
Linear Algebra and its Applications 498 (2016) 160–180
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Preservers of unitary similarity functions on Lie 

products of matrices

Jianlian Cui a, Chi-Kwong Li b, Yiu-Tung Poon c,∗

a Department of Mathematics, Tsinghua University, Beijing 100084, PR China
b Department of Mathematics, College of William & Mary, Williamsburg, 
VA 23187, USA
c Department of Mathematics, Iowa State University, Ames, IA 50011, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 November 2014
Accepted 27 February 2015
Available online 23 March 2015
Submitted by P. Semrl

In memory of Professor Hans 
Schneider

MSC:
15A60
46B04

Keywords:
Lie product
Unitary similarity invariant function
Pseudo spectrum

Denote by Mn the set of n ×n complex matrices. Let f : Mn →
[0, ∞) be a continuous map such that f(μUAU∗) = f(A) for 
any complex unit μ, A ∈ Mn and unitary U ∈ Mn, f(X) = 0
if and only if X = 0 and the induced map t �→ f(tX) is 
monotonically increasing on [0, ∞) for any rank one nilpotent 
X ∈ Mn. Characterization is given for surjective maps φ on 
Mn satisfying f(AB −BA) = f(φ(A)φ(B) − φ(B)φ(A)). The 
general theorem is then used to deduce results on special cases 
when the function is the pseudo spectrum and the pseudo 
spectral radius.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: jcui@math.tsinghua.edu.cn (J. Cui), ckli@math.wm.edu (C.-K. Li), 

ytpoon@iastate.edu (Y.-T. Poon).
http://dx.doi.org/10.1016/j.laa.2015.02.036
0024-3795/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2015.02.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:jcui@math.tsinghua.edu.cn
mailto:ckli@math.wm.edu
mailto:ytpoon@iastate.edu
http://dx.doi.org/10.1016/j.laa.2015.02.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2015.02.036&domain=pdf


J. Cui et al. / Linear Algebra and its Applications 498 (2016) 160–180 161
1. Introduction

Let Mn be the set of n × n matrices. A function f : Mn → R is a radial unitary 
similarity invariant function if

(P1) f(μUAU∗) = f(A) for a complex unit μ, A ∈ Mn and unitary U ∈ Mn.

In [11], the authors studied unitary similarity invariant functions that are norms on Mn, 
and determined the structure of maps φ : Mn → Mn satisfying

f(AB −BA) = f(φ(A)φ(B) − φ(B)φ(A)) for all A,B ∈ Mn. (1.1)

In [11, Remark 2.7], it was pointed out that the result actually holds for more gen-
eral unitary similarity invariant functions. However, no detail was given, and it is not 
straightforward to apply the results to a specific problem. For instance, it is unclear 
how one can apply the result to study preservers of pseudo spectrum of Lie product of 
matrices1; see the definition in Section 3. To fill this gap, we extend the result in [11]
to continuous radial unitary similarity invariant functions f : Mn → R satisfying the 
following properties.

(P2) For any X ∈ Mn we have f(X) = f(0n) if and only if X = 0n, the n × n zero 
matrix.

(P3) For any rank one nilpotent X ∈ Mn, the map t �→ f(tX) on [0, ∞) is strictly 
increasing.

For a function f : Mn → [0, ∞) satisfying (P1)–(P3), we show that if φ : Mn → Mn is 
a surjective map satisfying (1.1), then there is a unitary U ∈ Mn and a subset Nn of 
normal matrices in Mn such that φ has the form

φ(A) =
{
μAUA†U∗ + νAIn A ∈ Mn \ Nn

μAU(A†)∗U∗ + νAIn A ∈ Nn,

where

(a) μA, νA ∈ C with |μA| = 1, depending on A,
(b) A† = A, A, At or A∗, and
(c) Nn depends on the given unitarily invariant function f .

1 This is a question raised by Professor Molnar to the second and third authors at the 2014 Summer 
Conference of the Canadian Mathematics Society.
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The proof of this result will be given in Section 2. In Section 3, we apply the main result 
to the case when f is the pseudo spectral radius, and then obtain the result for the case 
when f is the pseudo spectrum.

For other preserver problems on different types of products on matrices and operators, 
one may see [1–3,7,11,12] and their references.

2. Main theorem

In this section, we prove Theorem 2.1 extending the result in [11]. We use similar 
ideas in [11] with some intricate arguments to make the extension possible.

Theorem 2.1. Let f : Mn → [0, ∞) be a function on Mn satisfying (P1)–(P3). Suppose 
n ≥ 3, and φ : Mn → Mn is a surjective map satisfying

f([φ(A), φ(B)]) = f([A,B]).

Then there is a unitary matrix U and a subset Nn of normal matrices with non-collinear 
eigenvalues such that φ has the form

φ(A) =
{
μAUψ(A)U∗ + νAIn A ∈ Mn \ Nn

μAUψ(A)∗U∗ + νAIn A ∈ Nn,

where μA, νA ∈ C with |μA| = 1 depending on A, and ψ is one of the maps: A �→ A, 
A �→ A, A �→ At or A �→ A∗.

A bijective map P on Mn is said to be a locally regular polynomial map [14] if for 
every A ∈ Mn, there exists a polynomial pA(t) such that P (A) = pA(A) and A have 
the same commutant. To prove the above theorem, we need the following result from 
Šemrl [14].

Theorem 2.2. Suppose n ≥ 3, and φ : Mn → Mn is a bijective map satisfying

[A,B] = 0n ⇐⇒ [φ(A), φ(B)] = 0n.

Let Γ be the set of matrices A such that the Jordan form of A only has Jordan blocks 
of sizes 1 or 2. Then there is an invertible matrix S, an automorphism τ of the complex 
field and a regular locally polynomial map A → pA(A) such that

φ(A) = S(pA(A†
τ ))S−1 for all A ∈ Γ. (2.1)

Here, Xτ is the matrix whose (i, j)-entry is τ(Xij), and A† = A or At.

Our proof strategy is to show that φ(A) has the asserted form described in the theorem 
for a special class C1 of matrices A. Then we modify the map φ to φ1 so that it will 
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satisfy the same hypothesis of φ with the additional assumption that φ(X) = X for 
every X ∈ C1. Then we can set B = φ(A) for a certain matrix A not in C1 and use the 
condition that

f([A,X]) = f([φ1(A), φ1(X)]) = f([B,X]) for all X ∈ C1

to show that B = φ1(A) also has the asserted form. Thus, φ1 has the asserted form for 
a larger class C2 of matrices. This process is repeated until we show that the modified 
map will fix every matrix after a finite number of steps.

In the next few lemmas, we will focus on the relations between a pair of matrices A
and B such that

f([A,X]) = f([B,X]) for all X ∈ C

for a certain subset C of matrices.

Lemma 2.3. Suppose A ∈ Mn is a rank one nilpotent matrix. Then A = xy∗ for some 
nonzero orthogonal vectors, x and y. Furthermore, A is unitarily similar to ‖x‖‖y‖E21.

Proof. Suppose A ∈ Mn is a rank one matrix. Then A = xy∗ for some nonzero column 
vectors, x and y ∈ C

n. If A is nilpotent, then Ak = 0 for some integer k > 1. Then we 
have

0 = trAk = tr(xy∗)k = (y∗x)k.

Therefore, x and y are orthogonal. Let U be a unitary matrix with 
y

‖y‖ and 
x

‖x‖ as the 

first and second columns respectively. Then U∗AU = ‖x‖‖y‖E21. �
Denote by σ(A) the spectrum of A and by N(A) the null space of A.

Lemma 2.4. For any two matrices A and B, if

f([A,X]) = f([B,X]) for all rank one X ∈ Mn, (2.2)

then there are μ, ν ∈ C with |μ| = 1 such that one of the following holds with Â =
μA + νIn.

(a) σ(B) = σ(Â) and for any λ ∈ σ(Â),

N(B − λIn) = N(Â− λIn) and N(Bt − λIn) = N(Ât − λIn).

(b) The eigenvalues of A are not collinear, σ(B) = σ(Â) and for any λ ∈ σ(Â),

N(B − λIn) = N(Â− λIn) and N(Bt − λIn) = N(Ât − λIn).
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Proof. Note that for any rank one matrix X = xyt, [C, X] = 0 if and only if x and yt are 
the right and left eigenvectors of C corresponding to the same eigenvalue. To see this, 
as [C, X] = (Cx)yt − x(ytC), then [C, X] = 0 if and only if Cx = λx and ytC = λyt for 
some λ ∈ C.

Suppose A and B satisfy (2.2). By the above observation on rank one matrices and 
property (P2) of f , A and B must have the same set of left and right eigenvectors. Fur-
thermore, x1 and x2 are the right eigenvectors of A corresponding to the same eigenvalue 
if and only if the two eigenvectors correspond to the same eigenvalue of B. Thus, the 
eigenvalues of A and B have the same geometric multiplicity.

Let λ1, . . . , λk be the distinct eigenvalues of A with x1, . . . , xk and y1, . . . , yk being 
the right and left eigenvectors. Also for each pair of eigenvectors xi and yti , let γi be the 
corresponding eigenvalue of B. Take Xij = xiy

t
j . Then AXij = λiXij and XijA = λjXij . 

Using (P1), we see that for any 1 ≤ i, j ≤ n,

f([A,Xij ]) = f(λiXij − λjXij) = f((λi − λj)Xij) = f(|λi − λj |Xij).

Similarly, f([B, Xij ]) = f((γi − γj)Xij) = f(|γi − γj |Xij).
By the fact that f([A, Xij ]) = f([B, Xij ]) and property (P3),

|λi − λj | = |γi − γj | for all 1 ≤ i, j ≤ k.

As a result, there are μ, ν ∈ C with |μ| = 1 such that either

(1) γi = μλi + ν for all 1 ≤ i ≤ k; or
(2) the eigenvalues of A are non-collinear and γi = μλi + ν for all 1 ≤ i ≤ k.

Then the result follows with Â = μA + νIn. �
Lemma 2.5. Suppose A and B commute and satisfy (2.2). If A has at least two distinct 
eigenvalues, then there are μ, ν ∈ C with |μ| = 1 such that either

(a) B = μA + νIn, or
(b) A is normal with non-collinear eigenvalues and B = μA∗ + νIn.

Proof. As A and B commute, there is a unitary matrix U such that both U∗AU

and U∗BU are upper triangular, see [9, Theorem 2.3.3]. Replacing (A, B) with 
(U∗AU, U∗BU), we may assume that A and B are upper triangular.

As A and B satisfy (2.2), Lemma 2.4 holds. Suppose Lemma 2.4(a) holds with Â =
μA + νIn. Notice that σ(B) = σ(Â) and

f([Â,X]) = f([μA + νIn, X]) = f([B,X]) for all rank one X ∈ Mn.
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Suppose λ is an eigenvalue of Â and y ∈ N(Ât−λIn). For any z ∈ C
n, let Z = zyt. Then 

ZÂ = λZ and [Â, Z] = (Â − λIn)Z. Note that (Â − λIn)Z has rank at most one and 
tr((Â−λIn)Z) = tr([Â, Z]) = 0, so (Â−λIn)Z is unitarily similar to ‖(Â−λIn)z‖‖yt‖E12. 
Thus,

f([Â, Z]) = f(‖(Â− λIn)z‖ ‖yt‖E12).

Similarly, f([B, Z]) = f(‖(B − λIn)z‖ ‖yt‖E12). Hence, by (P1) and (P3),

‖(Â− λIn)z‖ = ‖(B − λIn)z‖ for all z ∈ C
n and λ ∈ σ(Â).

As a result,

z∗Â∗Âz − 2 Re(λz∗Âz) + |λ|2z∗z = ‖(Â− λIn)z‖2

= ‖(B − λIn)z‖2 = z∗B∗Bz − 2 Re(λz∗Bz) + |λ|2z∗z.

This implies that

2 Re(λz∗(Â−B)z) = z∗(Â∗Â−B∗B)z for all z ∈ C
n and λ ∈ σ(Â).

As A has at least two distinct eigenvalues, so does Â. Taking any λ, γ ∈ σ(Â) with λ �= γ, 
we have

2 Re(λz∗(Â−B)z) = z∗(Â∗Â−B∗B)z = 2 Re(γz∗(Â−B)z).

Thus, W ((λ− γ)(Â−B)) ⊆ iR, where W (X) is the numerical range of X.
Then (λ− γ)(Â− B) is a skew-Hermitian matrix [8]. Since both Â and B are upper 

triangular, they must be diagonal matrices. Now for any 1 ≤ i ≤ n, bii ∈ σ(B) = σ(Â). 
Then

0 = ‖(B − biiIn)ei‖ = ‖(Â− biiIn)ei‖ = ‖(B − biiIn)ei + (Â−B)ei‖‖(Â−B)ei‖.

Thus, (Â−B)ei = 0 for all 1 ≤ i ≤ n and hence B = Â.
Now suppose Lemma 2.4(b) holds. Then by a similar argument, we can show that

‖(Â− λIn)z‖ = ‖(B − λIn)z‖ for all λ ∈ σ(Â) and z ∈ C
n (2.3)

and so (λ− γ)Â − (λ − γ)B is a skew-Hermitian matrix. It follows that (λ− γ)TA −
(λ − γ)TB = 0, or equivalently, TB = λ−γ

λ−γTA, where TA and TB are the strictly upper 
triangular parts of A and B. Now as the eigenvalues of A and hence Â are not collinear, 
we can always find another ω ∈ σ(Â) such that λ−ω

λ−ω �= λ−γ
λ−γ . Then the above equation is 

possible only if TA = TB = 0. In this case, A and B are both diagonal and hence normal. 
Then (2.3) implies that Â = B. �
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From Lemma 2.5, we have the following consequence for diagonalizable matrices.

Corollary 2.6. Suppose A and B satisfy (2.2) and A is diagonalizable. Then there are 
μ, ν ∈ C with |μ| = 1 such that

(a) B = μA + νIn, or
(b) A is normal with non-collinear eigenvalues and B = μA∗ + νIn.

Proof. Suppose A is diagonalizable. Then A = SDS−1 for some invertible S and diago-
nal D. By Lemma 2.4, B = S(μD+νIn)S−1 or B = S(μD+νIn)S−1. If A has only one 
eigenvalue, then A is a scalar matrix and so is B. Then the result follows. Suppose A has 
at least two eigenvalues. As A and B commute, the result now follows by Lemma 2.5. �
Lemma 2.7. For any two matrices A and B, if

f([A,X]) = f([B,X]) for all X ∈ Mn, (2.4)

then there are μ, ν ∈ C with |μ| = 1 such that either

(a) B = μA + νIn, or
(b) A is normal with non-collinear eigenvalues and B = μA∗ + νIn.

Proof. Suppose A and B satisfy (2.4). Then, putting X = B in (2.4), it follows from 
(P2) that A and B commute. If A has at least two eigenvalues, then the result follows 
from Lemma 2.5.

Suppose A has only one eigenvalue, say λ. Then by Lemma 2.4, B has one eigenvalue 
only, say γ. Write A = SJS−1 + λIn, where S is invertible and J = Jn1 ⊕ · · · ⊕ Jns

is 
the Jordan form of A with n1 ≥ · · · ≥ ns. Now as A and B satisfy (2.4), A and B have 
the same set of commuting matrices. Then B = Sp(J)S−1 + γIn for some polynomial p
of degree at most m = n1 − 1 with p(0) = 0.

By a similar argument as in Lemma 2.5, we can show that

‖(B − γIn)z‖ = ‖(A− λIn)z‖ for all z ∈ C
n.

Then there is a unitary matrix W such that

Sp(J)S−1 = (B − γIn) = W (A− λIn) = WSJS−1.

Write S = UT for unitary U and upper triangular T , V = U∗WU and p(x) =
∑m

i=1 cix
i. 

Then we have

Tp(J)T−1 = V TJT−1. (2.5)
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Notice that both Tp(J)T−1 and TJT−1 are strictly upper triangular. Furthermore, the 
first n1 − 1 entries in the super-diagonal of Tp(J)T−1 are equal to c1 times the corre-
sponding n1 − 1 super-diagonal entries of TJT−1.

As V is unitary, we must have |c1| = 1 and V = c1In1−1 ⊕ V1 for some unitary 
V1 ∈ Mn−n1+1. Now comparing the leading n1 × n1 principal submatrices on both sides 
in (2.5), we have

T1p(Jn1)T−1
1 = (c1In1−1 ⊕ [vn1,n1 ])T1Jn1T

−1
1 = c1T1Jn1T

−1
1 ,

where T1 is the n1 × n1 principal submatrix of T . Therefore, T1
(∑m

i=2 ciJ
i
n1

)
T−1

1 = 0
and so 

∑m
i=2 ciJ

i
n1

= 0. Hence, c2 = · · · = cm = 0. Then p(x) = c1x and so B =
c1A + (γ − c1λ)In. �

We are now ready to present the following.

Proof of Theorem 2.1. First we assume that φ is bijective. Suppose φ is a bijective map 
satisfying

f([A,B]) = f([φ(A), φ(B)]) for all A,B ∈ Mn.

Because f(X) = f(0) if and only if X = 0 by (P2), we see that [A, B] = 0 if and only 
if [φ(A), φ(B)] = 0. We can apply Theorem 2.2 and conclude that φ has the form (2.1)
with A† = A or At. In particular, for any rank one matrix R ∈ Mn, there are μR, νR ∈ C

such that

φ(R) = S(μRR
†
τ + νRIn)S−1.

Suppose μR = |μR|eiθR . By replacing φ(R) with e−iθR (φ(R) − νRIn), we may assume 
that μR > 0 and νR = 0.

Here we consider only the case when A† = A. The case when A† = At is similar. Fix
an orthonormal basis {x1, . . . , xn} and define Xij = xix

∗
j . Take α = (α1, . . . , αn) ∈ C

n

and let A =
∑n

j=1 αjXj1. For k = 2, . . . , n,

f(μAμXkk
τ(αk)S(Xk1)τS−1) = f([φ(A), φ(Xkk)]) = f([A,Xkk]) = f(αkXk1). (2.6)

In particular, if Z = μAμX22S(X21)τS−1, then

f(τ(α)Z) = f(αX21) for all α ∈ C.

Suppose τ is neither the identity map λ → λ nor the conjugate map λ → λ. By [10, 
Theorem 1], the set τ([0, 1]) is an unbounded subset of C. Thus, there exists α ∈ [0, 1]
such that |τ(α)| > |τ(2)|. But then by (P1) and (P3), we have

f (2X21) = f(τ(2)Z) = f(|τ(2)|Z) < f(|τ(α)|Z) = f (τ(α)Z) = f (αX21) < f (2X21) ,

which is a contradiction. Thus, τ is either the identity map or the conjugate map.
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Furthermore, as f([X32, X22]) = f(X32) = f([X32, X33]),

f(μX32μX22S(X32)τS−1) = f([φ(X32), φ(X22)])

= f([φ(X32), φ(X33)]) = f(μX32μX33S(X32)τS−1).

Thus, μX22 = μX33 by (P3). By (2.6) and the fact that f(ξX21) = f(ξX31) for all ξ ∈ C, 
we have

f(S(X21)τS−1) = f(S(X31)τS−1).

We now claim that S is a multiple of some unitary matrix. If not, then there is 
a pair of orthonormal vectors y2, y3 such that ‖Sy2‖ �= ‖Sy3‖. Extend y2, y3 to an 
orthonormal basis {y1, y2, y3, . . . , yn} and let xj = (yj)τ−1 . Then {x1, . . . , xn} also forms 
an orthonormal basis. By the above study, we have

f(‖Sy2‖‖y∗1S−1‖E12) = f(S(X21)τS−1) = f(S(X31)τS−1) = f(‖Sy3‖‖y∗1S−1‖E12),

which contradicts that ‖Sy2‖ �= ‖Sy3‖. Thus, S is a multiple of some unitary matrix. By 
absorbing the constant term, we may assume that S is unitary. Now for any rank one 
matrices R and S,

f([R,S]) = f([φ(R), φ(S)]) = f(μRμS [Rτ , Sτ ]).

By (P1), f([R, S]) = f([Rτ , Sτ ]) whenever [R, S] is a rank one nilpotent matrix, and 
hence μRμS = 1 in this case.

Now for any rank one matrix A, we can always find two other rank one matrices B
and C such that [A, B], [A, C] and [B, C] are all rank one nilpotents. Then we must have 
μAμB = μAμC = μBμC = 1. As all μA, μB , μC are positive real numbers, the equality 
is possible only when μA = μB = μC = 1. Then we have φ(A) = SAτS

−1 = SAτS
∗ for 

all rank one A.
By replacing φ with the map A �→ S∗φ(A)S, we may assume that φ(X) = X+ for all 

rank one matrices X, where X+ = X, X, Xt or X∗. Then

f([A,B]) = f([φ(A), φ(B)]) = f([A+, B+]) = f([A,B]+)

for all rank one A, B ∈ Mn. Notice that the set

{X : X = [A,B] for some rank one A and B}

contains the set of trace zero non-nilpotent matrices with rank at most two and so is 
dense in the set of trace zero matrices with rank at most two. Thus, by continuity of f
we see that

f(X) = f(X+) for all trace zero matrices X with rank at most two.
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Now define Φ : Mn → Mn by A �→ φ(A)+. Then Φ(X) = X for all rank one matrices X. 
For any A ∈ Mn and rank one matrix X ∈ Mn, as [A, X] is a trace zero matrix with 
rank at most two,

f([A,X]) = f([φ(A), φ(X)]) = f([φ(A), X+]) = f([φ(A)+, X]) = f([Φ(A), X]).

Thus, f([A, X]) = f([Φ(A), X]) for all rank one X. Then Corollary 2.6 implies that 
Φ(A) = μAA + νAIn or Φ(A) = μAA

∗ + νAIn for all diagonalizable matrices A and the 
latter case happens only when A is normal with non-collinear eigenvalues.

After absorbing the constants μA and νA, we may assume that Φ(X) = X for all 
non-normal diagonalizable matrices X. Then

f([A,B]) = f([φ(A), φ(B)]) = f([Φ(A),Φ(B)]+) = f([A,B]+)

for all non-normal diagonalizable matrices A and B. Since the set of all non-normal diag-
onalizable matrices is dense in Mn, we see that f([A, B]) = f([A, B]+) for all A,B ∈ Mn. 
Then for any A ∈ Mn,

f([A,X]) = f([φ(A), φ(X)]) = f([Φ(A),Φ(X)]+) = f([Φ(A), X])

for all non-normal diagonalizable matrices X, and so f([A, X]) = f([Φ(A), X]) for all 
X ∈ Mn by the continuity of f . Now the result follows by Lemma 2.7.

Finally, we show that one only needs the surjective assumption on φ. For any A, B ∈ Mn, 
we say A ∼ B if

f([A,X]) = f([B,X]) for all X ∈ Mn.

Clearly, ∼ is an equivalence relation and for each A ∈ Mn, denote by SA = {B : B ∼ A}
the equivalence class of A. By Lemma 2.7, either

(I) SA is the set of matrices of the form μA + νI for some μ, ν ∈ C with |μ| = 1, or
(II) A is normal and A ∼ A∗, SA is the set of matrices of the form μA + νI or μA∗ + νI

for some μ, ν ∈ C with |μ| = 1.

Pick a representative for each equivalence class and write A for the set of these repre-
sentatives. Since φ is surjective, SA and φ−1(SA) have the same cardinality c for every 
A ∈ A. Thus there exists a map ψ : Mn → Mn which maps φ−1(SA) bijectively onto SA

for each A ∈ A. Clearly ψ is bijective and ψ(A) ∼ φ(A) for all A ∈ Mn. Then, for any 
A, B ∈ Mn,

f([A,B]) = f([φ(A), φ(B)]) = f([ψ(A), φ(B)]) = f([ψ(A), ψ(B)]).
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That is, ψ is bijective map satisfying (2.2). By the proof of Theorem 2.1 with bijective 
φ in the previous paragraphs, ψ has the desired form and hence so does φ, as ψ(A) ∼
φ(A) implies φ(A) = μψ(A) + νI or φ(A) = μψ(A)∗ + νI when ψ(A)∗ is normal and 
ψ(A)∗ ∼ ψ(A). �
Remark. Using the argument in the last part of the proof on the replacement of the 
bijective assumption by the surjective assumption on φ, one may further weaken the 
surjective assumption on φ by any one of the following (weaker) assumptions on the 
following modified map φ̃ defined by

φ̃(X) = φ(X) − tr(φ(X))I/n

on the set M0
n of trace zero matrices in Mn.

(a) The map φ̃ : M0
n → M0

n is surjective.
(b) For any A ∈ M0

n the range of φ̃ contains a matrix of the form eitA for some t ∈ [0, 2π).

3. Pseudo spectrum and pseudo spectral radius

In this section, we use Theorem 2.1 to study maps preserving the pseudo spectral 
radius (see the definitions below) of the Lie product of matrices. Then we further deduce 
the result for maps preserving the pseudo spectrum. As one shall see, with considerable 
effort, one will be able to get more specific structure of the preserving maps.

For ε > 0, define the ε-pseudospectrum σε(A) of A ∈ Mn as

σε(A) = {z ∈ σ(A + E) : E ∈ Mn, ‖E‖ < ε} = {z ∈ C : sn(A− zIn) < ε},

where s1(X) ≥ · · · ≥ sn(X) denote the singular values of X ∈ Mn, and the 
ε-pseudospectral radius rε(A) of A ∈ Mn as

rε(A) = sup{|μ| : μ ∈ σε(A)}.

Note that the pseudo spectral radius is useful in studying the stability of matrices under 
perturbations, and there are efficient algorithms for its computation; see, for example, [6]
and its references. Preservers of pseudo spectrum have been considered for several types 
of products in [4] (see also [5]). Here we characterize the preservers of pseudo spectral 
radius and pseudo spectrum for Lie products. We first prove the following.

Theorem 3.1. Suppose n ≥ 3 and ε > 0. Then a surjective map φ : Mn → Mn satisfying

rε([A,B]) = rε([φ(A), φ(B)]) for all A,B ∈ Mn

if and only if there is a unitary U ∈ Mn such that
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φ(A) = μAUψ(A)U∗ + νAIn for all A ∈ Mn,

where μA, νA ∈ C with |μA| = 1, depending on A, and ψ is one of the following maps: 
A �→ A, A �→ A, A �→ At or A �→ A∗.

Proof. The sufficiency can be readily checked. To prove the necessity, let f(A) = rε(A)
for A ∈ Mn. It is clear that f is a continuous map satisfying (P1) and (P2). Suppose 
X is a rank one nilpotent matrix. It follows from Proposition 2.4 in [5] that rε(X) =√

ε2 + ‖X‖ε. Hence, (P3) is also satisfied. So, we can apply Theorem 2.1 and conclude 
that φ has the form in Theorem 2.1. To get the desired conclusion, we need to show 
that the set N is empty. Assume not, and there is A ∈ N . Since A is normal with 
non-collinear eigenvalues, there is a unitary V and γ, ξ ∈ C such that

V (ψ(A) − ξI)V ∗ = γ diag(1, μ, 0, μ4, . . . , μn),

where μ /∈ R. Let B ∈ Mn be such that

B̃ = V ψ(B)V ∗ =

⎡
⎣ 0 1 0
a 0 b

0 c 0

⎤
⎦⊕On−3,

where a = (1 − μ̄)/(1 − μ), b > 0 and c = bμ̄/μ. Then

B̃B̃∗ =

⎡
⎣ 1 0 c̄

0 |a|2 + |b|2 0
c 0 |c|2

⎤
⎦ and B̃∗B̃ =

⎡
⎣ |a|2 0 āb

0 1 + |c|2 0
b̄a 0 |b|2

⎤
⎦

and we can choose b > 0 so that B̃ is not normal, and neither is B. As a result, φ(B) =
μBUψ(B)U∗ + νBI.

Now,

C1 = V [ψ(A), ψ(B)]V ∗ = γ

⎡
⎣ 0 1 − μ 0
μ̄− 1 0 bμ

0 −bμ̄ 0

⎤
⎦⊕On−3

is normal with eigenvalues s± = ±γ
√
|1 − μ|2 + b2|μ|2 so that

rε([A,B]) = rε([ψ(A), ψ(B)]) = |γ|
√

|1 − μ|2 + b2|μ|2 + ε.

However, [φ(A), φ(B)] is unitarily similar to

C2 = μAμB γ̄

⎡
⎣ 0 1 − μ 0

(1 − μ̄)2/(μ− 1) 0 bμ̄
2

⎤
⎦⊕On−3.
0 −bμ̄ /μ 0
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One readily checks that the matrix C2 is normal if and only if μ is pure imaginary. 
In all other cases, there is a unitary R ∈ Mn obtained from In by changing the 
(1, 1), (1, 3), (3, 1), (3, 3) entries so that

RC2R
∗ = γ̄

⎡
⎣ 0 c1 0
c2 0 c3
0 0 0

⎤
⎦⊕On−3.

If C2 has singular values s1 ≥ s2, then

|γ|2(|c1|2 + |c2|2 + |c3|2) = tr(C2C
∗
2 ) = tr(C1C

∗
1 ) = |γ|2(s2

+ + s2
−).

Because C2 is not normal, s1 < s+, we see that s2 > s−. Then for any z ∈ C, if C̃ − zI

has singular values s1(z) ≥ s2(z), then

s1(z)2 + s2(z)2 = 2|z|2 + |c1|2 + |c2|2 + |c3|22|z|2 + s2
+ + s2

− = s+(z)2 + s−(z)2,

where s+(z) ≥ s−(z) are the singular values of C1 − zI. Again, because C2 − zI is not 
normal, we see that s+(z) > s1(z) ≥ s2(z) > s−(z). It follows that s+(z) > s−(z) for 
any z ∈ C with |z| ≤ |γ|

√
|1 + μ|2 + b2|μ|2 + ε. Thus,

max{z ∈ C : s2(C2 − zI) ≤ ε} < max{z ∈ C : s2(C1 − zI) ≤ ε}.

So, if a normal matrix A has three collinear eigenvalues γ + ν, γμ + ν, ν, where μ is not 
real and μ �= ±i, then A /∈ N . Clearly, if A ∈ N has eigenvalues of the form γ+ν, γ+ iν, 
γ, then ψ(A)∗ can be viewed as a multiple of ψ(A). Thus, we may assume that A /∈ N
by adjusting μA and νA. The result follows. �

We will use the above theorem to determine the structure of preservers of the pseudo 
spectrum of Lie product of matrices. To achieve this, we need a characterization of 
normal matrices A with two distinct eigenvalues: there exists b ∈ C such that A − bI is a 
nonzero multiple of a rank k orthogonal projection P with 1 ≤ k < n; see Proposition 3.3
below. The proof depends on the following lemma.

Lemma 3.2. Suppose C = C1 ⊕On−3, where C1 ∈ M3 has rank ≤ 2 and trC1 = 0. Then 
for every ε > 0, σε(C) = σε(C1). Furthermore, suppose for t ∈ R,

f(λ, t) = det(λI3 − (C1 − tI3)∗(C1 − tI3)) = λ3 + p2(t)λ2 + p1(t)λ + p0(t)

where p1(t) = q1(t) +at with a �= 0 and p0(t), q1(t), p2(t) contains only even powers of t. 
Then σε(C) �= −σε(C).
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Proof. Since rank C1 ≤ 2, 0 ∈ σ(C1). Therefore, σε(C) = σε(C1) ∪ σε(0n−k) = σε(C1).
Note that for each t ∈ R, f(λ, t) is a cubic polynomial in λ with three non-negative 

real roots λ1(t) ≥ λ2(t) ≥ λ3(t) ≥ 0 and smin(C1 − tI3) =
√

λ3(t).
Without loss of generality, we may assume that a < 0. Given ε > 0, t ∈ σε(C1) ∩ R

if and only if λ3(t) < ε2. Since λ3(0) = 0 and lim
t→∞

λ3(t) = ∞, there exists t0 > 0 such 

that λ3(t0) = ε2. We have t0 /∈ σε(C) and f(ε2, t0) = 0. But then

f(ε2,−t0) = f(ε2, t0) − 2at0ε2 > 0.

Thus, λ3(−t0) < ε2 implying that −t0 ∈ σε(C). So, t0 ∈ −σε(C), and thus σε(C) �=
−σε(C). �
Proposition 3.3. Let n ≥ 3 and A ∈ Mn. The following conditions are equivalent.

(a) A is a normal matrix with at most two distinct eigenvalues.
(b) σε([A, B]) = −σε([A, B]) for all B ∈ Mn.
(c) σε([A, B]) = −σε([A, B]) for all rank one nilpotent B ∈ Mn.

Proof. Suppose (a) holds. Then there is a unitary V and ν ∈ C such that V AV ∗ − νI =
λJ with J = Ik ⊕ −In−k. Then for any B ∈ Mn such that V BV ∗ = (Bij)1≤i,j≤2 with 
B11 ∈ Mk, B22 ∈ B22, we have

C = V [A,B]V ∗ = 2λ
[

Ok B12
−B21 On−k

]

satisfies −C = JCJ∗. Thus,

σε([A,B]) = σε([V AV ∗, V BV ∗]) = σε(−J [A,B]J∗) = σε(−[A,B]).

So, condition (b) holds.
The implication (b) ⇒ (c) is clear. To prove (c) ⇒ (a), we consider the contra-positive. 

Assume (a) is not true. We consider 2 cases.
Case 1. Suppose A is normal with more than two distinct eigenvalues. We may assume 

that A = diag(a, b, c) ⊕A2 such that a, b and c are distinct. If Re((b −a)(c− a)) ≤ 0, then 
we have Re((b − c)a− c) = Re((b − a + a − c)a− c) = |a − c|2 − Re((b − a)(c− a)) > 0. 
Thus, we may assume that Re((b − a)(c− a)) > 0 which implies that

|2a− (b + c)|2 = |(b− a) + (c− a)|2 > |b− a|2 + |c− a|2 > |b− c|2

⇒
∣∣∣∣a− b + c

∣∣∣∣ > |b− c|
.
2 2
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Thus, by replacing A with 
2

(b− c)

(
A− (b + c)

2
I

)
, we may assume that A =

diag(a, 1, −1) ⊕ A2 such that |a| > 1. Consider the rank one nilpotent X =[ 0 −
√

2
√

2
0 −1 1
0 −1 1

]
⊕ 0n−3. We have [A, X] = C⊕0n−3, where C =

[ 0
√

2(1 − a)
√

2(1 + a)
0 0 2
0 2 0

]
. 

Then

det(λI3 − (C − tI3)∗(C − tI3)) = λ3 + p2(t)λ2 + p1(t)λ + p0(t),

where

p2(t) = −3t2 − 4|a|2 − 12,

p1(t) = 3t4 + 4
(
1 + |a|2

)
t2 + 16

(
1 − |a|2

)
t + 16

(
2 + |a|2

)
,

p0(t) = −t6 + 8t4 − 16t2.

Since |a| > 1, the condition in Lemma 3.2 is satisfied. Therefore, σε(C) �= −σε(C).
Case 2. Assume that A is not normal. We may assume that A = (aij) is in upper 

triangular form such that the (1, 2) entry is nonzero; see [13, Lemma 1]. We may replace 
A by A − a33I and assume that A = (Aij) with A22 ∈ Mn−3, A21 = O, and

A11 =

⎡
⎣ a11 a12 a13

0 a22 a23
0 0 0

⎤
⎦ .

Subcase (2.a). Suppose not both [a13, . . . , a1n] and [a23, . . . , a2n] are zero. Then there 
is a unitary U = U1 ⊕ U2 with U1 ∈ M2 such that UAU∗ = Ã = (ãij), where the 
second row of Ã equals [ã21, ̃a22, ̃a23, 0, . . . , 0] with ã21 ∈ R and ã21 �= 0 and ã23 �= 0. Let 
B = E12. Then

C = [Ã, B] =

⎡
⎣−ã21 ã11 − ã22 −ã23

0 ã21 0
0 0 0

⎤
⎦⊕On−3.

Then

det(λI3 − (C − tI3)∗(C − tI3)) = λ3 + p2(t)λ2 + p1(t)λ + p0(t),

where

p2(t) = −3t2 − |ã22 − ã11|2 − |ã23|2 − 2ã2
21,

p1(t) = 3t4 +
(
|ã22 − ã11|2 + |ã23|2

)
t2 − 2ã21|ã23|2t + ã2

21
(
ã2
21 + |ã23|2

)
,

p0(t) = −t6 + 2ã2
21t

4 − ã4
21t

2.
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Since a21 and ã23 �= 0, the condition in Lemma 3.2 is satisfied. Therefore, σε(C) �=
−σε(C).

Subcase (2.b). Suppose both [a13, . . . , a1n] and [a23, . . . , a2n] are zero.
i) If a11 = a22 = 0, then we may assume that a12 = 1. Let

B =

⎡
⎣ 1 0 1

1 0 1
−1 0 −1

⎤
⎦⊕On−3 so that C = [A,B] =

⎡
⎣ 1 −1 1

0 −1 0
0 1 0

⎤
⎦⊕On−3.

Then

det(λI3 − (C − tI3)∗(C − tI3)) = λ3 + p2(t)λ2 + p1(t)λ + p0(t),

where

p2(t) = −3t2 − 5,

p1(t) = 3t4 + 3t2 − 2t + 4,

p0(t) = −t6 + 2t4 − t2.

Therefore, the condition in Lemma 3.2 is satisfied and σε(C) �= −σε(C).
ii) If either a11 or a22 �= 0, then, applying a unitary similarity, we may assume that 

a11 �= 0. Replacing A by eiθA, we may assume that a11 ∈ R. Then we may further assume 

that a12 = 1. Let B =
[ 1 0 1

0 0 0
−1 0 −1

]
⊕On−3 and C = [A, B]. Then C = C1⊕0n−3, where 

C1 =
[ 0 −1 a11

0 0 0
a11 1 0

]
. Then

det(λI3 − (C1 − tI3)∗(C1 − tI3)) = λ3 + p2(t)λ2 + p1(t)λ + p0(t),

where

p2(t) = −3t2 − 2 − 2a2
11,

p1(t) = 3t4 + 2t2 − 4a11t + 2a2
11 + a4

11,

p0(t) = −t6 + 2a2
11t

4 − a4
11t

2.

Therefore, the condition in Lemma 3.2 is satisfied and σε(C) �= −σε(C).
The proof is complete. �

Theorem 3.4. Suppose n ≥ 3 and ε > 0. Then a surjective map φ : Mn → Mn satisfies

σε([A,B]) = σε([φ(A), φ(B)]) for all A,B ∈ Mn



176 J. Cui et al. / Linear Algebra and its Applications 498 (2016) 160–180
if and only if there exist μ ∈ {1, −1}, a unitary matrix U ∈ Mn, and a set T of normal 
matrices with at most two distinct eigenvalues such that

φ(A) =
{
μUψ(A)U∗ + νAI if A ∈ Mn \ T ,

−μUψ(A)U∗ + νAI if A ∈ T ,
(3.1)

where νA ∈ C depends on A, and ψ is one of the maps: A �→ A, A �→ iAt.

Proof. To prove the sufficiency, if ψ has the first form, then σε([A, B]) =
σε([φ(A), φ(B)]) = μAμBσε([A, B]) if none, one, or both of A, B ∈ T by Proposition 3.3. 
If ψ has the second form, then σε([A, B]) = σε([φ(A), φ(B)]) = −μAμBσε([At, Bt]) =
μAμBσε([A, B]) if none, one, or both of A, B ∈ T by Proposition 3.3.

To prove the necessity, we may compose φ by a map of the form X �→ V XV ∗ and 
adjust νX if necessary so that φ has the form A �→ μAψ(A), where ψ is one of the maps 
A �→ A, A �→ At, A �→ A, A �→ A∗. Focusing on rank one Hermitian matrices, we see that 
one of the following happens.

(1) For any rank one A = xx∗, φ(A) = μAA.
(2) For any rank one A = xx∗, φ(A) = μAA

t.

Suppose (2) holds. We may replace φ by the map X �→ iφ(X)t. Then the modified map 
will satisfy condition (1). Thus, we can focus on the case when (1) holds, and prove that 
φ has the asserted form with ψ(X) = X for all X ∈ Mn.

In the rest of the proof, we assume that (1) holds. Then we have either

i) φ(A) = μAA for all A ∈ Mn, or ii) φ(A) = μAA
∗ for all A ∈ Mn.

We will show that for some μ, we have μA = μ for all A ∈ Mn \ T and μA = −μ for all 
A ∈ T satisfying (3.1). Clearly, we need only consider non-scalar matrices.

Assertion 1. For every non-scalar matrix A ∈ Mn, μA ∈ {−1, 1}.

To prove Assertion 1, let A = xx∗. If B = yy∗ such that 0 �= [A, B], then [A, B] is 
unitarily similar to diag(ai, −ai) ⊕On−2 with a =

√
− tr([A,B]2)/2 > 0 so that

σε([A,B]) = D(−ai, ε) ∪D(0, ε) ∪D(ai, ε).

Because σε([φ(A), φ(B)]) = μAμBσε([A, B]), we see that μAμB = ±1.
Let μ = μE11 . Suppose B = xx∗ for a nonzero x ∈ C

n. We can find C = yy∗ such 
that [E11, C] �= 0 and [B, C] �= 0. Then μμC , μBμC ∈ {1, −1} so that μμC = ±μBμC . It 
follows that μB ∈ {μ, −μ}.



J. Cui et al. / Linear Algebra and its Applications 498 (2016) 160–180 177
Choose Bj = xjx
∗
j , j = 1, 2 so that [E11, B1], [E11, B2] and [B1, B2] �= 0. Then

μμB1 , μμB2 , μB2μB1 ∈ {1,−1}.

Hence, μ2 ∈ {−1, 1}. So we have either

(a) μ2 = −1 ⇒ μB ∈ {−i, i} for all B = xx∗, or

(b) μ2 = 1 ⇒ μB ∈ {−1, 1} for all B = xx∗.

Next we will show that φ(A) = μAA for all A ∈ Mn. Assume the contrary that φ(A) =
μAA

∗ for all A ∈ Mn. Let B1 = E11 + E13 + E31 + E33, B2 = E22 + E23 + E32 + E33
and C = E11 + eiπ/6E22. Then

σε([B1, C]) = D(−i, ε) ∪D(i, ε) ∪D(0, ε)

and

σε([φ(B1), φ(C)]) = μB1μCD(−i, ε) ∪D(i, ε) ∪D(0, ε).

Hence, μB1μC ∈ {−1, 1}. By a direct computation,

σε([B2, C]) = D(−e−2πi/3, ε) ∪D(e−2πi/3, ε) ∪D(0, ε)

and

σε([φ(B2), φ(C)]) = μB2μC

(
D(−e−πi/3, ε) ∪D(e−πi/3, ε) ∪D(0, ε)

)
.

Since μB1 = ±μB2 and μB1μC ∈ {−1, 1}, we have μB2μC ∈ {−1, 1}. Hence, 
σε([φ(B2), φ(C)]) �= σε([B2, C]), a contradiction. Therefore, we have φ(A) = μAA for 
all A ∈ Mn.

For any non-scalar normal matrix B with spectral decomposition 
∑n

j=1 bjxjx
∗
j with 

b1 �= b2, let C = yy∗ with y = x1 + x2. Then [B, C] is unitarily similar to diag(a, −a) ⊕
On−2. It follows that μBμC ∈ {1, −1}. Because μCμ ∈ {1, −1}, we see that μB ∈ {μ, −μ}. 
Suppose B is non-normal. There is a unitary U such that UBU∗ = H+iG, where G = G∗

is in diagonal form and H = H∗ has a nonzero (1, 2) entry. Then for C = UE11U
∗, 

the matrix [B, C] is unitarily similar diag(a, −a) ⊕ On−2. Again, we can conclude that 
μB = ±μ. So, μB ∈ {μ, −μ} for every B ∈ Mn. Consequently, we have

(c) μB ∈ {−i, i} for all X ∈ Mn, or (d) μB ∈ {−1, 1} for all X ∈ Mn.

We claim that the condition (d) holds. To this end, let D = diag(1, −1) ⊕ On−2 and 
B = E12/2 + E23 + E31. Then [D, B] = E12 − E23 − E31 is a unitary matrix with 
eigenvalues λ1 = 1, λ2 = ei2π/3, λ3 = ei4π/3. Thus,

σε([D,B]) = D(λ1, ε) ∪D(λ2, ε) ∪D(λ3, ε).
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We see that μBμD = 1 for such a matrix B. Similarly, if C = −E21/2 + iE32− iE13, then 
μCμD = 1. Thus, μB = μC . Now, [B, C] = (1 + i/4)E11 + (1 − i/4)E22 − 2E33. Then 
μBμCσε([B, C]) = σε([B, C]) will imply that μBμC = 1. Because, μB = μC , we see that 
μB = μC ∈ {−1, 1}. Hence, the condition (d) holds.

Assertion 2. There is μ ∈ {1, −1} such that μA = μ if A is not a normal matrix with at 
most two distinct eigenvalues.

Proof. First we show that for any nonzero vectors x, y, f such that 1) y, f ∈ x⊥, 2) {y, f}
is linearly independent and 3) Re(f∗y) �= 0, then the following holds.

μxf∗ = μyx∗ (3.2)

Note that C = [xf∗, yx∗] = (f∗y)xx∗ − ‖x‖2yf∗ which has a matrix representation of 
the form

C =

⎡
⎣α 0 0

0 −α 0
0 β 0

⎤
⎦⊕ 0 = X ⊕ 0

with α = f∗y‖x‖2, β = ‖x‖2
√
‖f‖2‖y‖2 − |f∗y|2 �= 0. Then

det(λI3 − (X − tI3)∗(X − tI3)) = λ3 + p2(t)λ2 + p1(t)λ + p0(t),

where

p2(t) = −3t2 − (2|α|2 + |β|2),
p1(t) = 3t4 + (4(Im(α))2 + β2)t2 − 2 Re(α)β2t + |α|2

(
|α|2 + β2) ,

p0(t) = −t6 + (α2 + α2)t4 − |α|4t2.

Since Re(α) and β �= 0, the condition in Lemma 3.2 is satisfied. Therefore, σε(C) �=
−σε(C). Since σε(C) = μxf∗μyx∗σε(C), we have μxf∗μyx∗ = 1, and thus μxf∗ = μyx∗ .

If xf∗ and xu∗ are rank one nilpotent and if u ∈ f⊥, then (3.2) ensures that

μxf∗ = μ(f+u)x∗ = μxu∗ = μu(x+f)∗ = μfu∗ = μ(x+u)f∗ = μfx∗ .

So we have

μxf∗ = μxu∗ = μfx∗ (3.3)

whenever the vectors x, f , u are pairwise orthogonal.
Next we show that

μxf∗ = μxu∗ for any nonzero vectors f, u ∈ x⊥. (3.4)
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Suppose f , u are nonzero vectors in x⊥. If u ∈ f⊥, the equality follows from (3.3). If 
u = λf for some nonzero scalar λ, taking v ∈ {x, f}⊥ we have

μxf∗ = μxv∗ = μxu∗ .

If u /∈ f⊥ and the vectors u, f are linearly independent, then let v = u − cf , where 

c = f∗u

f∗f
. Then v ∈ {x, f}⊥ and u∗v = u∗u − |f∗u|2

f∗f
�= 0. By (3.2) and (3.3), we have

μxu∗ = μvx∗ = μxf∗ .

Next, we show that μA = μB for any rank one nilpotent matrices A, B. To this end, 
A = xf∗ and B = yg∗, taking unit vector u ∈ {x, y}⊥ and using (3.4), we have

μxf∗ = μxu∗ = μyu∗ = μyg∗ .

By Proposition 3.3, if A is not a normal matrix with at most two distinct eigenvalues, 
then there is a rank one nilpotent B such that

−σε([A,B]) �= σε([B,A]) = μBμAσε([B,A]).

Thus, μAμB = 1, which implies μA = μB . The desired conclusion follows. �
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