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A STRONG STABILITY CONDITION ON MINIMAL SUBMANIFOLDS

AND ITS IMPLICATIONS

CHUNG-JUN TSAI AND MU-TAO WANG

Abstract. We identify a strong stability condition on minimal submanifolds that implies

uniqueness and dynamical stability properties. In particular, we prove a uniqueness theorem

and a C
1 dynamical stability theorem of the mean curvature flow for minimal submanifolds

that satisfy this condition. The latter theorem states that the mean curvature flow of any

other submanifold in a C
1 neighborhood of such a minimal submanifold exists for all time, and

converges exponentially to the minimal one. This extends our previous uniqueness and sta-

bility theorem [18] which applies only to calibrated submanifolds of special holonomy ambient

manifolds.

1. Introduction

In our previous work [18], we study the uniqueness and C1 dynamical stability of calibrated

submanifolds in manifolds of special holonomy with explicitly constructed Riemannian metrics.

The result is extended to minimal submanifolds of general Riemannian manifolds in this paper.

The assumption for the uniqueness and dynamical stability theorem is identified as a strongly

stable condition which implies the stability of the minimal submanifold in the usual sense of the

second variation of the volume functional. Recall that the mean curvature flow is the negative

gradient flow of the volume functional. It is thus natural to ask whether a local minimizer (a

stable minimal submanifold) of the volume functional is stable under the mean curvature flow.

Such a question of great generality has been addressed in the celebrated work of L. Simon [14]:

when is a local minimizer dynamically stable under the gradient flow, i.e. does the gradient

flow of a small perturbation of a local minimizer still converge back to the local minimizer?

The question in the context of [14] concerns a nonlinear parabolic system defined on a compact

manifold, and it was proved that the analyticity of the functional and the smallness in C2
norm are sufficient for the validity of the dynamical stability. The question we addressed here

corresponds to the specialization to the volume functional of compact submanifolds. A natural

measurement of the distance between two submanifolds is the C1 (or Lipschitz) norm, which
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is essentially the weakest possible norm concerning the volume functional. Our results in this

paper can be considered as such an optimal result.

As derived in [15, §3], the Jacobi operator of the second variation of the volume functional

is (∇⊥)∗∇⊥ + R − A, where (∇⊥)∗∇⊥ is the Bochner Laplacian of the normal bundle, R
is an operator constructed from the restriction of the ambient Riemann curvature, and A is

constructed from the second fundamental form. The precise definition can be found in §3.1.
A minimal submanifold is said to be strongly stable if R−A is a positive operator, see (3.2).

Since (∇⊥)∗∇⊥ is a non-negative operator, strong stability implies stability in the sense of

the second variation of the volume functional. In particular, the strong stability condition is

satisfied by all the calibrated submanifolds considered in [18] which include (M denotes the

ambient Riemannian manifold and Σ denotes the minimal submanifold):

(i) M is the total space of the cotangent bundle of a sphere, T ∗Sn (for n > 1), with the

Stenzel metric [17], and Σ is the zero section;

(ii) M is the total space of the cotangent bundle of a complex projective space, T ∗CPn,

with the Calabi metric [3] and Σ is the zero section;

(iii) M is the total space of one of the vector bundles S(S3), Λ2
−(S

4), Λ2
−(CP

2), and S−(S
4)

with the Ricci flat metric constructed by Bryant–Salamon [2], where S is the spinor

bundle and S− is the spinor bundle of negative chirality, and Σ is the zero section of

the respective vector bundle.

These are essentially all metrics of special holonomy that are known to be written in a closed

form. Note that in all these examples, the metrics of the total space are Ricci flat, and the zero

sections are totally geodesic. Hence, the strongly stability in these examples is equivalent to the

positivity of the operator R. In [18], we proved uniqueness and dynamical stability theorems

for the corresponding calibrated submanifolds and the proofs rely on the explicit knowledge of

the ambient metric, whose coefficients are governed by solutions of ODE systems. A natural

question was how general such rigidity phenomenon is. In this article, we discover that the

strong stability condition is precisely the condition that makes everything work. Moreover, we

identify more examples that satisfy the strong stability condition:

Proposition A. Each of the following pairs (Σ,M) of minimal submanifolds Σ and their

ambient Riemannian manifolds M satisfy the strong stability condition (3.2) :

(i) M is any Riemannian manifold of negative sectional curvature and Σ a totally geodesic

submanifold;

(ii) M is any Kähler manifold and Σ is a complex submanifold whose normal bundle has

positive holomorphic curvature.

(iii) M is any Calabi–Yau manifold and Σ is a special Lagrangian with positive Ricci cur-

vature;
2



(iv) M is any G2 manifold and Σ is a coassociative submanifold with positive definite

−2W− + s
3 on Λ2

−.

For example (i), the strong stability can be checked directly. The examples (ii), (iii), and

(iv) will be explained in §3.2 and Appendix A.

We now state the main results of this paper. The first one says that a strongly stable minimal

submanifold is rather unique.

Theorem A. Let Σn ⊂ (M,g) be a compact, oriented minimal submanifold which is strongly

stable in the sense of (3.2). Then there exists a tubular neighborhood U of Σ such that Σ is the

only compact minimal submanifold in U with dimension no less than n.

The second one is on the dynamical stability of a strongly stable minimal submanifold.

Theorem B. Let Σ ⊂ (M,g) be a compact, oriented minimal submanifold which is strongly

stable in the sense of (3.2). If Γ is a submanifold that is close to Σ in C1, the mean curvature

flow Γt with Γ0 = Γ exists for all time, and Γt converges to Σ smoothly as t→∞.

The precise statements can be found in Theorem 4.2 (Theorem A) and Theorem 6.2 (Theorem

B), respectively. The C1 dynamical stability of the mean curvature flow for those calibrated

submanifolds considered in [18] was proved in the same paper. In this regard, this theorem is

a generalization of our previous result.

Here are some remarks on the strong stability condition. In the viewpoint of the second

variational formula, the condition is natural, and is stronger than the positivity of the Jacobi

operator. The main results of this paper are basically saying that the strong stability has nice

geometric consequences. In particular, the minimal submanifold Σ needs not be a totally geo-

desic, while most known results about the convergence of higher codimensional mean curvature

flow are under the totally geodesic assumption, e.g. [22].

Acknowledgement. The authors would like to thank Yohsuke Imagi for helpful discussions.

2. Local geometry near a submanifold

2.1. Notations and basic properties. Let (M,g) be a Riemannian manifold of dimension

n+m, and Σ ⊂M be a compact, embedded, and oriented submanifold of dimension n. We use

〈·, ·〉 to denote the evaluation of two tangent vectors by the metric tensor g. The notation 〈·, ·〉
is also abused to denote the evaluation with respect to the induced metric on Σ. Denote by

∇ the Levi-Civita connection of (M,g), and by ∇Σ the Levi-Civita connection of the induced

metric on Σ.
3



Denote by NΣ the normal bundle of Σ in M . The metric g and its Levi-Civita connection

induce a bundle metric (also denoted by 〈·, ·〉 ) and a metric connection for NΣ. The bundle

connection on NΣ will be denoted by ∇⊥.

In the following discussion, we are going to choose a local orthonormal frame {e1, · · · , en,
en+1, · · · , en+m} for TM near a point p ∈ Σ such that the restriction of {e1, · · · , en} on Σ is an

oriented frame for TΣ and the restrictions of {en+1, · · · , en+m} is a frame for NΣ. The indexes

i, j, k range from 1 to n, the indexes α, β, γ range from n + 1 to n + m, the indexes A,B,C

range from 1 to n+m, and repeated indexes are summed.

The convention of the Riemann curvature tensor is

R(eC , eD)eB = ∇eC∇eDeB −∇eD∇eCeB −∇[eC ,eD]eB ,

RABCD = R(eA, eB , eC , eD) = 〈R(eC , eD)eB , eA〉 .

What follows are some basic properties of the geometry of a submanifold. The details can be

found in, for example [6, ch. 6].

(i) ∇Σ is the projection of ∇ onto TΣ ⊂ TM |Σ, and ∇⊥ is the projection of ∇ onto

NΣ ⊂ TM |Σ. Their curvatures are denoted by

RΣ
klij = 〈∇Σ

ei
∇Σ

ej
el −∇Σ

ej
∇Σ

ei
el −∇Σ

[ei,ej ]
el, ek〉 ,

R⊥
αβij = 〈∇⊥

ei
∇⊥

ej
eβ −∇⊥

ej
∇⊥

ei
eβ −∇⊥

[ei,ej ]
eβ , eα〉 ,

(ii) Given any two tangent vectors X,Y of Σ, the second fundamental form of Σ in M is

defined by II(X,Y ) = (∇XY )⊥, where (·)⊥ : TM → NΣ is the projection onto the

normal bundle. The mean curvature of Σ is the normal vector field defined by H =

trΣ II. With a normal vector V , II(X,Y, V ) is defined to be 〈II(X,Y ), V 〉 = 〈∇XY , V 〉.
In terms of the frame,

hαij = II(ei, ej , eα) and H = hαii eα .

(iii) For any tangent vectors X,Y,Z of Σ and a normal vector V , the Codazzi equation says

that

〈R(X,Y )Z, V 〉 = (∇X II)(Y,Z, V )− (∇Y II)(X,Z, V ) (2.1)

where

(∇X II)(Y,Z, V ) = X (II(Y,Z, V ))− II(∇Σ
XY,Z, V )− II(Y,∇Σ

XZ, V )− II(X,Y,∇⊥
XV ) . (2.2)

In terms of the frame, denote (∇eiII)(ej , ek, eα) by hαjk;i, and (2.1) is equivalent to that

Rαkij = hαjk;i − hαik;j.
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2.2. Geodesic coordinate and geodesic frame. For any p ∈ Σ, we can construct a “partial”

geodesic coordinate and a geodesic frame on a neighborhood of p in M as follows:

(i) Choose an oriented, orthonormal basis {e1, · · · , en} for TpΣ. The map

F0 : x = (x1, · · · , xn) 7→ expΣp (x
jej)

parametrizes an open neighborhood of p in Σ, where expΣ is the exponential map of

the induced metric on Σ. For any x of unit length, the curve γ(t) = F0(tx) is called a

radial geodesic on Σ (at p). By using ∇Σ to parallel transport {e1, · · · , en} along these

radial geodesics, we get a local orthonormal frame for TΣ on a neighborhood of p in

Σ. The frame is still denoted by {e1, · · · , en}.
(ii) Choose an orthonormal basis {en+1, · · · , en+m} for NpΣ. By using∇⊥ to parallel trans-

port {en+1, · · · , en+m} along radial geodesics on Σ, we obtain a local orthonormal frame

for NΣ on a neighborhood of p in Σ. This frame is still denoted by {en+1, · · · , en+m}.
It is clear that {e1, · · · , en, en+1, · · · , en+m} is a local orthonormal frame for TM |Σ.

(iii) The map

F : (x,y) =
(
(x1, · · · , xn), (yn+1, · · · , yn+m)

)
7→ expF0(x)(y

αeα)

parametrizes an open neighborhood of p in M . The map exp is the exponential map

of (M,g). For any y of unit length, the curve σ(t) = F (x, ty) = expF0(x)(ty) is called

a normal geodesic for Σ ⊂M .

(iv) For any x, step (ii) gives an orthonormal basis {e1, · · · , en+m} for TF (x,0)M . By using

∇ to parallel transport it along normal geodesics, we have an orthonormal frame for

TM on a neighborhood of p in M . This frame is again denoted by {e1, · · · , en+m}.

The freedom in the above construction is the choice of {e1, · · · , en} and {en+1, · · · , en+m} at p,
which is SO(n)×O(m). A particular choice will be made later on.

Remark 2.1. We will consider the curves s 7→ expΣp (x
iei+sej) and s 7→ expF0(x)(y

βeβ+seα) in

the following discussion. They will be abbreviated as F0(x+sej) and F (x,y+seα), respectively.

Remark 2.2. The frames {e1, · · · , en, en+1, · · · , en+m} are constructed by parallel transport

along radial geodesics on Σ and then normal geodesic for Σ. They are indeed smooth. We briefly

explain the smoothness of {e1, · · · , en} on a neighborhood of p in Σ. Write ei = Sij(x)
∂
∂xj . The

smoothness of the frame is equivalent to the smoothness of Sij(x). Let Γ
l
jk(x) be the Christoffel

symbols of∇Σ, i.e. ∇Σ
∂

∂xj

∂
∂xk = Γl

jk(x)
∂
∂xl . The Christoffel symbols Γl

jk(x) are smooth functions.

Since ei is parallel along radial geodesics,

∇Σ
xl ∂

∂xl

ei = 0 =

(
xl
∂ Sij(x)

∂xl
+ xlSik(x)Γ

j
ik(x)

)
∂

∂xj
.
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To avoid confusion, fix ξ = (ξ1, · · · , ξn) ∈ Rn. Let γ(t) = tξ for t ∈ [0, 1]. Since d
dtf(γ(t)) =

1
t
(xl ∂

∂xl f(x))|γ(t),

dSij(γ(t))

dt
= ξl Sik(γ(t)) Γ

j
ik(tξ) .

In other words, [Sij(ξ)] is the solution to the ODE system dS
dt = F (S, t, ξ) at t = 1 with identity

as the initial condition. Therefore, Sij(ξ) is smooth in ξ.

2.2.1. The tubular neighborhood Uε and the distance function.

Definition 2.3. For any δ > 0, let Uδ be the image of {V ∈ NΣ | |V | < δ} under the exponential
map along Σ. By the implicit function theorem, there exists ε > 0, which is determined by the

geometry of Σ and M , such that the following statements hold for Uε:

(1) The map exp : {V ∈ NΣ | |V | < 2ε} → U2ε is a diffeomorphism.

(2) There exist the local coordinate system (x1, · · · xn, yn+1, · · · yn+m) and the frame {e1, · · · , en+m}
constructed in the last subsection.

(3) The function
∑

α(y
α)2 is a well-defined smooth function on Uε.

(4) On Uε, the square root of
∑

α(y
α)2 is the distance function to Σ.

(5) For any q ∈ Uε, there exists a unique p ∈ Σ such that there is a unique normal geodesic

in Uε connecting p and q.

We now analyze the gradient of the function
∑

α(y
α)2. To avoid confusion, let

ξ = (ξ1, · · · , ξn) ∈ R
n and η = (ηn+1, · · · , ηn+m) ∈ R

m

be constant vectors. Consider the normal geodesic σ(t) = F (ξ, tη); its tangent vector field is

σ′(t) = ηα ∂
∂yα

. On the other hand, σ′(0) is also equal to ηαeα, and η
αeα is defined and parallel

along σ(t). Thus, ηα ∂
∂yα

= ηαeα on σ(t). Since the y-coordinate of σ(t) is tη, we find that

yα
∂

∂yα

∣∣
σ(t)

= tηα
∂

∂yα

∣∣
σ(t)

= tηα eα = t σ′(t) ; (2.3)

at t = 1 it gives

yα
∂

∂yα
= yαeα . (2.4)

By modifying the standard geodesic argument [4, p.4–9], the vector field yα ∂
∂yα
|σ(t) is half of

the gradient vector field of
∑

α(y
α)2. In addition, note that (2.4) implies that 〈yα ∂

∂yα
, yα ∂

∂yα
〉 =∑

α(y
α)2. The Gauss lemma implies that 〈yα ∂

∂yα
, sβ ∂

∂yβ
〉 = 0 if

∑
α y

αsα = 0. By considering

the first variational formula of the one-parameter family of geodesics σ(t, s) = expF0(ξ+sej)(tη),
6



one finds that 〈yα ∂
∂yα

, ∂
∂xj 〉 = 0. It follows from these relations that

∇
(∑

α

(yα)2

)
= 2yα

∂

∂yα
. (2.5)

For a locally defined smooth function near p, the following lemma establishes its expansion

in terms of the coordinate system constructed above.

Lemma 2.4. Let Uε be a neighborhood of p ∈ Σ in M as in Definition 2.3 with the coordinate

system (x,y) = (x1, · · · xn, yn+1, · · · yn+m) and the frame {e1, · · · , en, en+1, · · · en+m}. Then,

any smooth function f(x,y) on Uε has the following expansion:

f(x,y) = f(0,0) + xi ei(f)|p + yα eα(f)|p +O(|x|2 + |y|2) .

More precisely, it means that
∣∣f(x,y) − f(0,0)− xi ei(f)|p − yα eα(f)|p

∣∣ ≤ c(|x|2 + |y|2) for

some constant c determined by the C2-norm of f and the geometry of M and Σ.

Proof. Let q ∈ Uε be any point. To avoid confusion, denote the coordinate of q by (ξ, η),

where ξ ∈ Rn and η ∈ Rm are regarded as constant vectors. Let q0 ∈ Σ be the point with

normal coordinate (ξ,0), and consider the radial geodesic on Σ joining q0 and p, σ0(t) = F0(tξ).

Applying Taylor’s theorem on f(σ0(t)) gives

f(ξ,0) = f(0,0) +
d

dt

∣∣
t=0

f(σ0(t)) +

∫ 1

0
(1− t2)d

2 f(σ0(t))

dt2
.

Since σ′0(t) = ξi ei, we find that

f(ξ,0) = f(0,0) + ξi ei(f)|p + ξiξj
∫ 1

0
(1− t) (ej(ei(f)))(σ0(t)) dt . (2.6)

Next, consider the normal geodesic joining q and q0, σ(t) = F (ξ, tη). Remember that σ′(t) =

ηαeα. By considering f(σ(t)),

f(ξ, η) = f(ξ,0) + ηα (eα(f))|q0 + ηαηβ
∫ 1

0
(1− t) (eβ(eα(f)))(σ(t)) dt . (2.7)

Similar to (2.6), (eα(f))|q0 = (eα(f))|p + ξj
∫ 1
0 ej(eα(f))(σ0(t)) dt. Putting these together fin-

ishes the proof of this lemma. �

2.2.2. The expansions of coordinate vector fields.

Lemma 2.5. Let Uε be a neighborhood of p ∈ Σ in M as in Definition 2.3 with the coordinate

system (x,y) = (x1, · · · xn, yn+1, · · · yn+m) and the frame {e1, · · · , en, en+1, · · · en+m}. Write

∂

∂xi
= 〈 ∂

∂xi
, eA〉eA and

∂

∂yµ
= 〈 ∂

∂yµ
, eA〉eA ,
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then 〈 ∂
∂xi , eA〉 and 〈 ∂

∂yµ
, eA〉, considered as locally defined multi-indexed functions, has the fol-

lowing expansions:

〈 ∂
∂xi

, ej〉
∣∣
(x,y)

= δij − yαhαij
∣∣
p
+O(|x|2 + |y|2) ,

〈 ∂
∂yµ

, eβ〉
∣∣
(x,y)

= δµβ +O(|x|2 + |y|2) ,
(2.8)

and both 〈 ∂
∂xi , eβ〉

∣∣
(x,y)

and 〈 ∂
∂yµ

, ej〉
∣∣
(x,y)

are of the order |x|2+ |y|2. By inverting the matrices,

ei =
∂

∂xi
+ yαhαij

∂

∂xj
+O(|x|2 + |y|2) and eα =

∂

∂yα
+O(|x|2 + |y|2) . (2.9)

Proof. We apply Lemma 2.4 to these locally defined functions.

By construction, 〈 ∂
∂xi , ej〉|p = δij . With a similar argument as that for (2.4), xi ∂

∂xi = xiei on

Σ ∩ Uε. It follows that

xj = xℓ〈 ∂
∂xℓ

, ej〉 .

Differentiating the above equation first with respect to xi and then with respect to xk, and

then evaluating at p which has xℓ = 0 for all ℓ, we obtain
(
∂

∂xk
〈 ∂
∂xi

, ej〉
)∣∣∣∣

p

+

(
∂

∂xi
〈 ∂
∂xk

, ej〉
)∣∣∣∣

p

= 0 .

On the other hand, it follows from the construction that (∇Σej)|p = 0, and
(
∂

∂xk
〈 ∂
∂xi

, ej〉
)∣∣∣∣

p

= 〈∇Σ
∂

∂xk

∂

∂xi
, ej〉

∣∣∣∣
p

= 〈∇Σ
∂

∂xi

∂

∂xk
, ej〉

∣∣∣∣
p

=

(
∂

∂xi
〈 ∂
∂xk

, ej〉
)∣∣∣∣

p

.

Hence, ∂
∂xk 〈 ∂∂xi , ej〉 is zero at p.

Since ej is parallel with respect to ∇ along normal geodesics, (∇eαej)|p = 0. It follows that
(
∂

∂yα
〈 ∂
∂xi

, ej〉
)∣∣∣∣

p

= 〈∇ ∂
∂yα

∂

∂xi
, ej〉

∣∣∣∣
p

= 〈∇ ∂

∂xi

∂

∂yα
, ej〉

∣∣∣∣
p

= − 〈 ∂
∂yα

,∇ ∂

∂xi
ej〉
∣∣∣∣
p

= −hαij
∣∣
p

where the third equality follows from the fact that 〈 ∂
∂yα

, ej〉 ≡ 0 on Σ ∩ Uε.

Note that 〈 ∂
∂xi , eβ〉 vanishes on Σ ∩ Uε. Since eβ is parallel with respect to ∇ along normal

geodesics, (∇eαeβ)|p = 0, and then
(
∂

∂yα
〈 ∂
∂xi

, eβ〉
)∣∣∣∣

p

= 〈∇ ∂
∂yα

∂

∂xi
, eβ〉

∣∣∣∣
p

= 〈∇ ∂

∂xi

∂

∂yα
, eβ〉

∣∣∣∣
p

.

By construction, ∂
∂yα

= eα on Σ ∩ Uε and (∇⊥eα)|p = 0. Therefore, ∂
∂yα
〈 ∂
∂xi , eβ〉 is zero at p.

The term 〈 ∂
∂yµ

, ej〉 also vanishes on Σ ∩ Uε. It follows from (2.4) that yµ〈 ∂
∂yµ

, ej〉 = 0.

Differentiating the above equation first with respect to yα and then with respect to yβ, we
8



obtain
(
∂

∂yα
〈 ∂
∂yβ

, ej〉
)∣∣∣∣

p

+

(
∂

∂yβ
〈 ∂
∂yα

, ej〉
)∣∣∣∣

p

= 0 .

Since ∇eνej = 0, the above two terms are always equal to each other, and thus both vanish.

For 〈 ∂
∂yµ

, eβ〉, it follows from the construction that 〈 ∂
∂yµ

, eβ〉 = δµβ on Σ ∩ Uε. According

to (2.4), yµ = yν〈 ∂
∂yν

, eµ〉. By a similar argument as that for ∂
∂xk 〈 ∂∂xi , ej〉, ∂

∂yν
〈 ∂
∂yµ

, eβ〉 also
vanishes at p. �

2.2.3. The expansions of connection coefficients.

Proposition 2.6. Let Uε be a neighborhood of p ∈ Σ in M as in Definition 2.3 with the co-

ordinate system (x,y) = (x1, · · · xn, yn+1, · · · yn+m) and the frame {e1, · · · , en, en+1, · · · en+m}.
Let

θBA = 〈∇eCeA, eB〉ωC = θBA(eC)ω
C

be the connection 1-forms of the frame fields on Uε, where {ωA}n+m
A=1 is the dual coframe of

{eA}n+m
A=1 . Then, at a point q ∈ Uε with coordinates (x,y), θBA(eC), considered as locally defined

multi-indexed functions, has the following expansions:

θji (ek)|(x,y) =
1

2
xlRΣ

jilk

∣∣
p
+ yαRjiαk

∣∣
p
+O(|x|2 + |y|2) ,

θji (eβ)|(x,y) =
1

2
yαRjiαβ

∣∣
p
+O(|x|2 + |y|2) ,

(2.10)

θαi (ej)|(x,y) = hαij
∣∣
p
+ xk hαij;k

∣∣
p
+ yβ (Rαiβj +

∑

k

hαikhβjk)
∣∣
p
+O(|x|2 + |y|2) , (2.11)

θαi (eβ)|(x,y) =
1

2
yγ Rαiγβ

∣∣
p
+O(|x|2 + |y|2) ,

θαβ (ei)|(x,y) =
1

2
xj R⊥

αβji

∣∣
p
+ yγ Rαβγi

∣∣
p
+O(|x|2 + |y|2)

θαβ (eγ)|(x,y) =
1

2
yδ Rαβδγ

∣∣
p
+O(|x|2 + |y|2) ,

(2.12)

where RΣ
jilk

∣∣
p
, Rjiαk

∣∣
p
, Rjiαβ

∣∣
p
hαij

∣∣
p
, hαij;k

∣∣
p
, Rαiβj

∣∣
p
, Rαiγβ

∣∣
p
,R⊥

αβji

∣∣
p
, Rαβγi

∣∣
p
, Rαβδγ

∣∣
p
all

represent the evaluation of the corresponding tensors at p and with respect to the frame fields

{ei}ni=1 and {eα}n+m
α=n+1.

Proof. Since the restriction of the frame {ei}ni=1 on Σ is parallel with respect to ∇Σ along the

radial geodesics, xkθji (ek)
∣∣
(x,0)

= 0 for any i, j ∈ {1, . . . , n}. It follows that

θji (ek)
∣∣
(x,0)

= −xl∂ θ
j
i (el)

∂xk
∣∣
(x,0)

and thus θji (ek)
∣∣
p
= 0 . (2.13)
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By taking the partial derivative in xl and evaluating at p = (0,0), we find that

∂ θji (ek)

∂xl

∣∣
p
= −∂ θ

j
i (el)

∂xk

∣∣
p
, or equivalently, el(θ

j
i (ek))|p = −ek(θji (el))|p (2.14)

Similarly, since the restriction of {eµ}n+m
µ=n+1 on Σ is parallel with respect to ∇⊥ along radial

geodesics, xkθνµ(ek)
∣∣
(x,0)

= 0 for any µ, ν ∈ {n+ 1, . . . , n+m}. It follows that

θνµ(ek)
∣∣
p
= 0 and (2.15)

el(θ
ν
µ(ek))

∣∣
p
= −ek(θνµ(el))

∣∣
p
. (2.16)

Since the frame {eA}n+m
i=1 is parallel with respect to ∇ along normal geodesics, yµθBA(eµ) = 0

and it follows that

θBA(eµ) = −yν
∂ θBA(eν)

∂yµ
⇒ θBA(eµ)

∣∣
(x,0)

= 0. (2.17)

By taking partial derivatives,

∂ θBA(eµ)

∂xk
= −yν ∂

2 θBA(eν)

∂xk∂yµ
and

∂ θBA(eµ)

∂yν
= −∂ θ

B
A(eν)

∂yµ
− yδ ∂

2 θBA(eδ)

∂yν∂yµ
. (2.18)

Note that on Σ, { ∂
∂xi }ni=1 and {ei}ni=1 are both bases for TΣ. Therefore,

ek(θ
B
A(eµ))

∣∣
(x,0)

= 0 . (2.19)

By construction, ∂
∂yµ

= eµ on Σ, and thus

eν(θ
B
A (eµ))

∣∣
(x,0)

= −eµ(θBA(eν))
∣∣
(x,0)

. (2.20)

In terms of the connection 1-forms, the components of the Riemann curvature tensor are

RABCD

= 〈∇eC∇eDeB −∇eD∇eCeB −∇[eC ,eD]eB , eA〉
= eC(θ

A
B(eD))− eD(θAB(eC))− (θEB ∧ θAE)(eC , eD)− θAB(eE)θED(eC) + θAB(eE)θ

E
C (eD) . (2.21)

With these preparations, we proceed to prove all the expansion formulae:

(The expansion of θji (ek)) It follows from (2.13) that the zeroth order term is zero. By (2.14),

the coefficient of xl in the expansion is

el(θ
j
i (ek))|p =

1

2

[
el(θ

j
i (ek))− ek(θ

j
i (el))

]∣∣∣
p
=

1

2
RΣ

jilk

∣∣
p
.

Note that for RΣ
αβji, all the indices of summation in (2.21) go from 1 to n. Due to (2.19), the

coefficient of yα in the expansion is

eα(θ
j
i (ek))

∣∣∣
p
=
[
eα(θ

j
i (ek))− ek(θ

j
i (eα))

]∣∣∣
p
= Rjiαk|p .
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(The expansion of θji (eβ)) By (2.17), the zeroth order term is zero, and the coefficient of xl

in the expansion is zero. According to (2.20), the coefficient of yα in the expansion is

eα(θ
j
i (eβ))

∣∣∣
p
=

1

2

[
eα(θ

j
i (eβ))− eβ(θ

j
i (eα))

]∣∣∣
p
= Rjiαβ|p .

(The expansion of θαi (ej)) On Σ ∩ Uε, θ
α
i (ej) = 〈∇ejei, eα〉 = hαij . Its derivative along ek is

ek(II(ei, ej , eα)) = (∇ekII)(ei, ej , eα) + II(∇Σ
ek
ei, ej , eα) + II(ei,∇Σ

ek
ej , eα) + II(ei, ej ,∇⊥

ek
eα) .

Due to (2.13) and (2.15), the last three terms vanish at p. It follows that ek(II(ei, ej , eα))|p is

equal to hαij;k|p.
The coefficient of yβ is eβ(θ

α
i (ej)|p. By (2.19) and (2.17),

Rαiβj|p =
[
eβ(θ

α
i (ej)) + θαi (ek)θ

k
β(ej)

]∣∣∣
p
= [eβ(θ

α
i (ej))− hαikhβkj ]|p .

(The expansion of θαi (eβ)) According to (2.17), the zeroth order term is zero, and the coeffi-

cient of xl in the expansion is zero. By (2.20) and (2.17),

eγ(θ
α
i (eβ))|p =

1

2
[eγ(θ

α
i (eβ))− eβ(θαi (eγ))]|p =

1

2
Rαiγβ |p .

(The expansion of θαβ (ei)) By (2.15), the zeroth order term vanishes. With (2.16), (2.15) and

(2.13),

ej(θ
β
α(ei))

∣∣∣
p
=

1

2

[
ej(θ

β
α(ei))− ei(θβα(ej))

]∣∣∣
p
=

1

2
R⊥

αβji

∣∣∣
p
.

Note that for R⊥
αβji, the index of summation in the third term of (2.21) goes from n + 1 to

n+m, and the indices of summation in the last two terms of (2.21) go from 1 to n. By (2.19),

(2.17) and (2.15),

eγ(θ
β
α(ei))

∣∣∣
p
=
[
eγ(θ

β
α(ei))− ei(θβα(eγ))

]∣∣∣
p
= Rαβγi|p .

(The expansion of θαβ (eγ)) Due to (2.17), θαβ (eγ) vanishes on Σ∩Uε. According to (2.20) and

(2.17),

eδ(θ
α
β (eγ))

∣∣
p
=

1

2

[
eδ(θ

α
β (eγ))− eγ(θαβ (eδ))

]∣∣
p
=

1

2
Rαβδγ |p .

This finishes the proof of this proposition. �

2.2.4. Horizontal and vertical subspaces. For any q ∈ Uε ⊂ M , there exists a unique p ∈ Σ

such that there is a unique normal geodesic inside Uε connecting q and p. Any tensor defined

on Σ can be extended to Uε by parallel transport of ∇ along normal geodesics. Here are some

notions that will be used in this paper.

The parallel transport of TΣ along normal geodesics defines an n-dimensional distribution

of TM |Uε , which is called the horizontal distribution, and is denoted by H. Its orthogonal
11



complement in TM is called the vertical distribution, and is denoted by V. It is clear that H =

span{e1, · · · , en} and V = span{en+1, · · · , en+m}. The parallel transport of the volume form of

Σ along normal geodesics defines an n-form on Uε, which is denoted by Ω. Let {ω1, · · · , ωn,

ωn+1, · · · , ωn+m} be the dual coframe of {e1, · · · , en, en+1, · · · , en+m}. In terms of the coframe,

Ω = ω1 ∧ · · · ∧ ωn . (2.22)

For any q ∈ Uε and any oriented n-plane L ⊂ TqM , consider the orthogonal projection

onto Vq, πV , and the evaluation of Ω on L. Suppose that Ω(L) > 0. By the singular value

decomposition, there exist oriented orthonormal basis {e1, · · · , en} for Hq, orthonormal basis

{en+1, · · · , en+m} for Vq and angles φ1, · · · , φn ∈ [0, π/2) such that

{ẽj = cosφj ej + sinφj en+j}nj=1 (2.23)

constitutes an oriented, orthonormal basis for L. If n > m, φj is set to be zero for j > m. It

follows that

Ω(L) = cosφ1 · · · cosφn , (2.24)

and the operator norm of πV is

s(L) :=
∣∣∣∣πV |L

∣∣∣∣
op

= max{sinφ1, · · · , sin φn} . (2.25)

Remark 2.7. The construction (2.23) works for Ω(L) = 0 as well, and some of the angles would

be π/2. The formulae (2.24) and (2.25) remain valid. We briefly explain this linear-algebraic

construction. Consider the orthogonal projection onto Hq, πH. Let LV = ker(πH : L→Hq); it

is a linear subspace of Vq. Let L′ be the orthogonal complement of LV in L. Then, L = L′⊕LV ,

and πH : L′ →Hq is injective. Note that πV(L
′) is orthogonal to LV . The linear subspace L

′ is

the graph of a linear map from πH(L
′) ⊂ Hq to Vq. The basis (2.23) is constructed by applying

the singular value decomposition to this linear map together with an orthonormal basis for LV .

It is easy to see that the orthogonal complement of L has the following orthonormal basis:

{ẽα = − sinφα eα−n + cosφα eα}mα=n+1 (2.26)

where φα = φα−n. If m > n, φα is set to be zero for α > 2n. The following estimates will be

needed later, and are straightforward to come by:

n∑

i=1

∣∣∣(ωj ⊗ ωk)(ẽi, ẽi)
∣∣∣ ≤ n ,

n∑

i=1

∣∣(ωα ⊗ ωj)(ẽi, ẽi)
∣∣ ≤ ns (2.27)
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and
∣∣∣(ω1 ∧ · · · ∧ ωn)(ẽα, ẽ1, · · · , ̂̃ei , · · · , ẽn)

∣∣∣ ≤ s ,
∣∣∣(ω1 ∧ · · · ∧ ωn)(ẽα, ẽβ , ẽ1, · · · , ̂̃ei , · · · , ̂̃ej · · · , ẽn)

∣∣∣ ≤ s
2 ,

∣∣∣(ωα ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(ẽ1, · · · , ẽn)
∣∣∣ ≤ ns ,

∣∣∣(ωα ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(ẽβ , ẽ1, · · · , ̂̃ej , · · · , ẽn)
∣∣∣ ≤ 1 ,

∣∣∣(ωα ∧ ωβ ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn)(ẽ1, · · · , ẽn)
∣∣∣ ≤ n(n− 1)s2

(2.28)

for any i, j, k ∈ {1, . . . , n} and α, β ∈ {n+ 1, . . . , n+m}.
The above estimates are the zeroth order estimate. For the first and third inequalities of

(2.28), a more refined version will also be needed. It follows from (2.23) and (2.26) that

(ω1 ∧ · · · ∧ ωn)(ẽα, ẽ1, · · · , ̂̃ei , · · · , ẽn) = (−1)iδα(n+i)
sinφi
cosφi

n∏

k=1

cosφk . (2.29)

Let ω̃1, · · · , ω̃n, ω̃n+1, · · · , ω̃n+m be the dual basis of ẽ1, · · · , ẽn, ẽn+1, · · · , ẽn+m. According to

(2.23) and (2.26),

ωj = cosφj ω̃
j − sinφj ω̃

n+j and ωα = sinφα ω̃
α−n + cosφα ω̃

α .

Hence,

(ωα ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(ẽ1, · · · , ẽn)

=
(
(sinφαω̃

α−n) ∧ (cosφ1ω̃
1) ∧ · · · ∧ ( ̂cos φiω̃i) ∧ · · · ∧ (cos φnω̃

n)
)
(ẽ1, · · · , ẽn)

= (−1)i+1δα(n+i)
sinφi
cosφi

n∏

k=1

cosφk .

(2.30)

3. Minimal submanifolds and stability conditions

3.1. The stability of a minimal submanifold. A submanifold Σ ⊂ (M,g) is said to be

minimal if its mean curvature vanishes, H = 0. It means that Σ is a critical point of the

volume functional. A minimal submanifold Σ is said to be stable if the second variation of the

volume functional is positive at Σ. We now recall the second variational formula of the volume

functional. The detail can be found in [15, §3.2].
Suppose that V is a normal vector field on Σ. There are two linear operators on NΣ in the

second variation formula. The first one is the partial Ricci operator defined by

R(V ) = trΣ
(
R( · , V ) ·

)⊥
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where R is the Riemann curvature tensor of (M,g). The second one is basically the norm-square

of the second fundamental form along V . The shape operator along V is a symmetric map from

TΣ to itself, and is defined by

SV (X) = −(∇XV )TΣ = −∇XV +∇⊥
XV , or equivalently 〈SV (X), Y 〉 = 〈II(X,Y ), V 〉

for any tangent vectors X and Y of Σ. By regarding S as a map from NΣ to Sym2(TΣ), define

A(V ) = St ◦ S(V )

where St : Sym2(TΣ)→ NΣ is the transpose map of S.
With this understanding, the second variation of the volume functional in the direction of V

is
∫

Σ
|∇⊥V |2 + 〈R(V ), V 〉 − 〈A(V ), V 〉 (3.1)

Therefore, Σ is stable if and only if (∇⊥)∗∇⊥+R−A is a positive operator. Note that (∇⊥)∗∇⊥

is always non-negative definite, and R − A is a linear map on NΣ. Hence, the positivity of

R−A is a condition easier to check, and implies the stability of Σ.

Definition 3.1. A minimal submanifold Σ ⊂ (M,g) is said to be strongly stable if R−A is a

(pointwise) positive operator on NΣ.

In terms of the notations introduced in §2.1, Σ is strongly stable if there exists a constant

c0 > 0 such that

−
∑

α,β,i

Riαiβv
αvβ −

∑

α,β,i,j

hαijhβijv
αvβ ≥ c0

∑

α

(vα)2 (3.2)

for any (vn+1, · · · , vn+m) ∈ Rm.

In particular, for a hypersurface Σ, the condition is

−Ric(ν, ν)− |A|2 ≥ c0,

where ν is a unit normal and |A|2 =
∑

i,j h
2
ij .

3.2. Proof of Proposition A. It is easy to see that (3.2) holds for a totally geodesic submani-

fold in a manifold with negative sectional curvature. When the geometry has special properties,

the condition (3.2) is equivalent to some natural curvature condition on the minimal submani-

fold.
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3.2.1. Complex submanifolds in Kähler manifolds. Let (M2n, g, J, ω) be a Kähler manifold, and

Σ2p ⊂ M be a complex submanifold. The submanifold Σ is automatically minimal. In fact,

the second variation (3.1) is always non-negative. In this case, the operator R−A was studied

by Simons in the famous paper [15, §3.5]. We briefly summarize his results. The condition is

equivalent to that
〈
−J

(
p∑

i=1

R⊥(ei, fi)(V )

)
, V

〉
≥ c0 |V |2

where {e1, · · · , ep, f1, · · · , fp} is an orthonormal frame for TΣ with fi = Jei. In other words,

the normal bundle curvature contracting with ωΣ is positive definite. It implies that the normal

bundle of Σ admits no non-trivial holomorphic cross section.

3.2.2. Minimal Lagrangians in Kähler–Einstein manifolds. Let (M2n, g, ω) be a Kähler–Einstein

manifold, where ω is the Kähler form. Denote the Einstein constant by c, i.e. Ric = c g. A

half-dimensional submanifold Ln ⊂ M is said to be Lagrangian if ω|L vanishes. Suppose that

L is both minimal and Lagrangian. Then, (3.2) is equivalent to the condition that

RicL − c is a positive definite operator on TL , (3.3)

where RicL is the Ricci curvature of g|L. For completeness, the derivation is included in

Appendix A.1. We remark that when c < 0, a minimal Lagrangian is always stable. That is to

say, the second variation (3.1) is strictly positive for any non-identically zero V ; see [5, 13].

A case of particular interest is special Lagrangians in a Calabi–Yau manifold; see [8, §III]. The
constant c = 0 for a Calabi–Yau manifold, and the strong stability condition (3.2) is equivalent

to the positivity of RicL. By the Bochner formula, it implies that the first Betti number of L

is zero. According to the result of McLean [12, Corollary 3.8], L is infinitesimally rigid as a

special Lagrangian submanifold.

3.2.3. Coassociatives in G2 manifolds. A G2 manifold (M,g) is a 7-dimensional Riemannian

manifold with G2 holonomy. A coassociative submanifold is a special class of minimal, 4-

dimensional submanifold in M . A complete story can be found in [8, §IV] and [10, ch.11–12],

and a brief summary is included in Appendix A.2.

Suppose that Σ4 ⊂ M is coassociative. The strong stability condition (3.2) is equivalent to

that

−2W− +
s

3
is a positive definite operator on Λ2

− , (3.4)

where W− anti-self-dual part of the Weyl curvature of g|Σ, and s is the scalar curvature of

g|Σ. The computation bears its own interest in G2 geometry, and is included in Appendix

A.2. According to the Weitzenböck formula for anti-self-dual 2-forms [7, Appendix C], (3.4)
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implies that Σ has no non-trivial anti-self-dual harmonic 2-forms. Due to [12, Corollary 4.6], Σ

is infinitesimally rigid as a coassociative submanifold.

3.3. The Codazzi equation on a minimal submanifold. Suppose that Σ is a minimal

submanifold. Choose a local orthonormal frame {e1, · · · , en+m} such that the restriction of

{e1, · · · , en} on Σ are tangent to Σ and the restriction of {en+1, · · · , en+m} to Σ are normal to

Σ. Consider the following equation on Σ:

hαii;k = ek(hαii)− 2〈∇Σ
ej
ei, ek〉hαki − 〈∇⊥

ej
eα, eβ〉hβii .

Since the mean curvature vanishes, the first and third terms are zero. For the second term,

〈∇Σ
ej
ei, ek〉 is skew-symmetric in i and k, and hαki is symmetric in i and k. Hence, the second

term is also zero. By combining it with the Codazzi equation (2.1),

Rαiij = hαji;i . (3.5)

4. The convexity of ψ and a local uniqueness theorem of minimal submanifolds

Suppose that Σ is a minimal submanifold in (M,g) and consider the function ψ =
∑

α(y
α)2

on the tubular neighborhood Uε of Σ as in §2.2.1. Similar to [18], the strong stability of Σ is

closely related to the positivity of the trace of Hess(ψ) over an n-dimensional subspace.

Proposition 4.1. Let Σn ⊂ (M,g) be a compact, oriented minimal submanifold that is strongly

stable in the sense of (3.2). There exist positive constants ε1 and c which depend on the geometry

of M and Σ and which have the following property. For any q ∈ Uε1 and any oriented n-plane

L ⊂ TqM ,

trLHess(ψ) ≥ c
((

s(L)
)2

+ ψ(q)
)

(4.1)

where s(L) is defined by (2.25).

Proof. Let p ∈ Σ be the point such that there is a normal geodesic in Uε connecting p and

q. To calculate Hess(ψ), take the frame {e1, · · · , en, en+1, · · · , en+m} constructed in §2.2. Let

{ω1, · · · , ωn, ωn+1, · · · , ωn+m} be the dual coframe. According to (2.4) and (2.5), dψ = 2yαωα,

and thus ej(ψ) ≡ 0. By (2.11),

Hess(ψ)(ei, ej)

= ei(ej(ψ)) − (∇eiej)(ψ) = −2yα θαj (ei)

= −2yα hαij
∣∣
p
− 2yαxk hαij;k

∣∣
p
− 2yαyβ Rαjβi

∣∣
p
− 2yαyβ (hαjkhβik)

∣∣
p
+O((|x|2 + |y|2) 3

2 ) .
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By (2.9), (2.11) and (2.12),

Hess(ψ)(eα, ei) = eα(ei(ψ))− (∇eαei)(ψ) = −2yβ θβi (eα)
= O(|x|2 + |y|2) ,

Hess(ψ)(eα, eβ) = eα(eβ(ψ))− (∇eαeβ)(ψ) = 2eα(y
β)− 2yγ θγβ(eα)

= 2δαβ +O(|x|2 + |y|2) .
(4.2)

We choose the frame so that L has an oriented, orthonormal basis of the form (2.23) and

evaluate trLHess(ψ); note that all the xj-coordinate of q are zero:

trLHess(ψ) =
∑

j

Hess(ψ)(cos φj ej + sinφj en+j , cosφj ej + sinφj en+j)

=
∑

j

[
2 cos2 φj

(
−yα hαjj

∣∣
p
− yαyβ Rαjβj

∣∣
p
− yαyβ (hαjkhβjk)

∣∣
p

)
+ 2 sin2 φj

]

+O(|y|3) + s(L) · O(|y|2)

≥ 2
∑

j,α,β

[
−yαyβ Rαjβj

∣∣
p
− yαyβ (hαjkhβjk)

∣∣
p

]
+ 2

∑

j

sin2 φj

+ 2
∑

j,α,β

sin2 φj

[
yαyβ Rαjβj

∣∣
p
+ yαyβ (hαjkhβjk)

∣∣
p

]
− s

2(L)− c′|y|3

for some c′ > 0. By using the strong stability condition (3.2), this finishes the proof of the

proposition. �

By the same argument as in [18], the convexity of ψ implies the following local uniqueness

theorem of minimal submanifolds near Σ.

Theorem 4.2. (Theorem A) Let Σn ⊂ (M,g) be a compact minimal submanifold which is

strongly stable in the sense of (3.2). Then, there exists a tubular neighborhood U of Σ such that

any compact minimal submanifold Γ in U with dimΓ ≥ n must be contained in Σ. In other

words, Σ is the only compact minimal submanifold in U with dimension no less than n.

Proof. It basically follows from [18, Lemma 5.1] and Proposition 4.1. The only point to check

is that the estimate of Proposition 4.1 holds for dimension greater than n. Namely, it remains

to show that for any q ∈ Uε1 and any n̄-plane L̄ ⊂ TqM with n̄ > n,

trL̄Hess(ψ) ≥ c0

for some positive constant c0.

The argument is similar to Remark 2.7. Pick an (n̄ − n)-subspace of ker(πH : L̄ → Hq).

Denote it by LV . Note that LV belong to Vq. Let L be the orthogonal complement of LV in
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L̄. The dimension of L is n. By Proposition 4.1 and (4.2), the trace of the Hessian of ψ over L̄

has the following lower bound:

trL̄Hess(ψ) = trLHess(ψ) + trLV
Hess(ψ)

≥ cψ(q) +
(
2(n̄− n)− c′ψ(q)

)
.

Thus, the quantity is positive when ψ(q) is sufficiently small. �

Remark 4.3. In this rigidity theorem, it is not hard to see that the minimal submanifold

Σ needs not to be orientable. However, in order to have ψ to be well-defined on a tubular

neighborhood, Σ has to be embedded.

5. Further estimates needed for the stability theorem

From now on, Σ is taken to be a strongly stable minimal submanifold and we see in the last

section that the distance function ψ to Σ defined on Uε satisfies a convexity condition.

To study the dynamical stability of mean curvature flows near Σ, we need to measure how

close a nearby submanifold is to Σ. The distance function ψ gives such a measurement in

C0. In order to obtain measurements in higher derivatives, we extend the volume form and

the second fundamental form of Σ to the tubular neighborhood Uε. In particular, in §2.2.4,
the volume form of Σ is extended to an n-form Ω on Uε. The restriction of Ω to another

n-dimensional submanifold Γ, which is denoted by ∗Ω, measures how close Γ is to Σ in C1.

The evolution equation of ∗Ω along the mean curvature flow plays an essential role for the

estimates. The equation naturally involves the restriction of the covariant derivatives/second

covariant derivatives of Ω on Γ. In this section, we derive estimates of these quantities in

preparation for the proof of the stability theorem.

5.1. Extension of auxiliary tensors to Uε. We adopt the frame and coordinate constructed

in §2.
The second fundamental form of Σ can also be extended to Uε by parallel transport along

normal geodesics, as explained in §2.2.4. Denote the extension by IIΣ, which, in terms of the

frames, is given by

IIΣ = hαij ω
i ⊗ ωj ⊗ eα . (5.1)

In other words, for any q ∈ Uε, hαij(q) = hαij(p) where p ∈ Σ is the unique point such that

there is a normal geodesic in Uε connecting p and q, see Definition 2.3. To avoid introducing

more notations, we use the metric g to lower the indices of IIΣ, and then IIΣ = hαij ei⊗ ej ⊗ eα.
Suppose that Γ is an oriented, n-dimensional submanifold in Uε ⊂ M with Ω(Γ) > 0. With

the above extension, we can compare the second fundamental form of Γ with that of Σ. For

any q ∈ Γ, choose a local orthonormal frame {ẽ1, · · · , ẽn, ẽn+1, · · · , ẽn+m} on a neighborhood
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of q in M such that the restriction of {ẽ1, · · · , ẽn} on Γ form an oriented frame for TΓ, and the

restriction of {ẽn+1, · · · , ẽn+m} on Γ form a frame for NΓ. With this, the second fundamental

form of Γ is

IIΓ = h̃αij ẽi ⊗ ẽj ⊗ ẽα where h̃αij = 〈∇ẽi ẽj , ẽα〉 . (5.2)

As explained in §2.2.4, we may assume that these frames are of the form (2.23) and (2.26) at

q. The inverse transform reads

ej = cosφj ẽj − sinφj ẽn+j and eα = sinφα ẽα−n + cosφα ẽα . (5.3)

It follows that

IIΣ
∣∣
q
= hαij(p) (cos φi ẽi − sinφi ẽn+i)⊗ (cosφj ẽj − sinφj ẽn+j)⊗ (sinφα ẽα−n + cosφα ẽα).

(5.4)

Hence,

〈IIΓ, IIΣ〉
∣∣
q
=
∑

α,i,j

(
cosφi cosφj cosφα h̃αij hαij(p)

)
. (5.5)

In the above expression, hαij(p) depends only on p ∈ Σ, while φi, φα, and h̃αij all depend on

q ∈ Γ.

We extend another tensor which is related to the strong stability condition (3.2). Consider

the parallel transport of the following tensor on Σ along normal geodesics:

(Rαiβj + hαikhβjk) (ω
i ⊗ ωj)⊗ (eα ⊗ eβ) ,

which is considered to be defined on Uε. Pairing the last component with ∇ψ/2 produces a

tensor of the same type as IIΣ, which is denoted by SΣ:

SΣ|q = yβ (Rαiβj(p) + (hαikhβjk)(p)) ω
i ⊗ ωj ⊗ eα (5.6)

where p ∈ Σ is the point such that there is a unique normal geodesic in Uε connecting p and q.

Similarly,

〈IIΓ, SΣ〉
∣∣
q
=
∑

α,β,i,j

(
cosφi cosφj cosφα h̃αij y

β
(
Rαiβj(p) +

∑

k

(hαikhβjk)(p)
)
)
. (5.7)

Again in the above expression, Rαiβj(p) +
∑

k(hαikhβjk)(p) depends only on p ∈ Σ, while

φi, φα,y
β , and h̃αij all depend on q ∈ Γ.

In the rest of this subsection, we assume Ω(TqΓ) >
1
2 and estimate 〈IIΓ, IIΣ〉

∣∣
q
and 〈IIΓ, SΣ〉

∣∣
q
.

We assume that TqΓ has an oriented frame of the form (2.23), and NqΓ has a frame of the form

(2.26). Since Ω(TqΓ) >
1
2 , it follows from (2.24) that

cosφj ≥ cosφ1 · · · cosφn >
1

2
for j ∈ {1, . . . , n} .
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A direct computation shows that

0 < 1− cosφj = 1−
√

1− sin2 φj ≤ 2 (s(TqΓ))
2 ,

∣∣∣∣
1

cosφj
− cosφj

∣∣∣∣ =
sin2 φj
cosφj

< 2 (s(TqΓ))
2 .

(5.8)

Suppose that s in (2.25) is achieved at φ1, and then

Ω(TqΓ) ≤ cosφ1 =

√
1− sin2 φ1 ≤ 1− 1

2
sin2 φ1

⇒ 1− Ω(TqΓ) ≥
1

2
(s(TqΓ))

2 . (5.9)

On the other hand,

1− Ω(TqΓ) ≤ 1− (Ω(TqΓ))
2 = 1−

n∏

j=1

(1− sin2 φj) ≤ c(n) (s(TqΓ))2 (5.10)

for some dimensional constant c(n).

Applying the estimate (5.8) to (5.5) and (5.7), we obtain

∣∣∣∣∣∣
〈IIΓ, IIΣ〉

∣∣
q
−
∑

α,i,j

h̃αij hαij(p)

∣∣∣∣∣∣
≤ c (s(q))2 |IIΓ| ,

∣∣∣∣∣∣
〈IIΓ, SΣ〉

∣∣
q
−
∑

α,β,i,j

(
h̃αij y

β
(
Rαiβj(p) +

∑

k

(hαikhβjk)(p)
)
)∣∣∣∣∣∣
≤ c (s(q))2

√
ψ(q) |IIΓ|

(5.11)

for some constant c depending on the geometry of Σ and M .

5.2. Estimates involving the derivatives of Ω. In this subsection, we derive estimates that

involve derivatives of Ω, which are needed in the proof of Theorem B. In the following three

lemmas, we estimate quantities that appear naturally in the evolution equation of ∗Ω (6.1).

Let Γ be an n-dimensional submanifold in the tubular neighborhood of Σ. The function

∗Ω is the Hodge star of Ω|Γ with respect to the induced metric on Γ, and is the same as

Ω(TqΓ). We assume throughout this subsection that ∗Ω(q) > 1
2 for any q ∈ Γ. For each q ∈ Γ,

let p ∈ Σ be the point such that there is a unique normal geodesic in Uε connecting p and

q; see Definition 2.3. We use the coordinate and frame constructed in §2.1 to carry out the

computation. Moreover, we assume that TqΓ has an oriented frame of the form (2.23), and NqΓ

has a frame of the form (2.26). For q ∈ Γ, ψ(q) is a C0 order quantity. ∗Ω(q) and s(q) are both

C1 order quantities that depend on the tangent space TqΓ at q, where s(q) = s(TqΓ) is defined

in (2.25).
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5.2.1. The restriction of the derivative of Ω to Γ. To compute ∇Ω, it is convenient to introduce

the following shorthand notations:

Ωj = ι(ej)Ω = (−1)j+1ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn , (5.12)

Ωjk = ι(ek)ι(ej)Ω =




(−1)j+k ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn if k < j ,

(−1)j+k+1 ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn if k > j .
(5.13)

The covariant derivative of Ω is

∇Ω = (∇ωj) ∧ Ωj = θαj ⊗ (ωα ∧ Ωj) . (5.14)

Lemma 5.1. Let Σn ⊂ (M,g) be a compact, oriented minimal submanifold. Then, there exist

a positive constant c which depends on the geometry of M and Σ and which has the following

property. Suppose that Γ ⊂ Uε is an oriented n-dimensional submanifold with ∗Ω(q) > 1
2 for

any q ∈ Γ. Then,
∣∣∣∣∣∣
∑

α,j,k

[
(−1)j h̃αjk (∇ẽkΩ)(ẽα, ẽ1, · · · , ̂̃ej , · · · , ẽn)

]
+ (∗Ω) 〈IIΓ, IIΣ + SΣ〉

∣∣∣∣∣∣

≤ c
((

s(q)
)2

+ ψ(q)
)∣∣IIΓ

∣∣

at any q ∈ Γ. The summation is indeed a contraction between IIΓ and ∇Ω, and is independent

of the choice of the orthonormal frame.

Proof. By (5.14),

∑

α,j,k

[
(−1)j h̃αjk (∇ẽkΩ)(ẽα, ẽ1, · · · , ̂̃ej , · · · , ẽn)

] ∣∣∣
q
= −

∑

α,j,k

[
h̃αjkθ

α
j (ẽk)

cosφα
cos φj

(∗Ω)
]
.

According to (2.11), (2.23) and the fact that the xj-coordinates of q are all zero,
∣∣∣θαj (ẽk)

∣∣
q
− cosφk hαjk(p)− cosφk y

β (Rαjβk + hαjlhβkl)(p)
∣∣∣ ≤ c1

((
s(q)

)2
+ ψ(q)

)
(5.15)

at q. Combining this with (5.8) and (5.11) finishes the proof of this lemma. �

5.2.2. The restriction of the second derivative of Ω to Γ. Since

∇ωα = −θαi ⊗ ωi − θαβ ⊗ ωβ and

∇Ωj = (∇ωk) ∧Ωjk = θkj ⊗ Ωk + θαk ⊗ (ωα ∧ Ωjk) ,

the covariant derivative of (5.14) is

∇2Ω = −(θαi ⊗ θαi )⊗ Ω+ (θαk ⊗ θβj )⊗ (ωβ ∧ ωα ∧ Ωjk)

+
(
∇θαi + θαβ ⊗ θβi + θik ⊗ θαk

)
⊗ (ωα ∧Ωi)

(5.16)

where ∇θαi is the covariant derivative of a local section of T ∗M .
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Lemma 5.2. Let Σn ⊂ (M,g) be a compact, oriented minimal submanifold. Then there exists

a positive constant c which depends on the geometry of M and Σ and which has the following

property. Suppose that Γ ⊂ Uε is an oriented n-dimensional submanifold with ∗Ω(q) > 1
2 for

any q ∈ Γ. Then,
∣∣∣∣∣∣
∑

k

[
(∇2

ẽk,ẽk
Ω)(ẽ1, · · · , ẽn)

]
−
∑

α,i,k

[
(−1)iΩ(ẽα, ẽ1, · · · , ̂̃ei , · · · , ẽn)Rα̃k̃k̃ĩ

]
+ (∗Ω)

∣∣IIΣ+ SΣ
∣∣2
∣∣∣∣∣∣

≤ c
(
s
2(q) + ψ(q)

)

at any q ∈ Γ, where R
α̃k̃k̃j̃

= 〈R(ẽk, ẽj)ẽk, ẽα〉 are components of the restriction of the curvature

tensor of M along Γ. Note that the two summations are independent of the choice of the

orthonormal frame.

Proof. We examine the components on the right hand side of (5.16). Due to (2.11) and (2.12),

|θji (ẽk)| ≤ c2
(
s
2(q) +

√
ψ(q)

)
,

|θβα(ẽk)| ≤ c2
(
s
2(q) +

√
ψ(q)

) (5.17)

for any i, j, k ∈ {1, . . . , n} and α, β ∈ {n + 1, . . . , n +m}. With (5.15) and the third and fifth

line of (2.28),
∣∣∣
(
θαj (ẽk)

) (
θβi (ẽk)

) (
(ωβ ∧ ωα ∧ Ωij)(ẽ1, · · · , ẽn)

)∣∣∣ ≤ c3
(
s(q)

)2
,

∣∣∣
(
θβα(ẽk)

) (
θβj (ẽk)

) (
(ωα ∧ Ωj)(ẽ1, · · · , ẽn)

)∣∣∣ ≤ c3
((

s(q)
)2

+ ψ(q)
)
,

∣∣∣
(
θji (ẽk)

) (
θαi (ẽk)

) (
(ωα ∧ Ωj)(ẽ1, · · · , ẽn)

)∣∣∣ ≤ c3
((

s(q)
)2

+ ψ(q)
)
.

(5.18)

According to (5.15) and (5.8),
∣∣∣∣∣∣
∑

α,j,k

(
θαj (ẽk)

)2 − |IIΣ + SΣ|2
∣∣∣∣∣∣
≤ c4

(
(s(q))2 + ψ(q)

)
. (5.19)

By (5.16), (5.19) and (5.18),
∣∣∣
[
(∇2

ẽk,ẽk
Ω)(ẽ1, · · · , ẽn)

]
− ((∇θαi )(ẽk, ẽk))

(
(ωα ∧ Ωi)(ẽ1, · · · , ẽn)

)
+ (∗Ω)

∣∣IIΣ+ SΣ
∣∣2
∣∣∣

≤ c5
(
(s(q))2 + ψ(q)

)
.

(5.20)

The next step is to compute ∇θαi :

θαi = θαi (ej)ω
j + θαi (eβ)ω

β

⇒ ∇θαi = d(θαi (ej))⊗ ωj + d(θαi (eβ))⊗ ωβ + θαi (ej)∇ωj + θαi (eβ)∇ωβ . (5.21)
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By (5.17) and (5.15), we have the following estimate at q:

∣∣(∇ωj)(ẽk, ẽk)
∣∣ =

∣∣∣θji (ẽk)ωi(ẽk)− θαj (ẽk)ωα(ẽk)
∣∣∣ ≤ c6

(
s(q) +

√
ψ(q)

)
,

∣∣∣(∇ωβ)(ẽk, ẽk)
∣∣∣ =

∣∣∣θβj (ẽk)ωj(ẽk) + θβγ (ẽk)ω
γ(ẽk)

∣∣∣ ≤ c6 .

Together with (2.11),
∣∣∣
(
θαi (ej)∇ωj + θαi (eβ)∇ωβ

)
(ẽk, ẽk)

∣∣∣ ≤ c7
(
s(q) +

√
ψ(q)

)
. (5.22)

It follows from (2.11) and (2.8) that
∣∣∣d(θαi (ej))− (hαij;k) (p)ω

k + (Rαiβj + hαikhβjk) (p)ω
β
∣∣∣ ≤ c8

√
ψ(q) ,

∣∣∣∣d(θαi (eβ))−
1

2
Rαiγβ(p)ω

γ

∣∣∣∣ ≤ c8
(5.23)

where the norm on the left hand side is induced by the Riemannian metric g. By combining

(5.21), (5.22) an (5.23),

∣∣(∇θαi )(ẽk, ẽk)− cos2 φk hαik;k(p)
∣∣ ≤ c9

(
s(q) +

√
ψ(q)

)
.

It together with (2.30) and (5.8) gives that
∣∣−
(
(∇θαi )(ẽk, ẽk) (ωα ∧ Ωi)(ẽ1, · · · , ẽn)

)
+ (∗Ω) sin φi h(n+i)ik;k(p)

∣∣

≤ c10
(
(s(q))2 + ψ(q)

)
.

(5.24)

It remains to calculate the second term in the asserted inequality of the lemma. By (2.29),

∑

α,i,k

(−1)iΩ(ẽα, ẽ1, · · · , ̂̃ei , · · · , ẽn)Rα̃k̃k̃ĩ
= (∗Ω)

∑

i,k

sinφi
cosφi

R(ẽn+i, ẽk, ẽk, ẽi) .

With (2.23), (2.26) and (5.8),
∣∣∣∣∣∣
∑

α,i,k

(−1)iΩ(ẽα, ẽ1, · · · , ̂̃ei , · · · , ẽn)Rα̃k̃k̃ĩ
+ (∗Ω)

∑

i,k

sinφiR(n+i)kki

∣∣∣∣∣∣
≤ c11 (s(q))2 .

Since
∣∣R(n+i)kki|q −R(n+i)kki|p

∣∣ ≤ c12
√
ψ(q), we have

∣∣∣∣∣∣
∑

α,i,k

(−1)iΩ(ẽα, ẽ1, · · · , ̂̃ei , · · · , ẽn)Rα̃k̃k̃ĩ
+ (∗Ω)

∑

i,k

sinφiR(n+i)kki(p)

∣∣∣∣∣∣
≤ c13

(
(s(q))2 + ψ(q)

)
.

(5.25)

By (5.20), (5.24), (5.25) and the Codazzi equation (3.5), it finishes the proof of the lemma. �

Remark 5.3. The tensor SΣ is needed for Lemma 5.2; otherwise the error term would be

bigger. However, SΣ will only be used in some intermediate steps in the proof of Theorem B.
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5.2.3. The derivative of ∗Ω along Γ. The following lemma relates the derivative of ∗Ω along Γ

and the second fundamental form of Γ.

Lemma 5.4. Let Σn ⊂ (M,g) be a compact, oriented minimal submanifold. Then, there exist

a positive constant c which depends on the geometry of M and Σ and which has the following

property. Suppose that Γ ⊂ Uε is an oriented n-dimensional submanifold with ∗Ω(q) > 1
2 for

any q ∈ Γ. Then,

|∇Γ(∗Ω)|2 ≤ c (s(q)(∗Ω))2 |IIΓ − IIΣ|2 + c
(
(s(q))2 + ψ(q)

)2

for any q ∈ Γ.

Proof. We compute

∇Γ(∗Ω) = [ẽj(Ω(ẽ1, · · · , ẽn))] ω̃j

=

[
(∇ẽjΩ)(ẽ1, · · · , ẽn) +

n∑

i=1

Ω(ẽ1, · · · , ẽi−1,∇ẽj ẽi, ẽi+1, · · · , ẽn)
]
ω̃j

=

[
(∇ẽjΩ)(ẽ1, · · · , ẽn) +

n∑

i=1

h̃αijΩ(ẽ1, · · · , ẽi−1, ẽα, ẽi+1, · · · , ẽn)
]
ω̃j .

Note that the expression is tensorial, and we use the frame (2.23) and (2.26) to proceed.

Due to (5.14) and (2.30),

(∇ẽjΩ)(ẽ1, · · · , ẽn) = θαi (ẽj) (ω
α ∧ Ωi)(ẽ1, · · · , ẽn)

=
(
cosφj θ

n+i
i (ej) + sinφj θ

n+i
i (en+j)

) sinφi
cosφi

(∗Ω) .

By (2.11) and (5.8), at q,

∣∣∣∣∣(∇ẽjΩ)(ẽ1, · · · , ẽn)− (∗Ω)
n∑

i=1

[
sinφi
cosφi

cosφn+i cosφi cosφjh(n+i)ij(p)

]∣∣∣∣∣

≤ c1
(
(s(q))2 + ψ(q)

)
.

According to (2.29),

n∑

i=1

h̃αijΩ(ẽ1, · · · , ẽi−1, ẽα, ẽi+1, · · · , ẽn) = −(∗Ω)
n∑

i=1

[
sinφi
cosφi

h̃(n+i)ij

]
.
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To sum up,

∣∣∇Γ(∗Ω)
∣∣2 =

n∑

j=1

[ẽj(Ω(ẽ1, · · · , ẽn))]2

≤ 2

n∑

j=1

∣∣∣∣∣(∇ẽjΩ)(ẽ1, · · · , ẽn)− (∗Ω)
n∑

i=1

[
sinφi
cosφi

cosφn+i cosφi cosφjh(n+i)ij(p)

]∣∣∣∣∣

2

+ 2(∗Ω)2
n∑

j=1

∣∣∣∣∣
n∑

i=1

sinφi
cosφi

(
cosφn+i cosφi cosφjh(n+i)ij(p)− h̃(n+i)ij

)∣∣∣∣∣

2

≤ 4nc21

(
(s(q))2 + ψ(q)

)2

+ 8n (s(q))2 (∗Ω)2
∑

i,j

∣∣∣h̃(n+i)ij − cosφn+i cosφi cosφjh(n+i)ij(p)
∣∣∣
2

By (5.2) and (5.4),

|IIΓ − IIΣ|2 ≥
∑

α,i,j

∣∣∣h̃αij − cosφi cosφj cosφαhαij(p)
∣∣∣
2

This completes the proof of this lemma. �

6. Stability of the mean curvature flow

After the preparation in the last sections, we consider the mean curvature flow. We first

recall the following proposition from [23, Proposition 3.1].

Proposition 6.1. Along the mean curvature flow Γt in M , ∗Ω = Ω(ẽ1, · · · , ẽn) satisfies
d

dt
∗ Ω = ∆Γt ∗Ω+ ∗Ω(

∑

α,i,k

h̃2αik)

− 2
∑

α,β,k

[Ω̃αβ3···nh̃α1kh̃β2k + Ω̃α2β···nh̃α1kh̃β3k + · · ·+ Ω̃1···(n−2)αβ h̃α(n−1)kh̃βnk]

− 2(∇ẽkΩ)(ẽα, · · · , ẽn)h̃α1k − · · · − 2(∇ẽkΩ)(ẽ1, · · · , ẽα)h̃αnk
−
∑

α,k

[Ω̃α2···nRα̃k̃k̃1̃ + · · ·+ Ω̃1···(n−1)αRα̃k̃k̃ñ
]− (∇2

ẽk,ẽk
Ω)(ẽ1, · · · , ẽn)

(6.1)

where ∆Γt denotes the time-dependent Laplacian on Γt, Ω̃αβ3···n = Ω(ẽα, ẽβ , ẽ3, · · · , ẽn) etc.,

and Rα̃k̃k̃1̃ = 〈R(ẽk, ẽ1)ẽk, ẽα〉, etc. are the coefficients of the curvature operators of M .

When Ω is a parallel form in M , ∇Ω ≡ 0, this recovers an important formula in proving the

long time existence result of the graphical mean curvature flow in [22].
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6.1. Proof of Theorem B. A finite time singularity of the mean curvature flow happens

exactly when the second fundamental becomes unbounded; see Huisken [9], also [23]. The

following theorem shows that if we start with a submanifold which is C1 close to a strongly

stable minimal submanifold Σ, then the mean curvature flow exists for all time, and converges

smoothly to Σ.

Theorem 6.2. (Theorem B) Let Σn ⊂ (M,g) be a compact, oriented, strongly stable minimal

submanifold. Then, there exist positive constants κ << 1 and c which depend on the geometry

of M and Σ and which have the following significance. Suppose that Γ ⊂ Uε is an oriented

n-dimensional submanifold satisfying

sup
q∈Γ

(1− (∗Ω) + ψ) < κ . (6.2)

Then, the mean curvature flow Γt with Γ0 = Γ exists for all t > 0. Moreover, supq∈Γt
|IIt| ≤ c

for any t > 0, where IIt the second fundamental form of Γt, and Γt converges smoothly to Σ as

t→∞.

Proof. The constant κ will be chosen to be smaller than ε2 and 1
2 ; its precise value will be

determined later. Suppose that the condition (6.2) holds for all {Γt}0≤t<T .

Denote by Ht the mean curvature vector of Γt. According to Proposition 4.1

d

dt
ψ = Ht(ψ) = ∆Γtψ − trΓt Hessψ ≤ ∆Γtψ − c1(ψ + s

2) . (6.3)

By applying Lemma 5.1, Lemma 5.2 and the second line of (2.28) to (6.1),

d

dt
(∗Ω) ≥ ∆Γt(∗Ω) + (∗Ω)|IIt|2 − 2c2s

2|IIt|2

− 2(∗Ω)〈IIt, IIΣ + SΣ〉 − c2(s2 + ψ)|IIt|
+ (∗Ω)|IIΣ + SΣ|2 − c2(s2 + ψ)

≥ ∆Γt(∗Ω) + (∗Ω)|IIt − IIΣ − SΣ|2 − c3(s2 + ψ)|IIt|2 − c3(s2 + ψ)

≥ ∆Γt(∗Ω) + 1

2
(∗Ω)|IIt − IIΣ|2 − (∗Ω)|SΣ|2

− 2c3(s
2 + ψ)|IIt − IIΣ|2 − c3(s2 + ψ)(1 + 2|IIΣ|2) .

If κ ≤ 1/(48c3), it follows from (5.9) that 2c3(s
2 + ψ) ≤ (∗Ω)/6. Since |SΣ|2 ≤ c4ψ and

|IIΣ|2 ≤ c4,

d

dt
(∗Ω) ≥ ∆Γt(∗Ω) + 1

3
(∗Ω)|IIt − IIΣ|2 − c5(s2 + ψ) . (6.4)
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By combining it with (6.3), (5.9) and (5.10), we have

d

dt
(1− (∗Ω) + c6ψ) ≤ ∆Γt (1− (∗Ω) + c6ψ)−

1

3
(∗Ω)|IIt − IIΣ|2 − c7 (1− (∗Ω) + ψ)

≤ ∆Γt (1− (∗Ω) + c6ψ)−
1

3
(∗Ω)|IIt − IIΣ|2 − c7

c6
(1− (∗Ω) + c6ψ)

(6.5)

where c6 = 1 + c5/c1. By the maximum principle, maxΓt (1− (∗Ω) + c6ψ) is non-increasing.

The evolution equation for the norm of the second fundamental form for a mean curvature

flow is derived in [20, Proposition 7.1]. In particular, |IIt|2 =
∑

α,i,k h̃
2
αik satisfies the following

equation along the flow:

d

dt
|IIt|2 = ∆Γt |IIt|2 − 2|∇ΓtIIt|2 + 2

[
(∇ẽkR)α̃ĩj̃k̃ + (∇ẽjR)α̃k̃ĩk̃

]
h̃αij

− 4R
l̃̃ij̃k̃

h̃αlkh̃αij + 8R
α̃β̃j̃k̃

h̃βikh̃αij − 4R
l̃k̃ĩk̃

h̃αlj h̃αij + 2R
α̃k̃β̃k̃

h̃βij h̃αij

+ 2
∑

α,γ,i,j

(∑

k

h̃αikh̃γjk − h̃αjkh̃γik
)2

+ 2
∑

i,j,k,l

(∑

α

h̃αij h̃αkl

)2

.

(6.6)

It follows that

d

dt
|IIt|2 ≤ ∆Γt|IIt|2 − 2|∇ΓtIIt|2 + c8

(
|IIt|4 + |IIt|2 + 1

)
. (6.7)

The quartic term |IIt|4 could potentially lead to the finite time blow-up of |IIt|. We apply the

same method in [22]: use the evolution equation of (∗Ω)p to help. Let p be a constant no less

than 1, whose precise value will be determined later. According to (6.4),

d

dt
(∗Ω)p = p(∗Ω)p−1 d

dt
(∗Ω)

≥ p(∗Ω)p−1∆Γt(∗Ω) + p

3
(∗Ω)p|IIt − IIΣ|2 − c5p(s2 + ψ)

= ∆Γt(∗Ω)p − p(p− 1)(∗Ω)p−2|∇ΓtIIt|2 + p

3
(∗Ω)p|IIt − IIΣ|2 − c5p(s2 + ψ) .

After an appeal to Lemma 5.4,

d

dt
(∗Ω)p ≥ ∆Γt(∗Ω)p + p

3

(
1− c9 p s2

)
(∗Ω)p|IIt − IIΣ|2 − c9 p2(s2 + ψ) .

If κ ≤ 1/(24c9p), it follows from (5.9) that c9 p s
2 ≤ 1/12. It together with (6.3) gives that

d

dt

(
(∗Ω)p −Kp2ψ

)
≥ ∆Γt

(
(∗Ω)p −Kp2ψ

)
+
p

4

(
(∗Ω)p −Kp2ψ

)
|IIt − IIΣ|2 (6.8)

where K = c9/c1. The maximum principle implies that if (∗Ω)p − Kp2ψ > 0 on Γ, then

minΓt

(
(∗Ω)p −Kp2ψ

)
is non-decreasing. Moreover, for any p ≥ 1, we may choose κ such that

(6.2) implies that (∗Ω)p −Kp2ψ > 1/2.
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Denote (∗Ω)p −Kp2ψ by η. Due to (6.7) and (6.8),

d

dt
(η−1|IIt|2) ≤ η−1∆Γt |IIt|2 − 2η−1|∇ΓtIIt|2 + c8η

−1
(
|IIt|4 + |IIt|2 + 1

)

− η−2|IIt|2
(
∆Γtη +

p

4
η|IIt − IIΣ|2

)
.

Since ∆Γt(η−1|IIt|2) = η−1∆Γt |IIt|2−η−2|IIt|2∆Γtη−2η−1〈∇Γtη,∇Γt(η−1|IIt|2)〉 and |IIt− IIΣ|2 ≥
1
2 |IIt|2 − c10, we have

d

dt
(η−1|IIt|2) ≤ ∆Γt(η−1|IIt|2) + 2η−1〈∇Γtη,∇Γt(η−1|IIt|2)〉

− p

8
η−1|IIt|4 + c11η

−1
(
|IIt|4 + (p+ 1)|IIt|2 + 1

)

≤ ∆Γt(η−1|IIt|2) + 2η−1〈∇Γtη,∇Γt(η−1|IIt|2)〉

−
(p
8
− 2c10

)
(η−1|IIt|2)2 + c11(η

−1|IIt|2) + 2c10 .
(6.9)

Choose p ≥ 16c11+1. It follows from the maximum principle that η−1|IIt|2 is uniformly bounded,

and hence there is no finite time singularity.

The C0 convergence is easy to come by. The differential inequality (6.3) implies that ψ

converges to zero exponentially. Similarly, it follows from (6.10) that 1− (∗Ω) + c6ψ converges

to zero exponentially. Therefore, ∗Ω converges to 1 exponentially, and we conclude the C1
convergence.

For the C2 and smooth convergence, consider η = (∗Ω)p −Kp2ψ. It follows from the above

discussion that η has a positive lower bound. It is clear that η ≤ 1. Moreover, η converges to

1 as t→∞. Integrating (6.8) gives
∫

Γt

|IIt − IIΣ|2 dµt ≤ c12
∫

Γt

dη

dt
dµt .

Recall that the Lie derivative of dµt in Ht is −|H2
t |dµt; see [20, §2]. It follows that

1

c12

∫

Γt

|IIt − IIΣ|2 dµt ≤
d

dt

∫

Γt

η dµt +

∫

Γt

η |Ht|2 dµt (6.10)

We claim that the improper integral of the right hand side for 0 ≤ t < ∞ converges. To

start, note that d
dt

∫
Γt

dµt = −
∫
Γt
|Ht|2 dµt ≤ 0. Thus, vol(Γt) =

∫
Γt

dµt is positive and non-

increasing, and must converge as t→∞. For the first term on right hand side of (6.10),

∫ t

0

(
d

ds

∫

Γs

η dµs

)
ds =

∫

Γt

η dµt −
∫

Γ0

η dµ0
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Since η converges to 1 (uniformly) and vol(Γt) converges as t → ∞,
∫
Γt
η dµt converges as

t→∞. For the second term on the right hand side of (6.10),
∫ t

0

(∫

Γs

η |Hs|2 dµs
)
ds ≤

∫ t

0

(∫

Γs

|Hs|2 dµs
)
ds =

∫ t

0

(
− d

ds

∫

Γs

dµs

)
ds

= vol(Γ0)− vol(Γt) ≤ vol(Γ0) .

It is bounded from above, and is clearly non-decreasing in t. Therefore, it converges as t→∞.

It follows from the claim and (6.10) that
∫ ∞

0

(∫

Γt

|IIt − IIΣ|2 dµt
)
dt <∞ . (6.11)

On the other hand, |IIt − IIΣ|2 obeys a differential inequality of the same form as (6.7):

d

dt
|IIt − IIΣ|2 ≤ ∆Γt |IIt − IIΣ|2 + c13

(
|IIt − IIΣ|4 + |IIt − IIΣ|2 + 1

)
. (6.12)

The derivation for this inequality is in Appendix B. By (6.12) and the uniform boundedness of

|IIt|, d
dt

∫
Γt
|IIt− IIΣ|2 dµt is bounded from above uniformly. Due to Lemma 6.3, which is proved

at the end of this subsection, we find that

lim
t→0

∫

Γt

|IIt − IIΣ|2 dµt = 0 . (6.13)

Since |IIt| is uniformly bounded, in view of (6.12), we find that d
dt |IIt − IIΣ|2 −∆Γt |IIt − IIΣ|2

is bounded from above, independent of t. This together with (6.13) implies that |IIt− IIΣ|2 → 0

as t→∞ in the sup norm.

We can then write Γt as a graph (in the geodesic coordinate defined in §2.2) over Σ defined

by yα = fαt , α = n + 1, · · · n +m for fαt functions on Σ. The above estimates imply that fαt
converges to 0 in C2 as t→∞. As a mean curvature flow, fαt satisfies a second order quasilinear

parabolic system, and standard arguments lead to the smooth convergence of fαt . �

Lemma 6.3. Let a > 0 and f(t) be a smooth function for t ∈ (a,∞). Suppose that f(t) ≥ 0,∫∞
a
f(t) dt converges, and f ′(t) ≤ C for some constant C > 0. Then, f(t)→ 0 as t→∞.

Proof. It follows from f ′(t) ≤ C that f(t) ≥ f(t1)−C(t1− t) for any t1 > t > a. Since f(t) ≥ 0

and
∫∞
a
f(t) dt < ∞, given any ǫ ∈ (0, 1), there exists an Aǫ > a such that

∫∞
Aǫ
f(t) dt < ǫ.

Thus, for any t1 > Aǫ + 1 > Aǫ +
√
ǫ,

ǫ >

∫ t1

t1−
√
ǫ

f(t) dt ≥
∫ t1

t1−
√
ǫ

(f(t1)− C(t1 − t)) dt

=
√
ǫ (f(t1)− C t1) + C

(√
ǫ t1 −

1

2
ǫ

)
.

It follows that f(t) < (1 + 1
2C)
√
ǫ for any t > Aǫ + 1. �
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Appendix A. Computations related to strong stability

For minimal Lagrangians in a Kähler–Einstein manifold and coassociatives in a G2 manifold,

the condition (3.2) can be rewritten as a curvature condition on the submanifold. One ingredient

is the geometric properties of U(n) and G2 holonomy. Another ingredient is the Gauss equation:

Rijkℓ −RΣ
ijkℓ = hαiℓhαjk − hαikhαjℓ . (A.1)

A.1. Minimal Lagrangians in Kähler–Einstein manifolds. Let (M2n, g, J, ω) be a Kähler–

Einstein manifold, where J is the complex structure and ω is the Kähler form. Denote the

Einstein constant by c; namely,

∑

C

RACBC = RicAB = c gAB .

A submanifold Ln ⊂ M2n is Lagrangian if ω|L vanishes. It implies that J induces an iso-

morphism between its tangent bundle TL and normal bundle NL. In terms of the notations

introduced in §2.1, the correspondence is

viei ←→ vi Jei . (A.2)

In particular, if {e1, · · · , en} is an orthonormal frame for TL, {Je1, · · · , Jen} is an orthonor-

mal frame for NL. Denote Jek by eJ(k), and let

Ckij = hJ(k)ij = 〈∇eiej , Jek〉 .

Since J is parallel, it is easy to verify that Ckij is totally symmetric.

Now, suppose that L is also minimal. By using the correspondence (A.2), the strong stability

condition (3.2) can be rewritten as follows.

−RiJ(k)iJ(ℓ) v
k vℓ − Ckij Cℓij v

k vℓ = −c gkℓ vk vℓ +RJ(i)J(k)J(i)J(ℓ) v
k vℓ − Ckij Cℓij v

k vℓ

= −c |v|2 +Rikiℓ v
k vℓ − Ckij Cℓij v

k vℓ

= −c |v|2 +RL
ikiℓ v

k vℓ + CjkiCjℓi v
k vℓ − Ckij Cℓij v

k vℓ

= −c |v|2 +RicL(v, v) .

The first equality uses the Kähler–Einstein condition. The second equality follows from the

parallelity of J . The third equality uses the Gauss equation and the minimal condition. The

last equality relies on the fact that Ckij is totally symmetric. This computation says that (3.2)

is equivalent to the condition that RicL − c is a positive definite operator on TL.

A.2. Coassociative submanifolds in G2 manifolds. In this case, the ambient space is 7-

dimensional, and the submanifold is 4-dimensional.
30



A.2.1. Four dimensional Riemannian geometry. The Riemann curvature tensor has a nice de-

composition in 4 dimensions. What follows is a brief summary of the decomposition; readers

are directed to [1] for more.

Let Σ be an oriented, 4-dimensional Riemannian manifold. The Riemann curvature tensor

in general defines a self-adjoint transform on Λ2 by

R(ei ∧ ej) =
1

2
RΣ

kℓij ek ∧ eℓ .

In 4 dimensions, Λ2 decomposes into self-dual, Λ2
+, and anti-self-dual part, Λ2

−. In terms of the

decomposition Λ2 = Λ2
+ ⊕ Λ2

−, the curvature map R has the form

R =

[
W+ + s

12 I B

BT W− + s
12 I

]
.

Here, s = RΣ
ijij is the scalar curvature, W± is the self-dual and anti-self-dual part of the Weyl

tensor, B is the traceless Ricci tensor, and I is the identity homomorphism.

With respect to the basis {e1 ∧ e2− e3∧ e4, e1 ∧ e3+ e2 ∧ e4, e1 ∧ e4− e2 ∧ e3}, the lower-right
block W− + s

12 I is

1

2




RΣ
1212 +RΣ

3434 − 2RΣ
1234 RΣ

1213 +RΣ
1224 −RΣ

3413 −RΣ
3424 RΣ

1214 −RΣ
1223 −RΣ

3414 +RΣ
3423

RΣ
1312
− RΣ

1334
+RΣ

2412
−RΣ

2434
RΣ

1313
+RΣ

2424
+ 2RΣ

1324
RΣ

1314
−RΣ

1323
+RΣ

2414
−RΣ

2423

RΣ
1412
− RΣ

1434
−RΣ

2312
+RΣ

2334
RΣ

1413
+RΣ

1424
−RΣ

2313
−RΣ

2324
RΣ

1414
+RΣ

2323
− 2RΣ

1423


 .

(A.3)

The operator will be needed is W−− s
6 I = (W−+ s

12 I)− s
4 I. One-fourth of the scalar curvature

is

s

4
=

1

2

(
RΣ

1212 +RΣ
3434 +RΣ

1313 +RΣ
2424 +RΣ

1313 +RΣ
2424

)
. (A.4)

A.2.2. G2 geometry. A 7-dimensional Riemannian manifold M with G2 holonomy can be char-

acterized by the existence of a parallel, positive 3-form ϕ. A complete story can be found in

[10, ch.11]. In terms of a local orthonormal coframe, the 3-form and its Hodge star are

ϕ = ω567 + ω125 − ω345 + ω136 + ω246 + ω147 − ω237 ,

∗ϕ = ω1234 − ω1267 + ω3467 + ω1357 + ω3457 − ω1456 + ω2356
(A.5)

where ω123 is short for ω1∧ω2∧ω3. It is known that the holonomy is G2 if and only if ∇ϕ = 0,

which is also equivalent to dϕ = 0 = d ∗ ϕ.

Remark A.1. There are two commonly used conventions for the 3-form; see [11] for instance.

The convention here is the same as that in [12]; the deformation of coassociatives will then be

determined by anti-self-dual harmonic forms. If one use the convention in [10], the deformation

of coassociatives will be determined by self-dual harmonic forms.
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The 3-form ϕ determines a product map × for tangent vectors of M . For any two tangent

vectors X and Y ,

X × Y =
(
ϕ(X,Y, · )

)♯
.

For instance, e1×e2 = e5. Since ϕ and the metric tensor are both parallel, × is parallel as well.

As a consequence,

R(eA, eB)(e1 × e2) =
(
R(eA, eB)e1

)
× e2 + e1 ×

(
R(eA, eB)e2

)
,

and its e3-component gives R53AB − R62AB − R71AB = 0 for any A,B ∈ {1, . . . , 7}. In total,

the parallelity of × leads to following seven identities:

R52AB +R63AB +R74AB = 0 ,

R51AB −R64AB +R73AB = 0 ,

R54AB +R61AB −R72AB = 0 ,

−R53AB +R62AB +R71AB = 0 ,

R67AB +R12AB −R34AB = 0 ,

−R57AB +R13AB +R24AB = 0 ,

R56AB −R14AB −R23AB = 0 .

(A.6)

These identities imply that a G2 manifold is always Ricci flat.

A.2.3. Coassociative geometry. According to [8, §IV], an oriented, 4-dimensional submanifold

Σ of a G2 manifold is said to be coassociative if ∗ϕ|Σ coincides with the volume form of the

induced metric. Harvey and Lawson also proved that being coassociative is equivalent to that

ϕ|Σ vanishes. Similar to the Lagrangian case, the normal bundle of a coassociative submanifold

is canonically isomorphic to an intrinsic bundle. The following discussion is basically borrowed

from [12, §4].
Orthonormal frame. Suppose that Σ ⊂M is coassociative. One can find a local orthonormal

frame {e1, · · · , e7} such that {e1, e2, e3, e4} are tangent to Σ, {e5, e6, e7} are normal to Σ, and

ϕ takes the form (A.5) in this frame. Here is a sketch of the construction. Start with a unit

normal vector, e5, and a unit tangent vector, e1, of Σ. Let e2 = e5 × e1. Then, set e3 to be a

unit vector tangent to Σ and orthogonal to {e1, e2}. Finally, let e4 = e3 × e5, e6 = e1 × e3 and

e7 = e3 × e2.
Normal bundle and second fundamental form. The normal bundle of Σ is isomorphic to the

bundle of anti-self-dual 2-forms of Σ via the following map:

V 7→ (V yϕ)|Σ . (A.7)

In terms of the above frame, e5 corresponds to ω12 − ω34, e6 corresponds to ω13 + ω24, and e7

corresponds to ω14 − ω23.
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As shown in [8], a coassociative submanifold must be minimal. In fact, its second fundamental

form has certain symmetry. For instance,

h51i = 〈∇eie1, e5〉 = −〈e1,∇ei(e6 × e7)〉
= −〈e1, (∇eie6)× e7〉 − 〈e1, e6 × (∇eie7)〉
= −〈e4,∇eie6〉+ 〈e3,∇eie7〉 = h64i − h73i .

What follows are all the relations:

h52i + h63i + h74i = 0 ,

h51i − h64i + h73i = 0 ,

h54i + h61i − h72i = 0 ,

−h53i + h62i + h71i = 0
(A.8)

for any i ∈ {1, 2, 3, 4}. These relations imply that the mean curvature vanishes. They can be

encapsulated as
∑

j ej × II(ei, ej) = 0.

A.2.4. Strong stability for coassociatives. For any sections of NΣ, v, denote the symmetric

bilinear form on the left hand side of (3.2) by Q(v,v). Under the identification (A.7), Q̃(v,v) =

−2vT W− v + s
3 |v|2 is also a symmetric bilinear form.

We now check that Q(v,v) = Q̃(v,v) for any unit vector v ∈ NpΣ at any p ∈ Σ. As explained

above, we may take e5 = v and construct the other orthonormal vectors. With respect such a

frame, it follows from (A.3) and (A.4) that

Q̃(v,v) = RΣ
1313 +RΣ

2424 +RΣ
1313 +RΣ

2424 + 2RΣ
1234 .

The quantity Q(v,v) can be rewritten as follows.

Q(v,v) = −
∑

i

Ri5i5 −
∑

i,j

(h5ij)
2

= R6565 +R7575 −
∑

i,j

(h5ij)
2

= R1313 +R2424 +R1313 +R2424 − 2R1423 + 2R1324 −
∑

i,j

(h5ij)
2

= R1313 +R2424 +R1313 +R2424 + 2R1234 −
∑

i,j

(h5ij)
2 .

The second equality follows from Ricci flatness. The third equality uses (A.6). The last equality

is the first Bianchi identity. With the Gauss equation and some simple manipulation,

Q(v,v) − Q̃(v,v)

=
∑

α

(
(hα14 + hα23)

2 + (hα13 − hα24)2 − (hα11 + hα22)(hα33 + hα44)
)
−
∑

i,j

(h5ij)
2 . (A.9)
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By appealing to (A.8),

h614 + h623 = −h522 − h544 = h511 + h533 ,

h714 + h723 = −h512 + h534 ,

h613 − h624 = −h512 − h534 ,
h713 − h724 = −h522 + h533 = −h511 − h544 ,

and

h611 + h622 = −h633 − h644 = −h514 + h523 ,

h711 + h722 = −h733 − h744 = h513 + h524 .

By using these relations, it is not hard to verify that (A.9) vanishes. Therefore, the strong

stability condition (3.2) is equivalent to the positivity of −2W− + s
3 .

As a final remark, this equivalence can also be seen by combining [12, Theorem 4.9] and the

Weitzenböck formula [7, Appendix C]. Nevertheless it is nice to derive the equivalence directly

by highlighting the geometry of G2.

Appendix B. Evolution equation for tensors

Suppose that Ψ be a tensor defined on M of type (0, 3). The main purpose of this section

is to calculate its evolution equation along the mean curvature flow. Since there will be some

different connections, we denote the Levi-Civita connection of (M,g) by ∇ to avoid confusions.

Let Γt be the mean curvature flow at time t. The tensor Ψ is a section of (T ∗M ⊗ T ∗M ⊗
T ∗M)|Γt . The connection ∇ naturally induces a connection ∇̃ on this bundle. The only

difference between ∇ and ∇̃ is that the direction vector in ∇̃ must be tangent to Γt.

connection bundle and base

∇ Levi-Civita connection of (M,g)

∇Γt Levi-Civita connection of Γt with the induced metric

∇⊥ connection of the normal bundle of Γt

∇̃ connection of (T ∗M ⊗ T ∗M ⊗ T ∗M)|Γt

∇ connection of T ∗Γt ⊗ T ∗Γt ⊗N∗Γt defined by (2.2)

From the construction, ∇ is the composition of ∇̃ with the orthogonal projection.

Proposition B.1. Let Ψ be a tensor of type (0, 3) defined on the ambient manifold M . Along

the mean curvature flow Γt in M ,

d

dt
|IIt −Ψ|2 ≤ ∆Γt |IIt −Ψ|2 − |∇̃(IIt −Ψ)|2 + c(|IIt −Ψ|4 + |IIt −Ψ|2 + 1) (B.1)

where c > 0 is determined by the Riemann curvature tensor of M and the sup-norm of Ψ, ∇Ψ,

∇2
Ψ.

Proof. The mean curvature flow can be regarded as a map from Γ0 × [0, ǫ) → M . For any

p ∈ Γ0 and t0 ∈ [0, ǫ), choose a geodesic coordinate for Γ0 at p: {x̃1, · · · , x̃n}. We also choose
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a local orthonormal frame {ẽα} for NΓt. The following computations on derivatives are always

evaluated at the point (p, t0).

Let H = h̃αẽα be the mean curvature vector of Γt. The components of the second funda-

mental form and its covariant derivative are denoted by

h̃αij = 〈∇∂ ĩ
∂ j̃, ẽα〉 = II(∂ ĩ, ∂ j̃, ẽα) ,

h̃αij,k = (∇∂
k̃
II)(∂ ĩ, ∂ j̃ , ẽα) ,

h̃α,k = 〈∇⊥
∂
k̃
H, ẽα〉 .

At (p, t0), h̃α = h̃αkk and h̃α,i = h̃αkk,i.

Note that on Γ0 × [0, ǫ), H is ∂t, and thus commutes with ∂ ĩ. It follows that the evolution

of the metric is:

d

dt
g̃ij = H〈∂ ĩ, ∂ j̃〉 = 〈∇H∂ ĩ, ∂ j̃〉+ 〈∂ ĩ,∇H∂ j̃〉

= −〈H,∇∂ ĩ
∂ j̃〉 − 〈∇∂ j̃

∂ ĩ,H〉 = −2h̃αh̃αij , (B.2)

d

dt
g̃ij = 2h̃αh̃αij . (B.3)

The covariant derivative of ∂ ĩ and ẽα along H can be expressed as follows:

∇H∂ ĩ = 〈∇H∂ ĩ, ∂ j̃〉∂ j̃ + 〈∇H∂ ĩ, ẽα〉ẽα
= −h̃αh̃αij ∂ j̃ + h̃α,i ẽα , (B.4)

∇H ẽα = 〈∇H ẽα, ∂ ĩ〉∂ ĩ + 〈∇H ẽα, ẽβ〉ẽβ
= −h̃α,i ∂ ĩ + 〈∇H ẽα, ẽβ〉ẽβ . (B.5)

The last part of the preparation is to relate the covariant derivative of Ψ in H to its Bochner–

Laplacian in the ambient manifold M .

∇HΨ = ∇(∇∂
j̃
∂ j̃)

⊥Ψ = −∇∇Σ

∂
j̃
∂ j̃
Ψ+∇∇∂

j̃
∂ j̃
Ψ

=

(
∇̃∂ j̃
∇̃∂ j̃

Ψ− ∇̃∇Σ

∂
j̃
∂ j̃
Ψ

)
+

(
−∇∂ j̃

∇∂ j̃
Ψ+∇∇∂

j̃
∂ j̃
Ψ

)

= −∇̃∗∇̃Ψ+ trΓt(∇
2
Ψ) . (B.6)

Indeed, ∇Σ
∂ j̃
∂ j̃ is zero at (p, t0). The tensor ∇∗∇Ψ is defined in the ambient space, and has

nothing to do with the submanifold Γt. It follows from (B.6) that the evolution of of |Ψ|2 is

d

dt
|Ψ|2 = H

(
〈Ψ,Ψ〉

)
= 2〈∇HΨ,Ψ〉

= −2〈∇̃∗∇̃Ψ,Ψ〉+ 2〈trΓt(∇
2
Ψ),Ψ〉

= ∆Γt |Ψ|2 − 2|∇̃Ψ|2 + 2〈trΓt(∇
2
Ψ),Ψ〉 (B.7)
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The next task is to calculate the evolution equation for 〈IIt,Ψ〉 = g̃ik g̃jlh̃αklΨ̃αij where Ψ̃αij =

Ψ(∂ ĩ, ∂ j̃, ẽα). According to (B.4) and (B.5),

d

dt
Ψ̃αij = H

(
Ψ(∂ ĩ, ∂ j̃ , ẽα)

)

= (∇HΨ)(∂ ĩ, ∂ j̃ , ẽα) + Ψ(∂ ĩ, ∂ j̃ ,∇H ẽα) + Ψ(∇H∂ ĩ, ∂ j̃ , ẽα) + Ψ(∂ ĩ,∇H∂ j̃ , ẽα)

= (∇HΨ)(∂ ĩ, ∂ j̃ , ẽα)− h̃α,kΨ̃kij + 〈∇H ẽα, ẽβ〉Ψ̃βij

− h̃γ h̃γikΨ̃αkj + h̃γ,iΨ̃αγj − h̃γ h̃γjkΨ̃αik + h̃γ,jΨ̃αiγ

(B.8)

The difference between ∇̃∗∇̃IIt and ∇∗∇IIt is:

∇̃∗∇̃IIt −∇∗∇IIt = ∇̃∂
k̃
∇̃∂

k̃
IIt −∇∂

k̃
∇∂

k̃
IIt (B.9)

Since

(∇̃∂
k̃
IIt)(·, ·, ·) = (∇∂

k̃
IIt)(·, ·, ·)

= ∂
k̃

(
IIt(·, ·, ·)

)
− IIt

(
(∇∂

k̃
·)T , ·, ·

)
− IIt

(
·, (∇∂

k̃
·)T , ·

)
− IIt

(
·, ·, (∇∂

k̃
·)⊥
)
,

the tensor ∇̃∂
k̃
IIt has only the following components:

(∇̃∂
k̃
IIt)(∂ ĩ, ∂ j̃ , ẽα) = (∇∂

k̃
IIt)(∂ ĩ, ∂ j̃ , ẽα) = h̃αij,k ,

(∇̃∂
k̃
IIt)(∂ ĩ, ∂ j̃ , ∂ l̃) = −h̃αij h̃αkl ,

(∇̃∂
k̃
IIt)(ẽβ , ∂ j̃ , ẽα) = h̃βkih̃αij ,

(∇̃∂
k̃
IIt)(∂ ĩ, ẽβ , ẽα) = h̃βkjh̃αij .

(B.10)

The above four equations hold everywhere, but not only at (p, t0). It follows that

(∇̃∂
k̃
∇̃∂

k̃
IIt)(∂ ĩ, ∂ j̃ , ẽα) = ∂

k̃

(
(∇̃∂

k̃
IIt)(∂ ĩ, ∂ j̃ , ẽα)

)
− (∇̃∂

k̃
IIt)
(
∂ ĩ, ∂ j̃,∇∂

k̃
ẽα
)

− (∇̃∂
k̃
IIt)
(
∇∂

k̃
∂ ĩ, ∂ j̃ , ẽα

)
− (∇̃∂

k̃
IIt)
(
∂ ĩ,∇∂

k̃
∂ j̃, ẽα

)

= (∇∂
k̃
∇∂

k̃
IIt)(∂ ĩ, ∂ j̃ , ẽα)− (∇̃∂

k̃
IIt)
(
∂ ĩ, ∂ j̃ , (∇∂

k̃
ẽα)

T
)

− (∇̃∂
k̃
IIt)
(
(∇∂

k̃
∂ ĩ)

⊥, ∂ j̃ , ẽα
)
− (∇̃∂

k̃
IIt)
(
∂ ĩ, (∇∂

k̃
∂ j̃)

⊥, ẽα
)

= (∇∂
k̃
∇∂

k̃
IIt)(∂ ĩ, ∂ j̃ , ẽα)− h̃βij h̃βklh̃αkl − h̃βklh̃αlj h̃βki − h̃βkjh̃βklh̃αil .

Use (B.9) to rewrite the above computation as

(∇̃∗∇̃IIt −∇∗∇IIt)(∂ ĩ, ∂ j̃, ẽα) = h̃βij h̃βklh̃αkl + h̃βklh̃αlj h̃βki + h̃βkj h̃βklh̃αil (B.11)
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The tensor ∇∗∇IIt does not have other components. However, ∇̃∗∇̃IIt does.

(∇̃∗∇̃IIt)(∂ ĩ, ∂ j̃ , ∂ l̃
) = −(∇̃∂

k̃
∇̃∂

k̃
IIt)(∂ ĩ, ∂ j̃ , ∂ l̃

)

= −∂
k̃

(
(∇̃∂

k̃
IIt)(∂ ĩ, ∂ j̃, ∂ l̃

)
)
+ (∇̃∂

k̃
IIt)(∇∂

k̃
∂ ĩ, ∂ j̃ , ∂ l̃

)

+ (∇̃∂
k̃
IIt)(∂ ĩ,∇∂

k̃
∂ j̃ , ∂ l̃

) + (∇̃∂
k̃
IIt)(∂ ĩ, ∂ j̃ ,∇∂

k̃
∂
l̃
)

= ∂ k̃(h̃αij h̃αkl) + h̃αij,kh̃αkl

= 2h̃αij,kh̃αkl + h̃αij h̃αkl,k

= 2h̃αij,kh̃αkl + h̃αij h̃α,l + h̃αijRα̃k̃k̃l̃
. (B.12)

The second last equality uses the fact that 0 = 〈∇⊥
∂
k̃
ẽα, ẽβ〉h̃βij h̃αkl−〈∇⊥

∂
k̃
ẽα, ẽβ〉h̃αij h̃βkl. The

last equality uses the Codazzi equation (2.2). Similarly,

(∇̃∗∇̃IIt)(ẽβ , ∂ j̃, ẽα) = −2h̃αlj,kh̃βkl − h̃βkl,kh̃αjl
= −2h̃αlj,kh̃βkl − h̃β,lh̃αjl −Rβ̃k̃k̃l̃

h̃αjl

(∇̃∗∇̃IIt)(∂ ĩ, ẽβ , ẽα) = −2h̃αil,kh̃βkl − h̃βkl,kh̃αil
= −2h̃αil,kh̃βkl − h̃β,lh̃αil −Rβ̃k̃k̃l̃

h̃αil

(∇̃∗∇̃IIt)(∂ ĩ, ẽα, ∂ j̃) = −2h̃αklh̃βilh̃βkj
(∇̃∗∇̃IIt)(ẽβ , ẽγ , ẽα) = −2h̃βklh̃γkj h̃αlj
(∇̃∗∇̃IIt)(ẽβ , ∂ j̃ , ∂ ĩ) = 2h̃βklh̃αlj h̃αki

(∇̃∗∇̃IIt)(ẽβ , ẽα, ∂ j̃) = 0

(B.13)
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The evolution equation for h̃αij was derived in [20, Proposition 7.1]. With (B.8) and (B.6),

we have

d

dt
〈IIt,Ψ〉 = d

dt

(
g̃ik g̃jlh̃αklΨ̃αij

)

= 2h̃βikh̃β h̃αkjΨ̃αij + 2h̃βjlh̃β h̃αilΨ̃αij +

(
d

dt
h̃αij

)
Ψ̃αij + h̃αij

(
d

dt
Ψ̃αij

)

= 2h̃βikh̃β h̃αkjΨ̃αij + 2h̃βjlh̃β h̃αilΨ̃αij − 〈∇∗∇IIt,Ψ〉
+ (∇ẽkR)α̃ĩj̃k̃Ψ̃αij + (∇ẽjR)α̃k̃ĩk̃Ψ̃αij − 2R

l̃̃ij̃k̃
h̃αlkΨ̃αij + 2R

α̃β̃j̃k̃
h̃βikΨ̃αij

+ 2R
α̃β̃ĩk̃

h̃βjkΨ̃αij −Rl̃k̃ĩk̃
h̃αljΨ̃αij −Rl̃k̃j̃k̃

h̃αliΨ̃αij +R
α̃k̃β̃k̃

h̃βijΨ̃αij

− h̃αil
(
h̃βljh̃β − h̃βlkh̃βjk

)
Ψ̃αij − h̃αlk

(
h̃βlj h̃βik − h̃βlkh̃βij

)
Ψ̃αij

− h̃βik
(
h̃βlj h̃αlk − h̃βlkh̃αlj

)
Ψ̃αij − h̃αjkh̃βikh̃βΨ̃αij + h̃βij〈ẽβ ,∇H ẽα〉Ψ̃αij

− 〈IIt, ∇̃∗∇̃Ψ〉+ 〈IIt, trΓt(∇
∗∇Ψ)〉 − h̃αij h̃α,kΨ̃kij + h̃αij〈∇H ẽα, ẽβ〉Ψ̃βij

− h̃αij h̃γh̃γikΨ̃αkj + h̃αij h̃γ,iΨ̃αγj − h̃αij h̃γ h̃γjkΨ̃αik + h̃αij h̃γ,jΨ̃αiγ

= −〈∇̃∗∇̃IIt,Ψ〉 − 〈IIt, ∇̃∗∇̃Ψ〉+ 〈IIt, trΓt(∇
2
Ψ)〉

+ (∇ẽkR)α̃ĩj̃k̃Ψ̃αij + (∇ẽjR)α̃k̃ĩk̃Ψ̃αij − 2Rl̃̃ij̃k̃h̃αlkΨ̃αij + 2Rα̃β̃j̃k̃h̃βikΨ̃αij

+ 2Rα̃β̃ĩk̃h̃βjkΨ̃αij −Rl̃k̃ĩk̃h̃αljΨ̃αij −Rl̃k̃j̃k̃h̃αliΨ̃αij +Rα̃k̃β̃k̃h̃βijΨ̃αij

+Rα̃k̃k̃l̃h̃αijΨ̃lij −Rβ̃k̃k̃l̃h̃αjkΨ̃αβj −Rβ̃k̃k̃l̃h̃αilΨ̃αiβ

− 2h̃αil

(
h̃βlj h̃β − h̃βlkh̃βjk

)
Ψ̃αij − 2h̃βik

(
h̃βlj h̃αlk − h̃βlkh̃αlj

)
Ψ̃αij

− 2h̃αjkh̃βikh̃βΨ̃αij − 2h̃αklh̃βilh̃βkjΨ̃jiα − 2h̃βklh̃γkj h̃αljΨ̃αβγ + 2h̃βklh̃αlj h̃αkiΨ̃iβj

+ 2h̃αij,kh̃αklΨ̃lij − 2h̃αlj,kh̃βklΨ̃αβj − h̃αil,kh̃βklΨ̃αiβ .

The last equality uses (B.11), (B.12) and (B.13) to replace ∇∗∇IIt by ∇̃∗∇̃IIt.
By the Cauchy–Schwarz inequality,

∣∣∣∣
d

dt
〈IIt,Ψ〉 −∆Γt〈IIt,Ψ〉+ 2〈∇̃IIt, ∇̃Ψ〉

∣∣∣∣ ≤
1

2
|∇IIt|2 + c(|IIt|4 + |IIt|2 + 1) .

This together with (6.7) and (B.7) imply that

d

dt
|IIt −Ψ|2 ≤ ∆Γt |IIt −Ψ|2 − 2|∇̃(IIt −Ψ)|2 + |∇IIt|2 + c′(|IIt|4 + |IIt|2 + 1) .

According to (B.10),

|∇̃(IIt −Ψ)|2 ≥ |∇̃II2| − |∇̃Ψ|2 ≥ |∇IIt|2 + c′′|IIt|4 − |∇Ψ|2 .

Hence,

d

dt
|IIt −Ψ|2 ≤ ∆Γt |IIt −Ψ|2 − |∇̃(IIt −Ψ)|2 + c′′′(|IIt|4 + |IIt|2 + 1)
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By the triangle inequality |IIt|2 ≤ |IIt −Ψ|2 + |Ψ|2, it finishes the proof of the proposition. �
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