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A STRONG STABILITY CONDITION ON MINIMAL SUBMANIFOLDS
AND ITS IMPLICATIONS

CHUNG-JUN TSAI AND MU-TAO WANG

ABSTRACT. We identify a strong stability condition on minimal submanifolds that implies
uniqueness and dynamical stability properties. In particular, we prove a uniqueness theorem
and a C' dynamical stability theorem of the mean curvature flow for minimal submanifolds
that satisfy this condition. The latter theorem states that the mean curvature flow of any
other submanifold in a C* neighborhood of such a minimal submanifold exists for all time, and
converges exponentially to the minimal one. This extends our previous uniqueness and sta-
bility theorem [I8] which applies only to calibrated submanifolds of special holonomy ambient

manifolds.

1. INTRODUCTION

In our previous work [I8], we study the uniqueness and C' dynamical stability of calibrated
submanifolds in manifolds of special holonomy with explicitly constructed Riemannian metrics.
The result is extended to minimal submanifolds of general Riemannian manifolds in this paper.
The assumption for the uniqueness and dynamical stability theorem is identified as a strongly
stable condition which implies the stability of the minimal submanifold in the usual sense of the
second variation of the volume functional. Recall that the mean curvature flow is the negative
gradient flow of the volume functional. It is thus natural to ask whether a local minimizer (a
stable minimal submanifold) of the volume functional is stable under the mean curvature flow.
Such a question of great generality has been addressed in the celebrated work of L. Simon [14]:
when is a local minimizer dynamically stable under the gradient flow, i.e. does the gradient
flow of a small perturbation of a local minimizer still converge back to the local minimizer?
The question in the context of [I4] concerns a nonlinear parabolic system defined on a compact
manifold, and it was proved that the analyticity of the functional and the smallness in C?
norm are sufficient for the validity of the dynamical stability. The question we addressed here
corresponds to the specialization to the volume functional of compact submanifolds. A natural
measurement of the distance between two submanifolds is the C! (or Lipschitz) norm, which
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is essentially the weakest possible norm concerning the volume functional. Our results in this
paper can be considered as such an optimal result.

As derived in [I5] §3], the Jacobi operator of the second variation of the volume functional
is (V1)*VL + R — A, where (V1)*V1 is the Bochner Laplacian of the normal bundle, R
is an operator constructed from the restriction of the ambient Riemann curvature, and A is
constructed from the second fundamental form. The precise definition can be found in §3.11
A minimal submanifold is said to be strongly stable if R — A is a positive operator, see (3.2]).
Since (V+)*V+' is a non-negative operator, strong stability implies stability in the sense of
the second variation of the volume functional. In particular, the strong stability condition is
satisfied by all the calibrated submanifolds considered in [I§] which include (M denotes the
ambient Riemannian manifold and ¥ denotes the minimal submanifold):

(i) M is the total space of the cotangent bundle of a sphere, T*S™ (for n > 1), with the
Stenzel metric [17], and ¥ is the zero section;

(ii) M is the total space of the cotangent bundle of a complex projective space, T*CP",
with the Calabi metric [3] and ¥ is the zero section;

(iii) M is the total space of one of the vector bundles S(S%), A2 (S4), A2 (CP?), and S_(S*)
with the Ricci flat metric constructed by Bryant—Salamon [2], where S is the spinor
bundle and S_ is the spinor bundle of negative chirality, and ¥ is the zero section of
the respective vector bundle.

These are essentially all metrics of special holonomy that are known to be written in a closed
form. Note that in all these examples, the metrics of the total space are Ricci flat, and the zero
sections are totally geodesic. Hence, the strongly stability in these examples is equivalent to the
positivity of the operator R. In [I8], we proved uniqueness and dynamical stability theorems
for the corresponding calibrated submanifolds and the proofs rely on the explicit knowledge of
the ambient metric, whose coefficients are governed by solutions of ODE systems. A natural
question was how general such rigidity phenomenon is. In this article, we discover that the
strong stability condition is precisely the condition that makes everything work. Moreover, we
identify more examples that satisfy the strong stability condition:

Proposition A. FEach of the following pairs (3, M) of minimal submanifolds ¥ and their
ambient Riemannian manifolds M satisfy the strong stability condition [B.2]) :

(i) M is any Riemannian manifold of negative sectional curvature and X a totally geodesic
submanifold;
(ii) M is any Kdhler manifold and ¥ is a complex submanifold whose normal bundle has
positive holomorphic curvature.
(iii)) M is any Calabi—Yau manifold and ¥ is a special Lagrangian with positive Ricci cur-
vature;



(iv) M is any Go manifold and ¥ is a coassociative submanifold with positive definite
—2W_+ 35 on A2

For example (i), the strong stability can be checked directly. The examples (ii), (iii), and
(iv) will be explained in §3.2] and Appendix [Al

We now state the main results of this paper. The first one says that a strongly stable minimal
submanifold is rather unique.

Theorem A. Let X" C (M,g) be a compact, oriented minimal submanifold which is strongly
stable in the sense of [B.2). Then there exists a tubular neighborhood U of ¥ such that 3 is the
only compact minimal submanifold in U with dimension no less than n.

The second one is on the dynamical stability of a strongly stable minimal submanifold.

Theorem B. Let ¥ C (M,g) be a compact, oriented minimal submanifold which is strongly
stable in the sense of [B2). If T is a submanifold that is close to ¥ in C', the mean curvature
flow I'y with T'g =T exists for all time, and I'y converges to ¥ smoothly as t — oco.

The precise statements can be found in Theorem 4.2l (Theorem A) and Theorem [6.2] (Theorem
B), respectively. The C' dynamical stability of the mean curvature flow for those calibrated
submanifolds considered in [I8] was proved in the same paper. In this regard, this theorem is
a generalization of our previous result.

Here are some remarks on the strong stability condition. In the viewpoint of the second
variational formula, the condition is natural, and is stronger than the positivity of the Jacobi
operator. The main results of this paper are basically saying that the strong stability has nice
geometric consequences. In particular, the minimal submanifold ¥ needs not be a totally geo-
desic, while most known results about the convergence of higher codimensional mean curvature
flow are under the totally geodesic assumption, e.g. [22].

Acknowledgement. The authors would like to thank Yohsuke Imagi for helpful discussions.

2. LOCAL GEOMETRY NEAR A SUBMANIFOLD

2.1. Notations and basic properties. Let (M, g) be a Riemannian manifold of dimension
n—+m, and X C M be a compact, embedded, and oriented submanifold of dimension n. We use
(-,+) to denote the evaluation of two tangent vectors by the metric tensor g. The notation (-,-)
is also abused to denote the evaluation with respect to the induced metric on 3. Denote by
V the Levi-Civita connection of (M, g), and by V* the Levi-Civita connection of the induced
metric on X.



Denote by NX the normal bundle of ¥ in M. The metric g and its Levi-Civita connection
induce a bundle metric (also denoted by (-,-) ) and a metric connection for N¥. The bundle
connection on N3 will be denoted by V.

In the following discussion, we are going to choose a local orthonormal frame {e1,--- ,e,,
€nt1, " sEntm | for TM near a point p € ¥ such that the restriction of {eq, - ,e,} on X is an
oriented frame for 7' and the restrictions of {e, 41, ,€ptm} is a frame for N3. The indexes
i,j,k range from 1 to n, the indexes «a, 3,7y range from n + 1 to n + m, the indexes A, B,C
range from 1 to n + m, and repeated indexes are summed.

The convention of the Riemann curvature tensor is

R(GC, eD)eB = VecveDeB - VGDVECeB - V[ec,eD]eB 5
Rapcp = R(ea,ep,ec,ep) = (R(ec,ep)en,ea) -

What follows are some basic properties of the geometry of a submanifold. The details can be
found in, for example [6], ch. 6].

(i) V* is the projection of V onto TS C TM]|s, and V+ is the projection of V onto
N3 C TM|x. Their curvatures are denoted by
Ry = (Ve Ve e — Vo Vee — Vi, . jeser)

1 IR AR 1l 1
Raﬁij = <veivej €g — Vejveieﬁ - v[ei,eﬂeﬁ’ €a> ’

(ii) Given any two tangent vectors X,Y of X, the second fundamental form of ¥ in M is
defined by I(X,Y) = (VxY)*, where (:\)* : TM — NY is the projection onto the
normal bundle. The mean curvature of % is the normal vector field defined by H =
try I. With a normal vector V, (X, Y, V) is defined to be (I(X,Y),V) = (VxY,V).
In terms of the frame,

haij e ]I(eiaej,EQ{) and H = h‘aii €q -

(iii) For any tangent vectors X,Y, Z of ¥ and a normal vector V', the Codazzi equation says
that

(R(X,Y)Z,V) = (VxI)(Y, Z,V) - (VyI)(X, Z,V) (2.1)

where
(VxI)(Y,Z,V) = X (I(Y, Z,V)) = (VXY Z,V) = (Y, VX Z,V) = (X, Y,V V) . (22)
In terms of the frame, denote (V,I)(e;, ex, eq) by haji:i, and (ZT) is equivalent to that

Rakij = hajki — haik;j-
4



2.2. Geodesic coordinate and geodesic frame. For any p € X, we can construct a “partial”
geodesic coordinate and a geodesic frame on a neighborhood of p in M as follows:

(i) Choose an oriented, orthonormal basis {ej,--- ,e,} for T,X. The map
Fy:x= (2! ,2") — exp§($jej)

parametrizes an open neighborhood of p in ¥, where exp® is the exponential map of
the induced metric on . For any x of unit length, the curve (t) = Fy(tx) is called a
radial geodesic on 3 (at p). By using V> to parallel transport {e1, -+ ,e,} along these
radial geodesics, we get a local orthonormal frame for 7' on a neighborhood of p in
Y. The frame is still denoted by {ey,- - ,e,}.

(ii) Choose an orthonormal basis {€,41, " , €ntm} for N3, By using V= to parallel trans-
port {e,41,°* ,€ntm} along radial geodesics on X, we obtain a local orthonormal frame
for N3 on a neighborhood of p in ¥. This frame is still denoted by {€,41, ", €ntm}-
It is clear that {e1, - ,en, €nt1," ", €ntm} is & local orthonormal frame for TM|y.

(iii) The map

F (X7 Y) = ((51:17 T 71.77/)7 (yn+l7 U 7yn+m)) — eXpF()(X) (yaea)

parametrizes an open neighborhood of p in M. The map exp is the exponential map
of (M, g). For any y of unit length, the curve o(t) = F(x,ty) = expp(x)(ty) is called
a normal geodesic for ¥ C M.

(iv) For any x, step (ii) gives an orthonormal basis {e1,- -+, en1m} for Tpx0)M. By using
V to parallel transport it along normal geodesics, we have an orthonormal frame for
TM on a neighborhood of p in M. This frame is again denoted by {e1, - ,en+m}-

The freedom in the above construction is the choice of {e1, - ,e,} and {ey+1,- - ,€ntm} at p,
which is SO(n) x O(m). A particular choice will be made later on.

Remark 2.1. We will consider the curves s — exp? (z'e;+sej) and s — XD (x) (yPes+seq) in
the following discussion. They will be abbreviated as Fy(x+se;) and F'(x,y+seq), respectively.

Remark 2.2. The frames {e1, -+ ,en,€nt1, - ,Entm} are constructed by parallel transport
along radial geodesics on ¥ and then normal geodesic for 3. They are indeed smooth. We briefly
explain the smoothness of {e1,--- ,e,} on a neighborhood of p in . Write e; = Sij(x)%. The
smoothness of the frame is equivalent to the smoothness of S;;(x). Let Fz- (x) be the Christoffel

symbols of V¥, ie. V% 2 = I‘gk(x)%. The Christoffel symbols Fé.k(x) are smooth functions.

0Pk
Since e; is parallel alo?lcz_); radial geodesics,
0S;;(x) ; 0
P l [ l



To avoid confusion, fix £ = (£1,--,£") € R™. Let y(t) = t£ for t € [0,1]. Since $f(v(t)) =
T (@5 f (%)) 1),

dSi; (v(#))

T =& Suy(®) T7 (t€) .

In other words, [S;;(£)] is the solution to the ODE system % = F(S,t,§) at t = 1 with identity
as the initial condition. Therefore, S;;(€) is smooth in &.

2.2.1. The tubular neighborhood U, and the distance function.

Definition 2.3. For any § > 0, let Us be the image of {V € NX | |V| < §} under the exponential
map along . By the implicit function theorem, there exists € > 0, which is determined by the
geometry of 3 and M, such that the following statements hold for U.:

(1) The map exp : {V € NX | |V| < 2e} — Uy, is a diffeomorphism.

1

(2) There exist the local coordinate system (x!,--- 2™, "1 ... 4y"*™) and the frame {e1, -+ , €nim}

constructed in the last subsection.
(3) The function Y (y%)? is a well-defined smooth function on U..
(4) On U, the square root of Y (y*)? is the distance function to X.

(5) For any g € U., there exists a unique p € ¥ such that there is a unique normal geodesic
in U, connecting p and gq.

We now analyze the gradient of the function >°_ (y*)%. To avoid confusion, let
62(5177§N)€Rn a‘nd 77:(77”+17"'777n+m)€Rm

be constant vectors. Consider the normal geodesic o(t) = F(&,tn); its tangent vector field is
o (t) = 770‘867. On the other hand, ¢/(0) is also equal to n%e,, and n%e, is defined and parallel
along o(t). Thus, 7701387 = n%eq on o(t). Since the y-coordinate of o(t) is tn, we find that

yaa—:yOf|U(t) = T,aa—ya‘a(t) - tna €q = tO',(t) ) (23)
at t =1 it gives
0
Yo =yea . 2.4
Y Dy° ye (2.4)

By modifying the standard geodesic argument [4, p.4-9], the vector field yaa‘??b(t) is half of
the gradient vector field of >__ (y®)?. In addition, note that (Z4)) implies that <y°‘aa?, yo‘aa?> =
>, (y*)% The Gauss lemma implies that <y°‘867, s? 68?> =0if > y*s® = 0. By considering
the first variational formula of the one-parameter family of geodesics o(t, s) = expp (e, (t1),

6



one finds that (y*-2-, -2-) = 0. It follows from these relations that

Dy Dl
v <Z(y°‘)2> = 2yaaa—ya - (2.5)

«
For a locally defined smooth function near p, the following lemma establishes its expansion

in terms of the coordinate system constructed above.

Lemma 2.4. Let U be a neighborhood of p € ¥ in M as in Definition [Z.3 with the coordinate

1

system (x,y) = (zt,--- 2™y -y and the frame {e1, -+ ,en,eni1, - €ntm}. Then,

any smooth function f(x,y) on U. has the following expansion.:

fx,y) = £(0,0) + " ei()lp +y* ea(H)lp + O(xI* + |y[?) -

More precisely, it means that !f(x,y) — £(0,0) — 2 ¢;(f)], — v~ ea(f)\p‘ < c(|x]? + |y|?) for
some constant ¢ determined by the C2-norm of f and the geometry of M and .

Proof. Let ¢ € U be any point. To avoid confusion, denote the coordinate of ¢ by (&,n),
where € € R™ and n € R™ are regarded as constant vectors. Let gy € ¥ be the point with
normal coordinate (£, 0), and consider the radial geodesic on ¥ joining qo and p, og(t) = Fy(t§).
Applying Taylor’s theorem on f(o¢(t)) gives

d 1 42
F€.0) = 1(0.0)+ ], Floale) + [ 1 -y L)
Since o} (t) = €% e;, we find that

1
£(€,0) = £(0,0) + & ei(f)lp + §i§j/0 (1 —1) (ej(ei(f)))(o0(t)) dt . (2.6)

Next, consider the normal geodesic joining g and qg, o(t) = F(§,tn). Remember that o’(t) =
n%eq. By considering f(o(t)),

1
f@m=f®®+W@Amm+WWAUfﬂ@WMﬂMdm&- (2.7)

Similar to Z8), (ea(f))lg = (ea(f))]p + & fol ejea(f))(oo(t))dt. Putting these together fin-
ishes the proof of this lemma. O

2.2.2. The expansions of coordinate vector fields.

Lemma 2.5. Let U, be a neighborhood of p € ¥ in M as in Definition [2.3 with the coordinate

system (x,y) = (b, -2,y -y ) and the frame {e1, - ,en,€ni1, " €nim}. Write
0 0 0 0
O = <%7€A>€A and 8—y“ = <8—y“’eA>eA )

7



then ( 507> €A) and <ayw€A>: considered as locally defined multi-indexed functions, has the fol-
lowing expansions:

9 o

(G )y = 05 = 9" hesgl, + O + v P)

) 2 (2.8)
<8 2€8)] gy = O + O(|x| +yP),

and both <%, eﬁ>‘(x,y) and (2 397 € >‘(x7y) are of the order |x|?+|y|*>. By inverting the matrices,

0
O(xP+1yl*)  and  eq= a0 O(Ix]> +y[*) . (2.9)

0

ozt h

€; =

) 81}-7

Proof. We apply Lemma 24] to these locally defined functions.

By construction, <%, e;)|p = ;5. With a similar argument as that for ! f?xi = z'¢; on

YN U.. It follows that

vl = $Z<@,€j> .
k

Differentiating the above equation first with respect to 2’ and then with respect to z*, and

then evaluating at p which has zf = 0 for all ¢, we obtain

90 N (00
92k i » Dz Ok

On the other hand, it follows from the construction that (V¥e;)|, = 0, and

0,0 N\ _os 0 c 0 o, 0
(W%’eﬁ)‘p—wg—kweﬁp Vi, (3 tes)

't a ok €
Hence, %(%, e;) is zero at p.

Since e; is parallel with respect to V along normal geodesics, (V. e€;)|, = 0. It follows that
o ,0 0 0
(a—y()(@ﬂﬁ) = Vo_ej)

v = (o
= (V2 gm0)| =~ (5 Ve,
where the third equality follows from the fact that (-2+ By ej) =0on XNU..

=0.
P

ej)| =

p

<Va

~haggl,,

, € , €
8172 ]> Al 8ya

p p

Note that ( —,eg) vanishes on ¥ N U. Since eg is parallel with respect to V along normal
geodesics, (Ve,e3)|p, = 0, and then

o ,0 0 0
<@<%,€B>> ‘p = <V£_a @,em‘p = (Vaf’zi 3ya,66>

p
By construction, 88? = e, on LN U and (Vte,)|, = 0. Therefore, %(%, eg) is zero at p.

The term (867,6]) also vanishes on ¥ N U,. It follows from (2.4 that y <ayw ej) = 0.

Differentiating the above equation first with respect to y® and then with respect to y°, we
8



obtain

=0.
p

(i), (i)

Since V., e; = 0, the above two terms are always equal to each other, and thus both vanish.

For (57 2 eg), it follows from the construction that ( aa#,em = 0y on ¥ N U.. According
to 24), y* =y <aa_yweu> By a similar argument as that for > k(gxl,eﬁ, aé; <£/M,€5> also

vanishes at p. O

2.2.3. The expansions of connection coefficients.

Proposition 2.6. Let U. be a neighborhood of p € X in M as in Definition [Z.3 with the co-
ordinate system (x,y) = (x!,--- 2™,y - y"T™) and the frame {e1, -+ ,en,€ni1, €ntm}-
Let

95 = <VeCeA,eB>wC = HE(ec)wC

be the connection 1-forms of the frame fields on U., where {wA}”+m

is the dual coframe of
{ea}Y I, Then, at a point q € U. with coordinates (x,y), 0% (ec:), considered as locally defined
multi-indezed functions, has the following expansions:

. 1 o
0] (ex)lixy) = 52" Byanl, + 4" Rjiak],, + O(x* + y*) , -
J L o 2 2 ( . )
0 (e8)ley) = 5" Riiasl, + O(X[* +1yI") ,

07 (ej) x,y) = Paijl, + z” haijik], + y” (Raig + thkhﬁjk)|p +O(Ix[* + [y) (2.11)
k
a 1 0 2 2
67 (e9)ley) = 57 Rains], + O + |y ) ,
1
O5(ei)lxy) = 5o 7 Ragiil, + 97 Ragyil, + O(x” + [y (2.12)

o 1
036 lixy) = 54° Rein |, + O(x +1yP?)

where Ry | . Rji Rjiapl, haijl, haiikl, Raigjl,s Raivgl, Ragjil, Rapril, Rassy|, all
represent the evaluation of the corresponding tensors at p and wzth respect to the frame fields

{e;}_, and {ea}ZJr:L”H.

Proof. Since the restriction of the frame {e;}_ ; on ¥ is parallel with respect to V> along the
radial geodesics, xkﬁf(ekﬂ(x 0) = 0 for any 4,5 € {1,...,n}. It follows that

; 06! (&)
_ l
92] (ek) ‘ (x,0) axk |(x,0)

9

and thus Hf(ekﬂp =0. (2.13)



By taking the partial derivative in 2! and evaluating at p = (0, 0), we find that
86l(er),  06(e))

Oz » dxk b

Similarly, since the restriction of {eM}ZIZLl on ¥ is parallel with respect to V* along radial

or equivalently, el(ﬁg(ekmp = —ek(Hg(el))|p (2.14)

geodesics, xkel’j(ekﬂ( o) =0 for any p,v € {n+1,...,n+m}. It follows that

HZ(ek)|p =0 and (2.15)
el(HZ(ek)ﬂp = —ek(HZ(el))‘p . (2.16)

Since the frame {e A}?:lm is parallel with respect to V along normal geodesics, y”@f (en) =0
and it follows that
905 (en)

Hf(eu) =Yy Dyl

95(%)\(,{,0) =0. (2.17)
By taking partial derivatives,

007(en) _ _ ,0%07(er) 00%(en) _ _00%(e) 50705 (es)

— \v/ d = — . 2.18
Oxk 4 Oxkoyr an oY Oyt Y oYY Oyt (2.18)

Note that on X, {%}?:1 and {e;}!' ; are both bases for T3. Therefore,
ek(ef(eu))|(x70) =0. (2.19)

By construction, 5)87 = ¢, on X, and thus
B B
ev (04 (eu))‘(xg) = —eu(04 (61/))‘(,(70) . (2.20)
In terms of the connection 1-forms, the components of the Riemann curvature tensor are

Rapep
= <vecveD€B - VeDVeceB - V[ec,eD}EBa €A>

=ec(05(ep)) — ep(05(ec)) — (05 N 0F)(ec. ep) — 0(e)0p(ec) + 05(ep)06(en) . (2:21)

With these preparations, we proceed to prove all the expansion formulae:

(The expansion of 6/ (e;,)) Tt follows from (ZI3) that the zeroth order term is zero. By (ZId),
the coefficient of ! in the expansion is

m%@wmzé[m%@w%%ﬁﬁ@WL=§

Note that for REB]-Z., all the indices of summation in (Z2I]) go from 1 to n. Due to (ZIJ)), the
coeflicient of y® in the expansion is

calti(e))| = [ealti(er)) —ex(®l(ea))]| = Rijiatl, -

10

Rl -



(The expansion of 6/(e3)) By (ZIT), the zeroth order term is zero, and the coefficient of
in the expansion is zero. According to (2.20)), the coefficient of y® in the expansion is

: 1 : :
caltd(e9)| =5 [eal®(e0)) = (0 (a))]| = Rjiasl, -
p 2 P
(The expansion of 0f*(e;)) On XN Uy, 0f*(e;) = (Ve €, €a) = haij. Its derivative along ey, is
ex(Il(es, ej,eq)) = (Ve I (e, €5, eq) + ]I(Vezkei, ej,eq) + I(e;, Vezkej, eq) + (es, €5, Velkea) )

Due to [213) and (2I3]), the last three terms vanish at p. It follows that ey (Il(e;, €5, eq))p is
equal to haijiklp-

The coefficient of ¥ is (6% (e;)|,. By @I9) and 217,
Roisil, = [e9(07(e)) + 08 (e)05(e))] | = lea(05 () — hahans]l, -

(The expansion of 6(eg)) According to (ZIT), the zeroth order term is zero, and the coeffi-
cient of 2! in the expansion is zero. By (Z20) and 2.17),

0 (ea))], = & [ex(B5(ep)) — caBF (e )], = 5

(The expansion of 05 (e;)) By (2IH), the zeroth order term vanishes. With (2.I6), (ZI5]) and
&13),

Raz"\/ﬁ | p

1 1
i O3e)| =5 |ei(0de) — ei@llen)]| =3 Rigi| -
Note that for R(Jx-ﬁji, the index of summation in the third term of (22I)) goes from n + 1 to

n+m, and the indices of summation in the last two terms of ([Z2I)) go from 1 to n. By [2I9),

B17) and (€5,
er(0(e)| = [en(02(ei)) — 02(er))] | = Basl,

(The expansion of 05 (e,)) Due to (2I7), 65(ey) vanishes on X NU.. According to (2.20) and

(m?
1

« 1 (6% (6%
66(95(67)”1, = B [66(95(&/)) - ev(eﬁ(eé))] ‘p = ) Raﬁéﬂp .
This finishes the proof of this proposition. O

2.2.4. Horizontal and vertical subspaces. For any q € U, C M, there exists a unique p € X
such that there is a unique normal geodesic inside U, connecting ¢ and p. Any tensor defined
on ¥ can be extended to U by parallel transport of V along normal geodesics. Here are some
notions that will be used in this paper.

The parallel transport of 7Y along normal geodesics defines an n-dimensional distribution

of TM|y., which is called the horizontal distribution, and is denoted by H. Its orthogonal
11



complement in T'M is called the vertical distribution, and is denoted by V. It is clear that H =

span{ey, -+ ,e,} and V = span{e,4+1, - ,€nt+m}. The parallel transport of the volume form of
¥ along normal geodesics defines an n-form on U, which is denoted by Q. Let {w!,- - w",
Wt ... w"™) be the dual coframe of {e1,- -+, €pn, €ni1,* »€nim}. In terms of the coframe,

Q=wA- AW, (2.22)

For any ¢ € U, and any oriented n-plane L C T;M, consider the orthogonal projection
onto V,, 7y, and the evaluation of 2 on L. Suppose that Q(L) > 0. By the singular value
decomposition, there exist oriented orthonormal basis {e1,--- ,e,} for H,, orthonormal basis
{ent1,+ sentm} for V, and angles ¢1,--- , ¢, € [0,7/2) such that

{€; = cosgje; +sindjeny;ti (2.23)

constitutes an oriented, orthonormal basis for L. If n > m, ¢; is set to be zero for j > m. It
follows that

Q(L) = cos ¢y -+ - cos ¢y, (2.24)
and the operator norm of my is

s(L):= HWV’LHOp = max{sin ¢y, -+ ,sin¢,} . (2.25)

Remark 2.7. The construction (Z.23]) works for (L) = 0 as well, and some of the angles would
be 7/2. The formulae ([2:24)) and (2.25]) remain valid. We briefly explain this linear-algebraic
construction. Consider the orthogonal projection onto Hy, my. Let Ly = ker(my : L — Hy); it
is a linear subspace of V,. Let L’ be the orthogonal complement of Ly in L. Then, L = L'& Ly,
and myy : L' — H, is injective. Note that mp(L') is orthogonal to Ly. The linear subspace L’ is
the graph of a linear map from 7y (L") C Hy to V,. The basis ([2:23)) is constructed by applying
the singular value decomposition to this linear map together with an orthonormal basis for L.

It is easy to see that the orthogonal complement of L has the following orthonormal basis:

{€a = —singq eqa—pn + €0S Po €0 torpi1 (2.26)

where ¢ = Gpo_n. If m > n, ¢, is set to be zero for a > 2n. The following estimates will be

needed later, and are straightforward to come by:

<n, z_; |(w* ® wj)(éi,éi)‘ <ns (2.27)
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and

(WA  Aw™)(Ba, 81,y Gy 18| <5,
(wl/\.../\w")(éa’éﬁ’éh...’/é;,...’é;...’én) <s?,

(WX AW A AWEA - AW (Er, -, En)| < ms (2.28)
(WX AW A AWEA - Aw™) (B, 81, 5 &gy En)| <1,

(W AWP AW A AG A AWT A AW (@, L E)| < n(n — 1)s?

for any 7,5,k € {1,...,n} and o, 8 € {n+1,...,n+m}.

The above estimates are the zeroth order estimate. For the first and third inequalities of
(228), a more refined version will also be needed. It follows from (2Z23]) and ([2.26]) that

o~

(@ A NGBy s By n) = (<1) Bt - Sln¢’ Hcosqbk (2.29)

Let @', .-+, @™, o™ ... @"™ be the dual basis of &1, ,€pn,Ens1s s Enem. According to

(2.23) and (2.20),
w! =cos ;@ —sing; 0" and  w® = sin g @*" + cos P O
Hence,
(W AW A AW A Aw™)(Er, -+, 6n)

L —

= <(Sin P ™) A (cos p1t) A - -+ A (cos ¢iit) A - - A (cos qbn@")) (€1,-+-,€n)

; sin gy
= (_1) +16a (n+i) cos &; HCOS Ok -

(2.30)

3. MINIMAL SUBMANIFOLDS AND STABILITY CONDITIONS

3.1. The stability of a minimal submanifold. A submanifold ¥ C (M, g) is said to be
minimal if its mean curvature vanishes, H = 0. It means that X is a critical point of the
volume functional. A minimal submanifold . is said to be stable if the second variation of the
volume functional is positive at 3. We now recall the second variational formula of the volume
functional. The detail can be found in [15] §3.2].

Suppose that V' is a normal vector field on Y. There are two linear operators on NX in the
second variation formula. The first one is the partial Ricci operator defined by
1
R(V) = try (R(-,V) . )

13



where R is the Riemann curvature tensor of (M, g). The second one is basically the norm-square
of the second fundamental form along V. The shape operator along V' is a symmetric map from
T to itself, and is defined by

Sy(X) = —(VxV)T% = —VxV + V5V , or equivalently (Sy(X),Y) = (I(X,Y), V)
for any tangent vectors X and Y of ¥. By regarding S as a map from N to Sym?(T%), define
A(V) =80 S(V)

where S* : Sym?(TY) — NX is the transpose map of S.
With this understanding, the second variation of the volume functional in the direction of V'
is

/E|viv|2 FR(V), V) — (A(V), V) (3.1)

Therefore, ¥ is stable if and only if (V+)*V++R— A is a positive operator. Note that (V+)*V+
is always non-negative definite, and R — A is a linear map on N3. Hence, the positivity of
R — A is a condition easier to check, and implies the stability of X.

Definition 3.1. A minimal submanifold ¥ C (M, g) is said to be strongly stable if R — A is a
(pointwise) positive operator on N3.

In terms of the notations introduced in §2.1], ¥ is strongly stable if there exists a constant
co > 0 such that

— Z Rimﬂ?}a’uﬁ - Z hoﬂ'jhﬁij’uavﬁ 2 Co Z(UQ)2 (32)
avBﬂ: a757i7j o

for any (v"*!, ... v"t™) € R™.

In particular, for a hypersurface 3, the condition is
—Ric(v,v) — |A]? > co,

where v is a unit normal and |A|* =Y, ; h?j.

3.2. Proof of Proposition A. It is easy to see that (8:2]) holds for a totally geodesic submani-
fold in a manifold with negative sectional curvature. When the geometry has special properties,
the condition (3.2]) is equivalent to some natural curvature condition on the minimal submani-

fold.
14



3.2.1. Complex submanifolds in Kihler manifolds. Let (M?",g,.J,w) be a Kihler manifold, and
Y% C M be a complex submanifold. The submanifold ¥ is automatically minimal. In fact,
the second variation (B.J) is always non-negative. In this case, the operator R — A was studied
by Simons in the famous paper [I5] §3.5]. We briefly summarize his results. The condition is
equivalent to that

<_J (Z RJ_(eiyfi)(V)) 7V> > [V
=1

where {e1, - ,ep, f1,--+ , fp} is an orthonormal frame for T'Y with f; = Je;. In other words,
the normal bundle curvature contracting with wy: is positive definite. It implies that the normal

bundle of ¥ admits no non-trivial holomorphic cross section.

3.2.2. Minimal Lagrangians in Kdhler-Einstein manifolds. Let (M?", g, w) be a Kihler-Einstein
manifold, where w is the Kéahler form. Denote the Einstein constant by ¢, i.e. Ric = cg. A
half-dimensional submanifold L™ C M is said to be Lagrangian if w|z vanishes. Suppose that
L is both minimal and Lagrangian. Then, ([B.2]) is equivalent to the condition that

Ricl — ¢ is a positive definite operator on TL , (3.3)

where Ric” is the Ricci curvature of g|lr. For completeness, the derivation is included in
Appendix[ATl We remark that when ¢ < 0, a minimal Lagrangian is always stable. That is to
say, the second variation ([B.I]) is strictly positive for any non-identically zero V; see [5l[13].

A case of particular interest is special Lagrangians in a Calabi—Yau manifold; see [8], §III]. The
constant ¢ = 0 for a Calabi—Yau manifold, and the strong stability condition ([3.2)) is equivalent
to the positivity of Ric”. By the Bochner formula, it implies that the first Betti number of L
is zero. According to the result of McLean [12, Corollary 3.8], L is infinitesimally rigid as a
special Lagrangian submanifold.

3.2.3. Coassociatives in G manifolds. A Gy manifold (M, g) is a 7-dimensional Riemannian
manifold with G5 holonomy. A coassociative submanifold is a special class of minimal, 4-
dimensional submanifold in M. A complete story can be found in [8, §IV] and [10] ch.11-12],
and a brief summary is included in Appendix[A.2]

Suppose that ¥* C M is coassociative. The strong stability condition (3.2) is equivalent to
that

—2W_ + g is a positive definite operator on A2 | (3.4)

where W_ anti-self-dual part of the Weyl curvature of g|s, and s is the scalar curvature of
glz. The computation bears its own interest in Go geometry, and is included in Appendix

[A2] According to the Weitzenbock formula for anti-self-dual 2-forms [7, Appendix C], ([8.4)
15



implies that ¥ has no non-trivial anti-self-dual harmonic 2-forms. Due to [12], Corollary 4.6], ¥
is infinitesimally rigid as a coassociative submanifold.

3.3. The Codazzi equation on a minimal submanifold. Suppose that > is a minimal
submanifold. Choose a local orthonormal frame {ej, - e} such that the restriction of
{e1, - ,e,} on X are tangent to ¥ and the restriction of {e, 1, - ,€4m} to X are normal to
3. Consider the following equation on 3i:

haii;k = ek(haii) - 2(V§j€i, ek>haki - (Veljea, €6>h5ii .

Since the mean curvature vanishes, the first and third terms are zero. For the second term,
(ngei, er) is skew-symmetric in ¢ and k, and hqg; is symmetric in ¢ and k. Hence, the second
term is also zero. By combining it with the Codazzi equation ([21]),

Ruiij = hagiz - (3.5)

4. THE CONVEXITY OF 1[) AND A LOCAL UNIQUENESS THEOREM OF MINIMAL SUBMANIFOLDS

Suppose that ¥ is a minimal submanifold in (A, g) and consider the function ¢ =5 (y©)?
on the tubular neighborhood U, of ¥ as in §2.2.T1 Similar to [I8], the strong stability of ¥ is
closely related to the positivity of the trace of Hess(¢)) over an n-dimensional subspace.

Proposition 4.1. Let X" C (M, g) be a compact, oriented minimal submanifold that is strongly
stable in the sense of [B2l). There exist positive constants €1 and ¢ which depend on the geometry

of M and X and which have the following property. For any q € U, and any oriented n-plane
LCTyM,

try, Hess(¢) > ¢ ((5(L))2 + w(q)) (4.1)

where s(L) is defined by (2.25]).

Proof. Let p € ¥ be the point such that there is a normal geodesic in U, connecting p and
q. To calculate Hess(v)), take the frame {e1, - ,ep, €nt1, -, €ntm} constructed in §2.2 Let
{wh, -+ W™, W't ... W™ be the dual coframe. According to (Z4) and (ZH), dy = 2y°w®,

and thus e;(¢) = 0. By @I1)),
Hess(v)(ei, €5)
= ei(ej () — (Ve&5) () = =2y 05 (es)

3
= —2y" haij|, = 202" haijir], — 20"y Rajsil, — 20°y” (hagihsir) |, + O((x* + 1y1%)?) .
16



By @3), @II) and @2.I2),

Hess () (e €) = ealei(th)) = (Ve,e)(¥) = =297 6 (ea)
= O(|x* +[y[*) |
Hess(¢) (€as €5) = eales() = (Vee)(¥) = 2¢a(y”) — 2y 0] (ea)

(4.2)
= 2005 + O(|x* + [y[?) -

We choose the frame so that L has an oriented, orthonormal basis of the form ([223]) and
evaluate tr Hess(¢)); note that all the z7-coordinate of g are zero:

try, Hess(v) = Z Hess(1))(cos ¢ e; + sin ¢ e, €08 ¢j €j + sin ¢; e, ;)
J
= Z [2 cos® ¢; <—y°‘ hajj|p —y%yP Rajgj‘p —yyP (hajkhﬁjk)‘p) + 2sin? @}
J

+O(lyl*) +s(L) - O(y*)

=2 Z [_yayﬁ Rajpj ‘p —y*y’ (hajrhsii) ‘p] +2 Z sin? oF
j7a7B ]
+2 )7 sin® 65 |y Ragpsl, + ™0 (hagihpgn)], | = 5°(0) = ¢lyP?
j7a7B
for some ¢ > 0. By using the strong stability condition B.2), this finishes the proof of the
proposition. 0

By the same argument as in [I8], the convexity of ¢ implies the following local uniqueness
theorem of minimal submanifolds near 3.

Theorem 4.2. (Theorem A) Let ¥ C (M,g) be a compact minimal submanifold which is
strongly stable in the sense of (B.2). Then, there exists a tubular neighborhood U of ¥ such that
any compact minimal submanifold I' in U with dimI" > n must be contained in . In other

words, 3 1s the only compact minimal submanifold in U with dimension no less than n.

Proof. Tt basically follows from [I8, Lemma 5.1] and Proposition Il The only point to check
is that the estimate of Proposition [l holds for dimension greater than n. Namely, it remains
to show that for any ¢ € U., and any #i-plane L C T, M with i > n,

try Hess(v) > ¢

for some positive constant cy.

The argument is similar to Remark 71 Pick an (7 — n)-subspace of ker(my : L — H,).

Denote it by Ly. Note that Ly belong to V,. Let L be the orthogonal complement of Ly in
17



L. The dimension of L is n. By Proposition B and ([@2]), the trace of the Hessian of 1 over L
has the following lower bound:

trz Hess(¢)) = try, Hess(v) + try,,, Hess(¢)
> ct(q) + (2(n —n) = dv(q) -
Thus, the quantity is positive when 1(q) is sufficiently small. O

Remark 4.3. In this rigidity theorem, it is not hard to see that the minimal submanifold
> needs not to be orientable. However, in order to have ¥ to be well-defined on a tubular
neighborhood, ¥ has to be embedded.

5. FURTHER ESTIMATES NEEDED FOR THE STABILITY THEOREM

From now on, X is taken to be a strongly stable minimal submanifold and we see in the last
section that the distance function v to 3 defined on U, satisfies a convexity condition.

To study the dynamical stability of mean curvature flows near ¥, we need to measure how
close a nearby submanifold is to . The distance function ¢ gives such a measurement in
CP. In order to obtain measurements in higher derivatives, we extend the volume form and
the second fundamental form of ¥ to the tubular neighborhood U.. In particular, in §2.2.7]
the volume form of X is extended to an n-form Q on U.. The restriction of €} to another
n-dimensional submanifold I', which is denoted by %), measures how close I' is to ¥ in C'.
The evolution equation of %) along the mean curvature flow plays an essential role for the
estimates. The equation naturally involves the restriction of the covariant derivatives/second
covariant derivatives of € on I'. In this section, we derive estimates of these quantities in
preparation for the proof of the stability theorem.

5.1. Extension of auxiliary tensors to U.. We adopt the frame and coordinate constructed
in §21

The second fundamental form of ¥ can also be extended to U, by parallel transport along
normal geodesics, as explained in §2.2.4l Denote the extension by I*, which, in terms of the
frames, is given by

= haij WRw ®e, . (5.1)

In other words, for any ¢ € Ue, haij(q¢) = haij(p) where p € ¥ is the unique point such that
there is a normal geodesic in U, connecting p and ¢, see Definition 2.3l To avoid introducing
more notations, we use the metric g to lower the indices of I*, and then I* = haijei ®ej @ eq.

Suppose that T' is an oriented, n-dimensional submanifold in U, C M with Q(I") > 0. With
the above extension, we can compare the second fundamental form of I" with that of X. For

any ¢q € I', choose a local orthonormal frame {€1,--- ,é,, €41, " ,€ntm} on a neighborhood
18



of ¢ in M such that the restriction of {é1,--- ,é,} on I" form an oriented frame for 7T, and the
restriction of {€,4+1, "+ ,€ntm} on I' form a frame for NT. With this, the second fundamental
form of I" is
T' = hoij & @€ @&, where haij = (Ve,éj,€0) - (5.2)
As explained in §2.241 we may assume that these frames are of the form ([223) and (Z26]) at
q. The inverse transform reads
€j = Ccos@; €j —sing; €y and e, = Sin Py Eq—pn + COS Py Eq - (5.3)
It follows that
]Iz‘q = haij(p) (cos ¢; € — sin @ €y44) @ (cos @ €5 — SN P Enyj) @ (SN P Eq—n + COS P €q ).
(5.4)
Hence,
(@, ) ‘q = Z <cos i cOS B COS Py Prij hvi (p)) . (5.5)
aiiij
In the above expression, hq;j(p) depends only on p € X, while ¢;, ¢, and ﬁaij all depend on
qel.
We extend another tensor which is related to the strong stability condition ([B.2]). Consider
the parallel transport of the following tensor on ¥ along normal geodesics:
(Raigj + hairhpjr) (W' @ w?) @ (e* @ €?) |
which is considered to be defined on U.. Pairing the last component with V/2 produces a
tensor of the same type as II*, which is denoted by S*:
S”lq = ¥ (Raigj(p) + (haikhsin) (p) W' ® W’ @ €q (5.6)

where p € X is the point such that there is a unique normal geodesic in U, connecting p and q.

Similarly,

(]IF, SE>|q = Z <cos $i COS ¢ COS Pq flaij y? (Raiﬁj(p) -+ Z(haikhgjk)(p))> . (5.7)
k

a7/37i7j
Again in the above expression, Raig;(p) + > ;(hairhsjr)(p) depends only on p € ¥, while
b, Po,y?, and fzaij all depend on g € T'.

In the rest of this subsection, we assume Q(7,I') > 1 and estimate (I, I*) ‘q and (II', S*) ‘q.
We assume that T,I" has an oriented frame of the form (2.23)), and N,I" has a frame of the form
(Z286)). Since Q(T,T') > 1, it follows from (Z24]) that

1
COS (j > COS Py - - - COS Py, > 3 forj€{1,...,n}.
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A direct computation shows that

0<1—cos¢;=1—1/1—sin®¢; <2(s(T,I))* ,

A (5.8)
:$ﬁ¢3<2@apw?

Ccos ¢

— COS @

Ccos ¢

Suppose that s in (228 is achieved at ¢1, and then

:1—9@3»2%@@@»2. (5.9)
On the other hand,
1—QGHUSl—GX%Dle—fiﬂ—$¥¢ﬂécmﬂdﬂmf (5.10)
j=1

for some dimensional constant c¢(n).

Applying the estimate (5.8]) to (B.5]) and (5.7), we obtain

(I, 1%) = > haij haig (p)] < e (s(¢))* [T,
a,t,g

(5.11)

(", s%)[, - > <7laz'j yB(Raiﬁj(p)+Z(haikhﬁjk)(p))) < c(s(9)* V() T
k

a767i7j

for some constant ¢ depending on the geometry of ¥ and M.

5.2. Estimates involving the derivatives of (2. In this subsection, we derive estimates that
involve derivatives of €, which are needed in the proof of Theorem B. In the following three
lemmas, we estimate quantities that appear naturally in the evolution equation of *Q (G.1).

Let I' be an n-dimensional submanifold in the tubular neighborhood of ¥. The function
x() is the Hodge star of Q|p with respect to the induced metric on I', and is the same as
Q(T,I"). We assume throughout this subsection that *Q(q) > % for any ¢ € I'. For each g € I,
let p € ¥ be the point such that there is a unique normal geodesic in U, connecting p and
q; see Definition We use the coordinate and frame constructed in §2.1] to carry out the
computation. Moreover, we assume that 71" has an oriented frame of the form ([2.23]), and N,I"
has a frame of the form ([Z26]). For ¢ € T, ¢(q) is a C° order quantity. *Q(q) and s(q) are both
C! order quantities that depend on the tangent space T,I' at ¢, where s(q) = s(T,T") is defined

in ([2.25).
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5.2.1. The restriction of the derivative of ) to I'. To compute V2, it is convenient to introduce
the following shorthand notations:

Q :L(ej)Q:(—1)j+1w1/\~-/\;}/\'~/\w" , (5.12)

(1RO A AWEA AW A AW ifRE<

OF = 1(ep)i(ef)Q = , —~ —~ (5.13)
’ (1)L GIA AW A AWR A AW iFE >
The covariant derivative of € is
VQ = (ij)/\Qj :0f‘®(wo‘/\Qj) . (5.14)

Lemma 5.1. Let X" C (M, g) be a compact, oriented minimal submanifold. Then, there exist
a positive constant ¢ which depends on the geometry of M and X and which has the following
property. Suppose that I' C U, is an oriented n-dimensional submanifold with *(q) > % for
any q € I'. Then,

> [0 R (Vo Do, - & 60| + () (1717 4 57)

a,j,k
< ¢ ((s(a)* + (@) 1"

at any q € I'. The summation is indeed a contraction between I' and V), and is independent

of the choice of the orthonormal frame.
Proof. By (B.14),
P - . = - ~ o/~ | COS Gq
> [(—1)J haji (Ve Q) (Eay €1, &5, ,en)} (q --y [hajkej (6) 2252 (*Q)} .

COS ¢

a?j7k a?j7k

According to (.11, 223) and the fact that the 2’-coordinates of ¢ are all zero,

9?(ék)‘q — 08 ¢ haji(p) — cos ¢ y° (Rajpn + hajlhﬁkl)(p)‘ < ((B(Q))2 + 1/1((1)> (5.15)
at ¢. Combining this with (0.8]) and (GIT) finishes the proof of this lemma. O

5.2.2. The restriction of the second derivative of ) to I'. Since
Vw® = 0% @uw' — 05 ®w’ and
VI = (Vub) AQF = 0F @ OF + 07 @ (w* A Q7F) |
the covariant derivative of (5.14]) is
VA= —(02®0") ® Q@+ (0 ©07) ® (w? Aw A Q%)
P , (5.16)
+ (Vo5 + 05 06 + 0, 207 ) @ (W A Q)

where V" is the covariant derivative of a local section of T M.
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Lemma 5.2. Let X" C (M, g) be a compact, oriented minimal submanifold. Then there exists
a positive constant ¢ which depends on the geometry of M and ¥ and which has the following
property. Suppose that I' C U, is an oriented n-dimensional submanifold with *Q(q) > % for
any q € I'. Then,

STIV2 o D@ )] = S [ E B R | + () 154 87

k a,ik
c(s%(q) +1(q))

at any q € L', where Raigl}j = (R(é, €j)éx, €q) are components of the restriction of the curvature
tensor of M along I'. Note that the two summations are independent of the choice of the

orthonormal frame.

Proof. We examine the components on the right hand side of (5.I6]). Due to (ZII)) and ([212),
6@ < ez (5°(0) + Vo))
65(@0)] < ez (s*(a) + V()

for any 4,7,k € {1,...,n} and o, 8 € {n+ 1,...,n+ m}. With (5I5]) and the third and fifth
line of (2:213)),

‘(906 (@) (67 (&) ( BAwW AQIY (e, ,én)>
6”

|
o) (@ A D)@, a))| < e
|

(5.17)

\( HE >> (6 (@) +v@) . G139
[(0E) (0(@0) (@ AN er, )] < s ((s0)” + (@)
According to (510 and (&.8),
> (O5()” — 11+ 57| < e ((s(0))? + v(0)) - (5.19)
o,k

By (B.16), G.I9) and (G.18),
(V2,20 én)] = (VO2) @k, ) (@ A Q)@+ 1 En) + (+0) 174 57|

< ¢ ((s(a)” + ¥(a)) -
(5.20)

The next step is to compute V'
0F = 07 (ej) o’ + 07 (ep) o’

= V0¥ = d(0%(e;)) @ w! + d(05(ep)) @ w’ + 0 (ej) Vw! + 02 (es) Vw’ . (5.21)
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By (5I7) and (5I5), we have the following estimate at g:
(V) (er, éx)| = |07 (Er) w'(ér) — Hﬁ(ék)w“(ék)‘ < ¢ (s(q) + \/W) :
(V) @k, 1) = |05 (x) o (@) + 05 1) ™ (@) < e

Together with (ZII),

[(65(e) Ve +62(e3) Vo) (@1 0)| < e (s(a) +v/5(a) ) - (5.22)

It follows from (ZII) and (Z8) that

‘d(ef‘(eg‘)) — (haijik) (D)W" + (Raigs + hairhaik) (p)wﬂ‘ < gV U(q)

1 (5.23)
A(67 (¢9)) — 5 Rairs(p)

where the norm on the left hand side is induced by the Riemannian metric g. By combining

[(V02)(@rs ex) = 05 65 B (P)] < o (3(0) + V(@) ) -
It together with (Z30) and (5.8) gives that
| = ((V02)(Er, Ek) (W AQ)(EL, -+, En)) + () sin &5 B iyinre (D)

5.24
<ew ((s(0))° +¥(0)) - o

It remains to calculate the second term in the asserted inequality of the lemma. By (2.29),

: - - _ - Sin¢' - -
S (-1)Qear 1,y E o) Ry = (30 Y — ¢ZR(en+i,ek,ek,ei) .
i,k ik

With (Z23), @Z6) and (53),

Z(—l)iﬁ(éa,éh'“ L @iy en) R+ (*Q)ZSin¢iR(n+i)kki < c11 (s(q))?
ik i,k

Since | Rnyiyknile — Bnvipenilo] < c12/9(q), we have

—

Z(—l)iQ(éa,él, s €y en) R 4 (¥92) ZSin GiRnviyeri(p)| < c13 ((5(Q))2 + ¢(Q)) .
i,k i,k
(5.25)

By (£.20), (5.24)), (5.25) and the Codazzi equation (B.5)), it finishes the proof of the lemma. [

Remark 5.3. The tensor S* is needed for Lemma .2} otherwise the error term would be

bigger. However, S> will only be used in some intermediate steps in the proof of Theorem B.
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5.2.3. The derivative of *Q0 along I'. The following lemma relates the derivative of *Q2 along I"
and the second fundamental form of I'.

Lemma 5.4. Let X" C (M, g) be a compact, oriented minimal submanifold. Then, there exist
a positive constant ¢ which depends on the geometry of M and X and which has the following
property. Suppose that T' C U, is an oriented n-dimensional submanifold with *Q(q) > % for
any q € I'. Then,

VI G < e (s(a) () 17~ 15 + ¢ ((6()® +4(a))

for any q € T.

Proof. We compute

VI(Q) = [6;(QEr, -+ ,én))] &

(VGJQ) 617 , € +ZQ 617”’ 7é’i—17véjé’i7éi+l7”' 7én)] (:)J

(véjQ)(él7'” 7én) +Z}~l(m]Q(él7 7éi—17éa7éi+17”' 7én)] @J .
i=1

Note that the expression is tensorial, and we use the frame ([223]) and (220]) to proceed.

Due to (514)) and (230),
(Ve, (@1, &) = 07(5) (W A Q) (Er, -+ )

= (cos6; 677 e) + 5060 e )) To i)

By @2.11) and (.8), at q,

‘(véjg)(gh s en) — (%) Z [sm Oi COS (P 1j COS P COS ¢jh(n+i),~j(p)]

COS
i=1 i

< e (((0))” + (@) -

According to ([2:29),

. _ - . ~ " [sin¢; -
ZhaijQ(el,"' y €i—1,Ca; €41, " " 7en) = _(*Q) |:—¢h(n+l)1]:| )
] =1



To sum up,

VIE)[* = S 6@, )

j=1
n n 2
< 22 (Ve Q)(eq én) — (%) Z sin 9 cosqb Ccos ¢ cos p;ih (p)
=42 . é; > ) 1 coS &; n+i i 71 (n+i)ij
j= i=
n n . ¢ 2
sin ¢; -
2(*{2)2 Z Z <COS Onti COS @ COS ¢jh(n+i)ij (p) — h(n—l—i)ij)
=1 =1 ¢i
2
< 4nc? ((s(9))* + ¥(0))
- 2
+8n (s(q))? () Z ‘h(n-i-i)ij — COS Qi COS O COS PR (n14)ij (P)‘
By (£.2) and (E.4),
- 2
|IIF — IIE|2 > Z ‘hm-j — COS ¢h; COS j COS anhaij(p)‘
a,t,j
This completes the proof of this lemma. O

6. STABILITY OF THE MEAN CURVATURE FLOW

After the preparation in the last sections, we consider the mean curvature flow. We first
recall the following proposition from [23, Proposition 3.1].

Proposition 6.1. Along the mean curvature flow T'y in M, xQ = Q(éy,--- ,é,) satisfies

E*Q AT 5 Q 4+ QY Zh

dt azk
ik
-2 Z [Qa63---nﬁalkﬁﬁ2k + Qa2ﬁ---nﬁalkﬁﬁ3k + -+ Ql---(n—Q)QBBa(n—l)kﬁﬁnk]
Bk (6.1)
- 2(V Q)(eaa . én)ilalk - 2(VékQ)(él, o 7éa)ilank
B Z a2enflagiy T Ql-~~(n—1)aR&1%/%ﬁ] - (ng,ékQ)(él, )
where ATt denotes the time-dependent Laplacian on T, Qagg...n = Q(éq, 65,63, ,€,) etc.,

and Rziiq = (R(Eg, €1)ex, €q), etc. are the coefficients of the curvature operators of M.

When € is a parallel form in M, VQ = 0, this recovers an important formula in proving the

long time existence result of the graphical mean curvature flow in [22].
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6.1. Proof of Theorem B. A finite time singularity of the mean curvature flow happens
exactly when the second fundamental becomes unbounded; see Huisken [9], also [23]. The
following theorem shows that if we start with a submanifold which is C! close to a strongly
stable minimal submanifold ¥, then the mean curvature flow exists for all time, and converges
smoothly to X.

Theorem 6.2. (Theorem B) Let ¥ C (M, g) be a compact, oriented, strongly stable minimal
submanifold. Then, there exist positive constants k << 1 and ¢ which depend on the geometry
of M and % and which have the following significance. Suppose that I' C U, is an oriented
n-dimensional submanifold satisfying

8161113(1 —(*Q)+¢) <k . (6.2)

Then, the mean curvature flow T'y with Tg =T eists for all t > 0. Moreover, supr, [I'] < ¢
for any t > 0, where I the second fundamental form of 'y, and T'y converges smoothly to ¥ as
t — 00.

Proof. The constant s will be chosen to be smaller than €2 and %; its precise value will be

determined later. Suppose that the condition (6.2)) holds for all {I'; }o<i<7.

Denote by H; the mean curvature vector of I';. According to Proposition [£.1]
d r r 2
&zp:Ht(w):A tp —trp, Hessp < AMthp — g (¢ +57) . (6.3)
By applying Lemma B.1] Lemma and the second line of ([2:28) to (G.1),

d

() > Al (+Q) + (+Q) [T — 2¢,82 T2
— 2(xQ)(I*, T + S™) — ca(s” + )|
+ ()| + S¥2 — ¢y(s + )

> AN (xQ) + (+Q)|TF — T% — S%2 — ¢3(s2 + ) [TF2 — c3(s® + )
> AT (xQ) + %(*Q)]]It — T — (xQ)| S|

= 2¢3(s” + )|[I° — I7|% — e3(s” + ) (1 + 2|I7[%) .

If K < 1/(48¢3), it follows from (B3) that 2c3(s% + 1) < (xQ)/6. Since |S*|?> < c49) and
|]IE|2 S Cyq,

%(*Q) > Al (xQ) + %(*Q)H[t — = —e5(s® + 1)) . (6.4)
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By combining it with (63)), (59) and (5.10), we have

(1 () eq) < AT (1 - (50) + ) — S ()T~ TP — 7 (1 = (+0) +9)
(6.5)

< AT (1= (+Q) + cot) — = (+Q)|TF — TZ[2 — Z—Z (1 — (+Q) + cg))

1
3
where ¢ = 1 + ¢5/c1. By the maximum principle, maxp, (1 — (%) 4 ¢g%)) is non-increasing.

The evolution equation for the norm of the second fundamental form for a mean curvature
flow is derived in [20, Proposition 7.1]. In particular, |T*|?> = 3" . . h2,
equation along the flow:

d N
_|]It|2 — AFt|I[t|2 _ 2|VFt]It|2 +2 [(VékR)dgﬁ + (VéjR)d];g];} hm‘j

ik Mok satisfies the following

dt
— ARpsphatkhaij + 8Rg gphpinhaij — ARjggphatjhai + 2R 57530605 haig (6.6)
2 2
+2 Z <Z haikhojk — ilajkil'yik> +2 Z (Z }Nlaij;lakl> :
Q,,i,] k 1,7,k,1 «
It follows that

d
&mt\? < ATTH? = 2/ VT2 4 e (JT* + (T2 + 1) (6.7)

The quartic term |I¥|* could potentially lead to the finite time blow-up of |I!|. We apply the
same method in [22]: use the evolution equation of ()P to help. Let p be a constant no less

than 1, whose precise value will be determined later. According to (6.4]),

d d
el P _ p—1 =
(P = PP ()
> p(eQ)P AT () + QP IT — TP — esp(s” + 9)
= AT Q) — p(p — DEQP VI QP - TP — esp(s® + ) -

After an appeal to Lemma [5.4],

d
S = AT+ L (1 cgps?) (I~ TP — cop?(s? 1)
If k < 1/(24cop), it follows from (53] that cops? < 1/12. It together with (G.3]) gives that
d

= () — Kphp) = AT (s — Kp?y) + fz’ (=P — Kp2p) [T —T=2 (6.8)

where K = cg/c;. The maximum principle implies that if (xQ)? — Kp%*) > 0 on I, then
minr, ((*Q)p - K pzw) is non-decreasing. Moreover, for any p > 1, we may choose x such that

6.2) implies that (*Q)P — Kp%yp > 1/2.
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Denote (¥Q)P — Kp?y by 1. Due to (6.7) and 6.8),
d, _ _ _ _
o R < AT — 2 [V g (1 4 1)

_ p
— 2 (AT + Dot - 1)

Since AT (5! [I1[2) = 5~ AT IF[2 — =2 [IF2ATey — 201 (YT, V7 (1 [IF2)) and [T~ 152 >
% — ¢19, we have

d. - - _
() < AT (IR 4 2071V ey, VR (T HIC)
p ~
— gn 1\1It]4 +c1n 1 (]]It\4 +(p+ 1)\Ht\2 + 1)
< AT (T HIP) 4 20 NV, V()

— (= 2c10) (7 1) + ena () + 210

(6.9)

Choose p > 16¢11+1. It follows from the maximum principle that 7! |II*|? is uniformly bounded,

and hence there is no finite time singularity.

The CY convergence is easy to come by. The differential inequality (6.3) implies that v
converges to zero exponentially. Similarly, it follows from (6.I0) that 1 — (x€2) 4 cg1) converges
to zero exponentially. Therefore, Q) converges to 1 exponentially, and we conclude the C!
convergence.

For the C? and smooth convergence, consider n = (*Q)P — Kp%i. It follows from the above
discussion that 7 has a positive lower bound. It is clear that n < 1. Moreover, n converges to
1 as t — oo. Integrating (B8] gives

d
|Ht — H2|2 d,ut S C12 —77 d,ut .
T T dt

Recall that the Lie derivative of dju; in Hy is —|HZ| duy; see [20, §2]. Tt follows that

1 d
— [ I —1F2du < —/ n dpy +/ n | Hy? dpg (6.10)
c12 Jr, dt Jr, r;

We claim that the improper integral of the right hand side for 0 < t < oo converges. To
start, note that % th dp; = — th |Hy[?dyy < 0. Thus, vol(T'y) = th dpy is positive and non-
increasing, and must converge as t — oo. For the first term on right hand side of (G.10),

t/d
/ (d—/ ndus> ds:/ ndut—/ ndpuo
0 S Jr, T To
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Since 7 converges to 1 (uniformly) and vol(T'y) converges as t — oo, th ndu; converges as
t — oo. For the second term on the right hand side of (GI0I),

t t t
/ </ n |Hs|2d,us> ds < / < |H,|? d,us> ds = / (-i/ d,us> ds
0 \Jr, 0 \Jr, o \ dsJr,

= vol(I'g) — vol(I';) < vol(I'yp) .

It is bounded from above, and is clearly non-decreasing in t. Therefore, it converges as t — oo.

It follows from the claim and (6I0]) that

/ < \IIt—]IEqut) dt < oo . (6.11)
0 Tt

On the other hand, [II* — II*|? obeys a differential inequality of the same form as (6.7)):

d
&mt — ¥ < ATIE - T2 4 5 (T — T2 4 0F - T%)2 4+ 1) . (6.12)
The derivation for this inequality is in Appendix[Bl By (612]) and the uniform boundedness of
|, & th [ — *|? dy is bounded from above uniformly. Due to Lemma [63] which is proved
at the end of this subsection, we find that

. t_ 2 _

g%/rt I — T2 dp = 0 . (6.13)

Since |I*| is uniformly bounded, in view of ([GI2), we find that &[Tt — I¥[2 — AT I — T2

is bounded from above, independent of ¢. This together with (G.I3)) implies that [I* —II*|?> — 0
as t — oo in the sup norm.

We can then write I'; as a graph (in the geodesic coordinate defined in §2.2]) over ¥ defined
by y* = ff,a =n+1,---n+m for ff functions on ¥. The above estimates imply that f*
converges to 0 in C? as t — co. As a mean curvature flow, f satisfies a second order quasilinear
parabolic system, and standard arguments lead to the smooth convergence of f*. O

Lemma 6.3. Let a > 0 and f(t) be a smooth function for t € (a,00). Suppose that f(t) > 0,
[ f(t)dt converges, and f'(t) < C for some constant C > 0. Then, f(t) — 0 ast — oo.

Proof. 1t follows from f'(t) < C that f(t) > f(t1) — C(t1 —t) for any t; >t > a. Since f(t) >0
and faoo ft)dt < oo, given any € € (0,1), there exists an A, > a such that fz ft)dt < e.
Thus, for any t; > Ac +1 > A + /e,

e>/tt1 f(t)dtz/tl (F(ty) — Oty — 1)) dt

1—Ve t1—+/e
1
— V() - ) 40 (Ven - 5e) |
It follows that f(t) < (1+ 1C)\/e for any t > A, + 1. O
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APPENDIX A. COMPUTATIONS RELATED TO STRONG STABILITY

For minimal Lagrangians in a Kéhler—Einstein manifold and coassociatives in a G's manifold,
the condition ([B.2)) can be rewritten as a curvature condition on the submanifold. One ingredient
is the geometric properties of U(n) and G2 holonomy. Another ingredient is the Gauss equation:

Rijke — R}ipy = haithajk — haikhagje - (A1)

A.1. Minimal Lagrangians in Kihler—Einstein manifolds. Let (M?", g, J,w) be a Kihler—
Einstein manifold, where J is the complex structure and w is the K&hler form. Denote the
Einstein constant by c¢; namely,

Y Racpo = Ricap = cgap -
c

A submanifold L™ C M?" is Lagrangian if w|y vanishes. It implies that J induces an iso-
morphism between its tangent bundle 7T'L and normal bundle NL. In terms of the notations
introduced in §2.I1 the correspondence is

vie; «— vl Je; . (A.2)

In particular, if {e1,--- ,e,} is an orthonormal frame for T'L, {Jey,--- , Je,} is an orthonor-
mal frame for NL. Denote Jey by €j(), and let

Chij = hyyij; = (Vesej, Jek)

Since J is parallel, it is easy to verify that C};; is totally symmetric.

Now, suppose that L is also minimal. By using the correspondence ([A.2)), the strong stability
condition ([3.2) can be rewritten as follows.

—Rig(eyig(e) V" v" = Chij Coij 0" v = —e gre v o' + Ry 10056)0(0) V° 0" — Chij Cozg vF v

14

14
2 k0 k

= —c|v|* + Rijig v" v — Chi; Cpij v v
2 L k., l k, L k, l

= —c |’U| + Rikif’u v+ Cj]ﬂ' Cj&' vtV — C]ﬂ'j Cgij vt

—c|v]? + Rick (v, v) .

The first equality uses the Kéahler-Einstein condition. The second equality follows from the
parallelity of J. The third equality uses the Gauss equation and the minimal condition. The
last equality relies on the fact that Cj;; is totally symmetric. This computation says that ([3.2])
is equivalent to the condition that Ric” — ¢ is a positive definite operator on T'L.

A.2. Coassociative submanifolds in G5 manifolds. In this case, the ambient space is 7-

dimensional, and the submanifold is 4-dimensional.
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A.2.1. Four dimensional Riemannian geometry. The Riemann curvature tensor has a nice de-
composition in 4 dimensions. What follows is a brief summary of the decomposition; readers
are directed to [I] for more.

Let ¥ be an oriented, 4-dimensional Riemannian manifold. The Riemann curvature tensor
in general defines a self-adjoint transform on A? by

1
R(e; Nej) = §R%&~j er N\ ep .

In 4 dimensions, A% decomposes into self-dual, Ai, and anti-self-dual part, A2. In terms of the
decomposition A% = Ai @ A2, the curvature map R has the form

o | Wt 1zl B
BT W_+ 51

Here, s = R?jij is the scalar curvature, W is the self-dual and anti-self-dual part of the Weyl
tensor, B is the traceless Ricci tensor, and I is the identity homomorphism.
With respect to the basis {e; Aea —e3Aeg, e Aeg+ea Aeg,e1 Aeg—ea Aes}, the lower-right

block W_ + 5T is

b)) 3 b)) b)) 3 b 3 b)) 3 b)) 3
R1212 + R3434 - 2R1234 R1213 + R1224 - R3413 - R3424 R1214 - R1223 - R3414 + R3423
1
b)) b)) > D)) b)) > b)) D)) > D)) >
5 R1312 - R1334 + R2412 - R2434 R1313 + R2424 + 2‘R1324 R1314 - R1323 + R2414 - R2423
b)) b)) 3 b)) b)) 3 b)) 3 b)) 3 b))
R1412 - R1434 - R2312 + R2334 R1413 + R1424 - R2313 - R2324 R1414 + R2323 - 2]%1423
(A.3)

The operator will be needed is W_ — I = (W_ + 15 I) — § I. One-fourth of the scalar curvature

18

S 1
1- 3 (Rlzzlz + R3j3q + Rigis + Rypy + Ris + R2E424) : (A.4)

A.2.2. Gy geometry. A 7-dimensional Riemannian manifold M with G5 holonomy can be char-
acterized by the existence of a parallel, positive 3-form p. A complete story can be found in
[10, ch.11]. In terms of a local orthonormal coframe, the 3-form and its Hodge star are

0= o‘)567 + w125 _ o‘)345 + w136 + o‘)246 + w147 _ o‘)237 7

(A.5)
*p = O‘)1234 o O‘)1267 + O‘)3467 + O‘)1357 + w3457 . w1456 + w2356

where w'?3 is short for w! Aw? Aw3?. Tt is known that the holonomy is Gy if and only if V¢ = 0,
which is also equivalent to dp =0 =d * ¢.

Remark A.1. There are two commonly used conventions for the 3-form; see [11] for instance.
The convention here is the same as that in [12]; the deformation of coassociatives will then be
determined by anti-self-dual harmonic forms. If one use the convention in [10], the deformation

of coassociatives will be determined by self-dual harmonic forms.
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The 3-form ¢ determines a product map x for tangent vectors of M. For any two tangent
vectors X and Y,

X xY = (p(X,Y, ).

For instance, e; X es = e5. Since ¢ and the metric tensor are both parallel, x is parallel as well.

As a consequence,

R(ea,ep)(er x e2) = (R(ea,ep)er) x ez +e1 x (R(ea, ep)ea)

and its eg-component gives Rssap — Reoap — Rriap = 0 for any A, B € {1,...,7}. In total,
the parallelity of x leads to following seven identities:

Rsaap + Rezap + Rraap =0,
Rerap + Ri2aB — R34 =0,

—Rs7ap + Rizap + Rauap =0, (A.6)

Rs14B — Reaap + R34 =0,

Rssap + Re1ap — Roap =0,
Rs6ap — Ri4aaB — Ra3ap =0 .
—Rs3aB + Reoap + Rriap =0,

These identities imply that a G9 manifold is always Ricci flat.

A.2.3. Coassociative geometry. According to [8, §IV], an oriented, 4-dimensional submanifold
Y of a G2 manifold is said to be coassociative if xp|y coincides with the volume form of the
induced metric. Harvey and Lawson also proved that being coassociative is equivalent to that
¢|x, vanishes. Similar to the Lagrangian case, the normal bundle of a coassociative submanifold
is canonically isomorphic to an intrinsic bundle. The following discussion is basically borrowed
from [12] §4].

Orthonormal frame. Suppose that ¥ C M is coassociative. One can find a local orthonormal
frame {ey,--- ,e7} such that {ej,eq,e3,e4} are tangent to X, {es, €6, €7} are normal to X, and
¢ takes the form ([A.D) in this frame. Here is a sketch of the construction. Start with a unit
normal vector, es, and a unit tangent vector, ey, of 3. Let eo = e5 x e;. Then, set e3 to be a
unit vector tangent to ¥ and orthogonal to {e1,es}. Finally, let e4 = e3 X e5, eg = €1 X eg and
er = e3 X e9.

Normal bundle and second fundamental form. The normal bundle of ¥ is isomorphic to the
bundle of anti-self-dual 2-forms of ¥ via the following map:

Vi (Vag)ls (A.7)

In terms of the above frame, e5 corresponds to w'? — w?

corresponds to w'* — w?3.

4. eg corresponds to w!'? + w?*, and ey
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As shown in [§], a coassociative submanifold must be minimal. In fact, its second fundamental
form has certain symmetry. For instance,

hsi; = (Ve,e1,e5) = —(e1, Ve, (e X 7))
= —(e1, (Ve,e6) X e7) — (e1,e6 X (V7))

= —(e4, Ve,e6) + (€3, Ve,e7) = hgai — hrsi .

What follows are all the relations:
hs2i + hesi + hra; =0, hsai + he1i — hr2i =0,

(A.8)
hs1i — heai + hrzi =0, —hs3i + he2i + hri; = 0

for any ¢ € {1,2,3,4}. These relations imply that the mean curvature vanishes. They can be
encapsulated as >, e; x I(e;, ej) = 0.

A.2.4. Strong stability for coassociatives. For any sections of NY, v, denote the symmetric
bilinear form on the left hand side of B32) by Q(v,v). Under the identification (A1), Q(v,v) =
—2vI W_v + £|v|? is also a symmetric bilinear form.

We now check that Q(v,v) = Q(v,v) for any unit vector v € N,¥ at any p € X. As explained
above, we may take e; = v and construct the other orthonormal vectors. With respect such a
frame, it follows from (A3) and (A4) that

~ 5 5 n 5 n
Q(v,v) = Rigy3 + Rojog + Rigis + Ryjoq + 2R1534 -

The quantity Q(v,v) can be rewritten as follows.

Qv,v) = — Z Risis — » _(hsi)”

1,J
= Reses + Rrsrs — 3 (hsij)?
Z"j

_ 2

= Ri313 + Roa24 + R1313 + Rog24 — 2R1423 + 2R1324 — Z(hsz‘j)
1,J

_ 2

= Ri313 + Roao4 + Ri313 + Roap4 + 2R1234 — Z(h5ij) :

i7j
The second equality follows from Ricci flatness. The third equality uses (A.6). The last equality
is the first Bianchi identity. With the Gauss equation and some simple manipulation,

Q(V’ V) - Q(Vv V)
= ((ha1a + ha23)* + (ha13 = ha2a)® = (ha11 + ha22)(hass + haaa)) — > (hsi)* . (A.9)

1]
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By appealing to (A.S),

he1a + heas = —hs22 — hsaa = hsi1 + hszz ;. heiz — he2a = —hsi2 — hssza
hr1a + h7ag = —hsi2 + hssa h713 — h7oa = —hs22 + hszz = —hsi1 — hsaa
and

he11 + he2e = —hess — heas = —hs14 + hsos
h711 + h72e = —h733 — h7aa = hs13 + hsoa .
By using these relations, it is not hard to verify that (A.9) vanishes. Therefore, the strong
stability condition ([B.2)) is equivalent to the positivity of —2W_ + 2.
As a final remark, this equivalence can also be seen by combining [12, Theorem 4.9] and the

Weitzenbock formula [7, Appendix C]. Nevertheless it is nice to derive the equivalence directly
by highlighting the geometry of Gs.

APPENDIX B. EVOLUTION EQUATION FOR TENSORS

Suppose that ¥ be a tensor defined on M of type (0,3). The main purpose of this section
is to calculate its evolution equation along the mean curvature flow. Since there will be some
different connections, we denote the Levi-Civita connection of (M, g) by V to avoid confusions.

Let T'; be the mean curvature flow at time ¢. The tensor V¥ is a section of (T*M & T*M ®
T*M)|pe. The connection V naturally induces a connection V on this bundle. The only
difference between V and V is that the direction vector in V must be tangent to T';.

connection | bundle and base
\v Levi-Civita connection of (M, g)
vl Levi-Civita connection of I'; with the induced metric
v+ connection of the normal bundle of I’
v connection of (T"M @ T*M & T*M)|r
\% connection of T*T'y @ T*T'; ® N*T'; defined by ([2:2])

From the construction, V is the composition of V with the orthogonal projection.

Proposition B.1. Let ¥ be a tensor of type (0,3) defined on the ambient manifold M. Along
the mean curvature flow I'y in M,
%mt — U2 < ATT — O — | V(@ — O)? + (T — T* + [T — T2 4 1) (B.1)

where ¢ > 0 is determined by the Riemann curvature tensor of M and the sup-norm of U, VU,
=2
V.

Proof. The mean curvature flow can be regarded as a map from I'y x [0,¢) — M. For any

p € Tg and ty € [0,¢€), choose a geodesic coordinate for Ty at p: {#',--- ,%"}. We also choose
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a local orthonormal frame {é,} for NT;. The following computations on derivatives are always
evaluated at the point (p,to).
Let H = haé, be the mean curvature vector of I';. The components of the second funda-

mental form and its covariant derivative are denoted by

}Nlaij = <v6;ajvéa> = H(azyaiaéa) )
haijne = (Vo 1)(05,05,6a) ,
haj = (Vo H, ) .

At (1), ho = hogk and b = hogr.i-
Note that on I'g x [0,€), H is 0;, and thus commutes with J;. It follows that the evolution

of the metric is:

d — _
30 = H(0;,05) = (Vi 0;,03) + (05, Vi 05)
= —<H,Va263> — (Vaja;,H> = —Qilailaij , (B.2)
d_.. - -
54 — ..
dtg 2hahazy . (B?))

The covariant derivative of J; and €, along H can be expressed as follows:

VHa; = <VH85763>83 + <vHagyéa>éa

= _}Nlailocij 83 + }Nla,i €a , (B4)
Viéa = (Viéa, 07)0; + (VHéa, é5)és
= _}Nla,i 8; + WHéa, éﬁ>éﬁ . (B.5)

The last part of the preparation is to relate the covariant derivative of ¥ in H to its Bochner—

Laplacian in the ambient manifold M.

J

= VU + trp, (V0) . (B.6)

Indeed, vg__aj is zero at (p,tg). The tensor V'V is defined in the ambient space, and has
J
nothing to do with the submanifold I';. It follows from (B.6) that the evolution of of |¥|? is

d _
E’W =H({(¥,¥)) =2(VyV,¥)

= VYV, W) + 2trr, (V) ¥)

= AT U2 — 2V 4 2trp, (V0), ©) (B.7)
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The next task is to calculate the evolution equation for (]It, U) = §ik 7 lﬁakl\i/aij where \i/m-j =

¥ (05,03, €qa). According to (B.4) and (B.3),

| ~

Vyij

H(¥(0;,05,¢4))

(oW

t

(VH\I/)(Z?;,C‘);, €a) + \P(@;,@;,VHéa) + \I/(VHG;,aj, €a) + \I/(Z?;,VHaj, €a)
(VE®)(0;,05, ) — hokWrij + (Viréa, €5)Vsi;

o - I . (B.8)
- hvhvik‘yakj + hyiVay; — hvhvjk‘l'aik + hyj Waiy
The difference between V*VI! and V*VI is:
VAVI' = V*VI' = Vg Vy T' = Vy Vy T (B.9)

(@6];]?)(6;78376&) = (vé) I )(6578 7éa) = hon]k )

?8—]? 8278778~ = _iloci ilakl )

(N A t)(~ 7 ~l) ) ~] (BlO)
(VBI-CI[ )(65,83, eoc) = hﬁkzhon] ’

(@8,}1115)(827 éﬁv éa) = ﬁﬁlﬁﬁaw

The above four equations hold everywhere, but not only at (p,tp). It follows that

(Vo Vo, I')(9;,05,80) = 0, ((%I;Ht)(a;,aj,éa)) ~ (Vo,I%)(8;,85, Vo, éa)
~ (Vo 1')(V, 05,05, 8a) — (Vo,I')(9;, Vo, 05, )
= (V9, Vo, 1')(0;,05,80) — (Vo 1')(0;,05, (Vo Ea)")
— (Vo 1) ((V,0;)",05,80) — (Vo, 1')(05,(Va,05)" éa)
= (Vo, Vo, 1)(0;,05,80) — haijharihar — hariharihpri — hpkjharihai -

Use (B.9) to rewrite the above computation as

(V*VI' — v*VI) (05, 95,€a) = haijhsribar + Rgrihaiihpri + harjhpribai (B.11)
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The tensor V*VI' does not have other components. However, V*VI does.

(V*VI')(0;,05,0p) = —(Vo, Vo, 1')(05,05,07)
= —9;((Vo,I')(9;,95,0p) + (Vo I')(Va,05,03,0;)
+ (Vo I')(07, Vo, 05,0p) + (Vo I')(05,05, V5, 0))
= 0z (haijhakt) + haijkhoki
= Qilaij,kﬁakl + ﬁaijﬁakl,k

= 2haij khakt + haijhag + haij Rapip - (B.12)

The second last equality uses the fact that 0 = <V$}~c Cas ég>i~zgij Pkt — (Vé@ Cas ég>i~1m~ji~zgkl. The
last equality uses the Codazzi equation (2:2]). Similarly,

(V*VI')(ég,05,80) = —2hatjkhsrs — Dkt khayi
= —2hatjrhsrer — haihajt — Rg;;;;[ilajl
(V*VI) (05,65, 60) = —2hairrhsr — harrhail

= _Zilail,kﬁﬁkl - Eﬁ,lﬁail - Rg,;,;zilau

. ~ e (B.13)
(V*VI') (05, €q,05) = —2hamhgihsk;
(V*VI') (85,8, 60) = —2hgrihonihai
(V*VI) (&5, 95,0;) = 2hgrihatjhaki
(V*VI')(ég, €0, 05) =0
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The evolution equation for h,;; was derived in [20, Proposition 7.1]. With (B8) and (B.8),

we have

d ik ~jl T
_<Ht7 \Ij> dt <g g] hakl\I’aij)

= 2kt Vs + Hisihshoa¥osy + ( Sy ) B + s (5500
= 2hgihshari Vaij + 2hjihshain P ai; — (VFVIE, )
+ (Ve R) 5577 Vais + (Ve, R) api Vaij — 2Rm,~ﬁa,k®aij + 2Rd§5,~jﬁik\i/aij
+ 2R, gihajnVaij — Riggphatj Yaij — Rigihati Yais + Rapphoi Yais

— Pl (ilﬁlj;lﬁ — ilﬁlkilﬁjk> \i’aij — R (}Nlﬁljilﬁik — ilﬁlkilﬁij> ‘i’aij

azyk

- ﬁﬁik <}~lﬁlj}~lalk - Eﬁlkﬁalj) \Ijaij - ﬁajkﬁﬁikﬁﬁlijaij + Bﬁij<éﬁvaéa>i’aij
— (I, V) + (I, trr, (VVO)) — haiiho i Prij + haij (V 56 65) 0 g
- honjh h'yqujaky }Nl \i'aw ﬁaijﬁvﬁ'yjki'aik + ilocijil%j\i’aiv
= —(V*VIL, W) — (I, V*VO) + (I, trp, (Vo))

+ (Ve R) a5 Vaij + (Ve B) i Vais — 2RiihaikVais + 2Rg 550 hin Vaij

+ 2R, 5ithginVaij — Riggphatj Yaij — Riggihan Yais + Rapgphoi Yais

;~z

&ijk
+ Ragaihais Vi — RiggihaieVaps — RapighanVais
— 2N (ﬁﬁljﬁﬁ - hﬁlkhﬁjk> Uoij — 2hgin <ilﬁljilalk - Eﬁlkﬁalj) Wi
— 2hajrhpinhsVaij — 2harihihsr;Vio — 2hgkihakiholj Y asy + 2hskiharihariVis;
+ 2}~1aij,kilakl€[’lij - 2ilalj,kilﬁkl\ijaﬁj - Eail,kﬁﬁklfpaiﬁ .

The last equality uses (BI1)), (B12) and (BI3) to replace V*VI* by V*VII‘.

By the Cauchy—Schwarz inequality,

d
dt

This together with (G7)) and (BZ) imply that

(I, 0) — ATUIY, O) 4 2(VI, V)| < IVHtI2 +e( + [P+ 1)

S WP < AT~ W 2T - WP 4 VI + P 1)
According to (B0,
V(I — ¥)|2 > |VI?| — VU2 > |[VI)? + T — V)2 .

Hence,

d

E|]It - \If|2 < AI‘tmt _ \I’|2 _ |@(Ht _ \I’)|2 + C///(|]It|4 + |Ht|2 + 1)
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By the triangle inequality |Tf|? < [I* — ¥|? 4 |¥|2, it finishes the proof of the proposition. [
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