INTERIOR GRADIENT BOUNDS FOR SOLUTIONS TO THE
MINIMAL SURFACE SYSTEM

By Mu-TAao WANG

Abstract. In this article we generalize the classical gradient estimate for the minimal surface equation
to higher codimension. We consider a vector-valued function u : Q C R" — R™ that satisfies the
minimal surface system, see equation (1.1) in §1. The graph of u is then a minimal submanifold of
R™™_We prove an a priori gradient bound under the assumption that the Jacobian of du : R* — R™
on any two dimensional subspace of R" is less than or equal to one. This assumption is automatically
satisfied when du is of rank one and thus the estimate covers the case when m = 1, i.e., the original
minimal surface equation. This is applied to Bernstein type theorems for minimal submanifolds of
higher codimension.

1. Introduction. The interior gradient bound for solutions to the minimal
surface equation was discovered, in the case of two variables, by Finn [3] and
in the general case by Bombieri, Di Giorgi and Miranda [1]. The a priori bound
is a key step in the existence and regularity of minimal surface theory. The
estimate has been generalized to other curvature equations and proved by different
methods. We refer to the note at the end of chapter 16 of [5] for literature in
these directions.

Recall a function u : Q C R" — R is a solution to the minimal surface
equation if

", . 0%

] =
Z. — & oxiow 0
ij=1

where g/ = §; — (1 + |du|*)™! g—x";g—;‘,. The graph of u is a minimal hypersurface
in R™! and the gradient estimate for u says the C' norm of u is bounded by an
exponential function of the C° norm. In this article, we consider the differential
systems satisfied by a minimal submanifold of higher codimension.

The following definition is quoted from [16] (see also [11]):
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922 MU-TAO WANG

Definition 1.1. A C? vector-valued function u = (W™*!,..., ") : Q C R" —
R™ is a solution to the minimal surface system if
n.oo. aZua
1.1 Y—— =0, foreach a=n+1l,...,n+m
(1.D wz=:1 g Oxiox

where g = (g;)~! and g = 6; + Y5, %%.

The minimal surface system is indeed equivalent to the Euler-Lagrange equa-
tion of the volume functional [ \/detg;dx, see Theorem 2.2 in [16] for the
derivation. It has been considered by Osserman [15], [16] and Lawson-Osserman
[11] and it is known that there are nonexistence, nonuniqueness and irregularity
examples [11] for the Dirichlet problem. In [22], the author solves the Cauchy-
Dirichlet problem of the associated parabolic system, i.e., the mean curvature
flow, in arbitrary dimension and codimension assuming the variation of the ini-
tial surface is bounded by a constant depending on n. In this article, we prove
the following gradient bound for solutions to the minimal surface system.

THEOREM A. Let Q be a domain in R" and u : Q — R™ a C? solution to
equation (1.1) such that the Jacobian of du : R" — R™ on any two dimensional
subspace of R" is less than or equal to one. If each u® is nonnegative, then for any
point xy € €, we have estimate

|du(xo)| < Cy exp{C2|u(xo)|/d}

where d = dist(xg, 02) and C\, C; are constants depending on n.

The assumption can be described in terms of the singular values of du. du is a
linear map and thus /(du)”du is a nonnegative definite symmetric matrix. If we
denote the eigenvalues of /(du)”du by ); (also called the singular values of du),
then the condition is equivalent to |A\;Aj| < 1 for i # j. It was proved in [21] that
a Bernstein type theorem for higher codimension minimal submanifolds is true
under this assumption. This condition is weaker than the conditions assumed in the
Bernstein type theorem established in [8], [4], and [9]. The higher codimension
Bernstein type theorem cannot be true without imposing assumptions on u by
the examples of non-parametric minimal cones due to Lawson and Osserman
[11]. The condition |)\,~)\j| < 1 is not achieved by any one of the examples of
Lawson and Osserman. However, it seems more counterexamples need to be
constructed to make conjectures about the sharp condition. It is not clear whether
such condition is necessary for gradient estimates (see the next paragraph for the
two-dimensional case).

The underlying principle of the proof is that |\;Aj| < 1 for i # j defines a
region on the Grassmannian of n-planes in R™*™ on which In /det (I + (du)Tdu)
is a convex function. This is in contrast with the codimension one case in which

This content downloaded from 59.66.35.115 on Sun, 21 Aug 2016 15:51:17 UTC
All use subject to http://about.jstor.org/terms



INTERIOR GRADIENT BOUNDS 923

Iny/1 + |du|? is always a convex function. We remark that when n = 2, a gradient
bound assuming all but one |du®| are bounded was obtained by Simon [17]. This
condition is similar to our condition |\;\j| < 1 for i # j. The assumption was
removed when n = 2 by Gregori in [6].

We provide two proofs for the gradient estimate. The first one follows the
approach developed by Michael-Simon [12] and Trudinger [18], [19] as was pre-
sented in [5]. The second one follows Korevaar’s proof [10] using the maximum
principle (see also [23]). As in the codimension one case, the integral method
gives the sharper estimate while the maximum principle method is easier. The
proofs are contained in §3 and §4. In the last section, we discuss applications to
Bernstein type theorems for minimal submanifolds of higher codimension.

Note the summation convention—repeated indices are summed over—is
adopted in the rest of this article unless otherwise mentioned.
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for referring him to the paper of Gregori [6]. Part of this paper was completed
while the author was visiting the Center for Mathematics and its Applications at
Australian National University. The author would like to thank the center for their
hospitality during his visit. Finally, the author would like to thank the referee for
useful comments and suggestions to help improve the presentation of the paper.

2. Preliminaries. In this section, we assume u is a C? solution to the min-
imal surface system (1.1). We remark u is indeed real analytic by a classical
theorem of Morrey [13], [14], see also [11]. Denote the graph of u in R™*™ over
Q by S. By Theorem 2.2 in [16], & is a minimal submanifold, i.e., the mean
curvature vector vanishes identically. Let g; = 6; + >_g %’ﬁ%‘ﬁ be the induced
metric on the graph and

v= /et g; = \/det (I + (du)T (du))

be the induced volume element. Let dx denote the volume form dx! A - -+ A dx"
on R” and dA = vdx be the volume form on the graph &.

Since Q and & are canonically identified, a function defined on Q will be
considered as defined on & as well. All the coordinates system {x'} we use
are coordinates on Q lifted to &. An important simplification in our calculation

is at any p € Q, we can choose a coordinate system {x!,...,x"} on Q and
{y™1,...,y"*™} on R™ so that u is “diagonalized” at p . That is, %";? =uf =

Aiban+i Where \; > 0 are the singular values of du, or eigenvalues of +/ (dw)Tdu.
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924 MU-TAO WANG

Then we have at p,

gi=0+ ,\,-2)6,«j, and gV = o;j for any fixed i,j

_r
1+ X2
and

[Ta+xy.

i=1
The following lemma is a direct consequence of the minimality.

LeEMMA 2.1. For any vector-valued function with compact support ¢ € Cl (),

jOu™ 0™
/Q v8" 5 9g =0

Proof. 'We compute the variation of volume by ¢, so 6u® = ¢*. Thus

Ou® Ou*
= o — ij
0‘5(/\/det(6”+axf Ox ) /2 5(6 axf)dx

6u°’ Bu O(6u®) Su
( =25 Toxd ov =

where 6

The next lemma is a key inequality in both methods. It is equivalent to saying
1, . . .
v~ n is a superharmonic function on & under the assumption.

LEMMA 2.2. Letw =Inv. If \Aj < 1 for i # j then
1o 2

where V and A denote the gradient and Laplacian of the induced metric gj;.

Proof. We derive the equation in the following. First of all we claim the
Laplace operator on & is given by
32
A -
¢ o
where x' is any Euclidean coordinate system on Q C R”".

The general formula for the Laplacian on any Riemannian manifold with
respect to any coordinate system is

1 K X g *f
\/_Bx" (\/_ 8x’> \/_Bx"(‘/_ ) & Bxkox

where /g = \/det(g;).

Af =
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INTERIOR GRADIENT BOUNDS 925

Now 8%(\/§g"’) = 0 for each [ by Theorem 2.2 in [16] and the claim is
verified.
We calculate

2.1 681 In , /det (6;; + ufu )—u,,u"g”

where we use (detA) = A’ Al detA.
Therefore

Alnv =gt xk(“u“ g%y = g uugh) + g uGuie?) + g uus (8.
By the equation g“u = 0, we have g"u$, = —(g*)ug. Thus
Alnov= gijgk’uﬁuj‘»’,‘( - (gk’)iuf}‘(ul‘?‘gij + gkluf}‘u}’(gij)k

On the other hand, (g"); = —g""(gp4)ig?, we obtain

Alnv = gighuGuss + 887" (gppiufu — 88" e¥ (gpghiuius’.

Plug in (gpq)i = uff,ug +u,’[,3 u,; and use the “dlagonallzatlon mentioned in the

paragraph before Lemma 2.1 so that gl = —;5,, and u = \i0g n+i» We derive

1
(L+ )1 +2?)
1
CA+ADA+ A1+ AD)

1

D+ 1 ) A+ M

Alnv = W3 +

(u"“ N+ u"*'/\ )u"” A

This is simplified to
1 (ua)Z )\2
A+2D)A+ X2 % 1+ +/\2)(1 +X2)

A)\ ( n+j n+l)
(1+,\2)(1+,\2)(1+,\2) ik Kk

Wy

Alnv = Uj

Notice that \; = 0 if i > min{n, m}, so the last equation can be rearranged as

— 1 )2
Alnv = Z a+290 +)\i2)(“;k)

a>n+min{n,m}

1 n+j 2
D> A+ X )(1+A2)(1+/\2)( i)

j=1,....min{n,m}
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926 MU-TAO WANG

/\i)\j n+j n+i
¥ j:; T+ DA+ (1 + 32y ik )

Den po= Lo + min{n,m} and hp.ix =
enote  Agix (1+Ai)(1+A§)u'k if a > n {n,m} ik

L Wit if i = 1---min{n,m} and we remark that they indeed
(1+/\,2()(1+,\j?)(1+/\‘?)
represent the second fundamental form of G .
Split the last term on the right-hand side into two parts that correspond to
i=jand i #j then we recover a formula in [21] (note v = ﬁ)

(2.2) Alno) =Y h2p+ Y AhE i +2 Y Xidihnaijihne k-
a,l,k k,i k”<]

The ranges of the indices are a = n+1,...,n+m and i,j,k = 1,...,n and we
recall that \; = 0 if i > min{n, m}. The parabolic version of this equation was
first derived in [20].

If A\;Aj < 1, we can complete the square in equation (2.2) to obtain

2.3) Alnv) > S NRE, 4.
k,i

By equation (2.1), we have

(ln V) = Z )\i un+i

o
—~ 1+ A}
and
i\ R
Vinof* = g(In v)(In v), = = R
| nUI g (nv)k(nv)l (1 +)\12)(1 +A12)(1 +Ai)ulk ujk
Therefore

2
|Vw|? = Z (Z )\ihn+i,ik> <n Z )\%hiﬂgik
k i ki

The factor % can be replaced by } where r is the rank of du. Combine this
with equation (2.3) and the lemma is proved. O

3. Integral method. We give a proof to Theorem A using integral method
adapted from chapter 16 of Gilbarg-Trudinger [5]. All constants, C,Cy, C, are
generic constants depending only on n.

First we prove a lemma that uses the assumption crucially.
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INTERIOR GRADIENT BOUNDS 927

LeMMA 3.1. If \iAj < 1 fori #j, leta=a}

ijaua a
vVu-a=uvg g < Cla|

where C is a constant depending only on n.

Proof. At each point, we apply the singular value decomposition. Thus

vg"jaﬁa H(l +7) E A la|
oxt +A?
Now

A TN +22) (142D (1+22)
/ (1+,\2)< ) ' L ' 7
H Z 1+ )\2 /_——H,'(1+)\,-2)

Applying the condition A\;\; < 1 for i # j, we see for each i,

M+ (T4 2D - (1+)\2)<)\(C1+C22)\2)<C3Z)\
J#i

where Ci, C; and C3 are constants depending only on n.
Therefore

SN+ T+ 2D 1+ ) S CEN

where C depends only on n. O

We assume xp = 0 € R”, u(xg) = 0 € R™, and 3R < dist(0,0Q). For p < R
denote &, = & N {(x,y) : |x|> +|y|*> < p*} and the area of &, by A(S,).

ProposITION 3.1. If \iAj < 1 fori #, then
A(S,) < Cp".
Proof. Define u, by uj = min{u®, p} and substitute the test function ¢ = nu,

into the formula in Lemma 2.1, where 7 satisfies n = 1 for |x| < p, n = 0 for
|x| > 2p and |Dn| < 1/p. We derive

;Ou* (0 o, Oug
0= / (Bxl 4p "W) dx.
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928 MU-TAO WANG

Now apply Lemma (3.1) to get

/ |Vul>vdx < Cp/ |Dn| dx.
¥l <plul<p xl<2p

2
We notice that at any point o|Vu|? = {/I]; (1 + A) ¥ %’XT and thus

v < o|Vul? + 1.

Therefore

/ vde/ |Vu|21)dx+/ dx
[x|<p.lul<p [x|<p,lu|<p [x|<p,lul<p

and A(S,) is bounded by a multiple of |, vdx. m]

x| <p,|ul<p

By Lemma 2.2 and the Sobolev inequality for minimal submanifolds (see for
example [12]), we have the following sub-mean-value inequality for w:

1
3.1) WO < /GRwdA.

Now substitute the test function ¢ = nwu,, into Lemma 2.1, where 7 satisfies
n =1 for |x| < p, n =0 for |x| > 2p and |Dn| < 1/p. We derive

0u® (0n ow ou$
= gy e e __P
0 /vg Oxi <8xfwup+n8xiup+nw6xi) dx
Now apply Lemma 3.1 to get

(3.2) / w|Vul*vdx
Il <p.lul<p

<Cp [ wlDnl+niDw)ax
[x[<2p

SC(/ wdx+p/ nlDw|dx>.
[x|<2p [x|<2p

To estimate the term fl n|Dw| dx, recall Lemma 2.2 and multiply both

x|<2p
sides by 72, and we obtain

1
/772Aw2/ ~n*|Vw|%.
6 G n
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INTERIOR GRADIENT BOUNDS 929

Integration by parts on G and we derive

1 1

= [l <2 [ alvwlival < o [ Pvwlean [ oal

nJjs (] nJs (¢]
Therefore

(3.3) / n?|Vw|? < 4n*p~2Area(S N supp ).
S

It is not hard to see

|Dw| < v|Vw|.
Therefore

1/2
/ n|Dw| dx g/ n|Vw|dA < (/ n2|Vw|2) (Area(S N supp ))'/2.
|x|<2p (<) S

By equation (3.3), we obtain

/ n|Dwl dx < 9/ vdx.
l<2s p Jni<2o

Since w < v, we also have

/ wdx < / vdx.
[x|<2p [x|<2p

In view of equation (3.2), it only remains to estimate f]x <2 vdx. Choose
¢ = nu where n = 1 for |x| < 2p, n = 0 for |x| > 3p and |Dn| < 1/p. We obtain

ou® (0n ou®
= ij o n 2
0_/vg oxt (8xiu +n8xi)dx'

Since
1

1
—/ lul < =C@p)" sup |u].
P Jixl<3p P |x|<3p

Thus

/ v|Vu|?> < Cp"! sup |ul.
|x|<2p |x|<3p
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930 MU-TAO WANG

Use v < v|Vu|? + 1 again, we derive

/ vdx < C1p"! sup |u| + C2p".
[x[<2p Ix|<3p

Recall equation (3.2),

(34 / w|Vu|?vdx < Cip"! sup |u| + Cp".
il<plul<p xl<3p

This implies

3.5) / wodx < C1p"! sup |u| + C2p".
|x|<p.jul<p |x|<3p

Combining with the sub-mean-value inequality, we arrive at the desired esti-
mate by exponentiating the following inequality:

Inv(0) < Cip~! sup |u|+Ca.
[x|<3p

Notice that |du| < v always holds.

4. Maximum principle. In the section, we shall adapt the proof of Kore-
vaar [10] to the higher codimension case. We remark the method has be applied
to obtain gradient estimates for mean curvature flows of hypersurfaces by Ecker-
Huisken [2].

We assume u : By C R" — R”™ satisfies u® < 0 for each a. Let 7j = 7j(x, y) be
a cut-off function that is a non-negative and continuous on B; x ( — 00,0]™ and
is zero on {(x,y) : |x| = 1,y* < 0}. Let n(x) = 7(x, u(x)) be the restriction of 7
to the graph of u. We now consider the function no!/" which achieves a positive
maximum in the interior of B;. At a maximum point p,

V'™ = 0
Amp'™y < 0.

The first equation implies
@.1) Vn = —v" Pyv /).
By the second equation, we obtain

(A" + 2V - V(@™ + nA@ ™) < 0.
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Plug in equation (4.1), we derive
A V" + (A" — 207 VMV H?) < 0.
However, equation (2.2) is
Alnv > %lVln .
It is not hard to check this is equivalent to
A@'™y = 20712 > 0.
Therefore, we have at the point p,
An <0.

Let now 1 = —1+exp u¢ where the function ¢ will be chosen later and where
@ > 0. We infer

Ap < —pu|V|2.

By choosing coordinates, we may assume at p, max; \; = A\; = ut*l, Set

1
¢= (Ey”” +1- le2>

where b > 0 is to be determined. Thus ¢(x) = (z—lbu"“(x) +1— |x?)*.
On the set where ¢ is positive, we compute

+
’

1

V¢ = %Vu"” — Vx|?
1 1
2 _ n+142 212 _ Zxgntl
Vo* = 5IVu [+ VIl = 2 Vu Vx?
1 1
2 mguufﬂl‘fﬂ - Bg’fu?”(|x|2)j
oL 2N

421+X b1+ X

where we use g¥ = p,_l)\féu
i

On the other hand, recall g”u}}“ =0,

ij 1 1
Ad = g"¢y = b 7 (— Dby = _22 142
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Therefore

1 1 A3 2 X
_ < — _ =
ZZ1+,\,.2— “<4b21+A% b1+ A

and

1 X 2 A _2n
e _Zz < =
421+ bl1+A ~

or

1
4p?

- pn s e,

Choose p = 16nb?, then

1, 2 1
— NI\ < —.
2N T M S g
Therefore
A <16b+1

at the point p and

up) =, |[J1+2D) < [1+(16b+ 1)

n(0)v7(0) < maxnvr < n(p)w(p)r < ' (16b +2).

Thus

Now 7n(0) = 1O G O+ gep p = max {1, —u"1(0)}, then if —u"*!
(0) > 1 we have

p(O)n < (MW OF _ )=l 16n™ O 16 _ 11 (0)) + 2] < CyeCHOF,
Otherwise, i.e. —u"1(0) < 1, we still have the same estimate by changing

the constants C; and C,. Therefore, an estimate of the following form is proved
by rescaling:

|du(xo)| < C1 exp{Calu(xo)|*/d}

where C; and C; are constants depending only on n.
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INTERIOR GRADIENT BOUNDS 933

5. Applications. We combine a result in [21] to obtain the following Bern-
stein type theorem.

THEOREM 5.1. If u : R* — R™ is an entire solution to the minimal surface
system and if u® > 0 for each o and if there exists an € > 0 such that |\;)j| <

1 — €,i #j for the singular values of du, the each u® is a linear function.

Proof.  This theorem is proved in [21] under the assumption that u has
bounded gradient. Now we let d — oo in Theorem A and we see |du| < C;. O
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