UPPER ESTIMATES OF HEAT KERNELS FOR NON-LOCAL DIRICHLET FORMS ON
DOUBLING SPACES

JIAXIN HU AND GUANHUA LIU

AsstrAcT. In this paper, we present a new approach to obtainingfth@iagonal upper estimate of the heat
kernel for any regular Dirichlet form without a killing part on the doubling space. One of the novelties is
that we have obtained the weightettnorm estimate of the survival function-1P1; for any metric ball

B, which yields a nice tail estimate of the heat semigroup associated with the Dirichlet form. The parabolic
L2 mean-value inequality is borrowed to use.
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1. MAIN RESULTS

In recent years, there has been a lot of literature devoted to the study of heat kernel estimates, see for
example, Barlow and Perkins for the Sidrski gasket$], Fitzsimmons, Hambly and Kumagdi9)] for
affine nested fractals, Hambly and Kumagai][(see also32]) for post-critically finite self-similar sets,
Barlow and Bassd], [3] for the Sierphski carpets, and Kigam8D, 31] for a certain class of self-similar
sets. Equivalent conditions for two-sided estimates of heat kernels for local Dirichlet forms on metric
measure spaces are given by Grigor'yan, Hu, L2&},[by Grigor'yan and Telcsg6], whilst for non-
local Dirichlet forms by Bass and Levi], by Chen and Kumaga#], [10], and by Chen, Kumagai and
Wang [L1], [12], and by Grigor'yan, Hu and HulP]. Equivalent conditions only for upper estimates
of heat kernels for local Dirichlet forms are given by Andres, Barlayy Ipy Grigor'yan, Hu R1], [22]
(see alsoZ3, Section 6], 5, Section 9] by Grigor'yan, Hu, and Lau), and by Murugan and S&loste
[34], whilst for non-local Dirichlet froms, for example by Carlen, Kusuoka, and Stro@gkand by
Grigor'yan, Hu and LauZ24].
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2 HU AND LIU

In this paper, we are concerned with the heat kernel upper estimate for a regular DirichleEfgrin (
without killing part on a metric space equipped with a doubling measure. Ngd, («) be a metric
measure space, that i8/(d) is a locally compact, separable metric spacearsa Radon measure with
full support. Assume that any open metric ball

B(x,r):={ye M:d(y,x) <r} (1.2)
is precompact Denote byiB := B(x, Ar). Assume thaj is doubling(termedcondition(VD)), that is,
there exists a consta@t> 1 such that, for anx € M and anyr > 0,

V(x,2r) < CV(xr), (1.2)

whereV(x,r) := u(B(x,r)) is thevolumeof the open balB(x, r). For simplicity, we call the above triple
(M, d, 1) adoublingspacelLet R be the diameter of\, d), thatis,
R:= sugd(x,y) : for anyx,yin M}.

The metric space\(, d) considered in this paper may be bounded or unboundéthsR < oo or R = oo.
It is known that ifu is doubling, then there exists a constant 0 such that, for any,y € M and any
O<r<R< o,

V(x,R) d(x,y) + R\"
VoD < C( , , (1.3)
see for exampleZ2, Proposition 5.1]. In particular, for anye M and any O< r < R < oo,
V(x,R) R\*
V(X 1) SC(?) ' (1.4)

We say that theeverse volume doublingondition (RVD) holds if there exist two constar@is> 1,
a1 > 0 such that, foranxe Mandany O<r <R< R,
VR > C‘l(B)m.
V(X r) r
Itis known that if (M, d) is connected and unbounded, then conditdbY implies condition (RVD), see
for example 2, Proposition 5.2].
Lety : [0,00) — [0,o0) be a continuous, strictly increasing function wii0) = 0, y/(c0) = co.
Assume that there exist some constahits 1, 0< 81 < 82 < o such thatforany & r < R< o

4 (R¥ y(R R\
l — — —_—
C (r) <U0 sc(r) . (1.6)
Clearly, condition {.6) is equivalent to the following

(1.5)

1 -1 L
ct (?R)ﬁz < 3—1((?)) < C(?R)ﬁl forany O<r < R< . (1.7)
The functiony is closely related with thevalk dimensiorof a process oM. The typical example is

w(r) =1’

for somepB > 0. For instance, iM = R" theng = 2, which characterizes that a Brownian motion
in R" has the density function satisfying ti&aussianestimate. IfM is the Sierjinski gasket irk?,
theng = :8%‘2 > 2, which characterizes that a Brownian motion on the $iestp gasket has the density
function satisfying thesub-Gaussiamstimate.

Let (8, F) be a regular Dirichlet form i.?. For a non-empty opef2 c M, let 7 (Q) be theclosure
of F N Cp(Q) in the norm ofF, whereCoy(Q) is the space of all continuous functions supporteQinit
is known that if €, ) is regular, ther{&, 7 (Q)) is also a regular Dirichlet form ib?(Q, xz). Denote by
{P2}-0 the heat semigroup ¢&, 7 (). In particular, setP; := P¥}.o whenQ = M.

Let U be any non-empty Borel subset of an open subset M with U € Q. For a numbek > 1, a
function¢ is called ak-cutgf functionof the pair U, Q) if ¢ € ¥ and

0<¢p<kinM, ¢>1inU, ¢ =0inQ°.
We denote by-cutdf(U, Q) the collection of alk-cutoff functions of the pairl, Q).



HEAT KERNEL AND UPPER ESTIMATE 3

Any 1-cutdf function will be simply called acutgf function, that is, a functionp € # such that
0<¢p<1inM,¢=1inU andg = 0in Q°. Denote by

cutoff(U, Q) := 1- cutaf(U, Q).

For any¢ € k-cutaf(U, Q), we have 1A ¢ € cutdf(U, Q) by using the Markov property o&( 7).
Let ¥’ be a vector space defined by

F'={u+c:ueF,c €R}
so that this space contains constants.
We list all the hypotheses to be used in this paper.
e Condition(C): We say that condition (C) holds if the Dirichlet for&,(F) is conservativethat
is, if
Pi1=1in M for eacht > 0. (1.8)
e Condition(FK,): There exist three constarts> 1, v > 0 and¢ € (0, %] such that, for any ball
B with radius O< R < 6R and any non-empty open subskbf B,

C* (uB)Y
e (@) ’ (1.9)

whered1(U) is the bottom eigenvalue defined by
&)

A U)= 1 —.
= 8o ug

Inequality (.9) is called theFaber-Krahn inequality
We introduce conditions (Gcagp (Geap).

e Condition(Gcap): For anye € (0, 1] and any two concentric balB = B(Xo, R), B := B(Xo, R+
r)with 0 < R < R+r < R, there exists somg € (1+&)-cutaf(By, B) such that for any measurable
functionu with u?¢ € F(B),

Cel
EUPg,9) < —— | vPedy, 1.10
(Po.9)< s | uodu (1.10)
whereC is some positive constant independentd8y, B, u.
Note that functiory above is independent af

e Condition(Gcap.): For any two concentric ballBy := B(Xo, R), B := B(xo, R+ r) with 0 < R <
R+r < R, there exists somg € k-cutdf(Bgp, B) such that for any e #/ N L*,

2 L (e
E(U“e, @) < o0 fBu du, (1.11)

whereC > 0 andk > 1 are two constants independentBef B, u.
Condition (Gcap) is slightly stronger than condition (Gcap), called generalized capacity condition
which was introduced in1[9], in the sense that functigfin condition (Gcap) here is independent of
but it may depend on in condition (Gcap) in19].
We introduce condition (ABB).
e Condition(ABB,): Given 0 < { < oo, there exists a consta@ > 0 such that, for any three
concentric ballg := B(Xo, R), B := B(Xo, R+r) andQ := B(Xo, R) with0 < R< R+r <R <R,
there exists somg € cutdf(Bp, B) such that for any € ' N L*,
2 C 2
fu dl'o(e) < {f dr'g(u) + — | u“dy, (1.12)
Q Q y(r) Jo
where the measud o(f) forany f € ¥/ NL* is defined by 2.12) below. We say thatondition
(ABB) is satisfied if condition (ABB) holds for some& > 0.
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Condition (ABB) is named after Andres, Barlow and Bass, who first introduced this elegant condition
in [1], [4] (which was termed theut-gf Sobolev inequalitgherein). The value of constatitin (1.12)
is important, depending on whethge 0 or not. Whert = 0, the energy measutd o (¢) is absolutely
continuous with respect to the measurandM behaves like a Riemannian manifold, whilst wiiea 0,
the energy measuid o(¢) is singular tou, andM behaves like a fractal, se29, Theorem 2.13]. We
will show that condition (ABB) implies condition (ABB) to be stated shortly. Another application of
condition (ABB) is that it implies the conservativeness&f%{), see Lemma.7 below.

For any ballBy := B(xXo, R) with 0 < R < R, let dg, be a tent function sitting 0By given by

H(Bo)w(R) )”2 .
Opg,(X) = IAN|———7—— in M
() (V(XO, X (X0, X)
so that®dg, = 1 on By, whereV(x,y) andy(x,y) for (x,y) € M x M are respectively defined by
V(xy) = V(x.d(xy)) and y(x.y) = ¢(d(x.y)). (1.14)
If condition (VD) holds, then

(1.13)

1Pg,ll3 < Cre(Bo) (1.15)
for some positive constaf independent 0By, see Corollang.2below.
We introduce condition (ABB).

e Condition (ABB.): For any ballBy := B(xo,R) with 0 < R < R, there exists some ¢
cutaf(Bp, M) such that
Cldg, < ¢ < Chg, i M, (1.16)
and, foranyu € ¥’ N L*

1 C
udr s—f 2dr(u +—f 22du, 1.17
fM @ <35 [ P+ oz [ o (117)
whereC > 0 is some constant independentBaf u.

Note that the integrand in the last integral &fX7) is function¢?u? instead of functioru? in (1.12).
Condition (ABB;) will be used in getting condition (S to be stated later on, see Lem@\&.

e Condition(J): The jump kernel(x, y) exists onM x M \ diag, and there exists a constant 0
such that, for any two distinct poinisy in M

C
IJXY) € =——. (1.18)
V(X y)y(x.y)
(For convenience, sé(x, X) = 0 for eachx € M in the sequel.)

Recall the notions of the subcaloric, caloric functions. ILeé an interval irR. A functionu: | — L2
is said to baveakly diferentiableatt € | if for any ¢ € L?, the function ((-), ¢) is differentiable at, that

is, the limit
im (u(t + &) — u(t) , go)

&—0 &

exists. In this case, by the principle of uniform boundedness, there iswame such that

im (Msv) ~ w.¢)

-0

for anye € L2. The vectow is termed theveak derivativef u att, and we writew = %u. For an open
subseQ2 c M, a functionu : | — ¥ is subcaloricin | x Q if uis weakly diferentiable inL? at anyt € |
and if for anyt € | and any nonnegative € 7 (L),

0
(5;U.¢) +E(u(t. ).¢) < 0.
A functionu is said to becaloricin | x Q if the above inequality is replaced by
0
(5;U9) +E(u(t. ).¢) = 0.

We introduce condition (PMY), called thel2-version ofparabolic mean-value inequality
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e Condition (PMV2): There exist three constants C > 0 ands € (0,1] such that, for any
Bo := B(xo0, R) with 0 < R < R and for any functioru : (0, s] - #’ n L*® that is nonnegative,
subcaloric in (0s] x By with s = ¥(R), we have for any > 0

l+v 1 S 1/2
esup U<C(l+& > —f f u(t, -)d dt) + T, 1.19
p ( )(S,U(Bo) s Je, (t,-)du (1.19)

[3.51%(3Bo)
whereT is thetail arising from the jump part and given by

—Ls SUp [ e Uit )@E du if J#0,
T= { HE) (280) % (1.20)

te[3.9]

0 if J=0,
and®g, is the tent function sitting on baBg as defined in1.13. Here the notion

esup u(t, x) := supesupu(t, x).
(t,x)el xQ tel xeQ
Roughly speaking, condition (PMY says that any value of the functienwhich is nonnegative and
subcaloric in (0s] x Bo, over a smaller domai@, := %5, s x (%BO) can be controlled by ith2-mean
value over a larger domai := [3, 5] x By plus a tail term, see Figure The tailT reflects the behavior
of the positive part of function outside the half baljleo, which vanishes in the case when the process
is a difusion, that is, whed = 0.

; S=w(R)
3,
EBO

Q > ls

Bo

X0
Ficure 1. Thel? parabolic mean-value inequality for ba.

We introduce condition (PMY).
e Condition(PMV4): There exist three constartg € (0, %), C > 0 andé € (0, 1] such that, for
any ballBy := B(xo, R) with 0 < R < ¢éR and for any functioru : (0,s] — F’ N L™ that is
nonnegative, subcaloric in (§ x Bp with s = y/(R), we have

1
esup u<C sup (—f u, (t, -)d,u). (1.22)
[s-(CoR), 5 x(CoBo) te[5.9 \H(Bo) Jm
Condition (PMV,) is weaker than condition (PMY, see Lemma.2 below. Condition (PMY) will be
used to derive an on-diagonal upper bound of the heat kernel.
We introducecondition(SL,), called thesurvival estimatén theweighted E-norm
e Condition(SLz): There exists some consta@t> 0 such that, for any > 0 and for any two
concentric ball8By := B(Xp, R), B := B(Xp, r) with 0 < R < r < Rso thatBy c B, we have that,
by abusing the symbolg(Byp) := ¢(R) andy(B) := y(r),

2 2 Y(Bo) t Ct
fB(l— PP1g) @3 du < C,u(Bo)( B " w(B))eXp(w(Bo))‘ (1.22)
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Remark 1.1. Note that (.22 is trivially satisfied if ;5 > C* or if % > C~1 for a constan€ > 0,

since the integral on the left-hand side inZ2) is bounded from above Kig,||2 < Cu(Bo), whilst the
term on the right-hand side is bounded from below8,) (up to constant).

We give an explanation of inequaliti.22 from the probabilistic point of view. Let{) be a Hunt
process associated with the regular Dirichlet fo&nf). Denote byrg thefirst exit timeof the process
{X¢} from a ballB. Then

1-PB1g(x) = 1 - Pyx(X; € B,t < 18) = Px (18 < 1),

which is the probability of the procesXy] to leave ballB before timet. The smaller is this probability,
the higher the probability of the process stayin@iap to timet, or the higher the probability cfurvival
of the process up to time assuming that the process gets killed out&@dd herefore, inequalityl(.22
gives an upper bound of treairvival functionl — PB1g in the norm ofL? with weight ®g, for any two
concentric balldy, B and for any tim& > 0. As remarked above, inequality.22 is meaningful only
whenﬁ is small andBy c goB for a small numbegg € (0, 1), but this is enough to serve our purpose.

Condition (Slp) implies the conservativeness &, (), see Lemm&.7 below. As a by-product,
we obtain the conservativeness of the fo@%) from conditions (ABB)(J) only, without using the
Faber-Krahn inequality. This observation was addresset¥inllheorem 7] for the local Dirichlet form,
see also 11, Theorem 7.12] for the non-local Dirichlet form, on unbounded metric spaces. The issue
of conservativeness is not trivial, and was studied, for examplé8nllemma 4.6] for a bounded or
unbounded metric space and irl] Proposition 3.1] for an unbounded metric space.

Another important application of condition (£Lis that it will, together with condition (PMY), yield
condition (§,2) to be stated in the following, see Lemi@z.

e Condition(S;,2): There exists a positive constatsuch that, for any balB of radiusR with
0<R<coandanyt >0,
Ct )1/2 1
i

e n >B. (1.23)

Inequality (L.23 gives a nice pointwise upper estimate for the survival functienPE1g near the
center of ballB. Condition (§,2) will be used to obtain fi-diagonal upper estimate of the heat ker-
nel, see Lemm#.6 below. Another application of condition {) is that it inmediately implies the
conservativeness of(F) by lettingy(R) — c when the spacé\, d) is unbounded.

Remark 1.2. Let R < oo so that (M, d) is bounded. Thet;1 = 1 in M for anyt > 0, since &, F) is
conservative by Lemma.7 below. In this case, iR > RthenB = B(xo, R) = M, and hence + PP1g =
1-Pi1 =0 and (.23 automatically holds for anyy> 0. Thus, in order to verify{.23, one needs only
consider the case when© R < R. On the other hand, ifl(23 holds for smallR < SR, then it also
holds for largeR > 6R after adjusting the value of constaBtby using the standard covering argument.
Therefore, in order to verifyl(23, one needs only to assume botk R < SR and 0< t < y(6R).

We introduce conditions (DUE) and (UE).

e Condition(DUE): The heat kerngb;(x, y) exists pointwise on (o) x M x M, and there exists
a positive constar® such that

1—Pt5153(

pi(X y) < (1.24)

C
V(xy1(1)
for all x,yin M and all 0< t < y(R).
The above inequalityl(24) is called aron-diagonal upper estimatf the kernelpi(x, y).

e Condition(UE): The heat kerngh(x, y) exists pointwise on (@) x M x M, and there exists a
positive constant such that

1 t
P{xY) < C(V(x, 1) " Yy y)) (1.23)

for all x,yin M and all 0< t < y(R).
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The above inequalityl(25 is called anoff-diagonal upper estimatef the kernelp(x,y). Clearly, we
have (UE)= (DUE).

For any non-empty open subgebf M and any Borel subsét of Q, recall that the capacity Cdp(Q)
for the pair (U, Q) is defined by

CapQ, Q) = inf {&(g,¢) : ¢ € cuta(U, Q)}. (1.26)
We introducecondition(Cap.).
e Condition(Cap.): There exists some constadt> 0 such that for any baB := B(xp, R) with
0<R<R

3 u(B)
Cap(-B,B) < C——. 1.27
zBB) < um (1.27)
Conditions(ABB) and (&) imply condition (Cap) (cf. inequality 8.31) below).

The following is the main result of this paper.

Theorem 1.3. Let (8, F) be a regular Dirichlet form in B without killing part on a doubling space
(M, d, ). Then the following implications are true:

(FK)) + (Geap) + (J<) (FK,) + (Geap) + (J<)
(FKy) + (ABB) + ()
(ABB) + (PMV>) + ()
(ABB.) + (Cap.) + (PMV2) + (J)
(S1/2) + (PMVy) + (J)
(S1/2) + (DUE) + ()
(UE)+(C)
(Geap) + (J),

(DUE) + (RVD) (FK,),

(FK))+ () = (RVD).
Consequently, the following equivalence is true:
(FK,) + (ABB) + (J) © (UE) + (C) + (RVD). (1.28)

U

L L 2 2 T

A complete proof of Theorerh.3is highly non-trivial, which will follow from a series of propositions
and lemmas to be addressed in detail in the following sections. Here we give a flowchart of the proof.

Proof of Theoreni.3. Clearly, (Gecap) = (Gcap.). We have the following implications:
(Gcap) = (ABB) (see Lemm&.3below)

(FK)) + (Gecap) + (J) = (PMV,) (see a forthcoming papetT])
(ABB) + (J<) = (ABB,) (see Lemm&.5 (1.29)
(ABB) + (J<) = (Cap.) (similarto formula 8.31))
(ABB,) + (Cap) + (J<) = (SLo) (see Lemm&.6) (2.30)
(PMV3) + (SL) = (S172) (see Lemma.§)
(PMVy) = (PMV;) (see Lemm&.2) (1.31)
(PMV;) = (DUE) (see Lemmd.3
(S1/2) + () + (DUE) = (UE)+ (C) (see Lemm&.6) (1.32)
(UE)+(C) = (Gcap)+ (J) (see Lemm&b.7)
(DUE) + (RVD) = (FK,) (see Lemm&.8)

(FK,) + (k) = (RVD) (see Lemm&.9).

Finally, the equivalencel(29 follows directly from above. The proof is complete. O
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The main dificulties are to show the implication¥.29, (1.30, (1.3, and .32. The implication
(1.30 is new. The condition (S}) is invisible in the statements of Theordn8. However, this condition
plays an important role in our analysis.

Under conditions (VD), (RVD), the following slightly ffierent equivalence thad.8

(FK,) + (Geap) + (J<) & (UE) + (C)

was addressed for the purely jump Dirichlet fornifin [11] when (M, d) is unbounded with a doubling
measure: by using the probabilistic approach, and I9] when (M, d) is bounded or unbounded with
an Ahlfors-regular measupeandy(r) = r? by using the purely analytic approach, but with condition
(Gcap) replaced by its other variants. Here we present a new analytic approach on the bounded or
unbounded metric space for any regular Dirichlet form without killing part, and therefore, it is of interest
in its own right.

We further study the strongly local Dirichlet form. We introduce condition (&)

e Condition(UE)exp: The heat kernepy(x, y) exists pointwise on (@) x M x M, and there exist
three positive constan( ¢, ¢ such that

c o [ CAXY)
09 < gy e (<5 439
for all x,yin M and all 0< t < y(R), where¥ is defined by
P S _
Y(s) := igg{—d/—l(l//l) /1} (s> 0). (1.34)

As a by-product of Theorerh.3, we obtain the following.

Corollary 1.4. Let(&, ¥) be a regular strongly local Dirichlet form ind.on a doubling spacéM, d, u).
Then the following equivalence is true:

(FK,) + (Gcap) & (UE)exp + (C) + (RVD). (1.35)

Proof. Starting from implication.32 with J = 0, assume that conditionsy($), (DUE) hold. If (€, )
is strongly local and if condition () is satisfied (thus&, 7) is also conservative), we have b32{
Theorem 5.7] that, for any bal := B(x, R) with 0 < R< oo and any O< t < oo,

Pilge < Cexp(—c’t‘P(?)) in %B.

From this and using condition (DUE), we obtaih.§3 by applying the standard semigroup property
argument. The proof is complete. ]

Notation. LettersC,C’ denote positive constants which may change at any occurrence, whilst the
lettersC; fori = 1,2, --- are fixed and are randomly selected to use. The termdffigi(or all) X" means
“for an arbitraryx” but the statement followed isdependenof the choice o.

2. Conortion (ABB)

In this section, we first collect the basic properties on energy measures associated with a regular
Dirichlet form and then derive condition (ABB) from condition (G¢ap
Recall that any regular Dirichlet forn&(¥) in L? admits a uniqueurling-Deny decompositigief.
[16, Theorem 3.2.1 on p.120]):
&(u,v) = EO(u,v) + D, v) + X, v), (2.1)

whereg®) is thediffusion partassociated with a unique Radon measilte (the notionssS(©, dus,,, are
instead used inlfg]):

EL(u,v) = f dr' (u,v), (2.2)
M
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whilst &Y is the jump part with a unique Radon meastjelefined on 1 x M)\diag:

g0 v) = f f (U() — UR)(V) - V)] (2.3)

(MxM)\diag

and finally,&®) is thekilling part associated with a Radon measdke

EX(u,v) = f u(x)v(x)dk(x). (2.4)
M

For simplicity, we will dropdiag in expressiorM x M\diag in .3) when no confusion arises. Note that
&K = 0in our paper and thus
&(u,v) = M, v) + X (u, v). (2.5)
Recall that for any € F, the measurdl', (u) := dI'L(u, u) is well-defined and unique (cf1, lines
above Lemma 3.2.3 on p.126]). Moreover, it satisfies the following properties: far,amy € # N L*,
e thechain rule([16, Lemma 3.2.5 on p.127]):

dr'y (uv, w) = udl (v, w) + vdl' (u, w); (2.6)
e theproduct rule([16, Theorem 3.2.2 on p.129])):
d' (F(u),v) = F'(u)dl'c(u,v) (2.7)

for anyF € C1(R) with F(0) = 0;
e thestrong locality if u € F is constant i andv € ¥ is arbitrary, then

1odlL (u,v) = 0onM (2.8)
(cf. [16, Corollary 3.2.1 on p.128], o8B, formula (3.8) on p.387]), and
dl (us, V) = Lu-0dl(u,v) on M, (2.9)

whereu, = uV 0 (cf. [33, formula (3.14) on p.390]);
e the Cauchy-Schwarz inequalitjor any f € L2(M,T(u)), g € L2(M,T(V))

1/2 1/2
fM [fgldl (u, V) < ( fM fzdFL(u)) ( fM gZer(v)) (2.10)
(cf. [33, on p. 390]).

By the strong locality 2.8) of dI',, we can define for any constamt R
dr (u+a) =drp(u),
so that the chain rule(6) still holds if u,v e ¥’ N L*. Moreover, for anyu € ¥’ N L*, we have
dl'L(jul) =dI (u), (2.11)
sincedl’, (u;,u_) = 0 by using 2.9), (2.8), and
dr(u) = drip(uy +u_,uy +u) =dry(uy) + 2d0° (U, us)+d(un)
= dr(uy)+dl(uo) =dr (u).
We define thaneasure Hg(u, v) by

dla(u, v)(X) = dI'L(u, v)(X) + fg (U(x) — u(y)) (V(x) - v(y))d]. (2.12)

The measurdl'o(u, V) is well-defined for any, v e ¥ andQ c M. For simplicity, denote bglq(u) :=
dI'a(u, u), and in particular, whef = M, we denote byll'(u) := dI'y(u) so that

&E(u,v) = f dl'(u,v) for anyu,v e 7.
M
It turns out (see for exampl&38, formula (3.5) on p.387]) that for anf,u € F' N L*,

f fdr(u) = &(fu,u) — %S(f, u?). (2.13)
M
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The following is general.

Proposition 2.1. Let (8, F) be a regular Dirichlet form in B without killing part, and @'q given by
(2.12 for an open subse® of M. Then, for any fe 7’ N L* with f > 0in Q and for anyp € ¥’ N L*®
with supplp] c U c Q, we have

f fdra(e) = f fdry () + f (F(0) + F)?(0d ] (2.14)
Q U Ux(Q\U)
Proof. Since suppp] c U c Q, we see that

f F(%) (009 — ()2 d]
QxQ

_ o
) (fUXU ’ f(ﬂ\U)xu ’ fux(g\u) " f(g\U)x(g\U)) (e — )" d]

f F(X) (0 — o)) d ] + f F()e2(y)d ] + f F()e?(0d
UxU (Q\U)xU Ux(Q\U)

f F(X) (00 — o)) d ] + f (F() + F())2(0d ]
Uxu Ux(Q\U)
by using the symmetry afj. It follows by definition .12 that

fg fdCa(e) fg fdl(¢) + fg XQf(X)(so(X)—so(Y))zdj

f fdry () + f £ (e() - ¢()2d]
U UxU
" f (F) + F )2 ]

Ux(Q\U)

[ faru@+ [ 109+ fon9dt

U Ux(Q\U)

thus showingZ.14). m|
The following is needed.

Proposition 2.2. Let (&, ) be a regular Dirichlet form in B without killing part. Then, for any open
subset of M and for any ue ¥/ N L*, ¢ € ¥ N L™ with supp¢] c Q,

f wdlo(s) < 4 f %l (U) + 25(Ue, ¢), (2.15)
Q Q
where d'q is defined byZ.12. In particular, whenQ = M, we have
f u?dr(¢) < 4 f ¢*dr(U) + 25(U%, ¢) (2.16)
M M

foranyue F NL*, ¢ € F N L.

Inequality @.16) was addressed ir28] but withu € ¥ N L™ (instead olu € ¥" N L™ here). We sketch
the proof for the reader’s convenience.

Proof. Foranyu e ¥’ N L%, ¢ € ¥ N L*, note that
weF NL® and u’p € F N L.
FordI'L we shall show that

f u2dr (@) < 280 (s, ¢) + 4 f $2dr, (u). (2.17)
Q Q
Indeed,u € L2(M, dI" (¢)), since

fM uPdlL(¢) < [lull3, fM dr(e) = llulz, EV(g) < Ul E(¢) < .
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Similarly, ¢ € LM, dI'L(u)). By (2.6), (2.7), (2.10, it follows that

2 2 _
fM u?dl (o) f;ﬂ dry(ue, ¢) — 2 fM ugpdI' (U, ¢)

IA

9.0+ [ a2 [ s,
2 Jm M
which gives that
f u2dr (¢) < 280 (UPg, ¢) + 4 f ¢2dr (u). (2.18)
M M

Sinceg is supported 2, we see byZ.8) thatdl'. (¢) = 0 outsideQ, and the two integrals ir2(18 are
actually overQ, thus proving 2.17).
Fordj we shall show that

f P)0() - p))2d] < 26926, 6) + 4 f PHUK) —uy)Pdl  (2.19)
QxQ QxQ
Indeed, note that

S0P + PG00~ 00 < 260 ~ SOFRIO00) - F4))

+2(¢%(x) + $*Y)(U(X) — uy))?,

see [L9, the inequality on lines 3-4 on p. 447] with= u andg = ¢. Integrating ovef2 x Q againstd
and using the symmetry afj, it follows that

f W)(¢(x) - p(y)’dj < 2 f (@09 — sMUP(NIB() — P(VB(y))d ]
QxQ QxQ

14 f FX)(U() - u(y)d ] (2.20)
QxQ

On the other hand, using the fact that suipf Q,

fg (009 = SOECI809 ~ IR = ( fM - fw— fgg‘fgg)

= &V, ) - f $* (P9 j - f PWUEY)d] < EN(Pe. 9).
QxQe

QCxQ

Plugging this into 2.20), we obtain 2.19.
Finally, summing upZ.17), (2.19, we conclude byZ.5) that

fg u?dlo(¢) fg Ul (¢) + fg “ W(X)(@(x) — $(y))d ]

IA

26012, 9) + 4 fg ¢2dr, ()

+260(UP¢, ¢) + 4 fgxg $*(x)(u(x) - u())*d]

28U, ¢) + 4 f ¢*dlo(u),
Q
thus proving 2.15). m]
Condition (ABB) follows directly from conditioriGcap, ) by using @.15.

Lemma 2.3. Let(&, ) be a regular Dirichlet form in B without killing part. Then
(Gecap) = (ABB).
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Proof. Let By := B(Xo,R), B := B(Xo,R+ 1) andQ := B(xo,R) be any three concentric balls with
0<R<R+r <R <R Forue¥ nL>® we have by conditioriGcap ) that there exists some
g € k-cutaf(By, B) independent ofi where 1< « < oo, such that

C C
&(u?g, s—fuzd s—fuzd.
995w Jo ¥ = um Jo
Since supgf] c B c Q, it follows from (2.15 with ¢ replaced byg that

f u?dlo(g) 4 f gzdrg(u)+28(uzg, 0))
Q

2dl o (u) + —
4 [ dara+ =
Lety = 1 A g. Clearly,¢ € cutaf(Bo, B). On the other hand, since

dl'i(¢) = dIL (1A g) = LigeqydlL(g) <dI'L(Q)
and sinceg < k¢ in M and|¢(X) — ¢(y)l < 19(X) — g(y)! for anyx,y in M, we have

fQ PdCo(9) fQ WA (¢) + fQ (000 - )2
P2 2 B 2.4 _ 2
f dru(g) + fg . W(%) () - g)2dj = fg Pdlo(g)

2
fg dFQ(U)+ ( )

4% f ¢%dlq (u)+ () Zd,u

thus showing1.12. Hence, condition (ABB) is true. m|

IA

IA

Zdu. (2.21)

IA

IA

Zdﬂ (using @.21))

IA

3. CONSERVATIVENESS AND CONDITION (Sq/2)

In this section we first derive condition (ABBfrom conditions (ABB)(J<). We then derive condi-
tion (SLy) from conditions (ABB)), (J). We next derive the conservativeness of the fofiyi{) from
condition (Slp). Finally, we derive condition () from conditions (PM\), (SL»).

The following is frequently used.

Proposition 3.1. Let B, := B(Xo, R1), B, := B(Xo, Ro) be two concentric balls with < R; < R, < R. If
condition(VD) holds, then there exists some constant Gindependent of B B, such that
d
Sup u(y) < c
xeBy JBg VO YU(XY) ~ ¥(Re — Ra)

In particular, when R | 0, we have for all x in M,

(3.1)

du(y) C B
s f 0<R<R 3.2
L(X,R)C V(X, y)¢(x’ y) = w(R) oranyU< k< ( )

Consequently, if condition®D), (J<) hold, then

sup | J(x.y)du(y) < (3.3)

XeBy Bg

__<
¥(Re —Ry)’
Proof. Setr := Ry — Ry. SinceB§ c B(x,r)¢ for any pointx € By, we see by1.4), (1.6) that

du(y) Cduly) du(y)
fBg V(X Y)¥(X.Y) : fB(x e VOO YW (X, Y) Z fB(x i Bx2mr) V(X Y)U(X, )

V(x, 2™1r) 2mly r\A
n;)\/(x 27 )y (2Mr) ~ ;l/(r) Z( omy ) (Zmr)
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rmh — _~
¢(f) Z w(r)

for a constanC independent ok, Ry, Ry, thus proving 8.1). Estimate 8.2) is clear.
If conditions (VD) (J) hold, we see by3.1) that for anyx € B;

Cauty) c
fsg W) < fBg VoY) = 9Re - Ry

thus showing 3.3). The proof is complete. m|

The L?-norm of the tent functiog, for any ballBy is controlled byu(Bp) if condition (VD) holds.

Corollary 3.2. Let®g, be the tent function sitting on a ballpBlefined as inX.13. If condition (VD)
holds, then1.15 is true.

Proof. Let By = B(Xp, R) with 0 < R < c0. We have by definition1(.13

oeip = [ oRdi+ [ ofd
B(%0.R) B(%0.R)®
_ #(Bo)y(R) : a4
= u(Bp) + fB(XO,R)C Wdﬂ (sincedp, = 1in By)
C R . .
< u(Bo)+ DRE (14 Cou(Bo) (using 6.2 with x= ),
thus showing1.15. m|

3.1. Condition (ABB.). In this subsection, we derive condition (ABBfrom condition (ABB) and
condition ().
Forn > 0, let B, := B(xo, Ry) be an increasing sequence of concentric balls with

0< R, <Ryt < oo.
SetUp = Bt \ By, R; == 3(Ry + Roy1), and let
Bh, = B(X0, Ry) (3.4)
be an intermediate ball so thB} c By, c Bn.1 for eachn > 0. For anyN > 0, let

N
Oy = Z aAn®n (35)

for a sequencéan}’ , of nonnegative numbers, whepg € cutdf(By, By) if Ry1 < R andgn, =1in M
if Rys1 > R(We allov R = o0). Note thatdy € # 1 L™ for anyN > 0, no matteRy;1 < RorRy;1 > R,
by using the fact that & # whenR < o (cf. Proposition7.1in Appendix).

Proposition 3.3. Assume tha(&, 7) is a regular Dirichlet form in [2 without killing part. Let®dy be
defined by 3.5) for a sequence of nonnegative numbgag,’ ,, and Q2 be an open subset of M with
By € Q, N > 1. Then for any nonnegatived ¥’ N L*®

f fdrg(q>N)<Zan f fdrg(wn)+22 Z andm (F)+ f)dj.  (3.6)

n=0 m=n+1 BAx(Q\Bm)

We remark that the two seB;, andQ \ By, appearing in the last integral i8.6) foranym>n+ 1 are
separated by distand®, - R, > %(le — Ry), and this property will be needed in order to control the
jump part.

Proof. By the bilinearity ofdl'q,
N N-1 N

dlo(®n) = dlo Zanson,Zam«pm = > a@dlalpn) +2 ) > anandlalen, em),

n=0 n=0 n=0 m=n+1
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from which we see for any € ¥’ n L*,

[ fdrg(ch)—Zan | oo 25 D) 2 [ taraten v @)

n=0 m=n+1
We look at the last integral |r8(7).
For anym > n + 1, sincepm = 1 in suppn], we see thatll', (¢n, ¢m) = 0 by (2.8), andenem = ¢n in
M. By definition .12, we have foranyn> n+ 1

AT (o o) + fg (n(3) — n¥)) (em() — o)) ]

dla(en, ¢m)

fQ (en(¥)(1 = em(y)) + en()(L - ¢m(x))) d].

Since supppn] c By, and 1- ¢, = 0 on By, it follows that foranym>n+ 1

f fdCa(en, om) f F(X) (en()(L - em(¥)) + en(Y)(1 - ¢m(x))) d]
Q QxQ

f F(¢n()(L - gm(y)d] + f F(¢n()(L — em(¥)d ]
BLx(Q\Bm) (Q\Bm)xBj,

< f f()dj + f f(x)dj (since 0<¢n <1inM)
B x(Q\Bm) (Q\Bm)xB;
= f (f(X) + f(y))dj (using the symmetry ad j). (3.8)
B x(Q\Bm)
Plugging @.8) into (3.7), we obtain 8.6). ]

The following is elementary.

Proposition 3.4. Let{a, := A1a,}n=0 be a sequence of non-increasing numbers given by

— _{ pBu(R " N
B = (W) and A._;)an (3.9)

for balls B, := A"Bo, 1 > 1, By := B(Xo, R) with0 < R< R. Let
by := Z an (k>0) (3.10)
n=k

sothatly = 3.7 yan = 1. If condition(VD) holds, then

I|m {Z an + sup Z an} (3.11)

k=0 b k+1 h=k

Moreover, there exist two positive constants=0C(1) and C := C’(1), both of which are independent
of By, such that

2, @nbn.141(Br) < C(Dpu(Bo). (3.12)
n=0
@, < C'ap<Can1 < C?bpq < C?b, < C3%3, foralln>0. (3.13)

Proof. We show that there exist two positive constants, independent 0By such that for all integers
n,m>0andalll > 1,

e ¢ Bum _ Buem 0oy, (3.14)
am am
Indeed, we have by definitior3(9)

(an+m)2 _ _uBQ™R) _ y("R)
am H(Brem)y(AMMR) ~ (AR

(sinceu(Bm) < 1(Bnim))
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1R 1
- (ﬂn+mR) =CclaAn (using (.6))

whilst by (1.4), (1.6)
Bnum|’ _ B AR\ ATRNE s
am ﬂ(Bn+m)lﬁ(/ln+mR) - ANHMR AN+MR ’

thus showing .14 after extracting the square root.
Thus, for allm > 0 and all2 > 1,

1-1- (0+ﬂ2)/

Y C28m
< Zman < e (3.15)

wherecy, ¢, are the same as i8(14); this is because we have by.14)

Zan Zarmk < ZCz/l PikiZg, #a‘;‘l/z,

whilst the opposite inequality follows from

(B2, C18m
Z an = Z Gmk = Z Cid T 1 @2

In particular, sinc&g = 1 by definition @.9), we see byJ.15 with m = 0 that

1-2- (f¥+ﬁ2)/2 nZ “1-2 /5’1/2 (3.16)
We claim that
L<b=ian<—forallk>0 (3.17)
1— 1-(a+p2)/2 = K £ = 21-B1/2 .
Indeed, for alk > 0 and all1 > 1, we see by3.15 with m = k that
i i G A& Cox
- AT 1-2 P2 A 11— P2
whilst the opposite inequality also follows from
N\ A L & _ G
by = nZ_ll( AT 1o a-@B)2 A~ 71— g-(a+p)/2”
This proves our claim.
We now show 8.11). Indeed, it follows from 8.14) that for allm > 0 and alla > 1,
00 00 = \2 o) 00
2 _ an\”_ 1 =2 1 —B1k/2\2 =2
g = D[R] = s e
n=m n=m k=0 k=0
=2 2 2
= = 3.18
A2(1— 1) M T T o (3.18)
e e (using B.16) (3.19)
< Iy an g B.19). .
Takingm = 0in (3.19 and using the fact th&, = 1, we obtain
o ol (1 _ /l—(a+ﬁ2)/2)2
lim ) a2 <lim =0. (3.20)

A1 Al 1-15

n=0
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On the other hand, for arly> 0, we see by3.17), (3.18 with m = k that

~ 2
Z 2 . (1 - /1—((7z+,32)/2)2 c2 2 - (2)2 (1— A (‘”32)/2) ( ax )2
bﬁﬂ e B C18k+1 1-ah C1 1-ah A+l

1 — p-(e+B2)/2

which implies that
ad (a+B2)/2
1 2 (1= ) ,
lim sup-—— <lim N (tale2) 2 301
ALl k>(§3bk+l nZI:(a” AUl (CZJ 1_ 15t ( 1 ) (3.21)

Combining @.20), (3.21), we obtain 8.11).
We next show3.12). Indeed, by 8.17), (3.19),

Coans1 C2 (Cz/l_ﬂl/za”) B C%an

b1 < S E T IR PR Y e Y (3.22)
Therefore, it follows from 8.9), (1.6) that
2, 2abn B < ) (o) = L Z<A‘ an)u(Bn)
n= n=
G < HBNE a(RY
T Zo SRy < Cs )Zc (os)
< C(Qu(Bo),
thus proving 8.12).
It remains to show3.13. Indeed, we have the following equivalences (up to congtéiy)
— by (3.14 by (3.17)
Bn=At = 8wi = bn
for all n > 0, and thus3.13 follows. The proof is complete. m|
Condition (ABB,) will follow from conditions (ABB), (X).
Lemma 3.5. Let(&, ) be a regular Dirichlet form in B without killing part. Then
(VD) + (ABB) + (J<) = (ABB.). (3.23)

In order to prove the implicatior8(23), one needs to construct a new dtifanction¢ for any ballBy
in M by using condition (ABB). Although the proof is quite technical, the idea of constructing such a new
cutadf functiong is simple (seel, Lemma 2.1 and Lemma 5.1] for the unbounded metric space): starting
from any ballBy, dividing the spacé into finitely many (wherM is bounded) or infinitely many (when
M is unbounded) concentric ballBy},,",, and lettingp, be the cuté function for neighboring concentric
balls By, By, in Bn.1 by using condition (ABB), and then considering a finite or an infinite combination
® = Yns0angn, We will see that such a functiomis the desired by choosing suitable fia@ents{a,}
and suitable radii of ballB,.

Proof. Let0< R< R, and
n A+1
Ry=A"Rand R} := TRn foranyn > 0,
whered > 1 is some number to be chosen later on. Set

Bn = B(X0, Rn), By := B(x0, R;) forn>0
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so thatB, c B, c Bn,1. For thosen's with R,;1 < R, applying condition (ABB) to the triple
(Bn, By, Bn+1), we have for al e 7/ n L™

C
2dlg, ., < f dls,,, ’d
me—l - B (Son) { B (U) TR - RY) '70(% Rﬂ) Bns1 u /J
C() 2
< dar du, 3.24
g Bn+1 (U) " UR (R) Bn+1 - ﬂ ( )
for someyy, € cutof(By, B,), where we have used the fact that
A-1 A-1
W(Ry = Ro) = ¥(—~Rn) 2 ¥(—~R) = cl)u(R) (3.25)

for all n > 0 by using (.6). For thosen’s with R,,1 > RandR < oo, we takeyp, = 1 in M so that 8.24
is automatically satisfied at this time.
Let ¢ be the function defined by

6= ann (3.26)
n=0

where{an}n=0 IS given in Propositior8.4 and {¢n}ns0 defined as above. In order to prove condition
(ABB.), we divide the proof into three steps.
Stepl. We showp e cutdf(Bg, M). For this, we first show € . Consider a partial summation

N
Dy = Z anen.
n=0

It suffices to show that the sequenda}y_, converges t@ in the norm of7". For this, it is enough to
show that{®y} is a Cauchy inF: for anyk > 0,

N+k 00 00
1/2
[Onec = @nlly = || ) anenl| < D allenllr = D an(lenlf+Ewn) T -0 (3:27)
n=N+1 n=N+1 n=N+1
asN — oo.
Indeed, as & ¢n < 1in M, we see
llgnll3 = fM ot = fB odu < 11 (Bf) < (Bnya). (3.28)
On the other hand, letting = 1 in (3.24), we have
C(/l) C(/l)li (Bni1)
drs,., (n) < dp = =2 (3.29)
Bni1 e l//(R) Bni1 'J’(R)

Applying (2.14 with Q = M, f = U, U = Bn,1, ¢ = ¢, where supppn] c B}, c Bn.1, we obtain for all
ueF’'NL®

Jygaren < [ Fdaens [ @00+ Eondoa
NG )+ o (3:30)

B +1
In particular, wheru = 1, it follows that

&len) fdr(%)s dre,.,(¢n) + 2 f dj
M Bni1 B/XBC

COu Broa) o
< MG +2fB’ng+ldJ (using 3.29)
. C@u(Bn)

N ¥(R)

(3.31)
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since, using3.3) with Ry, Ry being respectively replaced IR}, R.:1, we have

o dj / I y)du(y) | du(x) < | %dﬂ(x)
anng+l an fl;;+ jl;n Y(Ror1 — Rp)

COu (B _ C(u(Bnia)
Thus we see by3(28), (3.3]) that

S TUR T u®

C’(A)u (Bn1)
¥(R)

for some constar@ > 0 independent ofi. Therefore, it follows from3.27) that

llgnll + E(gn) < 1 (Bni1) + < Cpu(By)

0]

1/2 -
[Pk — DNlly < Z an (llgnll3 + Elen)) " < > an(Cu(Ba)™?
=N+1 n=N+1

= VC Z p (Bn)t? = e Z ('M(BOW(R) ) u (Bn)Y? (using B.9))

24 A 2ot B R)
= ez Y L& (uwsinge.6)
A 0 Y(AR)LZ = y(ANIR) s

n=N+1

which tends to 0 adl — oo, thus showing thafdy} is a Cauchy inF. Sincedy converges pointwise
to ¢, we see thap € 7, and||®n — ¢llz — 0 asN — co. Noting thatp = 3> ;anen = 1 onBo, we see
¢ € cutat(By, M), as desired.

Step2. We show thatX.17) holds for the functiory defined by 8.26 and{a,}n>o given by @.9), if A
is suficiently close to 1.

Indeed, applying3.6) with f = u?, Q = M and then lettind\ — co, we obtain that for any € #/NL®

f u?dr(¢) Jim f u?dl(®y) (using @.13 sincedy — ¢ in F)
M —JM

a2 f Zdr(¢n)+22 Z anam (P9 + uP(y))d]

n=0 n=0 m=n+1 BB

(f uzderl(‘pn) + f
=0 Bn+1 B x B¢

2 2 ;
+2nZ:C:)m:Zn‘ilanam LEXB% (u (X)+u (y))dj. (3.32)

The second term on the right-hand side 313@Q) is absorbed into the third (double summation) when
m=n+1 becausaﬁ =< anany1 by (3.13. Thus, it follows that

[ warte) < Zan I P, (o) +CO Y. Y 2 Sy (000

A A
e T01e
R

(U0 + Uz(y))di) (by (3.30)

n=0 m=n+1
. W [
- ZO ( Bn+1 TR Y(R) U,y - dﬂ) by 3.29)
WY, D e [ (2094 E)a (3:33)

n=0 m=n+1

The double summation on the right-hand S|de3r8© contains the following term

[ee) o0

> Z 8ndm f wP(xdj < ian[ D am] fB W(x)d] (sinceB, c BS, )
n=0

/ C
n=0 m=n+1 m=n+1 nxBr,
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ganbm [ ) ( [ N dj] du(x) (whereb, = gnano

< cu)i&2 u?d
= VLR :

Bn+l

by using 8.3 and the fact thalb,,1 < a, in (3.13, and hence, it is absorbed into the second term on the
right-hand side in§.33. Rearranging the terms i8.33), we conclude that

2 - Cl(/l)
fM Wdr(g) < gz;) . drw + oo Z fB y
1> S Jo e 000
n=0 m=n+1
= (1 + C;t(R)) >+ C2(/l)|3 (334)

for two positive constant§4(1), C2(1) depending only orl. We estimatéd, |, |3 separately.
Indeed, seUy, := Bm1 \ Bm. For anym > 1, note that

Zanson—zanson+amgom+ Z Bngn

n=m+1

= a{71‘;0m‘|‘bm+1 5 am + b1 = b onUp,
since onUy,, we havep, = 0 for anyn < m— 1 whilstg, = 1 for anyn > m+ 1. Thus
b1 < ¢ <bmonBm1 \ Byforallm> 0. (3.35)

¢

Forly, we have by 3.35

I

[ dl"(u)+2 f dF(u)]
iaﬁ)[ ( ¢ )Zdl“(u) (sinceg = 1 onBy)

bm+1

AN IA Il
3 Il I
PN~ 2,
Mz g%
g 5 2
o £ ~
N‘ T I
M8 MS M
£
~——— 3

2 1 2
MW < g fM $2dr(u) (3.36)

if Ais close enough to 1 by using.@1).
Forl,, we similarly have

l, = iaﬁf uzdﬂ:iaﬁ[f%uzdwzn:f uzd,u]

n=0 Bn+1 n=0 m=0 m
— 1 © 1
< max 2 sup—— 2 f 20Pdu < f 2u?d 3.37

if 1is close enoughto 1.
For I3, we need more care. In fact, forany- 0 and anjk > m> n+1

dist(B}, B) > R~ Ry = (1~ Lot MR 2 (1- 1211 )Re =

and hence, we have by conditionJdhat for anyy € B;

Cau(¥ i
fB ﬁ J(x y)du(x) < Lﬁ VYY) = fB/n V(% SR (R

1-21
2

Rk,




20 HU AND LIU

C'(Qu(Brer) _ C'(A) @)° (Bnia)

V (%o, R¥(Re) 1(Bo)¥(R)

C(bg, u(Bn)

W (USIng Gla, (14))
It follows by exchanging the order of summations that

5 = Y i o [ Ppai= ) > aven [[ ) [[ 30000ty

(using (.3, (3.9)

B, xBS,

n=0 m=n+1 e
= 3 2
S S e (] s
- ;]m:zl ;n tBo)¥ (R Jen, \ b1 u“du (using @.39)
_ X .
H(Bo)u(R) ;Lkaﬂ\Bk¢ i [Z (Bn) m_ZnJrl ]
3 220y - _CWO [ 224
LG k; fBM\quﬂ u“du - Cu(Bo) 7R fB i¢ uPdu, (3.38)
since by 8.12)

Z anu(Bn) Z am < Z anbn.11(Bn) < Cu(Bo).

m=n+1

Therefore, substitutlnga(B&, (3.37, (3.39 |nto (3 34), we conclude that
ly+

fuzdl“(qb) C1(2)

M
1 2 22
8qubdl"(u) w(R)f¢Ud

¥(R)
if Ais close enough to 1, thus proving.{7).
Step3. It remains to showl(.16). Indeed, we have by definitiod (13 that®g, = ¢ = 1 on By, whilst
foranyx € Uy = Bz \ Bm(m = 0)

1(Bo)u(R) )”{( 1(Bo)y(R) )”2:

Pl = (wxo,xw(xo,x) @R
bm = ¢ (by (3.13, (3.39),

thus showing 1.16). The proof is complete. O

IA

|2+C2(/1)|3

IA

am (by definition 8.9))

X

3.2. Condition (SL>). In this subsection, we derive condition (§lfrom conditions (ABB), (k).
Lemma 3.6. Let(&, ) be a regular Dirichlet form in B without killing part. Then
(VD) + (ABB,) + (Cap.) + (J<) = (SLo).

Consequently, we have
(VD) + (Gcap) + (J) = (SLy).

Proof. Let ¢ € (0,1) be a number to be picked up later on. Let
Bo := B(X0, R) and B := B(x, )
be any two concentric balls with® R < r < Rso thatBy c B. Without loss of generality, assume that
0<25R<r<R (3.39)
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Otherwise, condition (SY) is automatically true, since gér <R<r,then

(R _ ¥(307)
u(r) — y(r)
and hence, inequalityl (22) is satisfied by Remark.1
By condition (ABB,), there exists somg € cutdf(Bg, M) such that bothX.16 and (L.17) are satis-
fied. By (1.16), the functiong decays at the same rate as the tent funoigpsitting onBog, and hence,
there exists some numbé&e (0, 1) such that

>C1l>o,

(Bo)y(R)
esup ¢ < esup(Cdg)?=C2 esup — T
(5’150)0 (5’180)(: % XE((S’:LBO)c V(XO’ X)lﬁ(xo’ X)

> H(Bo)y(R) > ¥(R) S RP_L
C C'\—= -
o6 ® =i = (Fr) <3
if ¢ is suficiently small. With a choice af, we can have
esup ¢ < % (3.40)

(671Bo)°

(The set §1Bg)¢ may be empty if 1, d) is bounded. In this case, we have gsup,)c ¢ = 0, and 3.40
is also true.)
Define a functionpg, by
¢, ;= (¢ — @), with a:= esupp > 0. (3.41)
(38)°
Sinces 1By = B(Xo, 6 IR) € B(Xo, 5) = 3B by using 8.39, we see by.40

a=esupp < esup ¢ < }
(B (7'Bo)°
and hencegg, = (¢ — @), > % on By, sinceg = 1 onBy.
We claim thapg, € F(3B), and

dl(¢g,) < L) in M (3.42)

#(Bo)l/f(R))l/z

(BN (3.43)

$By, < ¢ < ¢, + Cb inMWithb::(

whereC is some universal constant independenBgfB.

Indeed, by the Markov property oE(¥), we seepg, = (¢ — a), € F. Clearly,¢g, = 0 in (% B)° by
definition 3.41), thus showingg, € 7—‘(% B) by using [L6, Corollary 2.3.1 on p. 98].

To show .42, noting thatgg,(X) — ¢B,(Y)l < |¢(X) — ¢(y)| for any pointsx,y in M, we have

f IP8o(X) = PBo(IZI(x, Y)u(y) < f $(X) = pMIP I y)du(y),
M M

whilst by (2.9
dr'L(¢s,) = dI'L((¢ — @), ) =Lg>adlL(¢) <dI'L(¢).
It follows by definition @.12) that

dI(¢g,)(X) dr'(¢8,)(X) + { fM (¢8o (0 — PBo(¥))* I(x, Y)du(Y)} du(x)

IA

dr'L(¢)(x) + { fM (¢(x) = $())? I(x, y)d,u(Y)} du(X) = dI'(@)(X)

thus showing§.42.
By definition 3.41) and using {.16), (1.13, we have

$B, < < dp, +a= g, + €SUP < pg, + C esupds,

(38)° (38)°
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1/2
< ¢BO+C(M] < ¢g, + C'b,

u(3BW(3r)
thus showing8.43. This proves our claim.
Note that by conditiofiCap. ), there exists somgs € cutaf(3B, B) such that
Cu (B)
y(r)

E(de) = fM dr(ge) <

We now have three functionss,, ¢, ¢s With concentric ball8y c §71Bg ¢ %B, see Figure.

¢:1 ¢y =1

s

1 3
%o B, 2B 1B B
Ficure 2. Three function®g,, ¢, ¢g and concentric ballBy c 6 1By ¢ %B.

We define the integrdlt) by
0= [ @~ PPLaP o (6> 0)
M

wheregg, is given by 8.41). Then for anyt > 0

0
2 fM (1- PPls) ¢g, (‘a PtBls) du = 26(PP1e. (1 - PP 1) 03,

~28(¢s — PPle. (1- PPlg) ¢4 ) + 26(¢e. (1 - P1g) ¢3)
= 1q(t) + 15(t).
To estimatd (t), note that

d
a' ®

P4, = $g,08 IN M

(3.44)

(3.45)

(3.46)

since suppps,] %B andgg = 1in %B. It follows from (2.16), with u being replaced byg, and¢ by

¢ — PtB].B, that
~28(¢s — PPls, (1- PPle) ¢3)
~28(¢s — PP 1. (¢8 — PPle) ¢4) (using @.46)

4 [ (0a - PPLO?AI0) - | 80000 - PPL).
On the other hand, we see by condition (ABBhat

f (65 - PP1e)?d(6g,) f (¢n - PP1e)2d(#) (using @.42)
M M

11(t)

IA

IA

} 2 _pB Lf _ pBq.\2,2
5 | #dre—PPLe) + oo | (00 - PPL e

(3.47)
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From this and using the fact that < 2(¢Z + C?b?) in M by (3.43, we obtain by 8.47)

}2_ 2 _pB f _ pBq.\2,2
() < fM (2¢ ¢Bo)dr(¢s PPle) + o w(R) (¢85 — PP1e) %97

< C%? f dF(¢B—PFIB)+% f (¢8 — PP1)*(204 + 2C°b)du

= C2%&(¢s - PP1g) + — w(R) {I(t)+C2b2 f (¢s — PB1g)? dﬂ}

< C{—=I(t) + b?’&(PE1 (BO)} 3.48

{ (R)()+ (Pr'ls) + o) (3.48)
for some universal consta@t> 0 independent oBy, B, t, where we have used the facts that
2Cu(B)

&(¢s - PP1s) < 2(&(¢8) + E(PP1e)) < +26(PP1g) (using @.49)

y(r)
and that, using definition df in (3.43 and condition (VD),

. B 4R _ u(Eo)
«//(R)f (e~ PPle) d“—w(R)f VR @D - w0

In order to estimaté,(t), noting thatpg is constant on the support of function{1PE1g) ¢§0 so that

&V (gs, (1- PP1s) ¢3) = O,

it follows that
() = 28(¢e, (1- PPle) 03 ) = 269 (ge, (1 - PE1g) 03 )

- 4f (1—PP15<x)>¢§o(x>{ [ <¢B(x)—¢B(y»a(x,y)dﬂ<y)}du<x)

= 4ﬁ (1- PP1a(X) 6, {f3 (1—¢B(y))J(x,y)du(y)} du(x)
2B By

4

IA

% ﬁa(l — PP1s(X) 5,(¥)du(x) ~ (using (2) and 6.3)

IA

% f ¢%du < % f (Cdg,)?du  (using B.43 and (1.16)

,,Lt( 0)
< C o) (using .15). (3.49)

Therefore, plugging3.49, (3.48 into (3.45), we obtain that for any > 0

ﬂ(Bo)}
w(r) )

—I(t) <)+ 1) <C {ﬁl(t) + b?8(PB1g) +

Integrating over (&) and then using(0) = 0, we have for any > 0

t
fM (1-PPle)*¢d du = I(t)<Cexp(¢(R))(b2 fo E(PS1g)ds+ ”éé'g)t)
Ct \(1(Bo)¢(R)  u(Bo)
- Cexp(wR))( ORRZ0) t)’ (359

where we have used the fact that

b? fo E(PS1e)ds < ”(2%)('?),
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because we havedﬁSHPglgng = 25(PB1g) for any s > 0, which implies that

b2 (' d 2 b? 2
5 [ {-gsIPasli)ds= 5 (u@ - [PErelf)
b? 1 H(Bo)¥(R) _ u(Bo¥(R)

< —u(B) = -u(B)- = .

2" =3O Emwn T 20
Finally, we derive condition (S) from (3.50. Indeed, noting that byl(16), (3.43
®p, < Cp < C(¢g, + Ch) in M,
it follows from (3.50 that for anyt > 0,

fB (1- PP1s) @2 du

t
b? fo &(P1g)ds

IA

f (1- PtBlg)z - C3(2¢3, + 2C?0?)du
B

C(I(t) + bzf(l— PtBlB)zd/J)
B

Ct \(v(R t
w(R))(w(r) 0)
TG

Ct
< (56 + 5) 9 )
thus proving 1.22. The proof is complete. m|

IA

IA

CuBa) exp )+ bouce)

As we have seen, in order to show condition §slwe need to consider any two concentric balls
Bo c B and construct a new functiopg,, belonging to the spacg, vanishing outsidé2 B, but is
comparable with the tent functiobg, sitting on the smaller baBBy.

3.3. Conservativeness.In this subsection, we derive the conservativeness of the 8rf@ ) from con-
dition (SLy) when (M, d) is unbounded. However, i, d) is bounded, we can get the conservativeness
directly, without using condition (S).

Lemma 3.7. Let (&, F) be a regular Dirichlet form in B without killing part. Then the following two
statements are true.

() If (M,d) is bounded, the(&, ) is conservative.
(2) If (M, d) is unbounded and conditidiBLy) is satisfied, thelf&, ) is conservative.

Consequently, if condition&D), (J<), (ABB) are satisfied, the(&, F) is conservative.

Proof. (1) Assume thatll, d) is bounded. By Proposition.1in Appendix, we have E F. It follows
that for anyt > 0

d
G IPEE = —28(PiL, Ptl) = —26(1, Pal) = 0,
which implies that P;1, P;1) = (1, 1), and hence

L(l — Px1)du = (1,1) — (1, Px1) = (1,1) - (P1, Pi1) = O.

Thus,P;1 = 1 for anyt > 0, showing that&, ) is conservative.

(2) Assume thatNI, d) is unbounded and condition (gLis satisfied. LetBy := B(Xg,R) c B =
B(xo, r) be any two concentric balls. Then we have from conditiorpj$hat, using the fact th&21g <
Pil<1inM,

f (1 PLdy
Bo

IA

f (1- PPlg)?du < f(l— PtBlB)ZCDéod,u (sincedg, = 1 in By)
Bo B

s e ) o

Thus,Pi1 = 1 in By. SinceBy is an arbitrary ball, we havB;1 = 1 in M, thus proving that&, ) is
conservative. The proof is complete. O
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3.4. Condition (Sy/2). In this subsection, we derive conditiom g from conditions (PMV), (SLo).

Lemma 3.8. Assume thats, ¥) is a regular Dirichlet form in 12 without killing part. Then
(VD) + (PMV2) + (SL2) = (S1/2)- (3.52)
Proof. In order to show condition ($), it suffices to assume thatt < y(5R) by Remarkl.2, where
6 comes from condition (PMY). For a pointxg in M, let
B := B(xo, R).
We will show that

2

R |
m) in =B (3.52)

l—PFlBSC(

for any 0< R< Rand any 0< t < y(6R).
Indeed, if 2~1(t) > R, then 8.52 is automatically satisfied, since in this case we have
t _YR2)
> >C“>0
ERTG)
for some constar€ > 0. In the sequel, assume that2(t) < R< R.
Letr := y~1(t) and

= B(xo, 1)
so thatBy c 1B. For any oper2 > B, let

u:= P21, — PP1g.

Then the functioru is nonnegative irM and caloric in (Qo0) x B. Applying condition (PM\4) to this
functionu over (Qt) x By, we have

1 vz
esupu(t, - sC—fdsfuzs,-d] + u(s, )2 d

1/2
sup AC ')CDZBOdﬂ] , (3.53)

c’

1
1(Bo) o
since the first term on the nght-hand S|de is controlled by, using the faobthjat 1 in By,

2(& D, du.

whilst the second one is controlled by, using the Cauchy-Schwarz inequalityl argd (

1 . 1 {}
(Bo) f( %BO)CU(S, )P, du (Bo) { fM u(s, )CDBodﬂ} fM D, du

12 1/2
S e

.

1 1/2
2 2
—— Su us(s, )05 d
H(Bo) se[%l?] M () Bo ,u}
for anyse [3,1].
On the other hand, by8(2) and using the fact that< 1 in (0, o) x M,

2(e b2 2 4 _ p(Bo)y(r) p(Bo)y(r)
Jo st oo [ G e m
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It follows from condition (Sl) that, using the fact thadt= (r),

fM UA(s, )@, du fB (s, )@, du + fB (s )R du
: (Boyu(r)
fB (1- PB1g) @3 du + C“—w‘ER)
y(r) s ) (CS) H(Bo)y(r)
C”(B‘))(w(R) *o®) o) TR

o)t Ct\ . u(Box
ZC’“‘(BO)(w(R) * w(@)exp(w(r)) T (3:54)

foranyse [%,t]. Therefore, we obtain fronm3(53), (3.54) that

INA

esup (Pflo-PPls) = esufPf'lo - PPls)
B 20-1() 18,

12
(o sup | U¥(s )@ du
[,U(BO) s[i.4 IM Bo

t 1/2
< c(m) (3.55)

for any 0< t < y(6R) and for anyQ > B > By = B(Xo, ¥ ~(t)), whereC > 0 is some universal constant
independent of, By, B.

We further extend inequality3(55 over %B (not only overB(xo, %w‘l(t))) by using the standard
covering argument. Namely, we show that

1/2
P21, — PB1 sc(L) 3.56
et - PP <[ @59

for any 0< t < y(6R) and any ope®2 > B = B(Xo, R) with 2y 1(t) < R< R.

Indeed, by condition (VD), there is a finite fami{B(z, %r)}i'\il of balls with each centez; in %B
such thats B c UiB(z, 3r), wherer = y~(t). Applying (3.55 with By being replaced bg(z,r) andB
replaced byB; := B(z, %), we have that, using the fact tH%E‘ 1g < PBlgin M,

1/2 1/2
esup(P*1q - PP1g) < esup(PPlg - PP 1g) < C( ) < C’( )
B(Zi,:-er)( ) B(Z@,:—er)( ) lﬂ(R/Z) w(R)

for an arbitrary point;, thus showing3.56).
Finally, since €, ¥) is conservative by PropositioB.7, whenQ is expanding toM, we see that
P1o — Pl = 1. From this and using3(56), we obtain 8.52), as desired. The proof is complete. O

Recall that condition (8,) gives a pointwise upper bound of the survival function PE1g, whilst
condition (SL) gives an upper bound of this function in the weighted norniof The above lemma
says that one needs thé mean-value inequality to obtain pointwise estimate of functierPE1s from
its L? estimate.

4. ON-DIAGONAL UPPER ESTIMATE

In this section, we first derive thie! mean-value inequality from its?-version and then obtain on-
diagonal upper estimate of the heat kernel by usind_theean-value inequality.
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4.1. Mean-value inequality. In this subsection, we derive tHeé" mean-value inequality from itk
version.

Proposition 4.1(L2-version) Let(&, ) be a regular Dirichlet form in B without killing part. Then
(Geap) + (FK,) + (J<) = (PMVy). (4.1)

Consequently, for anyg= B(xo, R) with 0 < R < 6R wheres comes from conditio(FK,) and for any
function u: (0, s] —» ¥’ n L™ that is nonnegative, subcaloric {0, 5] x By with s= ¥(R), we have

esup u< C(»A’max{A T}, (4.2)
[%.51x(3B0)
whered = 122, and T is defined byl(20 and
2 s 5 1/2
A= —ffu t,)d dt] . 4.3
(SU(BO) o Jg, I (4:3)

Proof. The implication 4.1) has been obtained in the forthcoming paper[ and so (.19 is true.

Minimizing the right-hand side ofl(19 in &, for example, taking = (TA)H, we obtain 4.2). The proof
is complete. m]

We derive condition (PMY) from condition (PM\5).
Lemma 4.2(L-version) Let (&, F) be a regular Dirichlet form in B. Then
(PMV3) = (PMV,).

Consequently, we have
(Geap) + (FK,) + (J<) = (PMVy). (4.4)

Proof. Assume that the function : (0,s] — ¥’ n L* is nonnegative, subcaloric in ,(@(R)] x Bo,
whereBy := B(X,R) with 0 < R < éRands = y(R). We shall show that there exist two constants
C > 0,¢0 € (0,1) such that1.2]) is satisfied. The proof is divided into two steps.

Stepl. We will construct domaingDn}ns0, {Q} }n=1 contained in E sl x Bg such thatQ;, ¢ Dy, for
eachn (see Figure3 below), and

esupu = esup u foranyn> 1. (4.5)
Dn-1 Dn—lmQH

Indeed, letrg = R, wherecg € (O, %) is some small number to be chosen. Defheby
1n o L 1)
D,:=|s- = —), S| X B(Xg, >, =) (n>0). 4.6
ni=[s-3 X w5 8| xBlo. X 5) (1= 0) (4.6)
The domaingDy}n>0 is expanding to the domaid,, where
._ 1l lo X TIp
Do =[5 5 X (). 5| X B, % =),

Note that by {.6),

B1 1
CoRY/ Zk) _Cau® W(R) = s @4.7)

1) ro 0o COR (&S}
=)= —)<y(R) X C =
kgol//(zk) kgow( 2k ) —= lp( )kg() ( R 1 _ 2—[81
if ¢ Is chosen to be dficiently small, for example, if
C 1
v

1-25~ L

In this case, we have by (7)
1> lo X TIp S S
D = [s- 3 Z v s| x B(x. PERE |55 x B(xo. 2r0) < [ 5. 5| x B(xo. R, (4.8)

since 2o = 2coR < Rfor ¢g < 3.
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Starting from domain$Dp}n-0, we will inductively construct domaing);, ¢ Qn c Dp}n>1 Such that
(4.5) holds. Indeed, sincB,_1 can be covered by finitely many cylinders of forms

[t B _l//( ) t] 2n+1)
by varying points{, x) in D,_1, we can choose one cylinder (not necessarily unique)
Qi =s-3 —w( 2). 0 x B(xn, 2n+1)Wlth (Sh. %) € D1 (4.9)

such that the essential supremumuobver Dy,_; is attained orDn_1 N Q};, that is, equality 4.5) is
satisfied. With the pointg,, x,) chosen above, we set for> 1

[&——w ). 0] % BOkn, 70). (4.10)

Clearly, Qi c Qn.
We claim thatQ,, c D, for anyn > 1, so that

Qi cQncDhcDy (n>1). (4.11)
See Figure.

v N

_ e (Slvxl)E D() _____________ L S—ll//(r},)
(s,,,) : Dl 12 1

- B N A o N2

N D ,
- ___.,(SHI’an) L I S—%ZV/(J—?)

. D

i E‘ ° 2rn ; I S—%él//(;—‘:)

N |«

Xo
FiGure 3. Points n:1, Xa+1) are in domain®;, c Dp,1 C [3, 5] x Bo.

Indeed, as%,, ) € Dn_1, we see by definition4(.6) of D,,_1 that

S——Zw(zk)<sq<sand d(XO,Xn)Skzzlzk (n>1). (4.12)

Thus forany {, xX) € Qn

S =2 Si2tz2s - }lﬂ(%) (by definition @.10 of Q)
r 1 r
> 2Zw(zk) WD) =5-2 3 w2 (by @.12) (4.13)
k=0
whilst by @.12), (4.10, using the triangle inequality,
n-1 n
fro r
dmw<manmmw<k%+§=;%, (4.14)
=0 =0

thus showingt( x) € Dy. This provexQ, c Dy, as claimed.
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Step2. We show thatX.2]) is satisfied. Indeed, let for> 1
Un(t, X) == u(t + sn - w( %), %). (4.15)

The functionuy, is well-defined for anyt € (0, l/’(@)] and anyx € Bp, sincet + s, — 1//( %) € (0, 9] by
noting that

r r
s > Snzt+Sn—l//(—?1)20+Sn—l//(2—?,)

> s——Zw( ) - (o) (using @.12)

> s—kz_;);l/(%) >s—s=0 (using &4.7)).

Note thatu, is nonnegative, subcaloric in,@@] x B, where
o o
B = B(Xn, ?) and t, := z//(?) forn> 1. (4.16)

Applying (PMV>) to the functioru, with respect to balB,, it follows from (4.2), with By being replaced
by B, andsreplaced by, that for anyn > 1

Mp:=esupu = esup u<esupu (using@.9) (4.17)
Dn-1 Dn-1nQf Qi
= esup u (using definition 4.9))
(51— 3u(R). S0 xB(n, 3127
esup U, (using definition 4.15)
(20w (R)Ix(3B)
esup up <CA(A VT, (4.18)
[ tn]><(2*3n)

whereA,, T, are respectively given by

/2 12
u _ (L 20 _—
(tnﬂ(Bn) ftn an n(t, )dﬂdt] (lin anu (t, )d,udt) (by definition @.10),

1
Tom s sup [ @(t)0fdu=—os  sp [ w()0fde (419
/’l( n) te[ tn] Y (3Bn)° #4(Bn) te[sh—3u(z%).5] ¥ (3Bn)°

wheredg, is the tent function sitting on baB, defined by {.13 but with By replaced byB,.
Note that{Mp}n>1 defined by 4.17) is increasing sinc®,_1 c Dy. For simplicity, set := B(Xo, l'g),

1 r 1

I, = [sn - Elp(z—?]), sn] and Up = 5Bn = B(Xn, o l) forn> 1.

Then foranyn > 1
Tn = f u(t, )3 d
A ,U(Bn) telf) ¢ +() H
Uy (t, X)du(X) O, @
= su =T+ T, 4.20

)telnp(fu\un fM\(Uuun)) V (X, X (%n, X) " " (4.20)

In order to estimaté’,ﬁl), using the fact thalt, x U c [, — w( $), Sn] X B(Xo, ro) € Dp by using @.13
and definition 4.6), we have that for ang > 1
t, X)du(x)
T su Ut )du(x)
" lﬁ( )telnp U\Un VY (Xns X (Xn, X)

0Dy sup(esum) [

tely  U\Un ¢ V(Xn, X)¢(Xn, X)



30 HU AND LIU

< () eSuR) S = /Mo (using 6.2),
on+l

ForT,(f), using the general fact that there exists some con§&tan0 such that
CV(x,y) < V(y,X) < CV(x,y) forall x,yin M,
we have for any € U§,

V0, %) _ V(% x) _ C(d(xO, Xn) + d(%n, X) |

1 HNa
V(¥ X) — V(X %n) d(Xn, X) =C2

(4.21)

(4.22)

sinced(xo, Xn) < 2ro for all n by (4.12 andd(x, x,) > 2-™rq. Similarly, using the monotonicity af

and (L.6), we have for any € U§
Y(x0.X) _ ¢(d(x0, Xn) + d(*n, X))

W0an ST wdown) =

Thus for anyx € U
V (%0, X)¢r(X0. X) < C2e+B2)
V(Xn’ X)lﬂ(xn’ X)

From this, we obtain for ang > 1

o
T@ _
n d/(zn) ?eLIIP

f U, (t, X)du(x)
M\UUUR) Y (%, XY (Xn, X)
f U (t, X)du(x) esu V (X0, X)y(Xo, X)
M\UUUR) Y (X0, X)W (X0, X)  xguuu,) V%, X (Xn, X)
U, (t, X)du(x)
VIO | e Vo 00 (%0, )

sw( 5)su

tely

. C2Ma+p2) < C/one+B2) T

IA

whereT is defined by
U, (t, X)du(x)
T:=y(R) su _—.
VR SR e Voo 090, )

Therefore, substitutingd(23, (4.27) into (4.20, we obtain
To=TP + TP < CER@PIT + Mpyq) (N2 1).
In order to estimaté\, in (4.19, letK be defined by

_ S#(ZBO) f2 ) fB = 6 fQ u

whereQ := [, 5] x Bo. Then

AZ = 1 u < ! u- esupJ (sinceQ, c Dy, by (4.11)
1Qnl Jaq, 1Qnl
< Mn+1ifu (sinceQn c Do € Q)
1Qnl Jo
_ |Q| KM 1< Czn(a+,32)KM
= A1 n+ n+1,
1Qnl
where we have used the fact that, noting th@t, xo) < 2ro by (4.12 andrp = R, s= ¥(R),
|_Q| §V(XO’ R) — lﬁ(R)V(XO, R) C2n(a/+ﬁ2).
Qnl LU (BIVOn. B)  (FIV (e, SR

Therefore, substitutingd(27), (4.25 into (4.18, we obtain

M, C (Zn(a+ﬁ2)KMn+1)0/2 {(Zn(a+ﬁ2)KMn+l)l/2 v (zn(a+,32)'|' + Mn+1)}l—6

IA

IA

1-6
CKY22MFIMIZ(KMny2) 72 v (T + M)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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We claim that there exists some const@nt 0 independent of, By such that
M1 <C(K+T). (4.29)
Indeed, if there exists some integer 1 such thaM, < K or M, < T, then

M; =esupu< M, < K+T,
Do

and hence, estimatd.Q9 is true.
In the sequel, assume thielt, > K v T for all n > 1. Then by 4.28

Mn < CK”2p"M_%/% foralln> 1
whereb := 2**%2, |terating this inequality, we have that, setting: 1 — 6/2 =
M; < (CK”2p)MJ < (CK2b)(CK"2p?M})" <
(C Ke/2)1+7+7 T 2y "

n+1

1+2v
1+3v?

IA

IA

. 1
- (CK"/Z)H b@&?M!. | — C'K asn — o,

sinceu is bounded by a positive constadfu) in (0, s] x By and Mﬁil < C(u)”" - 1 asn — . Thus,
estimate 4.29 is true again. This proves our claim.
Finally, note that by definitior4(.26),

il
= u(t, X)du(x)dt < U t,-)d
$J(BO) ES BO ( ) /’l( ) (BO) te[z S] +( ) /’l
and that, using definitiord(24) andU = B(Xp, o) = B(X0, coR),

U (t, X)du(x) C
T = R < + t, d
VR U Joe Vi, 00,9 = iBo) gy Jyy 9 H I

whereC is a constanC independent oBy. Therefore, it follows from4 29 that

esup u=esupu=M; <C(K+T)< up f u,(t, )du,
[s-Ju(eR.9xBacR) Do “(BO) tel3
thus showing1.21). Hence, condition (PMY) is satisfied. The proof is complete. m|

The result in Lemma.2 can be viewed as a generalization 8] Subsection 4.6]. The idea of the
proof is to construct a sequence of points such that the subcaloric function attains its maximum when
the domains are expanding, which yields an iteration inequality by using%version of parabolic
mean-value inequality, and then we get the desired by solving this iteration inequality.

4.2. Condition (DUE). In this subsection, we derive condition (DUE) from (PMV

Lemma 4.3. The following implication is true:
(PMV;) = (DUE).
Proof. Let xp € M and O< t < (//(ﬁ)._For any nonnegativé € L1 N L*®, letu(s X) = Ps,t_v f(X) for
(s,X) € (0,00) x M, wheret’ =t A ¢(5R) and the constart comes from condition (PMY). Clearly,
' >Ct
for all 0 < t < y(R), whereC is a constant independent bfiR. Thenu is nonnegative, caloric in

(0, ) x M. Applying condition (PM\) to the functionu over cylinder (Qt’] x B(xo, ¥~ 1(t’)), we have
by (1.21) that foru-almost allx € B(xg, coy 1 (C~t)) < B(Xo, Coy1(t)),

Pf(X) = u(t',x) < ﬁt_::gf u(s, X)du(x)
Cl

m”fﬂu (since|[Psflly < [If]l1). (4.30)
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We shall show that fog-almost allx € By := B(xo, R) with0 < R< R

P f(X) < (4.31)

< (1+ R )allfll
1
Voo o) "y ie) T
for all nonnegativef € L' N L*, whereC > 0 is a constant independent B, f, t, x.
Indeed, by the doubling property, we can cover the Baby a finite number of ball&B(&;, Colﬁ_l(c_lt))}i’il
with each centeg; in Bp. It follows from (4.30 with xg being replaced by; that, foru-almost all
ze B(, coy H(C M),

¢ _ C V(. ¢(1)
MO Ve T Ve Ve Tm)
c’ R a .
V(. 0-X0) (1 + %l’_l(t)) [Ifll .z (usingd(Xo.&i) < Rand (L.3)).

Varying zin the ballBy, we obtain 4.31), as desired.
Applying [20, Theorem 2.2], we conclude from.@1) that there exists a pointwise defined heat kernel
pe(X,y) on (Q o) x M x M such that for allk € By, all 0 < t < y~1(R) and ally € M,

Pr(xy) < R )a, (4.32)

¢ (1 +
V(xo, ¥1(t)) YD)
whereC > 0 is some constaﬂt independentxfy, t, R. In particular, lettingR — 0, we obtain that for
all x,yin M and all 0< t < ¥(R),

C
VO pLD) s

thus showing that condition (DUE) is true. The proof is complete. m|

pr(xy) <

5. TRUNCATED DIRICHLET FORM

In order to obtain &-diagonal upper estimate of the heat kerp€k, y), we need to truncate the form
(E,F) by any numbep > 0, and this truncated bilinear forn&¢), #©)) is also a regular Dirichlet
form in L2. In this section, we will show the existence and the upper bound of the heat kgng)
associated with the truncated Dirichlet for&f®, #©) for anyp > 0.

For anyp > 0, let

P (u,v) = O, v) + f f (U(X) = uY))(V(X) = v(¥)I(%, y)du(y)du(x). (5.1)
M JB(x,0)
By (2.5, we see that
&u,v) = P (u,v) + j;l fM (u(x) — Uy (V(X) = v(Y)) Ip (%, Y)du(y)du(x), (5.2)
whereJ,(x,y) is defined by
Jo(XY) = Lidxy)sp1d(X y) forany (x,y) € M x M. (5.3)
By conditions (VD) (J), we have by 3.2)
sup [ 3,000)dut) =sup [ (e y)duty) < — (5.4)
XeM JM XeM J B(x,0)¢ v (P)

for some constar® > 0 independent gb. It follows from [24, Proposition 4.2] that the forn&(?, )
is closable, and its closur&), 7)) is also a regular Dirichlet form oh2. Let {Q; := Q)0 be the
heat semigroup corresponding &, 7©)). The form ¥, 7©)) is p-local, that is,&®)(u,v) = 0 for
anyu,v e 7® such thau is constant in somg-neighbourhooaf supp].
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Proposition 5.1. Let{Q; := Q¥)} be the heat semigroup associated i), 7)) defined by %.1). If
conditions(VD), (J<), (DUE) hold, then{Q;} admits the heat kernelx, y) pointwise defined o0, ) x
M x M for anyp > 0. Moreover,

C Ct
WY = Gocu 1) exp(w(p)) (5:5)

for all x,y in M and all0 < t < ¥(R), where C> 0 is some constant independent of, ty andp.

Proof. For anyp > 0, we see by{.4) that

C
Ko = sup fM B < 7. (5.6)
which implies thatr = 7, since by 6.2)
&) - V()| = ’ fM M(U(X) — u(y))?J, (%, y)du(y)du(x)

< Auasup | (% y)du(y) < 4K, [ull3.
XeM M

Let f € L? be nonnegative iVl andu(t, x) := Q;f(x). Thenuis caloric with respect t&®) in (0, o) x M,
that is, for anyt > 0 and any nonnegative functigne 7 ®

(Su(t).9) + E9(uC, ), 9) = 0.

Fort > 0,xe M, we let
V(t, X) := exp2tK,)u(t, x).
Thenv is subcaloric with respect ® in (0, «0) x M, since for any nonnegative functigne ¥

(VL ).9) + EMLD0) = expl-2K,)| - 2K, (ult ). ) + (Ut ). ) + EV(UE ), )
e [ 0 = w09 - e (x Yk
eXp(—2th){ 2K, (ut, ), ¢)

e [ 10009 + Ut )] 6 )ckty)c()|
< 0
By the parabolic maximum principle (cf2L, Lemma 4.16]), we have
V(t, X) = exp2tK,)Q f(X) < P f(X) for (t, X) € (0, 0) x M,
which combines with§.6) to yield that, for anyt > 0,

IA

Qif < exp(2K,)Pf < exp(%) Pif in M. (5.7)
Therefore, it follows from condition (DUE) that
Ct Ct C
Qf(x) < exp(m) Pef(x) < exp(¢(p)) VCAEO) [1fly (5.8)

forall 0 < t < ¥(R) andu-almost allx in M, whereC > 0 is independent of, x, f,p. Applying
[20, Theorem 2.2], we conclude froms.g) that there exists a pointwise defined heat kerp@d y) on
(0, ) x M x M such that for allk,y € M and all 0< t < y~%(R),

R e by
CETENV) T \wlo))
thus showing§.5). The proof is complete. O
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Proposition5.1 gives an on-diagonal upper estimatecgpfx, y). In order to obtain an f6-diagonal
upper estimate, we need to estimate the@gllzc for any ballB.
For anyt > 0 and any poink in M, we replaceQ; f for any f € L? by its pointwise realization:

Q100 = [ ey Okt (5.9)
This pointwise definition makes sense siip, y) is pointwise defined for eackhyin M andt > 0.

Lemma 5.2. Let {Q; == Q¥)} be the heat semigroup associated wi¥), 7)) defined by %.1). If
conditions(Sy/2), (J<) hold, then for any t- 0 and any0 < p < %‘ with0 < R < oo,

1 B) -1
Czt) ek pointwise in Bxg, 20), (5.10)

(©)

where G > 1is some universal constant independent, & tR andp, and[b] denotes the integer part
of a number b.

Qtlexo,Re < (

Proof. Let B := B(xo, R) be any ball with O< R < 0. By condition (§,2), we have that for all > 0,

ct\"? 1
m) in - B, (5.11)

2
whereC > 0 is some constant independent aind ballB.
Applying Lemmar.2with Q = B, f = 1g in Appendix, we have byS(.4) that for anyt > 0

1—Pt5153(

PE1g - QP1g < 2tesup J(x, y)du(y) < — in B.
xeM JB(x,p)°¢ (P)

From this, we have by5(11) that

t \Y2 ot ) .1
1-QPlg<1- PtlB+w(p)_C1{(l//(R)) +m} in 5B (5.12)

forallt > 0, whereC; > 1 is some constant independent,d andp.
We show 6.10. Without loss of generality, assume th.ﬁc% < 1 with constanC, > 1 to be deter-
mined below; otherwises(10 is automatically true sinc€;1g(x,rec < 1 in M. Fort > 0, let

t \¥2 ¢
“R’”‘Cl{(w(m) m}

which is non-decreasing ine [0, oo) for anyR. Let
r=2p andk:[B]zl.
4o

SinceB® = B(xg, R)¢ c B(xo, kr)¢ and t Ci 1, applying Lemm&.3in Appendix and usingd.12),
we have that irB(xo, 20) = B(Xo, ),

1/2 k-1
Qs < O =0 = ¢lo, " = [Cl {(ﬁ) i ﬁ})

(ch(w:p))l/z]k_l ) (%)%M _ ( % )%<[4—3]—1>

whereC; := v2C; > 1, thus showingq.10 with such a constar@,. The proof is complete. m]

Qlpe

IA

We now derive €-diagonal upper estimate gf(x, y) by using the on-diagonal upper bourkds) and
the tail estimateR.10.
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Proposition 5.3. Let g(x, y) be the heat kernel of thelocal Dirichlet form (§¥), #©)) in L2 for any
p > 0. If conditions(DUE), (S1/2), (J<) hold, then

1 1 Cot \MEHD o
alxy)<C {V<x, 1) G w—l(t))}(zw)) exp(wp)) (5:13)

for any0 < t < ¢(R) and any xy € M with d(x, y) > 8p, where C> Qs a constant independent oty
andp, and G is the same as irg(10.

Proof. Letp > 0 and O< t < ¥(R). Let x, y be any two distinct points iM such that
8 <r:=dxy) <R

By the semigroup property, we have

axy) = fM Q2(% 2022 Y) ()

IA

[ antcdaa@d@+ [ apc e
B(x,5)° B(y.3)°

= g+ o
Forl1, we have by%.5), (5.10 that

1 = f Oh/2(X, 2)Gy2(z Y)du(2) < esupt2(zy) - Qt 1g(x 5)¢(X)
B(x.5)° zeM

Vo i(t/2) exp(%?) | (?(Z)z )%H
- cty ( cot \ilER
V(y, y1(t)) exp( m (p)) : (Zw(p))

’

since 0< p < §.
For I,, we similarly have that

) C Ct) ( Cit
2= fwg)c 222029 < s o855 ) (a)

Therefore, it follows that

NIl

(&)

(XY) < lp+ 1 <C{ 1 + 1 }ex (ﬂ)( Cat )%([é]_l)
AN =BT E=M V) TV k) 2000 ’
thus proving $.13. The proof is complete. m|

6. Proor oF THEOREM 1.3
In this section, we shall finish proving Theoren8 The main task is to derive condition (UE) from
conditions ($2), (DUE), (k).

6.1. Off-diagonal upper bound. In this subsection we will derive condition (UE). We need the follow-
ing result about a generator perturbated by a bounded operator in a Banach space.

Proposition 6.1. [35, Theorem 3.5 and formula (13)Jet A be the (non-positive definite) infinitesimal
generator of a strongly continuous semigroifp}i-o on a Banach spacé{, and let A be a bounded
linear operator fromH to H. Then the semigroufP;}i~0 generated by + A can be expressed by

Po=> Q. (6.1)
n=0
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where ¢ = @, and

" = f t QsAQ" Vds foreach > 1 (6.2)
is well-defined, strongly continuous d?ﬂ. If {Qt}t=0 is further contractive o, then
QM| < == (” ”)n for each n> 0. (6.3)
For anyp > 0, we define the operatak®) by
NMH@:ZJ;)(HW—H@N@JMMmexeM. (6.4)
X,0)¢

The following says tha® is well-defined orl2 if conditions (VD) (J<) hold.

Proposition 6.2. If conditions(VD), (J) hold, then the operator ® defined by §.4) is bounded from
L2 to L2 for eachp > 0, that is

Cs
1A o, 2 = sup 1AL fl|; < —= (6.5)
fll2=1 ¥(p)

for some positive constangz@dependent gb.

Proof. By the Cauchy-Schwarz inequality, we have By that for anyf € L2,
2
IAPIE = 4 [ [(FO) = F00)I, 06 V)du(y)) du(x)
M M

<4 f( [170) = 9P, (x ) - [ 3,06 )h))eb(

'7[’(/)) f f 2(f (%) + f (1)) Y)du(y)du(x)

l//(p) f f F(423,(x, Y)du(y)du(X)

C
=16 f(x)2dx,
(w@)) J 10
thus showing §.5) with C3 = 4C independent of. O

The following gives the relationship between two semigrogfsand{Q;}.

Lemma 6.3. If conditions(VD), (J) hold,, then for any > 0 and any nonnegative & L2,

t
P09 < Q9 +2 [ ds [ Quadi.209- PeT @k (6.6)
M
for any t> 0 andu-almost all xe M, where J(X,y) is defined byg.3).

Proof. Note that

L= 1010, (6.7)
where £, £©) are the infinitesimal generators (% }i0, { Qt}i>0 respectively, and\®) is given by 6.4).
In fact, we have for any € dom(£) and anyg € ¥

(-£f.9) &(f,g) = ¥(f,9) + fM M(f(X) = T = 9(¥)) Jp (%, y)du(y)du(x)

£91.9-2 [ o { [ 16)- 100 y)du(Y)}dﬂ(X)

= (-L¥f,9) - (AY1,q).

SinceA®) is bounded froni.? to L2 by Propositior.2, it follows that dom{) = dom(£®)), and s06.7)
is true.
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Therefore, it follows from PropositioB.1with A = £¥), A = A¥) that
Z Q. (6.8)

whereQ(o) =Qy and
t
" = fo QusAY Q" Yds for eachn > 1. (6.9)

We show 6.6). Indeed, the serieg,’ , Q§”) is absolutely convergent in the norm Bff; 2_,, 2, Since for
anyt >0

[ o-srrq
0

ds (sinceQ is contractive irL?)

L2—L2 L2—L2

t
dssf”A(p)Q(S”)
0
t
< [ 1AVl 2100 Ne e
t
SIA®) | 2,1 2)" .
Sf ||A(p)|||_2_>|_2-%ds (using 6.3)

(AP 2_, 2)™L 1 Cs
ngd —(n+1)'(w<p)

n+1
t) (using 6.5),
which yields that

Zf fo-sA?Q8,. e §<n+1)u(¢,<p) )M oo )~

Exchanging the order of summation and integration, we obtain f6o8) that for anyf € L? and any
t>0,

[ [ t
P f = Z;)Q@f = Qf + Z‘{fo Q-sAPQM Vtds
n= n=

t [Se]
=Qf+ fo Q-sAY {Z Qé”‘”f}ds

n=1
t
= Qf + f QAP Psfds (using 6.8) again). (6.10)
0
On the other hand, we see .4 that for anyt, s > 0 and any nonnegative g € L2
(QAPPst, g) (A¥)Psf,Qug) (using the symmetry o)
J (2 [(Psf(y) = Pst(x)3,(% y)du(y) ) Qua(x)duu(x)
M

(2 [ Pst(1)3,(x y)du(y))Qa()du(x)
M

M

2 [ Psf)( [ Q0T (% y)du(x))du(y)
M M

IA Il
<

2 [ Pst)( S 909Qtd, (- Y)(X)du(x) )a(y)
M M

2 [ 9(9( f Psf()QuI, (- Y)Iu(y) ().
M M

which gives that fop-almost everyk in M,

QADP,f(x) < 2 fM P (y)Qu,( Y)()du(y). (6.11)

Finally, plugging 6.13) into (6.10), we obtain 6.6). ]
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Remark 6.4. Observe that a slightly sharper inequality with respec6t6)(was obtained by using the
complicated Meyer decomposition if], formula (4.34)] wherein the factor “2” ir6(6) is replaced by
“1". Here we give a simpler analytic proof by using an early result in year 1953 by Philis [

The following gives the relationship between the two heat kempélsy) andag:(x, y).

Lemma 6.5. Let p(x,y) be the heat kernel of a regular Dirichlet for(&, 7) in L? without killing part,
and g(x, y) be the heat kernel of thelocal Dirichlet form (E), #®)) in L2 for anyp > 0. If conditions
(VD), (J<), (S1/2) hold, then

Ct
pr(X.y) < ae(x.y) + V)00 (6.12)

forall0<t < 4%21//(,0) andu-almost all xy € M, where C> 0 is some constant independent of,ty
andp, and constant gis the same as irb(10.

Proof. Let {Q; = Q¥)} be a pointwise realization of the heat semigroupgé( 7)) as defined in%.9).
We first show that there exists a const@nt 0 such that for alk,ze M,p > 0and all O< t < 4%21#([)),

C
(D) £ ———, 6.13
whereJ,(x,y) is defined by §.3).
Indeed, noting that for any,z€ M,
C
b2z Y) = Ldy s d¥, 2 € ———,
(2 Y) (dy.22p1 (Y 2 V.20 0)
we see that for any> 0 and anyx,ze M
J-,zx:fo,zd <fx
Qo (- D(X) G (X, ¥) Jp (Y. 2)du(y) O y)v(y’ 0) du(y)
C < f (X y)
= — d
¥(p) kz(:) BOx(k+1)0)\B(xko) V(Y5 P) a
k +2)"Ql c(X), 6.14
where we have used the fact that for gnn B(x, (k+ 1)o) \ B(x, ko)
1 __ 1 Vxp <_© (d(x,y)+p) < _© (k+2)
V(y,p) V(Xp)V(Y,p) = V(Xp) p V(X p)
by virtue of (1.3).
On the other hand, we have from inequalfy1(0), which follows from condition ($2) and condition
(J<), that for anyk > 4,
ko 1(k K
ct \dlEFD) 12D 1\4
Qulaiy() < ( W)) < (z) _ 2(5) (6.15)
if féf) < 1 thatis, if
t 1
— < —. 6.16
W) © ac; (6.10)

(Note thatB(x, ko)® may be empty butd.15 still holds in this case sinc&1g(xky)c = 0in M.)
Thus, plugging .19 into (6.14) and using the fact thad1gx k. < 1 in M, we obtain for any, zin
M and anyp > 0,

C’
QJ((¥) < V)00 {Oszk;g(k + 2)" Qtlp(xkp)c(X) + é(k + z)aQtlB(x,kp)C(X)}
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c . i c’
VO 0)00) [“k;fk”) ()] VX 0)90)

provided thatw < 1 , thus proving 6.13.

Therefore, it foIIows from§.6), (6.13 that for all 0< t < 4—(1:2¢(p) and foru-almost allx € M,

Ptf(X)

IA

t
Qf(+2 [ ds [ Quad,(209 - Pet @@

IA

t
Qf(9+2_esup Qusli(, z)(x)f0 IPsfll ds

s£(0,t],zeM
2C’t
AT+ o o)

for any nonnegativé € L2 n LY, thus proving 6.12. The proof is complete. ]

IA

1111

We remark that inequalitys(12) was obtained inJ1, the proof of Proposition 5.3] on the unbounded
metric space by using the probabilistic approach.
We are now in a position to derive aff-@iagonal upper bound of the heat kerpglx, y).

Lemma 6.6. Let(&, ) be a regular Dirichlet form in B without killing part. Then
(VD) + (S1/2) + (J<) + (DUE) = (UE).

Proof. We shall use.12 to derive condition (UE). Indeed, lety be any two distinct fixed points in

M and O< t < ¢(R). Letr := d(x,y) and r

wherek > 2 is an integer to be determined below. Without loss of generality, assume that
[ > aky HACH) © (o) = ;//(%() > 4Cyt, (6.18)

whereC; is the same as irb(10); otherwise, condition (UE) follows directly from (DUE).
By condition .18, we see that

d(x.y) = 4ko > p = Y H(4Ct) > yH(Y) (6.19)
so thatt < 7= - y(p). It follows from condition (VD) and 1.7) that

V(Y V(xdxy) <C,(d(x,y)) .

w(x )"
Vi)~ Vxy i) T Nyt —C( I ) (6.20)

Exchanging the order of andy and noting tha¥/(x, y) < V(y, x), we similarly have
a/p1
V(x, 31/) < C(w(x, y)) .
V(. y=H(1)) t
On the other hand, we have b§.17), (1.6) that
r
vlo) = () 2 CRWAr) = CKY(x.Y)- (6.22)

Therefore, usingq.20-(6.22), it follows from (5.13 that

C (w(x, y))“/ﬁl( Cat )%
Vixy)\ ot 2C(k)y(x.y)
, Lk_1)-o
C'(K) ( t )z(z o
V(x.y) \g(xy)
<1 by using 6.19. From this, we conclude fron6(12) that

(6.21)

(

IA
NIx

- Ct
(% Y) eXIO(C(k)w(x y))

<

(6.23)

since;ny

Ct
p(xy) < Qt(Xv)/)"‘W
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C'() ( t )%<5—1)—/% . Gl
V(x.y) \g(xy) V(X Y)(x.y)
C(k)t
v 6.24
VX K Y) (624
for any 0< t < ¥(R) andu-almost all pointsx,y in M, provided that

1k a da
—(z-1)-—>1 & k>6+—. 6.25
(-1 7 2 (6.25)

Condition 6.25 will be guaranteed if we take a large intedefor example, itk = 7 + [2—‘1’

|
Finally, for any 0 < t < (R), by using RO, Theorem 2.2], there exists anest{Fn}y>1 on M
independent of such that
(X -) € C({Fn})
for any pointxin M, and thatp;(x,y) = 0 whenever one of points y lies outside the set

Mo = L) Fo.
n=1
Therefore, it follows from §.24) that
pe(x.y) < S
V(X y)(x.y)

for any 0< t < ¢(R) and any two points, y in M, if

1 1 d(x,y)
Hence, condition (UE) is true. The proof is complete. m|

As we have seen, in order to obtaifi-diagonal upper estimate of the heat kerpgk, y), we need to
truncate the jump part of the biliear for&by any positive numbes and then derive upper estimate of
the heat kerneut(p)(x, y) associated with the truncated for@®@, 7)), and finally use the relationship
(6.12 between the original heat semigroygs} and the truncated heat semigro[@ip)}.

6.2. Conditions (Gcap.) and (FK,). In this subsection we will derive conditions (Ggapnd (1) from
conditions (UE) and (C).

Lemma 6.7. Let(&, ) be a regular Dirichlet form in B. Then
(UE) + (C) = (J) + (Gcap).

Proof. We first show the implication (UB» (J). The proof is standard.
Indeed, letA, B be any two disjoint compact subsetsMfand f,g € ¥ N Co(M) be any two functions
supported o, B respectively. By condition (UE), we see that forang A,y € Band any O< t < ¢(R)

Ct

POV < Gty

It follows that

. 1 1
2 fA fB {09aIdix y) = ~&(1,9) = lim (P - £,0) = lim (P, 0)
1
=t [ [ a0k
. 1 Ct
< lmsupy fA fB (990057 HOIH )

C
- fA fB (0 g gy N0
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Since €, ¥) is regular, the functions ; fi(x)gi(y) with fi, gi € # NCo(M), suppffi] Nsupppi] = 0,1 <
i < n, constitute a dense subalgebraGgfM x M \ diag), see for examplel, Lemma 1.4.2 on p.29].
Thus, the measumj has a density functiod on (M x M) \ diag, which satisfies

J(x,y) <

thus showing that condition {Jis true.
It remains to show the implication (UE)(C) = (Gcap). In fact, we will show

(UE) + (C) = (S)) = (Gcap), (6.26)
wherecondition(S,) means that: there exists some cons@nt 1 such that for any & § < % any ball
B’ := B(xo, R) with 0 < R < Rand any 0< t < ¢(R), x € (1 - 6)?B’,

Cst

Y(oR)’
where{P{}} for any ballQ is understood to be a pointwise realization of the heat semigroup, that is

PRf(x) = fM pR(%,y) f(y)du(y)

for anyt > 0 and any poinkin M, whose existence is guaranteed by condition (DUE).
Indeed, for any € (1 - 6)B’, 6 € (0,1] and any O< t < ¥(R), we see by condition (UE) that

f (% y)du(y) < f oe(% YY)
B(xo,R’)°¢ B(x,0R")¢

<
V(X ) (xy)

1-PP1p(x) < (6.27)

Pl (X)

Ct Ct
= ——d _ .
fB(X,m)c Voo O = LRy (6.28)

by using B.2) with Rreplaced byR’, whereC is some positive constant independent, & , 6.
We will derive 6.27) by using 6.28. Indeed, applying.2) in Appendix withQ = M, U = B',K =
(1-%)B andf = 131_5@, We obtain

Pila-ss — PP L5 < Sup esup Pslg ge in M,
=0 (@-B)
which yields that, using condition (C),
1-PP1la e < 1-Plage + SUp esup Pslu sm
Ptl1-s)p)c + SUp esup Psli e (2 in M. (6.29)
(0 z¢((1-9)B)°
We look at the two terms on the right-hand side @20).
Indeed, applying&.28 with B’ replaced by (3 6)B’, we see that
Ct - C't
Y(6(1-0)R) ~ y(oR)
foranyx € (1 - 6)?B’ and any O< t < y(R) if § € (0, 3], whereC’ is independent of, t, 5, B'.
On the other hand, for arge ((1 - %)@)C, we have (+6)B’ c B(z gR’)C, and so usingg.28 again,
Cs < C’s
Y(3R) ~ YOR)

Ptla-o)sye(¥) < (6.30)

I:)S:I-(l—é)B’ (Z) < PslB(L%R/)c(Z) < (631)

Substituting 6.31), (6.30 into (6.29, we have
, y C't C’s Ct
1-PF1g(x) <1- PP L1 s (X) < —— + sup <
t L) YOR) s WOR) ~ Y(R)

foranyx € (1 - 6)?B’, any O0< t < ¢(R) and any « (0, 3], thus proving condition (§).




42 HU AND LIU

We will show that for anyl > 0, anys € (0, 3] and any ballB’ of radiusR’ with 0 < R < R, we have

1>sufah) > inf (ah) > w(s), (6.32)
M (1-0)%B
wherew(s) is given by
W(S) :=1-Cs5 1+ (C5—1+CssH)eS>1-Csst (6.33)
with s = Ay(6R’) and constants > 1 given by 6.27), and the functior is defined by
he= fo " P 1t (6.34)

This can be done by using.@7. Indeed, sinc®f 1z < 1in M, we see by§.349

hsf e‘”tdt:1 in M,
0 A

thus showing the leftmost inequality &3.82).
On the other hand, we have 1§.84), (6.27) that, usings = Ay(6R),

inf (dh) = A inf f e MPE 1t 1 f w(éme—ﬂt(l— Cst )dt
(1-0)28' -0 Jo T Y (oR)

S
f e*(1-Css'X)dx=(1-€%) - Css (1-€°—s°) = w(9),
0

thus showing the rightmost inequality &.82).

Finally, we show that condition (Gcgpis true by using§.32). To do this, we need to construct some
(1 + &)-cutaf(By, B) for anye € (0, 1) and for any two concentric balBy, B.

Indeed, leh be defined by§.34). Thenh € ¥(B’) n L*, which satisfies

&(h, @) + A(h, @) = (1, ¢) = liglly (6.35)
for any nonnegative € 7 (B’). Define the function
Ah Ah

¢ = (6.36)

w(s) T1- Css1+(Cs—1+Cssles’

wheres = y(5R). Clearly, such a function € 7 (B’) because so is, and moreovelh > 1 on (1-6)?B’

by (6.32,
y (6.39 a1 y
P WE Sw Stren

if s> %C& since in this case we have by.83
W) >1-Cssi>(1+e) L
Thus,¢ is one (1+ )-cutdf function for any pair ((1- 6)°B’, B') if we choosel such that

1l+e¢

(SR = —Cs. (6.37)

It remains to show thatl(10) is true for any measurable functianwith u’¢ € #(B’). Indeed, we
have by 6.39 with ¢ = U?¢ € 7—'(B’) that

&(*4.4) = M$a %p.h) = W”Hw¢m—ﬂhuw}
2 (1+&)e'Cs 5 .
< W(S) e, = WSOR) Mu¢du (using 6.37)
2.-1
< %—R“’,)CS f Wodu (sincew(s) > (1 + &)™)
< ?;E;;) f w¢du (since O< & < 1). (6.38)

We shall use.38) to derive (.10.
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Indeed, for any two concentric balBy = B(x, R), B = B(X,R+r)with0 < R< R+r <R, we
chooses = 2(R+r) € (O, 2) so that (1- 6)> > 1-26 = RH ReplacingB’ by B(xp, R+ r) in (6.38 so that

(1-6)*B' = B(Xo, (1~ 6)*(R+T)) > B(x0,R) = Bo
we conclude thap € (1 + &)-cutdf (B, B), and

4Cse1 Cel
EWPP, ¢) < —— e Wodu < —— | u?ed
00 = 56®RA) Jeoren " PH = 0 Ju ¥
for some positive constaf independent of, By, B, u. This proves that condition (Gcgyholds for any
£ € (0,1). The proof is complete. m|

We derive the Faber-Krahn inequality from conditions (DUED), (RVD).
Lemma 6.8. Let(&, ) be a regular Dirichlet form in B. Then
(DUE) + (VD) + (RVD) = (FK,).

Proof. We will show the following

£, ¢ () -

iz~ ¥(R) (M(Q)

for any B := B(Xo, R) with 0 < R < éR and any non-empty open subggif B, wheres € (0, %] is a
small number to be picked up.
Indeed, by the spectral resolution, we see foramy0, f € ¥

&E(f, Psf) = f AeSd(E  f, f) < f AA(Eaf, f) = &(1).
0 0

From this, we have for anly> 0, f € ¥

t t
IF15 - t&(f) < IfII5 - f &(f, Psf)ds=|IflI5 + f dﬂs(f, Psf)ds= (f, Pcf). (6.40)
0 0
On the other hand, we see by condition (DUE) that for any nonneghtivé (Q)

(f,Pif) = f £ f(¥) pe(x, Y)du(y)du(x) < esuppr(x, ) II 117
QxQ X,yeQ
< esupilllfll forany 0< t < y(R). (6.41)

xeo V(X y~H(1))
If0 <t<y(2R), thenforanyxe Q c B
u(B) < V(x, 2R) - ( 2R
Vixy 1) — Vg i) T et

a/p1
< C’( (f )) (using (L.7)),

which combines with§.41) to yield that

)a (using (.4)

a/f1
(f,Pf) < (ZR)) 1112

@l
for some universal consta@, independent oB, Q, t, f.
From this and§.40), it follows that for any nonnegativé € 7 (Q)
Cs (W(ZR) )a/ﬂl 112
@\t !
o, MO (v(2R)
uB) |\t
since|| |5 < u(Q) [|f||5 for any f € L? supported o2 by the Cauchy-Schwarz inequality.

1115 - t&(F)

a/B1
) IflI3 forany 0<t < y(2R) (6.42)
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On the other hand, if(2R) < t < ¢(R), then for anyx € Q
u(B) - V(X 2R) < ( 2R
Vixy 1) — Vg i) T i)

o (4 )M/ﬁz (using (.7),

) (using 0.5)

t
which combines with§.41) to yield that

C 2R a1/B2
(f,Pif) < 4(—‘”( )) 1912,

uB)\ ot
From this and .40, it follows that for any nonnegativé € 7 (Q)

< M0 (v

1115 - t&(F) < ® |t

a1/B2
) IflI5 for anyy(2R) <t < ¥(R). (6.43)

We distinguish two cases

Casel When“((g; < zc . In this case, we have

Bila
t1 ;= y(2R) (ZC I#) < yY(2R).

Applying (6.42 with t = t;, we obtain

Q) (Y (2R) Y/~ 1
||f||2—t18(f)<c4“( )(‘”( )) ||f||§=§||f||§

uB)\ t
and hence,
S = <)
112~ 2t 20(2R) " u(B) w(R) \u(Q)

This proves thatg.39 holds withv = 81/a.
Case2 when2) > L |n this case, we have

u(B) = 2C;
u( ))ﬁz/al

t = y(2R) (2c4— > Y(2R).

(B)

To secure conditioty < ¥(R), we need further to restrict the rangeRfIn fact,if R < co and ifR < 6R
with § < 3 to be chosen, then

< Y(26R) (2Ca)2/*  (sinceu(Q) < p(B))

to

B2/a1
W (2R) (ZC4M)

(B)
26R Y™ P P _
C = (2CaY2 1 y(R) = C (20) (2CaY " y(R) < y(R)
provided thab is suficiently small, for example,

1 11 Hh
C (26)Pt (2C4)P2/r = 5 © 5=_(E (2c4)-ﬂ2/dl) . (6.44)

With this choice of, applying 6.43 with ¢(2R) < t = t, < ¥(R), we obtain

Q 2R al/ﬁZ 1
115 - tza(f)<C“( )(( )) ||f||§=§||f||§

uB)\ t
and hence,
o (11
12~ 2tz 26(2R)\" " u(B) ¥(R \u(Q)

smce"g >1and2 > 2. Thus 6.39 holds again with = 1/ and withs defined by 6.44).
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Therefore, condition (FK) is true withv = 81/ a. m|

6.3. The reverse volume doubling condition.In this subsection, we derive the reverse volume dou-
bling property from the Faber-Krahn inequality.

Lemma 6.9. Let(&, ) be a regular Dirichlet form in B. Then
(FK,) + (J) + (VD) = (RVD).

Proof. We divide the proof into three steps.
Stepl. We show that there exists a constafE (O, %) such that the spacéA d) is (1 — g)-annulus

connected, that is, for any bdl:= B(Xg, R) with 0 < R< R, the annulus
B\ gB # 0. (6.45)

To show 6.45), we distinguish two cases according to whetRer R or not, where constadtcomes
from condition (FK).
Casel when O< R < 6R. Indeed, let € (0, 1) be any number such that

B\ eB=0. (6.46)

ThenQ = ¢B = B is both open and closed, and so it is compact. By Proposhibim Appendix, the
function 1 € ¥(Q). Applying condition (FK) with respect to the paiti, B) = (B, B), we see that

i = = o (53] < i
From this and usin@ = B = B, we have
% < 8(la) = EV(Lo) + EV(L) = EV(10)
- | (a09-1a0)7di=2 [ dj=2 f( ot
< S (using 6.9)
T (wsing06),

which implies thate > 1 — Cé/ﬁz for some universal consta@ > 1. Chooses; € (0,1) to be some

number such that; < 1 - C./*2, for example,

1
&1 = 1- EC:-;/'BZ (647)
It follows that
B(xo, R) \ B(x0, eR) # 0 (6.48)

for any ballB of radiusR with 0 < R < sRand for any 0< & < &1 with &1 given by 6.47).
Case2 whenR < o andsR < R < R. Then, noting thaB = B(xo, R) > B(xo, %ﬁ/4) and

£1(30)

B
4 b

B(xo. 1 (30R/4) ) > B(x0, £130R/4) =
we see from§.48), with R being replaced by&R/4, that

B\ (81(35)

4
Therefore, letting = al3) - &1, we conclude thatg 45 holds with thiseg for any ballB of radius

4
Rwith0<R<R

B) 5 B(xo, 36R/4) \ B(xo, &1 (35?{/4)) £ 0.
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Step2. We show that there exist two constasgs (0, ;11), Co > 1 such that, for any baB of radiusR
with 0 < R < R, we have

w(B)
2(50B) >Co (6.49)

by using condition§.45).

Indeed, leB := B(xp, R). By condition 6.45, the seB \ gB is not empty, and so there exists a point
yin B\ £B such that the two ballB(xo, 2 R) andB(y, 3R) are disjoint, but both of which are contained
in ball B(xo, (1 + 2)R). From this, we see that

V(x0. (1 + 8—20)R) > V(xo, 8—20R) +V(y, ‘9—2°R).

On the other hand, using.@) and the fact thad(xp, y) < R, we have

V(xo. 2R) . (R+ 2R

V2R~ | 2R ) =C(t+25")",
)

from which, it follows that
&0 €0
V(0. (1+ E)R) ER)

v

V(xo, 8—20R) +C1 (1 + 2351)_0 V(Xo,
= [1+CH(1+265Y) V(% ‘9—20R).
Letting R’ = (1 + 2)R, we obtain from above that

V0. R) > [1+C (14 2) V(0 5 R),

Thus, by letting
B 2+ &0

8o <landCo=1+C*(1+25Y) " >1

and by renamin@®’ by R, we see that§.49 holds for any balB of radiusRwith 0 < R< R.
Step3. Finally, we show that condition (RVD) is satisfied by using condit®49. Indeed, for any
0 <r < R< R, there exists some integhlr> 1 such that
N_ T N-1
It follows from (6.49 that

in(B) In(Cq)

> Cp™ 2 G5t (Co) "™ = Gt (?Wl) ’

Vio,R) | V(xR
V(Xo,1) ~ V(%060 'R)

thus showing 1.5) with a; = o)

= nesh 0, and so condition (RVD) is satisfied. The proof is complets.
0

We mention that a similar argument in the proof of Lemma 6.9 was addressed by Car8pnsiee]
also [L3, Lemma 2.2(2)] by Coulhon and Grigor'yan.

7. APPENDIX

In this Appendix, we first give the following result and then collect the known results that have been
used in this paper.

Proposition 7.1. Let (&, ) be a regular Dirichlet form in B on a metric measure spa¢hl, d, u). If Q
is a non-empty open compact subset of M, then the indidaie 7 (Q2). In particular, if M is bounded
and every metric ball is assumed to be precompact, tdwai(M, M) = {1}.
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Proof. SinceQ is open and compact, the indicator function & Co(M), the space of all continuous
functions with compact support iM. By [16, Lemma 1.4.2 on p.29], there exists a sequ€ugg of
functions from# N Co(M) with suppln] ¢ Q such thau, — 1q uniformly onM asn — . Therefore,
there is some integersuch thau, > % in Q, thus showing thatd = 2(% A Up) € F. Since the function
1, vanishes outsid®, we see thatd € (Q) by using [L6, Corollary 2.3.1 on p. 98]).

If M is bounded, theiM is compact, sinc# is the closure of a baB and every metric ball is assumed
to be precompact. Thusd¥ and so cutff(M, M) = {1}. m|

The following results are known.

Lemma 7.2([24, Proposition 4.6]) LetQ be a non-empty open setin M and: L N L™ be nonnegative
in M. Then for any t- 0 andu-almost every x Q,

P f(X) — QP F(X)I < 2t/|f|leo eSUP J(x, y)du(y). (7.1)
xeM JB(x,0)°

Lemma 7.3([24, Theorem 3.1]) Let {Q; = Q§P>}t20 be the heat semigroup of somdocal Dirichlet
form (@), 7©)) in L2. Let¢(r,-) be a non-decreasing function {0, o) for any r > 0. Assume that for
any ball B:= B(x, r) and for any te (0, To) where T € (0, o],
1- QP1g < ¢(r,t) in %B.
Then for any ball Bx, r) with r > p and te (0, Top), for any integer k> 1,
Qilakne < ¢ —p, )L in B(x,r).

Lemma 7.4([21, Lemma 4.18]) Assume thats, ¥) is a regular Dirichlet form in 2. Then for any two
open subsets d Q of M, for any compact set K U, for any0 < f € L2(M) and all t> 0,

esup(P{*f — P f) < sup esupPgf. (7.2)
Q (0] Q\K
In particular, whenQ = M, U = B for any metric ball B, we have for anyt0
PEf(x) > Pif(x) — sup esup Psf(x). (7.3)

s<(04] xe(%E)c
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