
On nonuniqueness of geodesic disks in

infinite-dimensional Teichmüller spaces

GUOWU YAO
Dedicated to Professor Zhong Li on his 80th birthday

Abstract

Let T (S) be the Teichmüller space over a hyperbolic Riemann surface S. A geodesic
disk in T (S) is defined the image of an isometric embedding of the Poincaré disk
into T (S). In this paper, it is shown that for any non-Strebel point τ ∈ T (S)\{[0]},
there are infinitely many geodesic disks containing the straight line {[tµ] : t ∈
(−1/k, 1/k)} where µ is an extremal representative of τ with ‖µ‖∞ = k. An
infinitesimal version is also obtained.

1 . Introduction

Let S be a hyperbolic Riemann surface, that is, it is covered by a holomorphic map:
π : D → S, where D = {|z| < 1} is the open unit disk. Then S can be expressed as a
quotient space D/Γ, where Γ is a Fuchsian group acting on D. Denote by Bel(S) the
Banach space of Beltrami differentials µ = µ(z)dz̄/dz on S with finite L∞-norm and
by M(S) the open unit ball in Bel(S).

For each element µ ∈M(S) there exists a Riemann surface Sµ and a quasiconformal
mapping fµ : S → Sµ such that the complex dilatation of fµ is µ. We denote by
f̃µ : D → D the lift of fµ with the points 1, i and -1 fixed. Then fµ is uniquely
determined by µ. Two elements µ1 and µ2 are said to be equivalent if and only if
f̃µ1 |∂D = f̃µ2 |∂D. The Teichmüller space T (S) of S is defined as the quotient space of
M(S) under the equivalence relation. The point [0], a Teichmüller equivalence class of
the trivial Beltrami differential µ = 0, is called the basepoint of T (S). The Teichmüller
metric between two points τ and σ is defined as follows:

d(τ, σ) = inf
µ∈τ, ν∈σ

log
1 + ‖(µ− ν)/(1− ν̄µ)‖∞
1− ‖(µ− ν)/(1− ν̄µ)‖∞

,

Define
k0(τ) = inf{‖µ‖∞ : µ ∈ τ}.
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We say that µ is extremal in τ if ‖µ‖∞ = k0(τ) (accordingly, fµ is called extremal),
uniquely extremal if ‖ν‖∞ > k0([µ]) for any other ν ∈ [µ]. We call that a Beltrami
differential µ is of constant modulus if |µ| is a constant a.e. on S.

For any µ, define h∗(µ) to be the infimum over all compact subsets E contained
in R of the essential supremum norm of the Beltrami differential µ(z) as z varies over
S\E. Define h(τ) to be the infimum of h∗(µ) taken over all representatives ν of the
class τ . It is obvious that h(τ) ≤ k0(τ). τ is called a Strebel point if h(τ) < k0(τ);
otherwise, τ is called a non-Strebel point.

When S is a compact Riemann surface, or generally speaking, when S is of finite
analytic type, T (S) is a finite-dimensional complex manifold. Otherwise, it is infinite-
dimensional.

The Poincaré distance dD(·, ·) on D is defined by

dD(t1, t2) = log
1 + |(t1 − t2)/(1− t̄1t2)|
1− |(t1 − t2)/(1− t̄1t2)|

, t1, t2 ∈ D.

We recall some geometric terminologies adapted from [1] by Busemann. Let X and
Y be metric spaces. An isometry of X into Y is a distance preserving map. A straight
line in Y is a (necessarily closed) subset L that is an isometric image of the real line
R. A geodesic in Y is an isometric image of a nontrivial compact interval of R. Its
endpoints are the images of the endpoints of the interval, and we say that the geodesic
joins its endpoints.

Geodesics play an important role in the geometry of Teichmüller spaces. Unlike in a
finite-dimensional Teichmüller space, the geodesic geometry is much more complicated
in an infinite-dimensional Teichmüller space. It is possible that there are infinitely many
geodesics passing through two points in an infinite-dimensional Teichmüller space.

A geodesic disk is the image of a map Ψ : D ↪→ T (S) which is an isometric embedding
with respect to the Poincaré metric on D and the Teichmüller metric on T (S). If Ψ is
also holomorphic, we call such a geodesic disk to be a holomorphic geodesic disk.

For any point τ 6= [0], let µ ∈ τ be an extremal differential and ‖µ‖∞ = k < 1
unless otherwise specialized. Then the embedding

Ψµ : D ↪→ T (S),

t 7−→ [tµ/k],

is a holomorphic isometry and hence there is at least a holomorphic geodesic disk
containing [0] and τ . Let G[µ] denote the standard geodesic disk Ψµ(D).

In [2], Earle, Kra and Krushkal proved that if τ contains an extremal differential
of nonconstant modulus, then there are infinitely many holomorphic isometries and
holomorphic geodesic disks with the above properties. By a lengthy computation, Li
[8] proved the following theorem.

Theorem A. Let τ 6= [0] be a non-Strebel point in T (S). Then there are infinitely
many isometries Ψ : D ↪→ T (S) with Ψ(0) = [0] and Ψ(k0(τ)) = τ .

It is known [9, 10] that τ contains an extremal differential of nonconstant modulus
unless µ is uniquely extremal and with constant modulus. Therefore, if the extremal
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in the non-Streble point τ is not unique, then Theorem A is covered by the result in
[2]. In particular, when µ is a unique extremal with constant modulus, by Theorem
6 in [2] Ψµ is the unique holomorphic isometry with Ψ(0) = [0] and Ψ(k0([µ])) = [µ],
in other words, there is a unique holomorphic geodesic disk containing [0] and [µ]. In
such a case, Theorem A has its independent interest because it says that there are still
infinitely many isometries Ψ with Ψ(0) = [0] and Ψ(k0([µ])) = [µ].

Li’s result tells that there are infinitely many geodesic disks containing a non-Strebel
point and the basepoint. The motivation of this paper is to construct different geodesic
disks such that they contain a fixed straight line. Before stating the main result, we
introduce Li’s construction in [8] as follows.

Suppose E is a compact subset of S. Define the Beltrami differential µt(z) with a
parameter t ∈ D by the following equations.

(1.1) µt(z) :=


µ(z)/k, as z ∈ S, |t| ≤ k,
µ(z)/k, as z ∈ S\E, |t| > k,

µ(z)/|t|, as z ∈ E, |t| > k.

Li proved that the map

ΨE : D ↪→ T (S),

t 7−→ [tµt],

is an isometry where ΨE is regarded as a map with respect to E. Let ∆k = {t ∈ D :
|t| < k}. One might observe the phenomenon that Ψµ = ΨE on ∆k and all geodesic
disks share a common small disk Ψµ(∆k) and that the straight line Lµ := {[tµ] : t ∈
(−1/k, 1/k)} is not contained in the geodesic disks ΨE(D) generally.

If µ is a unique extremal of constant modulus, the geodesic connecting [0] with τ
is unique [2, 7] and all the geodesic disks pass through the unique geodesic. Perhaps
one expects that the phenomenon emerging in Li’s construction is subject to an inher-
ent rigidity and hence there should be a unique geodesic disk containing the straight
line Lµ := {[tµ] : t ∈ (−1/k, 1/k)}. However, the following theorem shows that the
expectation is not true.

Theorem 1. Let τ = [µ] 6= [0] be a non-Strebel point in T (S). Then there are infinitely
many geodesic disks containing the straight line Lµ := {[tµ] : t ∈ (−1/k, 1/k)}.

Theorem 1 is proved in Section 3. Our construction is self-contained and more
directly than Li’s. To make the demonstration more readable, we prefer to proving the
infinitesimal version of Theorem 1 in advance in Section 2.

2 . Infinitesimal version of Theorem 1

We need to introduce some basic concepts at first. The cotangent space to T (S) at
the basepoint is the Banach spaceQ(S) of integrable holomorphic quadratic differentials
on S with L1−norm

(2.1) ‖ϕ‖ =

∫∫
S
|ϕ(z)| dxdy <∞.
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The dimension of Q(S) is finite if and only if that of T (S) is finite. In what follows, let
Q1(S) denote the unit sphere of Q(S).

Two Beltrami differentials µ and ν in Bel(S) are said to be infinitesimally equivalent
if ∫∫

S
µϕdxdy =

∫∫
S
νϕ dxdy, for any ϕ ∈ Q(S).

The tangent space B(S) of T (S) at the basepoint is defined as the set of the quotient
space of Bel(S) under the equivalence relation. Denote by [µ]B the equivalence class of
µ in B(S). The set of all Beltrami differentials equivalent to zero is called the N−class
in Bel(S).

B(S) is a Banach space with its standard sup norm

‖[µ]B‖ = ‖µ‖ := sup
ϕ∈Q1(S)

∣∣∣∣∫∫
S
µϕdxdy

∣∣∣∣
and infinitesimal metric

d([µ]B, [ν]B) := ‖µ− ν‖

= sup
ϕ∈Q1(S)

|
∫∫

S
(µ− ν)ϕdxdy|, [µ]B, [ν]B ∈ B(S).

We say that µ is infinitesimally extremal (in [µ]B) if ‖µ‖∞ = ‖µ‖, infinitesimally
uniquely extremal if ‖ν‖∞ > ‖µ‖ for any other ν ∈ [µ]B.

In a parallel manner we can define the boundary dilatation for the infinitesimal [µ]B.
The boundary dilatation b([µ]B) is the infimum over all elements in the equivalence
class [µ]B of the quantity b∗(ν). Here b∗(ν) is the infimum over all compact subsets E
contained in S of the essential supremum of the Beltrami differential ν as z varies over
S − E. It is obvious that b∗(µ) ≤ ‖µ‖. [µ]B is called a Strebel point if b([µ]B) < ‖µ‖.

As is well known, µ is extremal if and only if it has a so-called Hamilton sequence,
namely, a sequence {φn ∈ Q1(S) : n ∈ N}, such that

(2.2) lim
n→∞

∫∫
S
µφn(z)dxdy = ‖µ‖∞.

{φn} is called degenerating if it converges to 0 uniformly on compact subset of S.
In particular, [µ] (or [µ]B) is a non-Strebel point if and only if µ has a degenerating
Hamilton sequence (cf. [3]).

A geodesic plane in B(S) is the image of a map Υ : C ↪→ B(S) which is an isometric
embedding with respect to the Euclidean metric on C and the infinitesimal metric on
B(S). Then the embedding

Υµ : C ↪→ B(S),

t 7−→ [tµ/k]B,

is a holomorphic isometry.
It is convenient to prescribe µ an extremal with k = ‖µ‖∞ = 1 in this section. The

following theorem is the counterpart of Theorem 1 in the infinitesimal setting.
Theorem 2. Let [µ]B 6= [0]B be a non-Strebel point in B(S). Then there are infinitely
many geodesic planes containing the straight line lµ := {[tµ]B : t ∈ R}.
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Proof. Let E be a non-empty compact subset of S and p(t, z) : C × S → C be the
function related to E with the following properties:
(1) |p(t1, z)− p(t2, z)| ≤ |t1 − t2|, (t1, z), (t2, z) ∈ C× S,
(2) p(t, z) = t, (t, z) ∈ C× (S\E),
(3) p(t, z) = t, t ∈ R.

p(t, z) is clearly continuous with respect to t ∈ C. Denote by FE the function space
of all p(t, z) with the above properties over C× S. FE is not void since FE contains at
least two elements. One is I(t, z) = t for (t, z) ∈ C× S. The other is

Ĩ(t, z) =

{
t̄, z ∈ E,
t, z ∈ S\E.

On the one hand, it is evident that FE is convex. That is, given p1(t, z) and p2(t, z)
in FE , then ap1(t, z) + (1− a)p2(t, z) ∈ FE for any a ∈ (0, 1). On the other hand, it is
easy to verify that FE has the associative law, i.e., p2 ◦ p1(t, z) := p2(p1(t, z), z) ∈ FE .
Thus, FE has sufficiently many elements by the convex combination and associative
operation.

Now we construct geodesic planes. Given p(t, z) ∈ FE , let µt(z) = p(t, z)µ(z) for
t ∈ C. Define

Υp,E : C ↪→ B(S),

t 7−→ [µt]B.

Then Υp,E is an isometric embedding. We need to check the equality:

d([µt]B, [µs]B) = |t− s|, t, s ∈ C.(2.3)

Since µ has a degenerating Hamilton sequence {φn}, we have

lim
n→∞

∫∫
S

(µt − µs)eiβφn(z)dxdy = lim
n→∞

∫∫
S\E

(t− s)µ(z)eiβφn(z)dxdy

= lim
n→∞

∫∫
S

(t− s)µ(z)eiβφn(z)dxdy = |t− s|,

where β = − arg(t−s) when t 6= s. On the other hand, the equality ‖µt−µs‖∞ = |t−s|
follows from the properties (1)∼(3) readily. Thus, {eiβφn} is a Hamilton sequence for
µt − µs and (2.3) follows immediately.

The geodesic planes Υp,E(C) vary over two parameters E ⊂ D and p ∈ FE , and all
of them contain the straight line lµ by the property (3) of p(t, z).

We now show that there are infinitely many geodesic planes containing the line lµ
when E varies. Actually, let

p(t, z) = aI(t, z) + (1− a)Ĩ(t, z), a ∈ (0, 1),

then p(t, z) ∈ FE . In particular, let a = 1
2 , we have

p(t, z) =
I(t, z) + Ĩ(t, z)

2
=

{
Re(t), z ∈ E,
t, z ∈ S\E.
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and

µt(z) =

{
Re(t)µ(z), z ∈ E,
tµ(z), z ∈ S\E.

Fix t0 = λi where λ > 0. We have µt0(z) = Re(t0)µ(z) ≡ 0 for z ∈ E. Take a
sequence {En : n ∈ N} of compact subsets of S, such that En ⊂ En+1 (n ∈ N) and
S =

⋃∞
n=0En. For every En, let µnt0(z) denote the Beltrami differential p(t0, z)µ(z).

It remains to show that {[µnt0 ]B : n ∈ N} contains infinitely many elements. Notice
that

µnt0(z) =

{
0, z ∈ En,
t0µ(z), z ∈ S\En.

Let n0 = 0. By a simple argument, there is a sufficiently large n1, such that [µn0
t0

]B 6=
[µn1
t0

]B. Furthermore, a similar argument yields a number n2, such that [µn2
t0

]B 6= [µ
nj
t0

]B
(j = 0, 1). Repeating the same argument, we can get a sequence {nj}, such that
[µ
nj
t0

]B 6= [µnmt0 ]B whenever j 6= m. The proof of Theorem 2 is completed.

3 . Proof of Theorem 1

We modify some technique used in the last section to prove Theorem 1. Let E be
a non-empty compact subset of S and g(t, z) : D × S → D be the function related to
E with the following properties:
(1) dD(g(t1, z), g(t2, z)) ≤ dD(t1, t2), (t1, z), (t2, z) ∈ D× S,
(2) g(t, z) = t, (t, z) ∈ D× (S\E),
(3) g(t, z) = t, t ∈ (−1, 1).

g(t, z) is clearly continuous with respect to t ∈ D. Denote by GE the function space
of all g(t, z) with the above properties over D× S. GE contains at least two elements.
One is I(t, z) = t for (t, z) ∈ D× S. The other is

Ĩ(t, z) =

{
t̄, z ∈ E,
t, z ∈ S\E.

Certainly, observing the equation (1.1) and Li’s proof in [8], one can check that the
function

L(t, z) =


t
k , z ∈ S, |t| ≤ k,
t
k , z ∈ S\E, |t| > k,
t
|t| , z ∈ E, |t| > k,

has the property (1) while it does not belong to GE .

Claim 1: GE is convex in the Euclidean sense. Precisely, given g1(t, z) and g2(t, z)
in GE , then ag1(t, z) + (1− a)g2(t, z) ∈ GE for any a ∈ (0, 1).

On the one hand, it is evident that ag1(t, z) + (1− a)g2(t, z) has the properties (2)
and (3). On the other hand, by Lemma 6.4 on page 75 in [5], ag1(t, z) + (1− a)g2(t, z)
has the property (1). The gives Claim 1.
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Given two points t, s ∈ D, denote by < t, s > the hyperbolic geodesic segment in
D. For any a ∈ [0, 1], there exists exactly one point r in < t, s > such that dD(t, r) =
(1 − a)dD(t, s) and dD(r, s) = adD(t, s). By an analogy with the standard convex
combination we write r = at⊕ (1− a)s in the hyperbolic sense. In particular, 1

2 t⊕
1
2s

is called the hyperbolic metric center of < t, s >.
Claim 2: GE is convex in the hyperbolic sense. Precisely, given g1(t, z) and g2(t, z)

in GE , then ag1(t, z)⊕ (1− a)g2(t, z) ∈ GE for any a ∈ (0, 1).
At first, it is evident that ag1(t, z)⊕ (1− a)g2(t, z) has the properties (2) and (3).

Secondly, by Lemma 6.8 in [5], we see that ag1(t, z)⊕ (1− a)g2(t, z) has the property
(1). Claim 2 is proved.

Claim 3: GE has the associative law, i.e., g2 ◦ g1(t, z) := g2(g1(t, z), z) ∈ GE .
The claim follows from a simple computation.
Thus, GE has sufficiently many elements by the associative operation and two kinds

of convex combination as described in Claims 1 and 2.
Now we construct geodesic disks. For brevity, let α(z) = µ(z)/k and then ‖α‖∞ = 1.

Given g(t, z) ∈ GE , let αt(z) = g(t, z)α(z) for t ∈ D. Define

Ψg,E : D ↪→ T (S),

t 7−→ [αt].

We show that Ψg,E is an isometric embedding. It suffices to check the equality:

d([αt], [αs]) = dD(t, s), t, s ∈ D.(3.1)

Let ft : S → Sαt and fs : S → Sαs be quasiconformal mappings with Beltrami
differentials αt and αs respectively. It is convenient to assume that s 6= 0 and t 6= s.
Set f = ft ◦ f−1

s and assume that the Beltrami differential of f is ν. Then a simple
computation shows,

ν ◦ fs(z) =
1

τ

αt(z)− αs(z)
1− αs(z)αt(z)

=
1

τ

g(t, z)− g(s, z)

1− g(s, z)g(t, z)
α(z),

where z = f−1
s (w) for w ∈ Sαs and τ = ∂fs/∂fs.

At first, by the property (1) we see that on fs(S),

(3.2) ‖ν‖∞ ≤
∣∣∣∣ t− s1− st

∣∣∣∣,
Furthermore, the equality ‖ν‖∞ =

∣∣∣ t−s1−s̄t

∣∣∣ follows from the property (2).

Since µ has a degenerating Hamilton sequence {φn}, αs is necessarily extremal due
to the following equality:

lim
n→∞

∫∫
S
αse

i arg sφn(z)dxdy = lim
n→∞

∫∫
S\E

αse
i arg sφn(z)dxdy

= lim
n→∞

∫∫
S\E

sµei arg sφn(z)dxdy = lim
n→∞

∫∫
S
sµei arg sφn(z)dxdy = |s|.
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Thus fs is extremal on S as well as f−1
s extremal on Sαs = fs(S). Therefore, the Beltra-

mi differential α̃s = −αs(f−1
s )∂f−1

s /∂f−1
s of f−1

s is extremal with ‖α̃s‖ = |s|. Moreover,
since [α̃s] is also a non-Strebel point in T (Sαs), it has a degenerating Hamilton sequence
{φ̃n} in Q1(Sαs) such that

lim
n→∞

∫∫
Sαs

α̃sφ̃n(w)dudv = |s|.

Furthermore, due to the degenerateness of {φ̃n}, it is easy to verify

lim
n→∞

∫∫
Sαs

ν(w)eiθφ̃n(w)dudv = lim
n→∞

∫∫
Sαs\fs(E)

ν(w)eiθφ̃n(w)dudv

= lim
n→∞

∫∫
Sαs\fs(E)

(t− s)α̃s(w)/s

1− s̄t|α̃s(w)|2/|s|2
eiθφ̃n(w)dudv =

∣∣∣∣ t− s1− s̄t

∣∣∣∣ ,
where θ = arg s− arg t−s

1−s̄t . Thus, eiθφ̃n is a Hamilton sequence for ν and (3.1) follows
immediately.

The geodesic disks Ψg,E(D) vary over two parameters E ⊂ D and g ∈ GE , and all
of them contain the straight line Lµ due to the property (3) of g(t, z). By the same
technique as used in last section, it derives that there are infinitely many geodesic disks
containing the line Lµ when E varies. This completes the proof of Theorem 1.

Generally, if µ(z) is not equivalent to 0 on E, Ψg,E(D) share no small disk when g
varies over GE . To see this, let

g(t, z) = aI(t, z)⊕ (1− a)Ĩ(t, z), a ∈ (0, 1).

Then g(t, z) ∈ GE . In particular, when a = 1
2 ,

αt(z) = g(t, z)α(z) =


2Re(t)α(z)

|t|2+1+
√

(|t|2+1)2−4(Re(t))2
, z ∈ E,

tα(z), z ∈ S\E.

It is easy to see that αt(z) ≡ 0 on E when Re(t) = 0.

Remark. In the construction, the set E can be chosen to be non-compact on the con-
dition that ∂S

⋂
(S\E) has a substantial boundary point of τ . For more knowledge of

substantial boundary points, the reader may refer to [4, 6].

4 . Two problems

We call a straight line in the form {[tµ] : t ∈ (−1/k, 1/k)} to be an amenable
straight line. Theorem 1 indicates that, the geodesic disk passing through an amenable
straight line with non-Strebel points can not be unique. A straight line might not be
in the amenable form {[tµ] : t ∈ (−1/k, 1/k)}. Anyway, a geodesic can be embedded
into a straight line. However, we do not know the answer to the following problem.

Problem 1. Is there always a geodesic disk passing through a given geodesic?
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By Theorem 6 in [2], it is possible that there is no holomorphic geodesic disks
passing through certain geodesics.

So far, we know little information on the geodesic disk containing a Strebel point
and the basepoint. The paper is concluded by the following problem.

Problem 2. Suppose [µ] is a Strebel point. Is the standard geodesic disk G[µ] the
unique candidate containing the straight line Lµ?
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