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Abstract. We consider a semigroup acting on the function space L1 based a measure
space. Assuming that the semigroup satisfies the L1-L∞ ultra-contractivity, we prove
that it possesses an integral kernel that is defined pointwise and has some nice properties,
including the joint measurability and the continuity in one variable. We apply this result
to a heat semigroup associated with a regular Dirichlet form on the space L2.
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1. Introduction

In this paper we are concerned with the existence and properties of integral kernels of
semigroups acting on the space L1 := L1(M,μ) where (M,μ) is a measure space. Assume
that a semigroup {Pt}t>0 is L1-L∞ ultra-contractive, that is, there exists a non-negative,
measurable function φ on (0,∞) such that

‖Ptf‖L∞ ≤ φ(t)‖f‖L1 (1.1)

for all f ∈ L1 and t > 0. The following two questions arise naturally.

(1) Does the semigroup {Pt}t>0 possess an integral kernel that is a jointly measurable
function pt(x, y) on M × M such that

Ptf(x) =
∫

M
pt(x, y)f(y)dμ(y), (1.2)

for all f ∈ L1, t > 0 and μ-almost all x ∈ M?
(2) Once the integral kernel exists, what further properties does it have?

The existence of the integral kernel was dealt with in many papers but a common
drawback of most of them is that they do not address the joint measurability of pt (x, y) in
(x, y) without which the notion of integral kernel is unusable. For example, this question
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was neglected in the widely-cited paper [3], where on-diagonal upper bounds of pt(x, y)
were obtained. Later on, some efforts have been made in this direction in [2, Theorem
3.1], [7, Theorem 2.10], [6, Corollary 3.8], [14, Theorems 2 and 1], [1, Proposition 4.14].
Although the joint measurability was mentioned in the paragraph following [7, Theorem
2.10], it was based on the result of [2, Theorem 3.1] that had a gap in the proof.

In the setting of symmetric Dirichlet forms, the joint measurability of the integral
kernel was proved in [6, Lemma 3.3, Corollary 3.8] but the proof uses a number of quite
advanced tools, which makes it not self-contained.

In this paper, we fix the problem of a joint measurability in a more general setting.
More precisely, we start with a semigroup {Pt}t>0 in L1 satisfying the L1-L∞ ultra-
contractivity, and show the existence of an integral kernel of the semigroup {Pt}t>0, that
is defined pointwise and possesses some other nice properties, see Theorem 2.1.

We apply our theorem to the most important and interesting class of L1-semigroups
that arise from Dirichlet forms and are referred to as heat semigroups. Their integral
kernels are called heat kernels. We show in Theorem 2.2 the pointwise existence of the
heat kernels. Heat kernels have been widely used in the literature for many purposes and
in various settings, and our result provides a solid foundation for this concept.

Notation. The term “for each x” means “for a fixed but an arbitrary x”. The term
“for all (or any) x” means “for an arbitrary x” but the statement followed is independent
of the choice of x. For simplicity, set Lp := Lp(M,μ) for 1 ≤ p ≤ ∞ by omitting M,μ.
The identities and inequalities between Lp-functions are understood μ-almost everywhere
in M .

2. Main results

In this section, we state the main results of this paper. Let (M,μ) be a measure space.
Recall that the support of a measure ν on M is the smallest closed set outside which ν
vanishes:

supp[ν] := M \
⋃
{O ⊂ M : O is open with ν(O) = 0}.

For a non-negative measurable function f , the induced measure f.ν is defined by

d(f.ν)(x) = f(x)dν(x).

In particular, for a measurable subset F of M , we set m := 1F .μ. Then by definition

m(Ω) =
∫

Ω
dm =

∫

Ω
1F dμ =

∫

F∩Ω
dμ = μ(F ∩ Ω)

for any measurable subset Ω. A point x belongs to supp[1F .μ] = supp[m] if and only if
there exists an open neighborhood Ux of x such that m(Ux) = μ(Ux ∩ F ) > 0.

A subset F of M is said to be regular if

supp[1F .μ] = F,

that is, μ(Ux ∩ F ) > 0 for any x ∈ F and any open neighborhood Ux of x. A regular
set excludes any unnecessary isolated point in M with zero measure (called non-atomic
point). For a sequence of subsets {Fk}∞k=1 of M , denote by

C({Fk}) := {u : u|Fk
is continuous for each k}.

An increasing sequence of closed subsets {Fk}∞k=1 of M is called a μ-nest of M if

lim
k→∞

μ(M \ Fk) = 0,

and is regular if each Fk is regular.
We say that a function pt(x, y) pointwise defined in (0,∞)×M ×M satisfies condition

(Ap) for some 1 ≤ p ≤ ∞, if there exists a regular μ-nest {Fn}∞n=1 of M such that the
following properties are true: for each t, s > 0 and each x, y in M ,

(1) measurability: pt(∙, ∙) is jointly measurable in M × M ;
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(2) continuity and integrability in one variable:

pt(x, ∙) ∈ C({Fn}) ∩ Lp and pt(∙, y) ∈ C({Fn}) ∩ Lp; (2.1)

(3) continuity in integral forms: for each f ∈ Lp,
∫

M
pt(∙, z)f(z)dμ(z) ∈ C({Fn}) and

∫

M
pt(z, ∙)f(z)dμ(z) ∈ C({Fn}); (2.2)

(4) semigroup property:

pt+s(x, y) =
∫

M
pt(x, z)ps(z, y)dμ(z). (2.3)

Let T0 ∈ (0,∞]. Recall that a family of linear bounded operators {Pt}t∈(0,T0) from Lp

to Lp for 1 ≤ p ≤ ∞ is called a semigroup on Lp if for any t1, t2 > 0 with t1 + t2 < T0,

Pt1+t2 = Pt1Pt2 , (2.4)

where (2.4) is understood that for any f ∈ Lp, there is a null (or measure zero) set Nt1,t2,f

depending on t1, t2, f such that

Pt1+t2f(x) = Pt1(Pt2f)(x)

holds for any point x outside the set Nt1,t2,f . Note that the operator Pt may not be defined
at t = 0. A jointly measurable function pt(x, y) on (0, T0)×M ×M is said to be an integral
kernel of a semigroup {Pt}t∈(0,T0) on Lp for 1 ≤ p ≤ ∞ if

Ptf(x) =
∫

M
pt(x, y)f(y)dμ(y) (2.5)

for μ-almost all x in M when f ∈ Lp. An integral kernel may not be defined pointwise.
For a semigroup {Pt}t∈(0,T0) on Lp for 1 ≤ p < ∞, let {P̂t}t∈(0,T0) be a family of

operators defined by
(Ptf, g) = (f, P̂tg) (2.6)

for any f ∈ Lp, g ∈ Lq, where ( , ) is the usual inner product in the L2 space, and q := p
p−1

is the conjugate of p. Clearly, each P̂t defined in this way is linear. It is also bounded
from Lq to Lq:

‖P̂t‖Lq→Lq := sup
‖g‖Lq =1

‖P̂tg‖Lq ≤ ‖Pt‖Lp→Lp , (2.7)

since for any f ∈ Lp, g ∈ Lq

|(P̂tg, f)| = |(Ptf, g)| ≤ ‖Ptf‖Lp‖g‖Lq ≤ ‖Pt‖Lp→Lp ‖f‖Lp ‖g‖Lq , (2.8)

which gives that

‖P̂tg‖Lq = sup
‖f‖Lp=1

|(P̂tg, f)| ≤ ‖Pt‖Lp→Lp ‖g‖Lq .

Moreover, {P̂t}t∈(0,T0) satisfies the semigroup property:

P̂t+s = P̂tP̂s for each t, s > 0, (2.9)

since for any f ∈ Lp, g ∈ Lq

(f, P̂t+sg) = (Pt+sf, g) = (Ps(Ptf), g) = (Ptf, P̂sg) = (f, P̂tP̂sg),

from which we see P̂t+sg = P̂tP̂sg almost everywhere in M for any g ∈ Lq. The family
{P̂t}t>0 is called the dual semigroup of {Pt}t∈(0,T0) on Lp for 1 ≤ p < ∞.

We call the triple (M,d, μ) a metric measure space, if (M,d) is a locally compact,
separable metric space, and μ is a Radon measure on M with full support. We will work
on a semigroup {Pt}t∈(0,T0) on the space L1(M,μ).
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Theorem 2.1. Let T0 ∈ (0,∞] and {Pt}t∈(0,T0) be a semigroup on L1(M,μ) for a

metric measure space (M,d, μ), and let {P̂t}t∈(0,T0) be its dual semigroup defined by (2.6)

such that each P̂t (t ∈ (0, T0)) is bounded from L1 to L1. Assume that there exist a
countable family S of open sets with M = ∪U∈SU and a function ϕ : S × (0, T0) 7→ R+

such that, for each t ∈ (0, T0), U ∈ S and each f ∈ L1

‖Ptf‖L∞(U) ≤ϕ(U, t)‖f‖L1 , (2.10)

‖P̂tf‖L∞(U) ≤ϕ(U, t)‖f‖L1 . (2.11)

Then {Pt}t∈(0,T0) possesses an integral kernel pt(x, y) pointwise defined in (0,∞)×M ×M
that satisfies condition (Ap) with p = 1 for some regular μ-nest {Fn}∞n=1 in M , and

pt(x, y) = 0 for any t > 0 (2.12)

whenever one of points x, y lies outside ∪∞
n=1Fn. Moreover, for each t ∈ (0, T0) and each

x ∈ U , y ∈ M
|pt(x, y)| ≤ ϕ(U, t) and |pt(y, x)| ≤ ϕ(U, t). (2.13)

We will prove Theorem 2.1 in Section 4. Below we turn to consider an interesting class
of semigroups in L1, the heat semigroup {Pt}t>0, whose integral kernel is called a heat
kernel. We are concerned with the existence of a pointwise defined heat kernel.

A strongly continuous, contractive, symmetric, and sub-Markovian semigroup {Pt}t>0

on L2 is called a heat semigroup, that is, for any t > 0 and f, g ∈ L2,

• strongly continuous :
lim
t→0

‖Ptf − f‖L2 = 0; (2.14)

• contractive :
‖Ptf‖L2 ≤ ‖f‖L2 ; (2.15)

• symmetric: (Ptf, g) = (f, Ptg);
• sub-Markovian: Ptf ≥ 0 when f ≥ 0, and Ptf ≤ 1 when f ≤ 1, where inequalities

are understood in the sense of μ-almost everywhere.

Recall that a Dirichlet form (E ,F) on L2 is a bilinear form satisfying that, for any u, v ∈ F

• F is dense in L2, and is complete in the norm of E1/2
1 where

E1(u) :=
(
‖u‖2

2 + E(u)
)1/2

with E(u) := E(u, u);

• (E ,F) is positive definite : E(u) ≥ 0, and symmetric: E(u, v) = E(v, u);
• the function u+ ∧ 1 belongs to F , and E(u+ ∧ 1) ≤ E(u).

A heat semigroup on L2 and a Dirichlet form on L2 are mutually corresponding (cf. [5,
Theorem 1.4.1, p.25]). Any heat semigroup {Pt}t>0 can be extended to be contractive both
on L1 (cf. [5, p.37]) and on L∞, and therefore, is contractive on Lp for any 1 ≤ p ≤ ∞ by
using the Riesz-Thorin interpolation theorem. For simplicity, we still denote its extension
by {Pt}t>0.

A family of functions pt(x, y) on (0,∞)×M×M is called a heat kernel (or a symmetric
transition density) if the following conditions are satisfied: for any s, t > 0 and μ-almost
all x, y ∈ M ,

(1) measurability : pt(∙, ∙) is jointly measurable on M × M ;
(2) Markov : pt(x, y) ≥ 0 and

∫

M
pt(x, y)dμ(y) ≤ 1;

(3) symmetry : pt(x, y) = pt(y, x);
(4) semigroup property :

ps+t(x, y) =
∫

M
ps(x, z)pt(z, y)dμ(z).
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(5) identity approximation : for any f ∈ L2,
∫

M
pt(x, y)f(y)dμ(y)

L2

−→ f(x) as t → 0 + .

For a Dirichlet form (E ,F) on L2, an increasing sequence of closed subsets {Fk}∞k=1 of
M is called an E-nest of M if

lim
k→∞

cap(M \ Fk) = 0,

where cap(A) is the capacity of a measurable set A defined by

cap(A) := inf{E(u) + ‖u‖2
2 : u ∈ F , u ≥ 1 a.e. on A}.

Note that by definition

μ(A) ≤ cap(A) (2.16)

for any measurable subset A of M .

Theorem 2.2. Let (E ,F) be a regular Dirichlet form on L2(M,μ) for a metric measure
space (M,d, μ), and let {Pt}t>0 be the associated heat semigroup on L2. Fix T0 ∈ (0,∞]
and 1 ≤ p ≤ 2. Assume that there exist a countable family S of open sets with M = ∪U∈SU
and a function ϕ : S × (0, T0) 7→ R+ such that, for each t ∈ (0, T0), U ∈ S and each
f ∈ Lp ∩ L2

‖Ptf‖L∞(U) ≤ ϕ(U, t)‖f‖Lp . (2.17)

Then {Pt}t>0 possesses a heat kernel pt(x, y) pointwise defined in (0,∞) × M × M that
satisfies condition (Ap) and some regular E-nest {Fn}∞n=1 of M , and

pt(x, y) = 0 for any t > 0 (2.18)

whenever one of points x, y lies outside ∪∞
n=1Fn. Moreover, for each t ∈ (0, T0) and x ∈ U

‖pt(x, ∙)‖Lp′ ≤ ϕ(U, t), (2.19)

where p′ = p
p−1 is the Hölder conjugate of p, and for any 1 ≤ q ≤ p′.

‖pt(x, ∙)‖Lq ≤ (ϕ(U, t))(q−1)(p−1) . (2.20)

We prove Theorem 2.2 in Section 6.

3. Preliminaries

For a topological space X, let B(X) be a collection of all Borel sets of X and X a
sigma-algebra on X. The following proposition shows the joint measurability of a function
on a product space, which is a modification of [9, Lemma 9.2, p.122]. Similar results on
measurability are addressed in [11], [10], [13]. We shall use this conclusion to prove the
joint measurability of the integral kernel of a semigroup on L1 (see the proofs of Theorem
2.1 and Theorem 2.2 below).

Proposition 3.1. Let (X, d,X ) be a separable metric space with B(X) ⊂ X and (Y,Y)
a measurable space. For two sets A ∈ X and B ∈ Y, assume that f is a real-valued function
pointwise defined on X × Y satisfying the following conditions:

(i) f(x, y) = 0 for any (x, y) ∈ (A × B)c;
(ii) f(x, ∙) is measurable in B for each x ∈ A;

(iii) f(∙, y) restricted on A is continuous for each y ∈ B.

Then f is jointly measurable with respect to (X × Y,X × Y).
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Proof. Without loss of generality, we assume that f(x, y) ≥ 0 for all (x, y) ∈ X × Y .
Otherwise, we shall consider f+ := f ∨ 0 and f− := (−f) ∨ 0 separately.

Since X is separable, we choose a countable set {xn}∞n=1 ⊂ A such that for each k ≥ 1,
A ⊂ ∪∞

n=1B(xn, 1
k ), that is, A can be covered by balls {B(xn, 1

k )}n≥1 of the same radius
1
k . For each k ≥ 1, let A1,k := B(x1,

1
k ) ∩ A and

An,k :=
(
B(xn,

1
k
) \ ∪n−1

i=1 B(xi,
1
k
)
)
∩ A

for n ≥ 2. Some of these sets may be empty, but the following argument will still work.
Then the family of sets {An,k}∞n=1 are disjoint, An,k ⊂ B(xn, 1

k ), and

A =
∞⊔

n=1

An,k. (3.1)

Define a family of functions fk on X × Y by

fk(x, y) :=
∞∑

n=1

f(xn, y)1An,k
(x), x ∈ X, y ∈ Y, k ≥ 1.

We claim that

1. For each k, the function fk is jointly measurable;
2. For each x ∈ X, y ∈ Y , we have

lim
k→∞

fk(x, y) = f(x, y). (3.2)

Indeed, by assumptions (i), (ii), for each n ≥ 1 and each a ≥ 0,

{y ∈ Y : f(xn, y) ≤ a} = {y ∈ B : f(xn, y) ≤ a} ∪ Bc ∈ Y ,

which implies that f(xn, y)1An,k
(x) is jointly measurable because both sets Bc and {y ∈ B :

f(xn, y) ≤ a} belong to the sigma-algebra Y . Therefore, the function fk, as the summation
of products of two measurable functions f(xn, y) and 1An,k

(x), is jointly measurable, thus
proving our first claim.

To show our second claim, note that if x ∈ Ac, y ∈ Y , or if x ∈ A, y ∈ Bc, by the
definition of fk, we see that fk(x, y) = 0 = f(x, y), and thus (3.2) is obvious. On the
other hand, let x ∈ A, y ∈ B. By assumption (iii), for each ε > 0, there exists some
K(x, y, ε) > 0 such that for each k ≥ K(x, y, ε) and any x′ ∈ B(x, 1

k ) ∩ A,

|f(x′, y) − f(x, y)| < ε.

Since x ∈ A = ∪∞
n=1An,k, we see that for each k ≥ K(x, y, ε), there exists some n ≥ 1 such

that x ∈ An,k, that is, x ∈ B(xn, 1
k ) ∩ A, which in turn gives that

xn ∈ B(x,
1
k
) ∩ A.

It follows that |f(xn, y) − f(x, y)| < ε, and hence, by definition of fk,

|fk(x, y) − f(x, y)| = |f(xn, y) − f(x, y)| < ε,

thus showing that (3.2) is also true. This proves our second claim.
Finally, by our claim, the function f , as a limit of jointly measurable functions fk, is

also jointly measurable on X × Y . �

Let (M,μ) be a separable measure space. The following says that any μ-nest of M ,
after removing all the unnecessary points, each of which has an open neighborhood of zero
measure, will become a regular μ-nest of M .

Proposition 3.2. Given a μ-nest {Fk} of M , let F ′
k = supp[1Fk

.μ] for each k. Then
F ′

k ⊂ Fk for each k ≥ 1, and {F ′
k} is a regular μ-nest.
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Proof. Note that each F ′
k is closed. For each k, the fact that 1Fk

.μ(F c
k ) = 0 implies

F c
k ⊂

⋃
{O ⊂ M : O is open with 1Fk

.μ(O) = 0}, thus showing that

F ′
k = supp[1Fk

.μ] = M \
⋃
{O ⊂ M : O is open with 1Fk

.μ(O) = 0} ⊂ Fk.

For an open set O ⊂ M , if 1Fk+1
.μ(O) = 0 then 1Fk

.μ(O) = 0, and, hence, the set
⋃
{O ⊂ M : O is open with 1Fk+1

.μ(O) = 0}

is contained in
⋃
{O ⊂ M : O is open with 1Fk

.μ(O) = 0},

thus showing that
F ′

k+1 = supp[1Fk+1
.μ] ⊃ supp[1Fk

.μ] = F ′
k. (3.3)

On the other hand, since M is separable, by definition of F ′
k, there exists a countable

family of open sets {Oi}∞i=1 with μ(Fk ∩ Oi) = 0, i ≥ 1 such that (F ′
k)

c ⊂ ∪∞
i=1Oi. It

follows that

μ(F c
k ) ≤ μ((F ′

k)
c)

= μ(F c
k ∩ (F ′

k)
c) + μ(Fk ∩ (F ′

k)
c)

≤ μ(F c
k ) +

∞∑

i=1

μ(Fk ∩ Oi)

= μ(F c
k ), (3.4)

which gives that μ((F ′
k)

c) = μ(F c
k ) ↓ 0 as k ↑ ∞. This together with (3.3) shows that {F ′

k}
is a μ-nest of M .

It remains to prove that {F ′
k} is regular. Indeed, we have by (3.4)

μ(Fk \ F ′
k) = μ((F ′

k)
c) − μ(F c

k ) = 0,

showing that for any open set O,

μ(Fk ∩ O) = μ(F ′
k ∩ O) + μ((Fk \ F ′

k) ∩ O) = μ(F ′
k ∩ O).

Hence, we see that the following two sets are identical:
⋃
{O ⊂ M : O is open with 1Fk

.μ(O) = 0}

and
⋃
{O ⊂ M : O is open with 1F ′

k
.μ(O) = 0},

which yields that F ′
k = supp[1Fk

.μ] = supp[1F ′
k
.μ]. Thus {F ′

k} is regular. �

We introduce the notion of the μ-quasi continuity of a function.

Definition 3.3. For a measure μ, we say that a function u on M is μ-quasi continuous
(or nearly μ-continuous) if for any ε > 0 there is an open set G ⊂ M such that μ(G) < ε
and u|M\G is finite continuous. Here u|M\G is the restriction of u to M \ G.

Proposition 3.4. For a function u pointwise defined on M , the following two condi-
tions are equivalent:

(i). u is μ-quasi continuous.
(ii). There is a (regular) μ-nest {Fk} such that u ∈ C({Fk}).

Proof. (i) ⇒ (ii). Since u is μ-quasi continuous, for each k ≥ 1, there is an open set
Gk such that μ(Gk) < 1

k , and u|M\Gk
is continuous. Let

F̃k := (
k⋂

j=1
Gj)

c =
k⋃

j=1
Gc

j for k ≥ 1.
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Then {F̃k}k≥1 is increasing, and

μ(M \ F̃k) = μ(
k⋂

j=1
Gj) ≤ μ(Gk) ≤

1
k
→ 0 as k ↑ ∞,

showing that {F̃k} is a μ-nest on M . Note that the restriction of function u on each set

F̃k =
k⋃

j=1
Gc

j

is continuous. Denote

Fk := supp[1
F̃k

.μ].

By Proposition 3.2, the μ-nest {Fk} is regular. Note that u ∈ C({Fk}), since u restricted
on F̃k(⊃ Fk) is continuous.

(ii) ⇒ (i). Assume u ∈ C({Fk}) for a μ-nest {Fk}. For any ε > 0, choose k to be
large enough such that μ(M \ Fk) < ε. For such k, let G := M \ Fk. Then G is open,
μ(G) < ε, and u|Gc = u|Fk

is continuous. Thus u is μ-quasi continuous by definition. �

Lemma 3.5. The following statements are true.

(i) Let S = {ul}l≥1 be a countable family of μ-quasi continuous functions on M .
Then there is a common regular μ-nest {Fk} such that S ⊂ C({Fk}).

(ii) Let {Fk} be a regular μ-nest and u belongs to C({Fk}). If u ≥ 0 μ-almost
everywhere on an open set U , then u(x) ≥ 0 for every point x ∈ U ∩

(
∪∞

k=1 Fk

)
.

Lemma 3.5(i) says that any μ-quasi continuous function belongs to C({Fk}) for some
regular μ-nest {Fn} of M , when S contains only one function, and at the same time, all
countable μ-quasi continuous functions share a common regular μ-nest. Lemma 3.5(ii)
says that an almost everywhere nonnegative function in a set is nonnegative everywhere
in a slightly smaller subset.

Proof. (i). For each l ≥ 1, since ul is μ-quasi continuous, by Proposition 3.4, one

can choose a μ-nest {F (l)
k }∞k=1 such that ul ∈ C({F (l)

k }) and μ((F (l)
k )c) < 1

2lk
. For k ≥ 1,

let

Fk :=
∞⋂

l=1

F
(l)
k . (3.5)

Clearly, each Fk is closed because so is F
(l)
k for any l, k ≥ 1. Moreover, {Fk}∞k=1 is

increasing because F
(l)
k ⊂ F

(l)
k+1 for any k, l ≥ 1. Since by (3.5)

μ(F c
k ) = μ

( ∞⋃

l=1

(F (l)
k )c

)
≤

∞∑

l=1

μ((F (l)
k )c) ≤

∞∑

l=1

1
2lk

=
1
k
↓ 0 as k ↑ ∞,

we see that {Fk} is a μ-nest. Note that S ⊂ C({Fk}) since ul|F (l)
k

is continuous and

Fk ⊂ F
(l)
k for any l ≥ 1 and k ≥ 1. Let {F ′

k} be the regularization of {Fk} as in
Proposition 3.2. Clearly,

F ′
k ⊂ Fk ⊂ F

(l)
k for any k, l ≥ 1. (3.6)

Then S ⊂ C({F ′
k}), thus showing (i) by relabelling the notion F ′

k by Fk.
(ii). Suppose that there is a point x ∈ U ∩ Fk such that u(x) < 0. Since u|Fk

is
continuous on each Fk, there is an open neighborhood Ux ⊂ U of x such that u(y) < 0
for any point y ∈ Ux ∩ Fk. Since {Fk} is regular, we have μ(Ux ∩ Fk) > 0, thus showing
that u is strictly negative in a subset of U with positive measure, a contraction to our
assumption. �
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Remark 3.6. For a regular μ-nest {Fk} of M and for a pointwise defined function u
on M such that u ∈ C({Fk}) and u = 0 outside ∪∞

k=1Fk, it is straightforward to see by
Lemma 3.5(ii) that if u ≥ 0 μ-almost everywhere in M , then u ≥ 0 pointwise in M . We
will frequently use this fact.

The following says that any function in the space Lp for 1 ≤ p < ∞ admits some
μ-quasi continuous modification. Let C(M) be the collection of all continuous functions
on M , and C0(M) the collection of all continuous functions with compact supports on M .

Lemma 3.7. Let (M,d, μ) be a metric measure space. Any function u from the space
Lp for p ∈ [1,∞) has a μ-quasi continuous modification ũ, that is, there exists a regular
μ-nest {Fk}∞k=1 of M such that ũ ∈ C({Fk}) and u = ũ almost everywhere in M .

Proof. For any v ∈ C(M) ∩ Lp and any λ > 0, the set G := {x ∈ M : |v(x)| > λ} is
open and

μ(G) ≤
∫

G

|v|p

λp dμ ≤
‖v‖p

Lp

λp . (3.7)

Since C0(M) is dense in Lp, for any u ∈ Lp, we can choose a sequence of functions
{uk} ⊂ C0(M) such that ‖uk −u‖Lp → 0 as k ↑ ∞. Without loss of generality, we assume
that for each k,

‖uk+1 − uk‖
p
Lp ≤ 2−(p+1)k.

Denote
Gk := {x ∈ M : |uk+1(x) − uk(x)| > 2−k}.

Clearly, the set Gk is open. Using the inequality (3.7) with G = Gk, λ = 2−k and
v = uk+1 − uk, we obtain μ(Gk) ≤ 2−k. For each k, let

Ek :=
∞⋂

l=k

Gc
l .

Then {Ek} is a μ-nest of M , since each Ek is closed, {Ek} is increasing, and

μ(Ec
k) = μ(

∞⋃

l=k

Gl) ≤
∞∑

l=k

μ(Gl) ≤
∞∑

l=k

2−l = 2−k+1 → 0 as k → ∞.

Moreover, we have for any x ∈ Ek and any n > m ≥ k + 1

|un(x) − um(x)| ≤
∞∑

l=m

|ul+1(x) − ul(x)| = 2−m+1 ≤ 2−k,

thus showing that the functions un uniformly converge as n → ∞ on each Ek. Define

ũ(x) := lim
n→∞

un(x) for x ∈
∞⋃

k=1

Ek.

Then ũ ∈ C({Ek}) and u = ũ almost everywhere in M . Finally, by regularization in
Proposition 3.2, there is a regular μ-nest {Fk} of M with Fk ⊂ Ek, and ũ is a μ-quasi
continuous modification of u. The proof is complete. �

We remark that Lemma 3.7 is different from Lusin’s theorem1 in that μ here is not
necessarily finite. If μ is finite on M , that is, if μ(M) < ∞, then any measurable function
u on M admits μ-quasi continuous modification by directly applying Lusin’s theorem. In
this case, Lusin’s theorem is sharper than Lemma 3.7, as the function u in Lusin’s theorem
is assumed to be measurable (instead of u ∈ Lp).

1Lusin’s theorem: Let M be a Hausdorff space, A a σ-algebra containing B(M), μ a regular measure
on A, and let u be an A-measurable function on M . Let A ∈ A with 0 < μ(A) < ∞. Then, for any ε > 0,
there exists a compact set K ⊂ A such that μ(A \ K) < ε and u|K is continuous.
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Lemma 3.5 and Lemma 3.7 are respectively motivated by [5, Theorem 2.1.2, p.69] and
[5, Theorem 2.1.3, p.71], wherein a regular Dirichlet form is assumed to exist in L2. Here
we do not assume the existence of a Dirichlet form.

4. Proof of Theorem 2.1

In this section, we prove Theorem 2.1.

Proof of Theorem 2.1. The proof is quite long. We divide the proof into four
steps.

Step 1. We will extend the definitions of Pt and P̂t to all t > 0 when T0 < ∞.
Indeed, we need only to consider Pt. Let us first extend the definition of Pt to all

t ∈ [T0, 2T0). For t ∈ [T0, 2T0), let

Ptf = Pt/2Pt/2f f ∈ L1. (4.1)

Note that the above definition of Pt is well defined since t/2 ∈ (0, T0) and Pt/2 is bounded
from L1 to L1. Moreover, ‖Pt‖L1 7→L1 ≤ (‖Pt/2‖L1 7→L1)2 < ∞.

Let us verify that {Pt}t∈(0,2T0) satisfies the semigroup property. Indeed, {Pt}t∈(0,T0)

satisfies the semigroup property, by (4.1), we have for any t1, t2 ∈ (0, 2T0) with t1+t2 < 2T0

and f ∈ L1,

Pt1Pt2f = Pt1/2Pt1/2Pt2/2Pt2/2f = Pt1/2P(t1+t2)/2Pt2/2f

= Pt1/2Pt2/2Pt1/2Pt2/2f = P(t1+t2)/2P(t1+t2)/2f = Pt1+t2f.

Hence, we have extended the semigroup {Pt}t∈(0,T0) on L1 to the semigroup {Pt}t∈(0,2T0).
Repeating the above arguments, we can further extend it to {Pt}t>0.

Let us extend (2.10). Indeed, by (2.10), we have for any U ∈ S and t ≥ T0,

‖Ptf‖L∞(U) = ‖PT0/2Pt−T0/2f‖L∞(U)

≤ ϕ(U, T0/2)‖Pt−T0/2f‖L1

≤ ϕ(U, T0/2)‖Pt−T0/2‖L1 7→L1‖f‖L1 , f ∈ L1,

This shows that for any t > 0,

‖Ptf‖L∞(U) ≤ ϕ̃(U, t)‖f‖L1 , f ∈ L1, (4.2)

where

ϕ̃(U, t) :=

{
ϕ(U, t), for t ∈ (0, T0),

ϕ(U, T0/2)‖Pt−T0/2‖L1 7→L1 for t ∈ [T0,∞).

Similarly, we can extend {P̂t}t∈(0,T0) to {P̂t}t>0, and obtain an inequality similar to
(4.2).

Therefore, in the rest of the proof, it suffices to consider the case when T0 = ∞.
Step 2. We will construct a pointwise realization Qtf (resp. Q̂tf) for Ptf (resp. P̂tf)

when t > 0, f ∈ L1. In particular, we show that there exists a common regular μ-nest
{Fn}∞n=1 such that Qt = Pt, Q̂t = P̂t on L1, and for all t > 0 and all f ∈ L1,

Qtf ∈ C({Fn}) and Q̂tf ∈ C({Fn}). (4.3)

Indeed, since L1 is separable, there exists a countable family {fk}∞k=1 dense in L1.
Consider the countable family

{Psfk, P̂sfk : k ≥ 1, s ∈ Q+},

where Q+ is the set of all positive rational numbers. By Lemma 3.7, each Psfk, P̂sfk has a
μ-quasi continuous version, say, hs,k, ĥs,k respectively. Moreover, by Lemma 3.5(i), there
is a common regular μ-nest {Fn}∞n=1 such that

{
hs,k, ĥs,k : k ≥ 1, s ∈ Q+

}
⊂ C({Fn}).
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Let

M0 :=
∞⋃

n=1
Fn and N = M \ M0. (4.4)

It is clear that μ(N ) = 0 since {Fn} is a μ-nest.
Therefore, it follows that for each U ∈ S, s ∈ Q+ and each k, j ≥ 1,

sup
x∈U∩M0

|hs,k(x) − hs,j(x)|= sup
x∈U\N

|hs,k(x) − hs,j(x)|

= ‖hs,k − hs,j‖L∞(U) (using hs,k − hs,j ∈ C({Fn})

and Lemma 3.5(ii))

= ‖Psfk − Psfj‖L∞(U)

≤ϕ(U, s)‖fk − fj‖L1 (using (2.10)). (4.5)

Since {fk} is dense in L1, for each f ∈ L1, there exists a sequence {fki
} from the set {fk}

such that
‖fki

− f‖L1 → 0 as i → ∞.

Thus by (4.5), for each s ∈ Q+ and U ∈ S, the sequence {hs,ki
}i≥1 converges uniformly

to a function, say, Qsf , in U ∩M0. Clearly, the function Qsf is independent of the choice
of {ki}. Since U ∈ S is arbitrary, and S covers M , for any s ∈ Q+ and f ∈ L1, we can
define the function Qsf on M by

Qsf(x) =






lim
i→∞

hs,ki
(x) for x ∈ M0 =

⋃

U∈S
(U ∩ M0),

0 for x ∈ N .
(4.6)

Moreover, it follows that Qsf |Fn∩U is continuous for any n ≥ 1 since each hs,ki
|Fn is

continuous, and hence,
Qsf |Fn = Qsf |Fn∩(∪U∈SU)

is continuous, that is,

Qsf ∈ C({Fn}) for all s ∈ Q+ and all f ∈ L1. (4.7)

Let us show that for each s ∈ Q+,

Qs = Ps in L1, (4.8)

that is, Qsf = Psf almost everywhere in M when f ∈ L1. Indeed, using the fact that Ps

is L1 7→ L1 bounded, it follows that

lim
i→∞

‖hs,ki
− Psf‖L1 = lim

i→∞
‖Psfki

− Psf‖L1 = lim
i→∞

‖Ps(fki
− f)‖L1 = 0,

which implies that hs,ki
converges to Psf in measure as i → ∞. By the definition (4.6),

we obtain that Qsf
a.e.
= Psf , which is (4.8). Here the sign

a.e.
= is understood in the sense of

almost everywhere in M .
We will extend Qsf in (4.6) to any positive real number t (not only for positive rationals

s) by using the semigroup property. To do this, we claim that for any fixed real number
t > 0 and f ∈ L1,

Qs(Pt−sf)(x) = Qs′(Pt−s′f)(x) for every x ∈ M and s, s′ ∈ (0, t) ∩Q+. (4.9)

Indeed, we see by (4.6) that for any t > 0, f ∈ L1 and s, s′ ∈ (0, t) ∩Q+

Qs(Pt−sf)(x) = 0 = Qs′(Pt−s′f)(x) whenever x ∈ N , (4.10)

since Pt−sf, Pt−s′f ∈ L1. On the other hand, it follows from (4.8) and the semigroup
property of {Pt} that for any t > 0, f ∈ L1 and s, s′ ∈ (0, t) ∩Q+

Qs(Pt−sf)
a.e.
= Ps(Pt−sf)

a.e.
= Ptf

a.e.
= Ps′(Pt−s′f)

a.e.
= Qs′(Pt−s′f). (4.11)

This together with (4.7) and Lemma 3.5(ii) that

Qs(Tt−sf)(x) = Qs′(Tt−s′f)(x) whenever x ∈ M0. (4.12)
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Combining (4.12) and (4.10), we obtain (4.9). Consequently, we can extend Qsf in (4.6)
to any positive real number t by defining

Qtf(x) = Qs(Pt−sf)(x) f ∈ L1, x ∈ M, (4.13)

where s is a positive rational smaller than t. Note that the above formula is consistent
when t is rational.

Moreover, the family {Qt}t>0 possesses the following properties.

• For all t > 0, f ∈ L1,

Qtf = Qs(Pt−sf) ∈ C({Fn}) (4.14)

by using definition (4.13), (4.7), since Pt−sf ∈ L1 when f ∈ L1 and s ∈ (0, t)∩Q+.
• For any t > 0

Qt = Pt in L1 (4.15)

by using (4.11), (4.13).
• For each t > 0, x ∈ U ∈ S and each f ∈ L1, we have

|Qtf(x)| ≤ ‖Ptf‖L∞(U) ≤ ϕ(U, t)‖f‖L1 . (4.16)

Indeed, when x ∈ N , we see by (4.10) and (4.13) that Qtf(x) = 0, and so (4.16)
is true. On the other hand, when x ∈ U \ N , we see that

|Qtf(x)| ≤ sup
z∈U\N

|Qtf(z)|

= ‖Qtf‖L∞(U) (using (4.14) and Remark 3.6)

= ‖Ptf‖L∞(U) (using (4.15)),

and so (4.16) is also true.
• The {Qt}t>0 satisfies the semigroup property. More precisely, for any real t1, t2 >

0, f ∈ L1 and any x ∈ M,

Qt1+t2f(x) = Qt1(Qt2f)(x). (4.17)

Indeed, we see by (4.15)

Qt1+t2f
a.e.
= Pt1+t2f

a.e.
= Pt1(Pt2f)

a.e.
= Qt1(Qt2f).

From this and (4.14), it follows that

0
a.e.
= Qt1+t2f − Qt1(Qt2f) := u ∈ C({Fn}).

Note that by (4.10),

Qt1+t2f(x) = 0 = Qt1(Qt2f)(x)

for every x ∈ N and f ∈ L1. Therefore, we conclude that (4.17) is true by
Remark 3.6.

Note that (4.17) also means that the pointwise realization in above way does
not change the semigroup property of operators.

• Each operator from {Qt}t>0 is bounded. This immediately follows from (4.15):

‖Qt‖L1 7→L1 = ‖Pt‖L1 7→L1 < ∞. (4.18)

• Each operator from {Qt}t>0 is linear as well. More precisely, for any a, b ∈ R,
f, g ∈ L1 and any x ∈ M ,

Qt(af + bg)(x) = aQtf(x) + bQtg(x). (4.19)

Indeed, for any t > 0 and any f, g ∈ L1,

Qt(af + bg)
a.e.
= Pt(af + bg) (using (4.15))
a.e.
= aPtf + bPtg (using the linearity of Pt)
a.e.
= aQtf + bQtg (using (4.15) again),
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that is, for μ-almost all x ∈ M

Qt(af + bg)(x) = aQtf(x) + bQtg(x).

Since the functions on the both sides belong to C({Fn}) by virtue of (4.14), this
equality indeed is true for every point x in M0 by using Lemma 3.5(ii). Clearly,
(4.19) is also true for x in N by (4.10), since the both sides equal to zero in this
case.

We turn to introduce a pointwise realization Q̂tf of function P̂tf . Indeed, note that
each ĥs,k is the μ-quasi continuous version of P̂tfk. Similar to (4.5), we have by (2.11)
that for each U ∈ S, s ∈ Q+ and each k, j ≥ 1,

sup
x∈U\N

|ĥs,k(x) − ĥs,j(x)| ≤ ϕ(U, s)‖fk − fj‖L1 .

As before, let {fki
} be a sequence from the set {fk} such that ‖fki

− f‖L1 → 0 as i → ∞.
Hence, for any s ∈ Q+, f ∈ L1, we can define a pointwise realization Q̂sf of function P̂sf
by

Q̂sf(x) =

{
lim
i→∞

ĥs,ki
(x) for x ∈ M0,

0 otherwise.

We similarly have that for any fixed real number t > 0 and f ∈ L1,

Q̂s(P̂t−sf)(x) = Q̂s′(P̂t−s′f)(x) for every x ∈ M and s, s′ ∈ (0, t) ∩Q+.

Consequently, for any x in M and any f ∈ L1, we can extend Q̂sf(x) to any positive real
number t by

Q̂tf(x) = Q̂s(P̂t−sf)(x) (4.20)

for some rational s > 0 strictly less than t. Clearly, for any t > 0, f ∈ L1

Q̂tf(x) = 0 whenever x ∈ N . (4.21)

Then {Q̂t}t>0 possesses the following properties, whose proofs are the same to those for
{Qt}t>0.

• For all t > 0 and all f ∈ L1,

Q̂tf ∈ C({Fn}). (4.22)

• For each t > 0,

Q̂t = P̂t in L1. (4.23)

• For each t > 0, x ∈ U ∈ S and each f ∈ L1,

|Q̂tf(x)| ≤ ‖P̂tf‖L∞(U) ≤ ϕ(U, t)‖f‖L1 . (4.24)

• The {Q̂t}t>0 satisfies the semigroup property: for any real t1, t2 > 0, f ∈ L1 and
any x ∈ M,

Q̂t1+t2f(x) = Q̂t1(Q̂t2f)(x). (4.25)

• Each operator from {Q̂t}t>0 is bounded:

‖Q̂t‖L1 7→L1 = ‖P̂t‖L1 7→L1 < ∞ (4.26)

by using (4.23).
• Each operator from {Q̂t}t>0 is linear: for any a, b ∈ R, f, g ∈ L1 and any x ∈ M ,

Q̂t(af + bg)(x) = aQ̂tf(x) + bQ̂tg(x). (4.27)

Moreover, for any f, g ∈ L1 ∩ L∞

(Qtf, g) = (Ptf, g) = (f, P̂tg) = (f, Q̂tg) (4.28)

by using (4.15), (2.6), and (4.23).
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Step 3. We will work on the pointwise realization semigroups {Qt}t>0, {Q̂t}t>0, and
show the existence of their integral kernels qt(x, y) and q̂t(x, y), respectively. The functions
qt(x, y) and q̂t(x, y) will be used to construct the desired pt(x, y).

To do this, we have by (4.19), (4.16) that for any fixed x ∈ M , the map L1 3 f 7→
Qtf(x) defines a bounded linear functional on L1. Therefore, for each t > 0, x ∈ U ∈ S,
there is a function qt(x, ∙) ∈ L∞ such that

Qtf(x) =
∫

M
qt(x, z)f(z)dμ(z) for any f ∈ L1, (4.29)

and by (4.16),
‖qt(x, ∙)‖L∞ = sup

‖f‖L1=1
|Qtf(x)| ≤ ϕ(U, t). (4.30)

Similarly, for each t > 0, y ∈ U ∈ S, we have by (4.24), (4.27) that the map L1 3
f 7→ Q̂tf(y) defines a bounded linear functional on L1. It follows that there is a function
q̂t(y, ∙) ∈ L∞ such that each t > 0, y ∈ U ∈ S

Q̂tf(y) =
∫

M
q̂t(y, z)f(z)dμ(z) for any f ∈ L1, (4.31)

‖q̂t(y, ∙)‖L∞ ≤ϕ(U, t). (4.32)

Note that functions qt(x, ∙) and q̂t(y, ∙) in M are almost-everywhere defined for each t > 0
and x, y ∈ M . Moreover, when x, y ∈ N , t > 0, we have

qt(x, ∙) = 0 = q̂t(y, ∙) μ-a.e. in M. (4.33)

We show that for any t > 0,

sup
x∈M

‖qt(x, ∙)‖L1 ≤‖P̂t‖L1 7→L1 , (4.34)

sup
y∈M

‖q̂t(y, ∙)‖L1 ≤‖Pt‖L1 7→L1 . (4.35)

Indeed, by (2.7) with p = 1, q = ∞, we have for each t > 0, f ∈ L∞,

‖P̂tf‖L∞ ≤ ‖Pt‖L1 7→L1‖f‖L∞ . (4.36)

By duality, we also have for each t > 0, f ∈ L∞,

‖Ptf‖L∞ ≤ ‖P̂t‖L1 7→L1‖f‖L∞ . (4.37)

It follows by Remark 3.6, (4.14), (4.15), and (4.37) that for any f ∈ L1 ∩ L∞ and x ∈ M ,

|Qtf(x)| ≤ ‖Qtf‖L∞ = ‖Ptf‖L∞ ≤ ‖P̂t‖L1 7→L1‖f‖L∞ . (4.38)

For a compact subset K of M , consider the layer-cake decomposition of |qt(x, y)| over K :

|qt(x, y)| = qt(x, y)(1K∩Vt − 1K∩(Vt)c),

where the set
Vt := {y ∈ M : qt(x, y) ≥ 0}.

By (4.29), (4.38), we see for each t > 0, x ∈ M ,
∫

K
|qt(x, y)|dμ(y) = |Qt(1K∩Vt − 1K∩(Vt)c)(x)|

≤ ‖P̂t‖L1 7→L1‖1K∩Vt − 1K∩(Vt)c‖L∞ ≤ ‖P̂t‖L1 7→L1 .

Passing to the limit as K ↑ M , we have (4.34). Similarly, inequality (4.35) also holds.
Step 4. We construct the desired pt(x, y) by using functions qt(x, y), q̂t(x, y). Indeed,

for t > 0 and x, y ∈ M , define

pt(x, y) =
∫

M
qt/2(x, z)q̂t/2(y, z)dμ(z). (4.39)
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Note that the integral in the right hand side of (4.39) is well defined by (4.32) and (4.34).
We can rewrite (4.39) as follows:

Q̂t/2qt/2(x, ∙)(y) = pt(x, y) = Qt/2q̂t/2(y, ∙)(x), t > 0, x, y ∈ M (4.40)

by using (4.29), (4.31), (4.34), (4.35). The pt(x, y) is pointwise defined for (t, x, y) ∈
(0,∞) × M × M .

Let us prove that the regular μ-nest {Fn} and the function pt(x, y) defined above
satisfy all the properties stated in Theorem 2.1. In fact, we have following.

• Property (2.12) is true whenever x ∈ N or y ∈ N , by using definition (4.39) and
(4.33).

• For t > 0 and x, y ∈ M ,

pt(x, ∙) ∈ C({Fn}) and pt(∙, y) ∈ C({Fn}) (4.41)

by using (4.40), (4.22), (4.35), and (4.14), (4.34). Consequently, for any n ≥ 1,
the function pt(∙, ∙)1Fn×Fn(∙, ∙) is jointly measurable by Proposition 3.1. Hence,
the joint measurability of pt(∙, ∙) follows by noting that

pt(x, y) = lim
n→∞

pt(x, y)1Fn×Fn(x, y), x, y ∈ M.

• For t > 0, x ∈ M and f ∈ L1,

Qtf(x) =
∫

M
pt(x, z)f(z)dμ(z), (4.42)

since we have

(pt(x, ∙), f) = (Q̂t/2qt/2(x, ∙), f) (by (4.40))

= (qt/2(x, ∙), Qt/2f) (by (4.28))

= Qt/2Qt/2f(x) (by (4.29))

= Qtf(x) (by (4.17)).

Similarly, for t > 0, y ∈ M and f ∈ L1,

Q̂tf(y) =
∫

M
pt(z, y)f(z)dμ(z) (4.43)

by using (4.40), (4.28), (4.31), (4.25). Hence, property (2.2) follows from (4.42),
(4.14) and (4.43), (4.22).

• For t > 0 and f ∈ L1,

Ptf
a.e.
= Qtf =

∫

M
pt(∙, z)f(z)dμ(z)

and

P̂tf
a.e.
= Q̂tf =

∫

M
pt(z, ∙)f(z)dμ(z),

by using (4.42), (4.15), and (4.43), (4.23). That is, the semigroups {Pt}t>0 and
{P̂t}t>0 possess the integral kernels pt(x, ∙) and pt(∙, y), respectively.

• For any t > 0 and x ∈ U ∈ S,

‖pt(x, ∙)‖L∞ ≤ ϕ(U, t)

by using (4.16) and (4.42). This, together with (4.41), Remark 3.6, and (2.12),
yields that for any t > 0 and x ∈ U ∈ S, y ∈ M ,

|pt(x, y)| ≤ ϕ(U, t).

Similarly, for any t > 0 and x ∈ U ∈ S, y ∈ M ,

|pt(y, x)| ≤ ϕ(U, t)

by using (4.24), (4.43), (4.41), Remark 3.6, (2.12). Hence, property (2.13) follows.
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• Property (2.1) is true. Indeed, it follows from (4.29), (4.42), and (4.34) that for
t > 0 and x ∈ M ,

sup
x∈M

‖pt(x, ∙)‖L1 = sup
x∈M

‖qt(x, ∙)‖L1 ≤ ‖P̂t‖L1 7→L1 < ∞.

Similarly, it follows from (4.31), (4.43), and (4.35) that for t > 0 and x ∈ M ,

sup
y∈M

‖pt(∙, y)‖L1 = sup
y∈M

‖q̂t(y, ∙)‖L1 ≤ ‖Pt‖L1 7→L1 < ∞.

Consequently, property (2.1) follows from the above two formulas and (4.41).
• Finally, the semigroup property (2.3) is true. Indeed, note first that integral in

the right hand side of (2.3) is well defined by (2.1) and (2.13). By (2.12), we only
need to consider the case when t > 0 and x, y ∈ M0.

Since pt(∙, ∙) is jointly measurable, we have by Fubini’s Theorem that
∫

M
pt+s(x, y)f(y)dμ(y) = Qt+sf(x) = QtQsf(x) (by (4.42) and (4.17))

=
∫

M
pt(x, z)

(∫

M
ps(z, y)f(y)dμ(y)

)

dμ(z) (by (4.42))

=
∫

M

(∫

M
pt(x, z)ps(z, y)dμ(z)

)

f(y)dμ(y)

for t, s > 0 and x ∈ M0. Hence,

pt+s(x, y)
a.e.
=
∫

M
pt(x, z)ps(z, y)dμ(z) μ − a.a. y ∈ M.

This, together with (4.41), (2.2), (2.1), and Lemma 3.5(ii), gives that

pt+s(x, y) =
∫

M
pt(x, z)ps(z, y)dμ(z) y ∈ M0.

Therefore, we obtain (2.3).

The proof is complete. �

Note that the global L1-L∞ ultra-contractivity (1.1) of a semigroup {Pt}t>0 on L1

will guarantee that conditions (2.10) and (2.11) are both true. Indeed, ultra-contractivity
(1.1) is just (2.10) with ϕ(U, t) = ϕ(t) whilst condition (2.11) is also true since

‖P̂tf‖L∞ ≤ ϕ(t)‖f‖L1 (4.44)

for any t > 0, f ∈ L1; this is because by (2.6), (1.1),

|(P̂tf, g)| = |(Ptg, f)| ≤ ‖Ptg‖L∞‖f‖L1 ≤ ϕ(t)‖g‖L1‖f‖L1

for any g ∈ L1, and so

‖P̂tf‖L∞ = sup
‖g‖L1=1

|(P̂tf, g)| ≤ sup
‖g‖L1=1

ϕ(t)‖g‖L1‖f‖L1 = ϕ(t)‖f‖L1 .

Therefore, by Theorem 2.1, we have the following.

Corollary 4.1. Let {Pt}t∈(0,T0) be a semigroup on L1, and let {P̂t}t∈(0,T0) be its dual

semigroup defined by (2.6) such that each P̂t is bounded from L1 to L1, where T0 ∈ (0,∞].
If condition (1.1) holds, then {Pt}t∈(0,T0) possesses an integral kernel pt(x, y) pointwise
defined in (0,∞) × M × M that satisfies condition (Ap) with p = 1. Moreover, for each
t ∈ (0, T0) and all x, y ∈ M ,

|pt(x, y)| ≤ ϕ(t). (4.45)

Corollary 4.2. Assume that all the hypothesis of Theorem 2.1 are satisfied, and
pt(x, y) is the corresponding integral kernel. Then the following statements are true.
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(1) If in addition, the semigroup {Pt}t∈(0,T0) is positive: Ptf ≥ 0 μ-a.e. for any
non-negative function f ∈ L1 and t ∈ (0, T0), then

pt(x, y) ≥ 0 for each x, y ∈ M, t > 0.

(2) If in addition, both Pt and P̂t have continuous versions for any t ∈ (0, T0), then
pt(x, ∙) and pt(∙, x) are continuous in M for any x ∈ M and t > 0.

(3) If in addition, {Pt} is symmetric: (Ptf, g) = (f, Ptg) for any f, g ∈ L1 ∩ L∞, t ∈
(0, T0), then pt(x, y) is also symmetric:

pt(x, y) = pt(y, x) for each x, y ∈ M, t > 0.

Proof. As shown in the proof of Theorem 2.1, it suffices to consider the case when
T0 = ∞.

(1). Let {Fn} be the regular μ-nest as in Theorem 2.1. Fix t > 0. By (2.12), we
only need to consider the case when x, y ∈ M0 where M0 := ∪∞

n=1Fn. Indeed, since Pt is
positive, we obtain by (4.15) that for any 0 ≤ f ∈ L1,

Qtf
a.e.
= Ptf ≥ 0,

where Qt is as in (4.13). This together with (4.14) and Lemma 3.5(ii) yields that

Qtf(x) ≥ 0 x ∈ M0.

Hence, we obtain by (4.42) that for any x ∈ M0,

pt(x, y) ≥ 0 μ-a.a. y ∈ M0.

Combining this and (2.1), and using Lemma 3.5(ii), we have that pt(x, y) ≥ 0 for any
x, y ∈ M0.

(2). Since Pt have continuous version for any t > 0, we can choose Qt = Pt in Step 1
of the proof of Theorem 2.1. Thus the μ-nest {Fn} can be taken as Fn := M for n ≥ 1,
and the conclusion follows directly from (2.1).

(3). If {Pt} is symmetric, we have Pt = P̂t, and so Qtf(x) = Q̂tf(x) for any f ∈ L1

and x ∈ M . Hence,
q̂t(x, ∙) = qt(x, ∙) for each x ∈ M, t > 0.

It follows from definition (4.39) that

pt(x, y) =
∫

M
qt/2(x, z)q̂t/2(y, z)dμ(z) =

∫

M
qt/2(x, z)qt/2(y, z)dμ(z) = pt(y, x)

for each x, y ∈ M, t > 0. �

The following result is an L2 version of Theorem 2.1.

Theorem 4.3. Let {Pt}t∈(0,T0) be a semigroup on L2(M,μ) for a metric measure space

(M,d, μ), and let {P̂t}t∈(0,T0) be its dual semigroup defined by (2.6), where T0 ∈ (0,∞].
Assume that there exists a countable family S of open sets with M = ∪U∈SU and a function
ϕ : S × (0, T0) 7→ R+ such that, for each t ∈ (0, T0), U ∈ S and each f ∈ L2

‖Ptf‖L∞(U) ∨ ‖P̂tf‖L∞(U) ≤ ϕ(U, t)‖f‖L2 . (4.46)

Then {Pt}t∈(0,T0) possesses an integral kernel pt(x, y) pointwise defined in (0,∞)×M ×M
that satisfies condition (Ap) with p = 2 for some regular μ-nest {Fn}∞n=1 in M , and

pt(x, y) = 0 for any t > 0

whenever one of points x, y lies outside ∪∞
n=1Fn. Moreover, for each t ∈ (0, T0) and any

U ∈ S
sup
x∈U

(‖pt(x, ∙)‖L2 ∨ ‖pt(∙, x)‖L2) ≤ ϕ(U, t). (4.47)
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Proof. Note that by (2.7), for any t ∈ (0, T0),

‖P̂t‖L2 7→L2 = ‖Pt‖L2 7→L2 < ∞,

and so {P̂t} is also a semigroup on L2.
The rest of the proof is similar to that of Theorem 2.1. We omit the detail. �

Remark 4.4. In Theorem 4.3, consider the following condition instead of the assump-
tion (4.46): there exists a function ϕ : M × R+ × R+ 7→ R+ such that, for any t > 0 and
any ball B := B(x0, r),

‖Ptf‖L∞(B) ∨ ‖P̂tf‖L∞(B) ≤ ϕ(x0, r, t)‖f‖L2 , f ∈ L2.

Then (4.47) in Theorem 4.3 becomes that, for any t > 0 and any B := B(x0, r)

sup
x∈B

(‖pt(x, ∙)‖L2 ∨ ‖pt(∙, x)‖L2) ≤ ϕ(x0, r, t).

In particular, by the semigroup property, the above gives an on-diagonal upper estimate :

sup
x∈B

|pt(x, x)| ≤ ϕ(x0, r, t) for any t > 0.

Remark 4.5. The parallel statements on the additional properties of pt(x, y) (positiv-
ity, continuity, symmetry) in Corollary 4.2 corresponding to Theorem 4.3 for a semigroup
{Pt}t∈(0,T0) on the space L2 (instead of on L1) are also true.

5. Applications

In this section we give two applications of Theorem 2.1. One application is to consider a
family of moving semigroups {PB

t }t>0 in L1. We show the existence of pointwise integral
kernel pB

t (x, y) and then look at its limit when B is expanding to the whole space M .
The other application is to consider a non-symmetric Dirichlet form, and we obtain the
existence of the non-symmetric heat kernel and its on-diagonal upper estimate.

Fix T0 ∈ (0,∞]. Let {PB
t }t∈(0,T0) be a semigroup in L1 such that it vanishes outside

B in the sense that
PB

t f(x) = 0 (5.1)

for any t ∈ (0, T0) and f ∈ L1 and μ-almost all x ∈ Bc. A semigroup {PB
t }t∈(0,T0) in L1

is monotone increasing in B if whenever B1 ⊂ B2, we have

PB1
t f ≤ PB2

t f μ-a.e. (5.2)

for any 0 ≤ f ∈ L1 and t ∈ (0, T0), and is positive if

PB
t f ≥ 0 μ-a.e. (5.3)

for any 0 ≤ f ∈ L1 and t ∈ (0, T0).
The following is the first application of Theorem 2.1.

Lemma 5.1. Let T0 ∈ (0,∞] and {PB
t }t∈(0,T0) be a semigroup on L1(M,μ) for a

separable metric space (M,d), which is monotone increasing in B, positive, and satisfies
(5.1). Let {P̂B

t }t∈(0,T0) be defined by (2.6) such that it is a semigroup on L1. Assume that
there exists a function ϕ : M × (0, T0) 7→ R+ such that, for any t ∈ (0, T0), f ∈ L1 and
any metric ball B in M ,

‖PB
t f‖L∞ ≤ ϕ(B, t)‖f‖L1 . (5.4)

Then there exists a function pt(x, y) pointwise defined on (0,∞) × M × M satisfying the
following.

(1) (Measurability) For any t > 0, function pt(∙, ∙) is jointly measurable in M × M .
(2) (Positivity) For any t > 0 and any x, y ∈ M ,

pt(x, y) ≥ 0. (5.5)
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(3) (Semigroup property) For any t, s > 0 and any x, y ∈ M , we have

pt+s(x, y) =
∫

M
pt(x, z)ps(z, y)dμ(z). (5.6)

(4) (Limit kernel) For any t > 0 and any non-negative f ∈ L1,

lim
m→∞

PBm
t f =

∫

M
pt(∙, y)f(y)dμ(y), (5.7)

where {Bm}∞m=1 is any sequence of concentric balls tending to M .

In particular, if ϕ(B, t) in (5.4) is further independent of B: ϕ(B, t) = ϕ(t), then

pt(x, y) ≤ ϕ(t) (5.8)

for any t ∈ (0, T0) and any x, y ∈ M .

Proof. As shown in the proof of Theorem 2.1, it suffices to consider the case when
T0 = ∞. We divide the proof into three steps.

Step 1. Fix a sequence of concentric metric balls {Bm}∞m=1 such that Bm → M

as m → ∞. Consider the semigroup {PBm
t }t>0 on L1. By assumption (5.4), for any

t > 0, f ∈ L1,
‖PBm

t f‖L∞ ≤ ϕ(Bm, t)‖f‖L1 . (5.9)

From this, we have for any t > 0, f ∈ L1

‖P̂Bm
t f‖L∞ = sup

‖g‖L1=1
|(P̂Bm

t f, g)| = sup
‖g‖L1=1

|(f, PBm
t g)|

≤ sup
‖g‖L1=1

‖PBm
t g‖L∞‖f‖L1 ≤ ϕ(Bm, t)‖f‖L1 . (5.10)

Therefore, all the hypotheses in Theorem 2.1 are satisfied for the semigroup {PBm
t }t>0 and

its dual {P̂B
t }t>0. It follows that there exists a regular μ-nest {F (m)

n } of M and a function
pBm

t (x, y) pointwise defined on (0,∞) × M × M satisfying the following properties.

(1) For each t > 0, the function pBm
t (∙, ∙) is jointly measurable in M × M .

(2) For each t > 0 and each x, y in M ,

pBm
t (x, ∙) ∈ C({F (m)

n }) ∩ L1 and pBm
t (∙, y) ∈ C({F (m)

n }) ∩ L1. (5.11)

(3) For each t > 0 and each f ∈ L1,
∫

M
pBm

t (∙, z)f(z)dμ(z) ∈ C({F (m)
n }) and

∫

M
pBm

t (z, ∙)f(z)dμ(z) ∈ C({F (m)
n }). (5.12)

(4) For each t, s > 0 and each x, y in M

pBm
t+s(x, y) =

∫

M
pBm

t (x, z)pBm
s (z, y)dμ(z). (5.13)

(5) For each t > 0, we have
pBm

t (x, y) = 0 (5.14)

whenever one of points x, y lies outside ∪∞
n=1F

(m)
n .

(6) For each t > 0 and each x, y ∈ M ,

|pBm
t (x, y)| ≤ ϕ(Bm, t). (5.15)

(7) For each t > 0, f ∈ L1,

PBm
t f(∙) =

∫

M
pBm

t (∙, y)f(y)dμ(y) μ-a.e. in M. (5.16)

(8) For each t > 0 and each x, y in M ,

pBm
t (x, y) ≥ 0. (5.17)
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All the properties (1)-(7) above are proved in Theorem 2.1 except the property (8),
which follows from Corollary 4.2(i).

Step 2. Without loss of generality, we assume that for all m,n ≥ 1

μ(M \ F (m)
n ) ≤

1
2mn

.

Otherwise, we can take a subsequence satisfying this inequality. By Lemma 3.5(i) and its
proof, we can construct a regular μ-nest {Fn} such that

Fn ⊂
∞⋂

m=1
F (m)

n , n ≥ 1. (5.18)

The set Fn is not empty for large n, since the intersection ∩∞
m=1F

(m)
n has almost the same

measure as M for large n by using the fact that the measure of its complement is small:

μ(
∞⋃

m=1
(F (m)

n )c) ≤
∞∑

m=1
μ((F (m)

n )c) ≤
∞∑

m=1

1
2mn

=
1
n
→ 0 as n → ∞.

Since C({F (m)
n }) ⊂ C({Fn}) for all m ≥ 1, it follows from (5.11) that for any m ≥ 1, t > 0

and x, y ∈ M ,
pBm

t (x, ∙) ∈ C({Fn}) and pBm
t (∙, y) ∈ C({Fn}), (5.19)

whilst by (5.12), for each f ∈ L1,
∫

M
pBm

t (∙, z)f(z)dμ(z) ∈ C({Fn}) and
∫

M
pBm

t (z, ∙)f(z)dμ(z) ∈ C({Fn}). (5.20)

On the other hand, since {PB
t }t>0 is monotone increasing in B on L1 by assumption, we

have for any 0 ≤ f ∈ L1

PBm
t f(x) ≤ P

Bm+1

t f(x) (5.21)

for each t > 0 and μ-almost all x ∈ M . By (5.16), (5.20), (5.21), and Lemma 3.5(ii), we
obtain that for any f ∈ L1

∫

M
pBm

t (∙, z)f(z)dμ(z) ≤
∫

M
p

Bm+1

t (z, ∙)f(z)dμ(z) for x ∈ M0 :=
∞⋃

n=1
Fn.

Therefore, for each t > 0 and every x ∈ M0,

pBm
t (x, y) ≤ p

Bm+1

t (x, y) μ-a.a. y ∈ M.

By (5.19) and using Lemma 3.5(ii) again, this inequality holds for every y ∈ M0.
We now define the function pt(x, y) for t > 0 by

pt(x, y) =

{
lim

m→∞
pBm

t (x, y) for x, y ∈ M0,

0 otherwise.
(5.22)

Step 3. We verify that pt(x, y) defined by (5.22) satisfies all the properties in Lemma
5.1. In fact, the joint measurability of pt(x, y), being a limit of the jointly measurable
functions pBm

t (x, y), is obvious. The positivity (5.5) of pt(x, y) follows from (5.17) and
definition (5.22).

Property (5.7) is also true by using (5.16) and the monotone convergence theorem.
We show the semigroup property (5.6). Note that if one point x or y lies outside the

set M0, then

pt+s(x, y) = 0 =
∫

M
pt(x, z)ps(z, y)dμ(z).

If both x and y belong to M0, then the semigroup property follows from (5.13) and the
monotone convergence theorem.

Finally, if ϕ(B, t) = ϕ(t) for any ball B, we see by (2.13)

pBm
t (x, y) ≤ ϕ(Bm, t) = ϕ(t)
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for all t > 0 and all x, y ∈ M0, thus (5.8) follows by taking m → ∞. The proof is complete.
�

Next we consider the coercive closed form (E ,D(E)) in L2 introduced in [8, Definition
2.4 on p.16], and apply Theorem 2.1 to the semigroup corresponding to (E ,D(E)).

Recall that a coercive closed form (E ,D(E)) in L2 is a bilinear form E defined on
D(E) ×D(E) satisfying that

• D(E) is dense in L2, and is complete in the norm of E1/2
1 where

E1(u) :=
(
‖u‖2

2 + E(u)
)1/2

with E(u) := E(u, u).
• (E ,D(E)) is positive definite : E(u) ≥ 0 for any u ∈ D(E).
• The weak sector condition holds: there exists a constant K such that

|E1(u, v)| ≤ KE1(u)1/2E1(v)1/2

for any u, v ∈ D(E).

For u, v ∈ D(E), we set

Ê(u, v) = E(v, u). (5.23)

In particular, we see Ê(u) = E(u) for any u ∈ D(E). Clearly, if (E ,D(E)) is a coercive
closed form (E ,D(E)) on L2 then so is (Ê ,D(E)). A coercive closed form (E ,D(E)) on L2

is said to be symmetric if E(u, v) = E(v, u) for any u, v ∈ D(E), and to be Markovian if

E(u+ ∧ 1) ≤ E(u) for any u ∈ D(E).

A coercive closed form (E ,D(E)) on L2 is called a Dirichlet form on L2 if it is symmetric
and Markovian, see [8, Definition 4.5 on p.34] or [5, on p.5]. It turns out that a coercive
closed form (E ,D(E)) in L2 is uniquely corresponding to a strongly continuous contraction
semigroup {Pt}t>0 on L2 (cf. [8, Diagram 2 on p.27]) by the relationship

E(u, v) = lim
t→0

(u − Ptu

t
, v
)

(5.24)

for any u, v ∈ D(E). Clearly, the dual semigroup {P̂t}t>0 is unique corresponding to the
coercive closed form (Ê ,D(E)), since for any v, u ∈ D(E),

Ê(v, u) = E(u, v) = lim
t→0

(u − Ptu

t
, v
)

= lim
t→0

(v − P̂tv

t
, u
)
. (5.25)

Moreover, {P̂t}t>0 is also strongly continuous, contractive on L2.
The following says that the Nash inequality associated with a coercive closed form

(E ,D(E)) on L2 will imply conditions (2.10), (2.11) in Theorem 2.1. This conclusion was
proved in [3, Theorem 2.1] when (E ,D(E)) is a regular conservative Dirichlet form in L2.
The following says that this result is still valid for a more general setting.

Lemma 5.2. Let {Pt}t>0 be a strongly continuous contraction semigroup on L2 and let
(E ,D(E)) be the corresponding coercive closed form on L2 determined by (5.24). Assume
that {Pt}t>0, {P̂t}t>0 are bounded in the norm of L1: for all t > 0, f ∈ L1

‖Ptf‖L1 ≤ a‖f‖L1 , (5.26)

‖P̂tf‖L1 ≤ a‖f‖L1 (5.27)

for some constant a > 0. If (E ,D(E)) satisfies the Nash inequality: there exist three
constants λ, ν > 0 and ρ ≥ 0 such that

‖f‖2(1+ν)
L2 ≤ λ

(
E(f) + ρ‖f‖2

L2

)
‖f‖2ν

L1 for all f ∈ D(E) ∩ L1, (5.28)
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then both {P̂t}t>0 and {Pt}t>0 satisfies the L1-L∞ ultra-contractivity: for all t > 0, f ∈ L1

max{‖Ptf‖L∞ , ‖P̂tf‖L∞} ≤ a2

(
λ

ν

) 1
ν

eρtt−
1
ν ‖f‖L1 . (5.29)

Consequently, all the hypotheses in Theorem 2.1 are satisfied for {Pt}t>0 and its dual
{P̂t}t>0, and thus {Pt}t>0 possesses an integral kernel pt(x, y) pointwise defined in (0,∞)×
M × M satisfying condition (Ap) with p = 1, and moreover,

|pt(x, y)| ≤ a2

(
λ

ν

) 1
ν

eρtt−
1
ν (5.30)

for all t > 0 and all x, y in M .

Proof. Let A be the domain of the infinitesimal generator of semigroup {Pt}t>0 on
L2, that is, A is a subspace of L2 that consists of all functions f such that there exists
some g ∈ L2 satisfying

lim
s→0

‖s−1(f − Psf) − g‖L2 = 0. (5.31)

By the Hille-Yosida theorem, the space A is dense in L2 since the semigroup {Pt}t>0 on
L2 is strongly continuous. For each t > 0, if f ∈ A then

Ptf ∈ A,

see for example [8, Exercise 1.9, p. 10].
For t > 0, f ∈ A, we have

d

dt
‖Ptf‖

2
L2 = lim

s→0
s−1 ((Pt+sf, Pt+sf) − (Ptf, Ptf))

= lim
s→0

s−1 ((Pt+sf − Ptf, Pt+sf − Ptf) + 2(Pt+sf − Ptf, Ptf)) (5.32)

= − 2E(Ptf, Ptf), (5.33)

since the first term on the right-hand side of (5.32) tends to zero, whilst for the second,
we see by (5.24) and the fact that Ptf ∈ A,

s−1(Pt+sf − Ptf, Ptf) = −s−1(Ptf − Ps(Ptf), Ptf) → −E(Ptf, Ptf) as s → 0.

Temporally fix f ∈ A with ‖f‖L1 ≤ 1. By (5.26)

‖Ptf‖L1 ≤ a‖f‖L1 ≤ a.

Let
u(t) := e−2ρt‖Ptf‖

2
L2 , t > 0.

Applying (5.28) with f being replaced by Ptf , we see by (5.33)

−
d

dt
u(t) = 2e−2ρt(E(Ptf) + ρ‖Ptf‖

2
L2)

≥ 2e−2ρt ∙
1

λa2ν
‖Ptf‖

2(1+ν)
L2

=
2

λa2ν
e−2ρt(e2ρtu(t))1+ν =

2
λa2ν

e2νρtu(t)1+ν ≥
2

λa2ν
u(t)1+ν .

Integrating this inequality over (0, t), we obtain

u(t)−ν ≥
2ν

λa2ν
t.

Therefore,

‖Ptf‖
2
L2 = e2ρtu(t) ≤ e2ρt

( 2ν

λa2ν
t
)−1/ν

.
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For a general non-zero f ∈ A, we consider function f
‖f‖L1

and have

‖Ptf‖L2 ≤ eρt
( 2ν

λa2ν
t
)−1/(2ν)

‖f‖L1

Since A is dense in L2, we conclude that for any t > 0,

‖Pt‖L1→L2 ≤
( 2ν

λa2ν
t
)−1/(2ν)

eρt. (5.34)

Similarly, we have for any t > 0,

‖P̂t‖L1→L2 ≤
( 2ν

λa2ν
t
)−1/(2ν)

eρt. (5.35)

We show (5.29) by using the semigroup property. Indeed, for any f, g ∈ L1 ∩ L2

(P2tf, g) = (Pt(Ptf), g) = (Ptf, P̂tg)

≤‖Ptf‖L2‖P̂tg‖L2

≤‖Pt‖L1→L2‖f‖L1 ∙ ‖P̂t‖L1→L2‖g‖L1 ,

which implies that

‖P2tf‖L∞ = sup
‖g‖L1≤1

|(P2tf, g)|

≤ ‖Pt‖L1→L2‖f‖L1 ∙ ‖P̂t‖L1→L2 ,

thus showing that
‖P2t‖L1→L∞ ≤ ‖Pt‖L1→L2‖P̂t‖L1→L2 . (5.36)

Similarly, we have
‖P̂2t‖L1→L∞ ≤ ‖P̂t‖L1→L2‖Pt‖L1→L2 .

It follows from (5.36), (5.34), (5.35) that

‖P2t‖L1→L∞ ≤
( 2ν

λa2ν
t
)−1/ν

e2ρt,

which gives, after changing 2t by t, that

‖Pt‖L1→L∞ ≤
( ν

λa2ν
t
)−1/ν

eρt.

The same bound for ‖P̂t‖L1→L∞ is true. Thus (5.29) follows.
Finally, the upper bound of pt(x, y) in (5.30) follows directly from (2.13) where U = M ,

ϕ(U, t) =
( ν

λa2ν
t
)−1/ν

eρt.

The proof is complete. �

In order to apply Lemma 5.2, one needs to verify the contractivity (5.26), (5.27) of the
semigroups {Pt}t>0 and {P̂t}t>0 in the norm of L1, respectively. The following provides a
criterion in terms of the form (E ,D(E)).

Proposition 5.3 ([12, Theorem 1.1.5 on p.7]). Let (E ,D(E)) be a coercive closed form
on L2. Then the following statements are equivalent.

(1) For any u ∈ D(E), the function u+ ∧ 1 ∈ D(E) and

E(u+ ∧ 1, u − u+ ∧ 1) ≥ 0. (5.37)

(2) {Pt}t>0 is sub-Markov: for any f ∈ L2 with 0 ≤ f ≤ 1 μ-a.e., we have 0 ≤ Ptf ≤
1 μ-a.e. for any t > 0.

(3) {P̂t} is positivity preserving and contractive in L1: if f ∈ L1 with f ≥ 0 μ-a.e.,
then P̂tf ≥ 0 μ-a.e. and ‖P̂tf‖L1 ≤ ‖f‖L1 .
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Proof. Note that a coercive closed form (E ,D(E)) is a special closed form introduced
in [12, on page 1] with α0 = 0. Proposition 5.3 follows immediately from [12, Theorem
1.1.5 on p.7] wherein the notions {Tt}t>0, {T̂t}t>0 are used instead of {Pt}t>0, {P̂t}t>0. �

We give an example where all the hypotheses in Lemma 5.2 are satisfied.

Example 5.4. Consider the non-symmetric operator L = Δ−b ∙∇−c on Rn for n ≥ 3,
where the functions b : Rn 7→ Rn belong to the Kato class Kn,2:

Kn,2 := {b : lim
r→0

sup
x∈Rn

∫

|x−y|≤r

|b(y)|
|x − y|n−2

dy = 0},

and c is a positive constant. The Kato class Kn,2 is an extension of spaces Lp when p is
large:

Lp ⊂ Kn,2 if
n

2
< p ≤ ∞. (5.38)

Indeed, if u ∈ Lp with n
2 < p ≤ ∞, then by Hölder’s inequality, for all x ∈ Rn,

∫

B(x,r)

|u(y)|
|x − y|n−2

dy ≤‖u‖p

(∫

B(x,r)
|x − y|−(n−2)qdy

)1/q

(with q =
p

p − 1
)

= ‖u‖p

(

ωn−1

∫ r

0
s−(n−2)q+n−1ds

)1/q

= C(n, p)r2−n/p‖u‖p → 0 as r → 0

since 2 − n/p > 0, where ωn−1 is the area of the unit sphere in Rn, thus showing (5.38).
Let F = W 1,2

0 (Rn) be the usual Sobolev space. The operator L determines a bilinear
form on F × F by

E(u, v) =
∫

Rn

∇u ∙ ∇vdx +
∫

Rn

b ∙ ∇u ∙ vdx + c

∫

Rn

uvdx, u, v ∈ F .

We claim that if the constant c is large enough, then (E ,F) is coercive closed form on
L2(Rn).

To see this, applying [4, Theorem 3.25, p. 91], we have that there exists c0 = c0(n, b) >
0 such that for all u ∈ F ,

∫

Rn

|b(x)|2|u(x)|2dx ≤
1
4

∫

Rn

|∇u|2dx + c0

∫

Rn

|u|2dx. (5.39)

From this and using the elementary inequality ab ≤ 1
4a2 + b2 for a, b ≥ 0, we have for any

u, v ∈ F
∣
∣
∣
∣

∫

Rn

(b(x) ∙ ∇u(x))v(x)dx

∣
∣
∣
∣ ≤ ‖∇u‖2

(∫

Rn

|b(x)|2|v(x)|2dx

)1/2

≤ ‖∇u‖2

(
1
4
‖∇v‖2

2 + c0 ‖v‖
2
2

)1/2

(5.40)

≤
1
4
‖∇u‖2

2 +
1
4
‖∇v‖2

2 + c0 ‖v‖
2
2 .

In particular, for any u ∈ F
∣
∣
∣
∣

∫

Rn

(b(x) ∙ ∇u(x))u(x)dx

∣
∣
∣
∣ ≤

1
2
‖∇u‖2

2 + c0 ‖u‖
2
2 . (5.41)

Denote by D1(u, v) = D(u, v) + (u, v) where

D(u, v) =
1
2

∫

Rn

∇u ∙ ∇vdx.
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It follows by (5.41) that

E(u, u) = 2D(u, u) +
∫

Rn

(b(x) ∙ ∇u(x))u(x)dx + c‖u‖2
2

≥ 2D(u, u) −
(
D(u, u) + c0 ‖u‖

2
2

)
+ c‖u‖2

2

= D(u, u) + (c − c0)‖u‖
2
L2 ≥ D(u, u) ≥ 0 (5.42)

whenever c ≥ c0. From this and using (5.41), we have

E1(u, u) = E(u, u) + ‖u‖2
2 ≥ D(u, u) + ‖u‖2

2 = D1(u, u). (5.43)

On the other hand, it follows from (5.40) that for any u, v ∈ F ,

|E(u, v)|=

∣
∣
∣
∣

∫

Rn

∇u∇vdx +
∫

Rn

(b(x) ∙ ∇u(x))v(x)dx + c

∫

Rn

uvdx

∣
∣
∣
∣

≤‖∇u‖2‖∇v‖2 + ‖∇u‖2

(
1
4
‖∇v‖2

2 + c0 ‖v‖
2
2

)1/2

+ c‖u‖2‖v‖2

≤‖∇u‖2

(

‖∇v‖2 +
1
2
‖∇v‖2 +

√
c0 ‖v‖2

)

+ c‖u‖2‖v‖2

≤ c1D1(u, u)1/2D1(v, v)1/2 (5.44)

for some constant c1 > 0. Combining this with (5.43), we obtain for all u ∈ F

D1(u, u) ≤ E1(u, u) ≤ c1D1(u, u) + ‖u‖2
2 ≤ (c1 + 1)D1(u, u) (5.45)

whenever c ≥ c0. Therefore, F is complete in the norm of
√

E1(u, u) if c ≥ c0, since F is
complete in D1-norm. Clearly, F is dense in L2, and the form (E ,F) is positive definite if
c ≥ c0.

We need to verify the weak sector condition. Indeed, we have by (5.44), (5.45) that
for all u, v ∈ F ,

|E1(u, v)|= |E(u, v) + (u, v)| ≤ c1D1(u, u)1/2D1(v, v)1/2 + ‖u‖2 ‖v‖2

≤ (c1 + 1)D1(u, u)1/2D1(v, v)1/2 ≤ (c1 + 1)E1(u, u)1/2E1(v, v)1/2

whenever c ≥ c0, thus proving the weak sector condition. Therefore, the form (E ,F) is a
coercive closed form in L2(Rn) when c is large enough.

In order to show the Nash inequality, note that for any u ∈ F ∩ L1(Rn),

‖u‖2(1+2/n)
2 ≤ c2D(u, u) ‖u‖4/n

1 .

From this, we have by (5.42)

‖u‖2(1+2/n)
2 ≤ c2E(u, u) ‖u‖4/n

1 ,

thus showing that (E ,F) satisfies the Nash inequality (5.28) with λ = c2, ρ = 0 and ν = 2
n .

We show that {P̂t}t>0 is contractive in L1(Rn). Indeed, for any u ∈ F , we have
u+ ∧ 1 ∈ F , and

u+ ∧ 1 =






1, if u > 1,

u, if 0 < u ≤ 1,

0, if u ≤ 0,

u − u+ ∧ 1 =






u − 1, if u > 1,

0, if 0 < u ≤ 1,

u, if u ≤ 0,

∇(u+ ∧ 1)
a.e.
=

{
∇u, if 0 < u ≤ 1,

0, otherwise,
∇(u − u+ ∧ 1)

a.e.
=

{
0, if 0 < u ≤ 1,

∇u, otherwise.

If follows that

E(u+ ∧ 1, u − u+ ∧ 1) = 0 + 0 + c

∫

{u>1}
(u − 1)dx ≥ 0,
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and condition (5.37) is true. Thus, {P̂t} is contractive in L1 by Proposition 5.3.
It remains to show that ‖Pt‖L1→L1 is uniformly bounded in t. We will show that

‖Pt‖L1→L1 ≤ 1 for all t > 0 (5.46)

when the functions b ∈ Kn,2 further satisfies

esup
Rn

div b ≤ c. (5.47)

In fact, let u := Ptf for any non-negative f ∈ L2. Then

∂

∂t
u = Lu = Δu − b ∙ ∇u − cu,

where ∂
∂tu is understood the Fréchet derivative with respect to the inner product of L2.

Integrating over Rn, we have by (5.47)

d

dt

∫

Rn

u(t, x)dx =
∫

Rn

(Δu(x) − b(x) ∙ ∇u(x) − cu(x))dx

= 0 +
∫

Rn

(div b(x) − c)u(x)dx (integration by parts)

≤ 0.

From this, we see for all t > 0

‖Ptf‖L1 =
∫

Rn

u(t, x)dx ≤
∫

Rn

u(0, x)dx = ‖f‖L1 ,

thus showing (5.46).
Therefore, all the hypotheses in Lemma 5.2 are satisfied where a = 1, and hence, the

semigroup {Pt} associated with the coercive closed form (E ,F) in L2 possesses an integral
kernel pt(x, y) satisfying condition (Ap) with p = 1, and by (5.30) with a = 1, λ = c2,
ρ = 0, ν = 2

n ,

|pt(x, y)| ≤
(c2n

2

)n/2
t−

n
2

for all t > 0 and all x, y in M .
There is a plenty of examples in which functions b ∈ Kn,2 satisfies (5.47), for instance,

b = (f1, f2, ∙ ∙ ∙ , fn) where

fi(x) =
c

n
exp(−|xi|) for x = (x1, x2, ∙ ∙ ∙ , xn) ∈ Rn (1 ≤ i ≤ n),

since each fi ∈ L∞ ⊂ Kn,2 by virtue of (5.38).

In the remainder of this section, we briefly state another application of Theorem 2.1
related with Green function.

Proposition 5.5. Let (M,d, μ) be a metric measure space. Let {Pt}t>0 be a semigroup
on L1 and P̂t = Pt. Assume that {Pt}t>0 possesses an integral kernel qt(x, y) such that
for each t > 0,

|qt(x, y)| ≤ φ(t) (5.48)

for μ-almost all x, y in M , where φ : R+ 7→ R+ is a measurable function. Then there exist
a regular μ-nest {Fn}∞n=1 and a pointwise defined version pt(x, y) of qt(x, y) in (0,∞) ×
M × M , such that the following properties are true: for each t, s > 0 and all x, y ∈ M ,

(1) pt(∙, ∙) is jointly measurable in M × M ;
(2) pt(x, ∙) and pt(∙, y) belong to C({Fn}), and |pt(x, y)| ≤ φ(t);
(3) pt+s(x, y) =

∫
M pt(x, z)ps(z, y)dμ(z);

(4) Ptf(x) =
∫
M pt(x, y)f(y)dμ(y) for μ-almost all x ∈ M .
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Proof. By (5.48), we have for any t > 0, f ∈ L1,

‖P̂tf‖L∞ = ‖Ptf‖L∞ =
∥
∥∫ qt(∙, y)f(y)dμ(y)

∥
∥

L∞ ≤ φ(t)‖f‖L1 .

It follows that all the hypothesis of Theorem 2.1 are satisfied, and Proposition 5.5 follows.
�

Proposition 5.5 has the following advantage. One may define the Green function
G(x, y) as the integral of a heat kernel qt(x, y) with respect to dt, that is,

G(x, y) =
∫ ∞

0
qt(x, y)dt.

However, this integral may not be well defined, because qt(x, y) is defined for μ×μ-almost
all (x, y) ∈ M × M where the null set may depend on t. Proposition 5.5 says that one
can use a pointwise defined version pt(x, y), instead of qt(x, y) itself, to define the Green
function by

G(x, y) =
∫ ∞

0
pt(x, y)dt, (5.49)

since we have a common measurable set N independent of t with μ(N ) = 0, and the
integral in (5.49) makes sense in this way.

6. Proof of Theorem 2.2

In this section we prove Theorem 2.2. We shall use the following results in the proof.

Proposition 6.1 ([5, Lemma 2.1.3 on p.69]). Let (E ,F) be a Dirichlet form on L2.
Given an E-nest {Fk} of M , let F ′

k = supp[1Fk
.μ] for each k. Then F ′

k ⊂ Fk for each
k ≥ 1, and {F ′

k} is a regular E-nest.

For a Dirichlet form (E ,F), a function u is E-quasi continuous if for any ε > 0, there
is an open set G ⊂ M such that cap(G) < ε and u|M\G is finite continuous (cf. [5, on
p.69]).

Lemma 6.2 ([5, Theorem 2.1.2 on p.69]). Let (E ,F) be a Dirichlet form on L2. The
following statements are true.

(i) Let S = {ul, l ≥ 1} be a countable family of E-quasi continuous functions on M .
Then there is a common regular E-nest {Fk} of M such that S ⊂ C({Fk}).

(ii) Let {Fk} be a regular E-nest on M and u belongs to C({Fk}). If u ≥ 0 μ-almost
everywhere on an open set U , then u(x) ≥ 0 for every point x ∈ U ∩

(
∪∞

k=1 Fk

)
.

Lemma 6.3 ([5, Theorem 2.1.3 on p.71]). Let (E ,F) be a regular Dirichlet form on L2.
Then each function u in F has an E-quasi continuous modification ũ, that is, function ũ
is E-quasi continuous and u = ũ almost everywhere in M .

We need to assume that (E ,F) is regular in Lemma 6.3. We begin to prove Theorem
2.2.

Proof of Theorem 2.2. As shown in the proof of Theorem 2.1, it suffices to con-
sider the case when T0 = ∞. We sketch the proof, since the argument is similar to that
for Theorem 2.1. In fact, one needs only to replace μ-nest in the proof of Theorem 2.1
by E-nest here, and the rest argument keeps the same but much simpler since {Pt}t>0 is
symmetric: Pt = P̂t. Let p ∈ [1, 2], and note that {Pt} is contractive on Lq (q ∈ [1,∞]),
that is,

‖Ptf‖Lp ≤ ‖f‖Lq t > 0, f ∈ Lq.

Step 1. We show that there exists a pointwise realization Qtf for Ptf when f ∈ Lp,
t > 0, and also a common regular E-nest {Fn}∞n=1 of M such that for all t > 0 and all
f ∈ Lp,

Qtf ∈ C({Fn}). (6.1)
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Indeed, note that if f ∈ L2 ∩ Lp(M), then

Ptf ∈ F for any t > 0 (6.2)

(cf. [5, Lemma 1.3.3(i) on p.23]). Since (E ,F) is regular, the space F ∩ C0(M) is dense
in C0(M) in the supremum norm. Using the fact that C0(M) is dense in Lp, we see
that F ∩ C0(M) is dense in Lp. Since Lp is separable, there exists a sequence {fk}∞k=1
from F ∩ C0(M) dense in Lp. It follows from (6.2) that the function Ptfk ∈ F for each
t > 0, k ≥ 1, and thus it has an E-quasi-continuous version ht,k by using Lemma 6.3.
Consider the countable family

{hs,k : s ∈ Q+, k ≥ 1},

where Q+ is the set of all positive rational numbers as before. By Lemma 6.2(i), there
exists a common regular E-nest {Fn}∞n=1 such that

hs,k ∈ C({Fn}) for all s ∈ Q+, k ≥ 1. (6.3)

Set M0 := ∪∞
n=1Fn and N = M \ M0. Clearly, μ(N ) = cap(N ) = 0.

We will extend (6.3) to any function f in Lp (not only for fk) by using assumption
(2.17), and then continue to extend it to any real positive t (not only for rationals s) by
using the semigroup property. To do this, similar to (4.5), we have for each x ∈ U in S
and k, j ≥ 1,

sup
x∈U∩M0

|hs,k(x) − hs,j(x)|= sup
x∈U\N

|hs,k(x) − hs,j(x)|

= ‖hs,k − hs,j‖L∞(U) (using hs,k − hs,j ∈ C({Fn})

and Lemma 6.2(ii))

= ‖Psfk − Psfj‖L∞(U) (using hs,k
a.e.
= Psfk ∀k)

≤ϕ(U, s)‖fk − fj‖Lp (using (2.17)). (6.4)

For any f ∈ Lp, there is a sequence {fki
}i≥1 from {fk}k≥1 such that ‖fki

− f‖Lp → 0 as
i → ∞. Thus by (6.4), for each s ∈ Q+ and U ∈ S, the sequence {hs,ki

}i≥1 converges
uniformly to a function, say, Qsf , in U ∩ M0. Since U ∈ S is arbitrary, and S covers M ,
for any s ∈ Q+ and f ∈ Lp, we can define the function Qsf on M by

Qsf(x) =






lim
i→∞

hs,ki
(x) for x ∈ M0 =

⋃

U∈S
(U ∩ M0),

0 for x ∈ N .
(6.5)

It follows by (6.3) that
Qsf ∈ C({Fn}) (6.6)

for all s ∈ Q+, k ≥ 1 and all f ∈ Lp.
Similarly to (4.9), we can prove that

Qs(Pt−sf)(x) = Qs′(Pt−s′f)(x) for every x ∈ M and s, s′ ∈ (0, t) ∩Q+.

Consequently, we can extend Qsf in (6.5) to any positive real number t by defining

Qtf(x) = Qs(Pt−sf)(x), f ∈ Lp, x ∈ M, (6.7)

where s is a positive rational smaller than t. Note that the above formula is consistent
when t is rational.

Then {Qt}t>0 satisfies the following properties.

• For each t > 0, we have
Qt = Pt on Lp.

Moreover, for any x ∈ N and any f ∈ Lp,

Qtf(x) = 0.
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• For each t > 0, x ∈ U ∈ S and each f ∈ Lp, we have

|Qtf(x)| ≤ ‖Ptf‖L∞(U) ≤ ϕ(U, t)‖f‖Lp .

• For all t > 0 and all f ∈ Lp, we have

Qtf ∈ C({Fn}).

• {Qt}t>0 satisfies the semigroup property: for any real t1, t2 > 0, f ∈ Lp and any
x ∈ M,

Qt1+t2f(x) = Qt1(Qt2f)(x).

• Qt is bounded and linear: for each t > 0

‖Qt‖Lp 7→Lp = ‖Pt‖Lp 7→Lp ≤ 1 < ∞,

Qt(af + bg)(x) = aQtf(x) + bQtg(x)

for all x ∈ M , a, b ∈ R and f, g ∈ Lp, and

(Qtf, g) = (Ptf, g) = (f, Ptg) = (f,Qtg).

Step 2. We show that the semigroup {Qt}t>0 possesses an integral kernel qt(x, y).
More precisely, let p′ = p

p−1 ∈ [2,∞] be the Hölder conjugate of p. Then, for each t > 0

and x ∈ U ∈ S, there exists a function qt(x, ∙) in Lp′ such that for any f ∈ Lp,

Qtf(x) =
∫

M
qt(x, y)f(y)dμ(y), (6.8)

‖qt(x, ∙)‖Lp′ ≤ϕ(U, t), (6.9)

and
sup
x∈M

‖qt(x, ∙)‖L1 ≤ 1. (6.10)

Consequently, by (6.9), (6.10) and Hölder inequality, we obtain for any q ∈ [1, p′],

sup
x∈U

‖qt(x, ∙)‖Lq ≤ (ϕ(U, t))(q−1)(p−1) . (6.11)

In particular, for any t > 0, qt(x, ∙) ∈ Lp since p ∈ [1, p′].
Note that the function qt(x, ∙) is defined for each t > 0 and each x ∈ M , and

qt(x, ∙) = 0 in M (6.12)

whenever x ∈ N and t > 0.
Step 3. We construct the desired pt(x, y) by using function qt(x, y). Indeed, we can

define pt(x, y) for any t > 0 and any x, y ∈ M by

pt(x, y) =
∫

M
qt/2(x, z)qt/2(y, z)dμ(z). (6.13)

Note that the integral in the right hand side of (6.13) is well defined by (6.9) and the fact
that qt(x, ∙) ∈ Lp. Similar to (4.42), we have for any t > 0 and any x ∈ M

Qtf(x) =
∫

M
pt(x, z)f(z)dμ(z). (6.14)

Finally, we verify that the function pt(x, y) defined by (6.13) is a heat kernel. We only
need to verify the symmetry and positivity of pt(x, y), and (2.20). Other properties can
be verified as in Step 3 of the proof of Theorem 2.1.

Indeed, symmetry follows directly from the definition (6.13). Positivity can be verified
by the similar arguments in Corollary 4.2(1). It remains to prove (2.20). By (6.8) and
(6.14), we obtain that for any t > 0 and x ∈ M ,

pt(x, ∙)
a.e.
= qt(x, ∙).

This together with (6.11) yields (2.20).
The proof is complete. �
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Remark 6.4. Consider the special case when S = {M}, p = 1 and T0 = ∞ in Theorem
2.2. In this case, by the fact that pt(x, ∙) is quasi-continuous, the inequality (2.19) becomes
the diagonal upper estimate : for any t > 0

pt(x, y) ≤ ϕ(M, t) x, y ∈ M.

This result in this special case was already addressed in [2, Theorem 3.1]. However, the
authors used the joint measurability of the function p0(t, x, y) (whose counterpart is qt(x, y)
in (6.8) in our paper) in (x, y) without proof; see formula [2, (3.5)] and formulas following
it, neither did they prove the joint measurability of pt(x, y) in (x, y) for any fixed t > 0.
Note also that the function M(t) in [2, Theorem 3.1] was assumed to be left continuous.
While, the function ϕ(M, t) in Theorem 2.2 is not assumed to be left continuous.

Remark 6.5. Under the assumption in Theorem 2.2, when S = {M}, one can prove
by duality that condition (2.17) with p = 1 is equivalent to that with p = 2. While in the
present settings, it is not clear that whether they are equivalent or not. Roughly speaking,
if we denote the the function in condition (2.17) by ϕp, then condition (2.17) with p = 1
implies that the heat kernel satisfies the diagonal upper estimate :

pt(x, y) ≤ ϕ1(U, t) t ∈ (0, T0), x ∈ U ∈ S, y ∈ M. (6.15)

While, (2.17) with p = 2 implies that the heat kernel satisfies the on-diagonal upper
estimate :

pt(x, x) = ‖pt/2(x, ∙)‖2
L2 ≤ ϕ2(U, t/2)2 t ∈ (0, T0), x ∈ U ∈ S. (6.16)

Clearly, (6.15) implies (6.16) with ϕ2(U, t) :=
√

ϕ1(U, 2t). While, it is not clear whether
(6.16) implies (6.15) with some function ϕ1 determined by ϕ2.

Remark 6.6. Note that the number p in Theorem 2.2 is assumed to be in [1, 2]. In fact,
under the assumption of Theorem 2.2 but with p ∈ (2,∞), we can follow the arguments
of Lemma 5.1 to obtain all the results of Theorem 2.2 except that pt(x, ∙) ∈ C({Fn}). The
reason is as follows. In the case when p ∈ (2,∞), we have p′ = p

p−1 < 2 < p, then the
combination of (6.9) and (6.10) can not guarantee that qt/2(x, ∙) ∈ Lp as done in the case
when p ∈ [1, 2]. Consequently, by (6.13), the function pt(x, ∙) = Qt/2qt/2(x, ∙)(∙) may not
be in C({Fn}).
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