length is given as Ps spanned by
{ei +ziα(s)en+α}i=1···n such that Z = [ziα(s)] is a n×m matrix which satisfies
the following ordinary differential equation:

Z ′′ − 2Z ′ZT (I + ZZT )−1Z ′ = 0.

We assume ziα(0) = 0, i.e. P0 = P , then the geodesic equation implies
z′′iα(0) = 0. We also denote z′iα(0) = µiα in the following calculation.
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We shall calculate the second derivative of the ln of

p(s) = Ω(Ps) =
1

√

det gij

Ω(e1 + z1α(s)en+α, · · · , en + znα(s)en+α) (3.2)

where gij(s) = δij + ziα(s)zjα(s). By direct calculation,

g′
ij(0) = 0, and g′′

ij(0) = 2µiαµjα.

Therefore g = det gij satisfies

(
1√
g
)′(0) = 0, and (

1√
g
)′′(0) = −µ2

iα. (3.3)

Differentiate equation (3.2) and plug in (3.3), we obtain

p′(0) = µ1αΩ(en+α, e2, · · · , en) + · · ·+ µnαΩ(e1, · · · , en−1, en+α)

p′′(0) = −(
∑

i,α

µ2
iα)Ω(e1, e2, · · · , en) + 2[µ1αµ2βΩ(en+α, en+β, · · · , en) + · · · ],

the expression in the bracket runs through (i, j) with i < j, the general form
is µiαµjβΩ(e1, · · · , en+α, · · · , en+β, · · · , en) where we replace ei and ej by en+α

and en+β , respectively. Now

(ln p)′′ =
1

p2
[p′′p − (p′)2]

We shall assume Ω(P ) > 0, therefore P can be written as a graph over
the plane dual to Ω. By singular value decomposition, we can choose the
basis e1, · · · en for P and en+1, · · · en+m for P⊥ such that

ei =
1

√

1 + λ2
i

(ai + λian+i) and en+α =
1

√

1 + λ2
α

(an+α − λαaα) (3.4)

for i = 1 · · ·n and α = 1 · · ·m where we pretend λi = 0 and λα = 0 for
i, α > min{m, n}. Here {ai} is an orthonormal basis for the plane dual to Ω
and {an+α} an orthonormal basis for the orthogonal complement.
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p′(0) = −µi,n+iλip(0)

p′′(0) = [−(
∑

i,α

µ2
i,n+α) + 2

∑

i<j

µi,n+iµj,n+jλiλj − 2
∑

i<j

µi,n+jµj,n+iλiλj ]p(0)

Therefore

(ln p)′′(0) = −(
∑

i,n+α

µ2
i,n+α) + 2

∑

i<j

µi,n+iµj,n+jλiλj − 2
∑

i<j

µi,n+jµj,n+iλiλj − (
∑

i

µi,n+iλi)
2

= −(
∑

i,α

µ2
i,n+α) − 2

∑

i<j

µi,n+jµj,n+iλiλj −
∑

i

(µi,n+iλi)
2.

(3.5)

By completing square we derive − ln p is a convex function of s if |λiλj | ≤
1 for any i 6= j. Since we can perform this calculation in any direction, − ln Ω
is a convex function on Ξ. 2

Theorem B should be compared with the explicit formula derived in [19].

4 Grassmannian Convexity of Ξ

First we give a new characterization of Ξ in terms of the positivity of a
bilinear form. Consider the bilinear form S on Rn+m by

S(X, Y ) = 〈π1(X), π1(Y )〉 − 〈π2(X), π2(Y )〉 for X, Y ∈ R
n+m

where π1 and π2 are projections from Rn+m = Rn ⊕ Rm to Rn and to Rm,
respectively. Let P be an n-subspace of Rn+m that is a graph over the base
Q ∼= R

n; we denote the restriction of S to P by S|P .
For any (not necessarily orthonormal) basis {ei} of P , S|P is represented

by

Sij = S(ei, ej).

We also define

gij = 〈ei, ej〉 and σj
i =

1

2
(gikSkj + gjkSki)
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where gij is the inverse to gij. Then σ = (σj
i ) : P → P becomes a self-adjoint

map and satisfies
〈σ(P )(X), Y 〉 = S|P (X, Y ).

σ induces a linear map on ∧2P by

σ(X ∧ Y ) = σ(X) ∧ Y + X ∧ σ(Y ).

The collection {ei∧ej}i<j forms a basis for ∧2P and in terms of this basis

σ(ei ∧ ej) =
∑

k,l

σk
i ek ∧ ej + σl

jei ∧ el =
∑

k<l

(σk
i δ

l
j + σl

jδ
k
i − σl

iδ
k
j − σk

j δ
l
i)ek ∧ el.

We can use σ to characterize Ξ, in fact

Ξ = {P ∈ G(n, m) | min
ω∈∧2P

〈σ(P )(ω), ω〉 ≥ 0}.

To see this, apply singular value decomposition to find an orthonormal
basis as in the last section {ei = 1√

1+λ2

i

(ai + λian+i)} for P , then

Sij = σi
j =

1 − λ2
i

1 + λ2
i

δij .

The coefficient of σ on ∧2P is

σ
(kl)
(ij) = σk

i δ
l
j + σl

jδ
k
i =

1 − λ2
i

1 + λ2
i

δk
i δ

l
j +

1 − λ2
j

1 + λ2
j

δl
jδ

k
i =

2(1 − λ2
i λ

2
j)

(1 + λ2
i )(1 + λ2

j)
δk
i δ

l
j (4.1)

if i < j and k < l. Therefore σ(P ) being positive definite on ∧2P is the same
as the area-decreasing condition |λiλj| ≤ 1.

Now we use this characterization by σ to prove the convexity of Ξ.

Theorem 4.1 Ξ is a convex subset with respect to the Grassmannian metric.

Proof. The proof is inspired by Hamilton’s maximum principle [8] [9] for
tensors. Let P be a boundary point of Ξ, so σ(P ) is non-negative definite
on ∧2P . Let ω ∈ ∧2P be a zero eigenvector of σ(P ) so that 〈σ(P )ω, ω〉 = 0.
Consider a (Grassmannian) geodesic P (s) through P and an extension of ω,
ωs on P (s) and denote f(s) = 〈σ(P (s))(ωs), ωs〉. To check the convexity, it
suffices to show for any geodesic P (s) we can find an (arbitrary) extension ωs
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so that f ′(0) = 0 and f ′′(0) < 0. We remark that an arbitrary extension of
ω is good enough as the minimum function minω∈∧2P 〈σ(P )(ω), ω〉 is always
less than or equal to f(s) along P (s).

As in the previous section, we choose an orthonormal basis {ei} for P , so
that P = e1 ∧ · · · ∧ en ∈ G(n, m) and suppose the orthogonal complement
P⊥ is spanned by {en+α}α=1···m. A geodesic parametrized by arc length is
given as Ps spanned by {ei + ziα(s)en+α}i=1···n.

Denote
Sij(s) = S(ei + ziα(s)en+α, ej + zjβ(s)en+β), (4.2)

gij(s) = 〈ei + ziα(s)en+α, ej + zjβ(s)en+β〉 = δij + ziα(s)zjα(s).

For any element of ∧2Ps,

ωs =
∑

i<j

ωij(s)(ei + ziα(s)en+α) ∧ (ej + zjβ(s)en+β),

we have

|ωs|2 =
∑

i<j,k<l

ωij(s)ωkl(s)(gik(s)gjl(s) − gil(s)gjk(s)). (4.3)

We shall choose ωs so that |ωs|2 is constant up to second order at s = 0.
On the other hand,

f(s) = 〈σ(Ps)(ωs), ωs〉 =
∑

i<j,k<l

ωij(s)ωkl(s)σ(ij)(kl)(s)

where

σ(ij)(kl)(s) = Sik(s)gjl(s) + Sjl(s)gik(s) − Sil(s)gjk(s) − Sjk(s)gil(s). (4.4)

We recall that ziα(0) = z′′iα(0) = 0 and z′iα(0) = µiα, also

g′
ij(0) = 0, and g′′

ij(0) = 2µiαµjα.

In the following calculations, all derivatives are taken at s = 0. By
equation (4.2),

S ′
ij = µiαS(en+α, ej) + µjβS(ei, en+β), S ′′

ij = 2µiαµjβS(en+α, en+β),

By (4.4), we derive for i < j and k < l,
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σ′
(ij)(kl) = S ′

ikδjl + S ′
jlδik − S ′

ilδjk − S ′
jkδil

and

(σ(ij)(kl))
′′ = S ′′

ikδjl + S ′′
jlδik − S ′′

ilδjk − S ′′
jkδil + Sikg

′′
jl + Sjlg

′′
ik − Silg

′′
jk − Sjkg

′′
il.

Since ω is a zero eigenvector of σ on ∧2P , ω = ei ∧ ej where ei and ej are
eigenvectors of σ on P . By reordering the basis, we may assume ω = e1 ∧ e2.
We extend ω to ωs so that (ωij)′(0) = 0 to make (|ωs|2)′(0) = 0.

Now

f ′(0) = (σ(ij)(kl))
′ωijωkl = (σ(12)(12))

′ = 2µ1αS(en+α, e1) + 2µ2αS(en+α, e2)

By (3.4), S(en+α, ek) = − 2λk

1+λ2

k

δαk, so f ′(0) = 0 implies

λ1

1 + λ2
1

µ11 +
λ2

1 + λ2
2

µ22 = 0. (4.5)

On the other hand, f(0) = 0 implies σ
(12)
(12) = 0 or λ1λ2 = 1. It follows

that λ1

1+λ2

1

= λ2

1+λ2

2

and by (4.5),

µ2
11 = µ2

22. (4.6)

To keep (|ωs|2)′′(0) = 0, it suffices to set

2(ω12)′′(0) = −g′′
11 − g′′

22 = −2
∑

α

µ2
1α − 2

∑

α

µ2α2 .

We shall assume m ≥ n in the following calculation, the case m < n can
be carried out similarly. The second derivative of f can be calculated in the
following.

−(f)′′(0) = −(σ(ij)(kl))
′′ωijωkl − (σ(ij)(kl))(ωij)

′′ωkl − (σ(ij)(kl))ωij(ωkl)
′′

= −(σ(12)(12))
′′ − 2(ω12)′′σ(12)(12)

= −2µ1αµ1βS(en+α, en+β) − 2µ2αµ2βS(en+α, en+β) − 2(
∑

α

µ2
1α)S22 − 2(

∑

α

µ2
2α)S11

+ 2(
∑

α

µ2
1α + µ2

2α)(S11 + S22)
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Write Tαα = S(en+α, en+α) and deduce from (3.4) T11 = −S11 and T22 =
−S22, the last expression is equal to

2
∑

α

µ2
1αS11 + 2

∑

α

µ2
2αS22 + 2

∑

k

µ2
1αTαα + 2

∑

k

µ2
2αTαα

= 4µ2
11S11 + 4µ2

22S22 + 2µ2
12(S11 + S22) + 2µ2

21(S11 + S22)

+ 2
∑

α≥3

µ2
1α(S11 − Tαα) + 2

∑

α≥3

µ2
2α(S22 − Tαα).

Now S11 + S22 = 0 and it is not hard to check S11 − Tαα and S22 − Tαα are
both non-negative for any α ≥ 3. Therefore

−f ′′(0) ≥ 4µ2
11S11 + 4µ2

22S22.

It follows from equation (4.6) that f ′′(0) is non-positive and the theorem is
proved. 2

We remark a similar calculation in the mean curvature flow case is pre-
sented in Tsui-Wang [16].

5 Riemannian Ambient Manifolds

When applying theorem A and C to general ambient Riemannian subman-
ifold M , the validity of the theorem depends on the curvature of M . The
Gauss map γ is a section of the Grassmannian bundle G over the ambient
space M . Now γ−1(TG) can be identified with T ∗Σ⊗NΣ as before. dγ is a
section of T ∗Σ ⊗ T ∗Σ ⊗ NΣ which is exactly the second fundamental form
A.

By the Codazzi equation,

tr∇dγ = tr∇A = ∇H + (R(·, ek)ek)
⊥ (5.1)

where R(X, Y )Z = −∇X∇Y Z + ∇Y ∇XZ − ∇[X,Y ]Z is the curvature oper-
ator of M and {ek}k=1···n is an orthonormal basis for TΣ. Notice that our
convention is 〈R(X, Y )X, Y 〉 > 0 if M has positive sectional curvature. (5.1)
is considered as an equation of sections of T ∗Σ ⊗ NΣ.

Therefore, as in Theorem A we have

d

dt
γ = tr∇dγ + (R(ek, ·)ek)

⊥
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Now if Ω is any n form on M , it defines a function on the Grassmannian
bundle. When Ω = ρ is a parallel form, we get as before

(
d

dt
− ∆)ρ ◦ γ = −tr∇dρ(dγ, dγ) + ∇ρ · (R(ek, ·)ek)

⊥ (5.2)

where ∇ρ is consider as a tangent vector on the Grassmannian. The cur-
vature term usually prefers positive ambient curvature, we refer to [17], [18]
and [19] for explicit calculations under various curvature conditions.

When Ω is not parallel, the formula involves the covariant derivatives of
Ω and the general equation was derived in [21].
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