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Abstract. In this paper, we present a new approach to obtaining the off-diagonal upper estimate of the heat
kernel for any regular Dirichlet form without a killing part on the doubling space. One of the novelties is
that we have obtained the weightedL2-norm estimate of the survival function 1− PB

t 1B for any metric ball
B, which yields a nice tail estimate of the heat semigroup associated with the Dirichlet form. The parabolic
L2 mean-value inequality is borrowed to use.
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1. Main results

In recent years, there has been a lot of literature devoted to the study of heat kernel estimates, see for
example, Barlow and Perkins for the Sierpiński gasket [5], Fitzsimmons, Hambly and Kumagai [15] for
affine nested fractals, Hambly and Kumagai [27] (see also [32]) for post-critically finite self-similar sets,
Barlow and Bass [2], [3] for the Sierpínski carpets, and Kigami [30, 31] for a certain class of self-similar
sets. Equivalent conditions for two-sided estimates of heat kernels for local Dirichlet forms on metric
measure spaces are given by Grigor’yan, Hu, Lau [25], by Grigor’yan and Telcs [26], whilst for non-
local Dirichlet forms by Bass and Levin [6], by Chen and Kumagai [9], [10], and by Chen, Kumagai and
Wang [11], [12], and by Grigor’yan, Hu and Hu [19]. Equivalent conditions only for upper estimates
of heat kernels for local Dirichlet forms are given by Andres, Barlow [1], by Grigor’yan, Hu [21], [22]
(see also [23, Section 6], [25, Section 9] by Grigor’yan, Hu, and Lau), and by Murugan and Saloff-Coste
[34], whilst for non-local Dirichlet froms, for example by Carlen, Kusuoka, and Stroock [7], and by
Grigor’yan, Hu and Lau [24].
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In this paper, we are concerned with the heat kernel upper estimate for a regular Dirichlet form (E,F )
without killing part on a metric space equipped with a doubling measure. Let (M,d, μ) be a metric
measure space, that is, (M,d) is a locally compact, separable metric space andμ is a Radon measure with
full support. Assume that any open metric ball

B(x, r) B {y ∈ M : d(y, x) < r} (1.1)

is precompact. Denote byλB B B(x, λr). Assume thatμ is doubling(termedcondition(VD)), that is,
there exists a constantC ≥ 1 such that, for anyx ∈ M and anyr > 0,

V(x,2r) ≤ CV(x, r), (1.2)

whereV(x, r) B μ(B(x, r)) is thevolumeof the open ballB(x, r). For simplicity, we call the above triple
(M,d, μ) adoublingspace.Let Rbe the diameter of (M,d), thatis,

RB sup{d(x, y) : for anyx, y in M}.

The metric space (M,d) considered in this paper may be bounded or unbounded sothatR< ∞ or R= ∞.
It is known that ifμ is doubling, then there exists a constantα > 0 such that, for anyx, y ∈ M and any

0 < r ≤ R< ∞,
V(x,R)
V(y, r)

≤ C

(
d(x, y) + R

r

)α
, (1.3)

see for example [22, Proposition 5.1]. In particular, for anyx ∈ M and any 0< r ≤ R< ∞,

V(x,R)
V(x, r)

≤ C
(R

r

)α
. (1.4)

We say that thereverse volume doublingcondition (RVD) holds if there exist two constantsC ≥ 1,
α1 > 0 such that, for anyx ∈ M and any 0< r ≤ R< R,

V(x,R)
V(x, r)

≥ C−1
(R

r

)α1

. (1.5)

It is known that if (M,d) is connected and unbounded, then condition (VD) implies condition (RVD), see
for example [22, Proposition 5.2].

Let ψ : [0,∞) → [0,∞) be a continuous, strictly increasing function withψ(0) = 0, ψ(∞) = ∞.
Assume that there exist some constantsC ≥ 1, 0< β1 ≤ β2 < ∞ such that for any 0< r ≤ R< ∞

C−1
(R

r

)β1

≤
ψ(R)
ψ(r)

≤ C
(R

r

)β2

. (1.6)

Clearly, condition (1.6) is equivalent to the following

C−1
(R

r

) 1
β2
≤
ψ−1(R)
ψ−1(r)

≤ C
(R

r

) 1
β1

for any 0< r ≤ R< ∞. (1.7)

The functionψ is closely related with thewalk dimensionof a process onM. The typical example is

ψ(r) = rβ

for someβ > 0. For instance, ifM = Rn thenβ = 2, which characterizes that a Brownian motion
in Rn has the density function satisfying theGaussianestimate. IfM is the Sierṕınski gasket inR2,
thenβ =

log5
log 2 > 2, which characterizes that a Brownian motion on the Sierpı́nski gasket has the density

function satisfying thesub-Gaussianestimate.
Let (E,F ) be a regular Dirichlet form inL2. For a non-empty openΩ ⊂ M, letF (Ω) be theclosure

of F ∩C0(Ω) in the norm ofF , whereC0(Ω) is the space of all continuous functions supported inΩ. It
is known that if (E,F ) is regular, then(E,F (Ω)) is also a regular Dirichlet form inL2(Ω, μ). Denote by
{PΩ

t }t>0 the heat semigroup of(E,F (Ω)). In particular, set{Pt B PΩ
t }t>0 whenΩ = M.

Let U be any non-empty Borel subset of an open subsetΩ of M with U b Ω. For a numberκ ≥ 1, a
functionφ is called aκ-cutoff functionof the pair (U,Ω) if φ ∈ F and

0 ≤ φ ≤ κ in M, φ ≥ 1 in U, φ = 0 inΩc.

We denote byκ-cutoff(U,Ω) the collection of allκ-cutoff functions of the pair (U,Ω).
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Any 1-cutoff function will be simply called acutoff function, that is, a functionφ ∈ F such that
0 ≤ φ ≤ 1 in M, φ = 1 in U andφ = 0 in Ωc. Denote by

cutoff(U,Ω) B 1- cutoff(U,Ω).

For anyφ ∈ κ-cutoff(U,Ω), we have 1∧ φ ∈ cutoff(U,Ω) by using the Markov property of (E,F ).
LetF ′ be a vector space defined by

F ′ = {u+ c : u ∈ F , c ∈ R}

so that this space contains constants.
We list all the hypotheses to be used in this paper.

• Condition(C): We say that condition (C) holds if the Dirichlet form (E,F ) is conservative,that
is, if

Pt1 = 1 in M for eacht > 0. (1.8)

• Condition(FKν): There exist three constantsC ≥ 1, ν > 0 andδ ∈ (0, 1
3] such that, for any ball

B with radius 0< R< δRand any non-empty open subsetΩ of B,

λ1(Ω) ≥
C−1

ψ(R)

(
μ(B)
μ(Ω)

)ν
, (1.9)

whereλ1(U) is the bottom eigenvalue defined by

λ1(U) = inf
u∈F (U)\{0}

E(u)

‖u‖22
.

Inequality (1.9) is called theFaber-Krahn inequality.
We introduce conditions (Gcapε), (Gcap+).

• Condition(Gcapε): For anyε ∈ (0,1] and any two concentric ballsB0 B B(x0,R), BB B(x0,R+

r) with 0 < R< R+r < R, there exists someφ ∈ (1+ε)-cutoff(B0, B) such that for any measurable
functionu with u2φ ∈ F (B),

E(u2φ, φ) ≤
Cε−1

ψ(r)

∫

B
u2φdμ, (1.10)

whereC is some positive constant independent ofε, B0, B,u.

Note that functionφ above is independent ofu.

• Condition(Gcap+): For any two concentric ballsB0 B B(x0,R), BB B(x0,R+ r) with 0 < R<

R+ r < R, there exists someφ ∈ κ-cutoff(B0, B) such that for anyu ∈ F ′ ∩ L∞,

E(u2φ, φ) ≤
C
ψ(r)

∫

B
u2dμ, (1.11)

whereC > 0 andκ ≥ 1 are two constants independent ofB0, B,u.

Condition (Gcap+) is slightly stronger than condition (Gcap), called thegeneralized capacity condition,
which was introduced in [19], in the sense that functionφ in condition (Gcap+) here is independent ofu
but it may depend onu in condition (Gcap) in [19].

We introduce condition (ABB).

• Condition (ABBζ): Given 0 ≤ ζ < ∞, there exists a constantC > 0 such that, for any three
concentric ballsB0 B B(x0,R), BB B(x0,R+r) andΩ B B(x0,R′) with 0 < R< R+r < R′ < R,
there exists someφ ∈ cutoff(B0, B) such that for anyu ∈ F ′ ∩ L∞,

∫

Ω

u2dΓΩ(φ) ≤ ζ
∫

Ω

dΓΩ(u) +
C
ψ(r)

∫

Ω

u2dμ, (1.12)

where the measuredΓΩ( f ) for any f ∈ F ′∩L∞ is defined by (2.12) below. We say thatcondition
(ABB) is satisfied if condition (ABBζ) holds for someζ ≥ 0.
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Condition (ABB) is named after Andres, Barlow and Bass, who first introduced this elegant condition
in [1], [4] (which was termed thecut-off Sobolev inequalitytherein). The value of constantζ in (1.12)
is important, depending on whetherζ = 0 or not. Whenζ = 0, the energy measuredΓΩ(φ) is absolutely
continuous with respect to the measureμ, andM behaves like a Riemannian manifold, whilst whenζ , 0,
the energy measuredΓΩ(φ) is singular toμ, andM behaves like a fractal, see [29, Theorem 2.13]. We
will show that condition (ABB) implies condition (ABB+) to be stated shortly. Another application of
condition (ABB) is that it implies the conservativeness of (E,F ), see Lemma3.7below.

For any ballB0 := B(x0,R) with 0 < R< R, letΦB0 be a tent function sitting onB0 given by

ΦB0(x) = 1∧

(
μ(B0)ψ(R)

V(x0, x)ψ(x0, x)

)1/2

in M (1.13)

so thatΦB0 = 1 onB0, whereV(x, y) andψ(x, y) for (x, y) ∈ M × M are respectively defined by

V(x, y) B V(x,d(x, y)) and ψ(x, y) B ψ(d(x, y)). (1.14)

If condition (VD) holds, then
||ΦB0 ||

2
2 ≤ Cμ(B0) (1.15)

for some positive constantC independent ofB0, see Corollary3.2below.
We introduce condition (ABB+).

• Condition (ABB+): For any ballB0 B B(x0,R) with 0 < R < R, there exists someφ ∈
cutoff(B0,M) such that

C−1ΦB0 ≤ φ ≤ CΦB0 in M, (1.16)

and, for anyu ∈ F ′ ∩ L∞
∫

M
u2dΓ(φ) ≤

1
8

∫

M
φ2dΓ(u) +

C
ψ(R)

∫

M
φ2u2dμ, (1.17)

whereC > 0 is some constant independent ofB0,u.

Note that the integrand in the last integral of (1.17) is functionφ2u2 instead of functionu2 in (1.12).
Condition (ABB+) will be used in getting condition (SL2) to be stated later on, see Lemma3.6.

• Condition(J≤): The jump kernelJ(x, y) exists onM×M \diag, and there exists a constantC > 0
such that, for any two distinct pointsx, y in M

J(x, y) ≤
C

V(x, y)ψ(x, y)
. (1.18)

(For convenience, setJ(x, x) = 0 for eachx ∈ M in the sequel.)

Recall the notions of the subcaloric, caloric functions. LetI be an interval inR. A functionu : I → L2

is said to beweakly differentiableat t ∈ I if for any ϕ ∈ L2, the function (u(∙), ϕ) is differentiable att, that
is, the limit

lim
ε→0

(
u(t + ε) − u(t)

ε
, ϕ

)

exists. In this case, by the principle of uniform boundedness, there is somew ∈ L2 such that

lim
ε→0

(
u(t + ε) − u(t)

ε
, ϕ

)

= (w, ϕ)

for anyϕ ∈ L2. The vectorw is termed theweak derivativeof u at t, and we writew = ∂
∂t u. For an open

subsetΩ ⊂ M, a functionu : I → F is subcaloricin I ×Ω if u is weakly differentiable inL2 at anyt ∈ I
and if for anyt ∈ I and any nonnegativeϕ ∈ F (Ω),

(
∂

∂t
u, ϕ) + E(u(t, ∙), ϕ) ≤ 0.

A functionu is said to becaloric in I × Ω if the above inequality is replaced by

(
∂

∂t
u, ϕ) + E(u(t, ∙), ϕ) = 0.

We introduce condition (PMV2), called theL2-version ofparabolic mean-value inequality.
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• Condition (PMV2): There exist three constantsν, C > 0 andδ ∈ (0,1] such that, for any
B0 := B(x0,R) with 0 < R < δR and for any functionu : (0, s] → F ′ ∩ L∞ that is nonnegative,
subcaloric in (0, s] × B0 with s= ψ(R), we have for anyε > 0

esup
[ 3s

4 ,s]×( 1
2 B0)

u ≤ C(1+ ε−
1+ν
2ν )




1
sμ(B0)

∫ s

s
2

∫

B0

u2(t, ∙)dμdt



1/2

+ εT, (1.19)

whereT is thetail arising from the jump part and given by

T =





1
μ(B0) sup

t∈[ s
2 ,s]

∫
( 1

2 B0)c u+(t, ∙)Φ2
B0

dμ if J , 0,

0 if J = 0,
(1.20)

andΦB0 is the tent function sitting on ballB0 as defined in (1.13). Here the notion

esup
(t,x)∈I×Ω

u(t, x) B sup
t∈I

esup
x∈Ω

u(t, x).

Roughly speaking, condition (PMV2) says that any value of the functionu, which is nonnegative and
subcaloric in (0, s] × B0, over a smaller domainQ+ B [ 3s

4 , s] × (1
2B0) can be controlled by itsL2-mean

value over a larger domainQB [ s
2, s] × B0 plus a tail term, see Figure1. The tailT reflects the behavior

of the positive part of functionu outside the half ball12B0, which vanishes in the case when the process
is a diffusion, that is, whenJ = 0.

Figure 1. TheL2 parabolic mean-value inequality for ballB0.

We introduce condition (PMV1).

• Condition(PMV1): There exist three constantsc0 ∈ (0, 1
2), C > 0 andδ ∈ (0,1] such that, for

any ball B0 := B(x0,R) with 0 < R < δR and for any functionu : (0, s] → F ′ ∩ L∞ that is
nonnegative, subcaloric in (0, s] × B0 with s= ψ(R), we have

esup
[s−ψ(c0R),s]×(c0B0)

u ≤ C sup
t∈[ s

2 ,s]

(
1

μ(B0)

∫

M
u+(t, ∙)dμ

)

. (1.21)

Condition (PMV1) is weaker than condition (PMV2), see Lemma4.2below. Condition (PMV1) will be
used to derive an on-diagonal upper bound of the heat kernel.

We introducecondition(SL2), called thesurvival estimatein theweighted L2-norm.

• Condition (SL2): There exists some constantC > 0 such that, for anyt > 0 and for any two
concentric ballsB0 B B(x0,R), B B B(x0, r) with 0 < R < r < R so thatB0 ⊂ B, we have that,
by abusing the symbolsψ(B0) B ψ(R) andψ(B) B ψ(r),

∫

B

(
1− PB

t 1B

)2
Φ2

B0
dμ ≤ Cμ(B0)

(
ψ(B0)
ψ(B)

+
t

ψ(B)

)

exp

(
Ct

ψ(B0)

)

. (1.22)
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Remark 1.1. Note that (1.22) is trivially satisfied if t
ψ(B) ≥ C−1 or if ψ(B0)

ψ(B) ≥ C−1 for a constantC > 0,

since the integral on the left-hand side in (1.22) is bounded from above by‖ΦB0‖
2
2 ≤ Cμ(B0), whilst the

term on the right-hand side is bounded from below byμ(B0) (up to constant).

We give an explanation of inequality (1.22) from the probabilistic point of view. Let (Xt) be a Hunt
process associated with the regular Dirichlet form (E,F ). Denote byτB thefirst exit timeof the process
{Xt} from a ballB. Then

1− PB
t 1B(x) = 1− Px(Xt ∈ B, t < τB) = Px (τB ≤ t) ,

which is the probability of the process (Xt) to leave ballB before timet. The smaller is this probability,
the higher the probability of the process staying inB up to timet, or the higher the probability ofsurvival
of the process up to timet, assuming that the process gets killed outsideB. Therefore, inequality (1.22)
gives an upper bound of thesurvival function1− PB

t 1B in the norm ofL2 with weightΦB0 for any two
concentric ballsB0, B and for any timet > 0. As remarked above, inequality (1.22) is meaningful only
when t

ψ(B) is small andB0 ⊂ ε0B for a small numberε0 ∈ (0,1), but this is enough to serve our purpose.
Condition (SL2) implies the conservativeness of (E,F ), see Lemma3.7 below. As a by-product,

we obtain the conservativeness of the form (E,F ) from conditions (ABB), (J≤) only, without using the
Faber-Krahn inequality. This observation was addressed in [14, Theorem 7] for the local Dirichlet form,
see also [11, Theorem 7.12] for the non-local Dirichlet form, on unbounded metric spaces. The issue
of conservativeness is not trivial, and was studied, for example in [18, Lemma 4.6] for a bounded or
unbounded metric space and in [11, Proposition 3.1] for an unbounded metric space.

Another important application of condition (SL2) is that it will, together with condition (PMV2), yield
condition (S1/2) to be stated in the following, see Lemma3.8.

• Condition(S1/2): There exists a positive constantC such that, for any ballB of radiusR with
0 < R< ∞ and anyt > 0,

1− PB
t 1B ≤

(
Ct
ψ(R)

)1/2

in
1
2

B. (1.23)

Inequality (1.23) gives a nice pointwise upper estimate for the survival function 1− PB
t 1B near the

center of ballB. Condition (S1/2) will be used to obtain off-diagonal upper estimate of the heat ker-
nel, see Lemma6.6 below. Another application of condition (S1/2) is that it immediately implies the
conservativeness of (E,F ) by lettingψ(R)→ ∞ when the space (M,d) is unbounded.

Remark 1.2. Let R < ∞ so that (M,d) is bounded. ThenPt1 = 1 in M for any t > 0, since (E,F ) is
conservative by Lemma3.7below. In this case, ifR> R thenB = B(x0,R) = M, and hence 1− PB

t 1B =

1− Pt1 = 0 and (1.23) automatically holds for anyt > 0. Thus, in order to verify (1.23), one needs only
consider the case when 0< R ≤ R. On the other hand, if (1.23) holds for smallR < δR, then it also
holds for largeR ≥ δR after adjusting the value of constantC by using the standard covering argument.
Therefore, in order to verify (1.23), one needs only to assume both 0< R< δRand 0< t < ψ(δR).

We introduce conditions (DUE) and (UE).

• Condition(DUE): The heat kernelpt(x, y) exists pointwise on (0,∞) × M × M, and there exists
a positive constantC such that

pt(x, y) ≤
C

V(x, ψ−1(t))
(1.24)

for all x, y in M and all 0< t < ψ(R).

The above inequality (1.24) is called anon-diagonal upper estimateof the kernelpt(x, y).

• Condition(UE): The heat kernelpt(x, y) exists pointwise on (0,∞) × M × M, and there exists a
positive constantC such that

pt(x, y) ≤ C

(
1

V(x, ψ−1(t))
∧

t
V(x, y)ψ(x, y)

)

(1.25)

for all x, y in M and all 0< t < ψ(R).
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The above inequality (1.25) is called anoff-diagonal upper estimateof the kernelpt(x, y). Clearly, we
have (UE)⇒ (DUE).

For any non-empty open subsetΩ of M and any Borel subsetU of Ω, recall that the capacity Cap(U,Ω)
for the pair (U,Ω) is defined by

Cap(U,Ω) B inf
{
E(φ, φ) : φ ∈ cutoff(U,Ω)

}
. (1.26)

We introducecondition(Cap≤).

• Condition (Cap≤): There exists some constantC > 0 such that for any ballB := B(x0,R) with
0 < R< R,

Cap
(3
4

B, B
)
≤ C

μ(B)
ψ(R)

. (1.27)

Conditions(ABB) and (J≤) imply condition (Cap≤) (cf. inequality (3.31) below).
The following is the main result of this paper.

Theorem 1.3. Let (E,F ) be a regular Dirichlet form in L2 without killing part on a doubling space
(M,d, μ). Then the following implications are true:

(FKν) + (Gcapε) + (J≤) ⇒ (FKν) + (Gcap+) + (J≤)

⇒ (FKν) + (ABB) + (J≤)

⇒ (ABB) + (PMV2) + (J≤)

⇒ (ABB+) + (Cap≤) + (PMV2) + (J≤)

⇒ (S1/2) + (PMV1) + (J≤)

⇒ (S1/2) + (DUE)+ (J≤)

⇒ (UE)+ (C)

⇒ (Gcapε) + (J≤),

(DUE)+ (RVD) ⇒ (FKν),

(FKν) + (J≤) ⇒ (RVD).

Consequently, the following equivalence is true:

(FKν) + (ABB) + (J≤)⇔ (UE)+ (C)+ (RVD). (1.28)

A complete proof of Theorem1.3is highly non-trivial, which will follow from a series of propositions
and lemmas to be addressed in detail in the following sections. Here we give a flowchart of the proof.

Proof of Theorem1.3. Clearly, (Gcapε)⇒ (Gcap+). We have the following implications:

(Gcap+) ⇒ (ABB) (see Lemma2.3below)

(FKν) + (Gcap+) + (J≤) ⇒ (PMV2) (see a forthcoming paper [17])

(ABB) + (J≤) ⇒ (ABB+) (see Lemma3.5) (1.29)

(ABB) + (J≤) ⇒ (Cap≤) (similar to formula (3.31))

(ABB+) + (Cap≤) + (J≤) ⇒ (SL2) (see Lemma3.6) (1.30)

(PMV2) + (SL2) ⇒ (S1/2) (see Lemma3.8)

(PMV2) ⇒ (PMV1) (see Lemma4.2) (1.31)

(PMV1) ⇒ (DUE) (see Lemma4.3)

(S1/2) + (J≤) + (DUE) ⇒ (UE)+ (C) (see Lemma6.6) (1.32)

(UE)+ (C) ⇒ (Gcapε) + (J≤) (see Lemma6.7)

(DUE)+ (RVD) ⇒ (FKν) (see Lemma6.8)

(FKν) + (J≤) ⇒ (RVD) (see Lemma6.9).

Finally, the equivalence (1.28) follows directly from above. The proof is complete. �
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The main difficulties are to show the implications (1.29), (1.30), (1.31), and (1.32). The implication
(1.30) is new. The condition (SL2) is invisible in the statements of Theorem1.3. However, this condition
plays an important role in our analysis.

Under conditions (VD), (RVD), the following slightly different equivalence than (1.28)

(FKν) + (Gcap+) + (J≤)⇔ (UE)+ (C)

was addressed for the purely jump Dirichlet form inL2 in [11] when (M,d) is unbounded with a doubling
measureμ by using the probabilistic approach, and in [19] when (M,d) is bounded or unbounded with
an Ahlfors-regular measureμ andψ(r) = rβ by using the purely analytic approach, but with condition
(Gcap+) replaced by its other variants. Here we present a new analytic approach on the bounded or
unbounded metric space for any regular Dirichlet form without killing part, and therefore, it is of interest
in its own right.

We further study the strongly local Dirichlet form. We introduce condition (UE)exp.

• Condition(UE)exp: The heat kernelpt(x, y) exists pointwise on (0,∞) × M × M, and there exist
three positive constantsC, c′, c such that

pt(x, y) ≤
C

V(x, ψ−1(t))
exp

(

−c′tΨ

(
cd(x, y)

t

))

(1.33)

for all x, y in M and all 0< t < ψ(R), whereΨ is defined by

Ψ(s) := sup
λ>0

{
s

ψ−1(1/λ)
− λ

}

(s> 0). (1.34)

As a by-product of Theorem1.3, we obtain the following.

Corollary 1.4. Let (E,F ) be a regular strongly local Dirichlet form in L2 on a doubling space(M,d, μ).
Then the following equivalence is true:

(FKν) + (Gcap+)⇔ (UE)exp+ (C)+ (RVD). (1.35)

Proof. Starting from implication (1.32) with J ≡ 0, assume that conditions (S1/2), (DUE) hold. If (E,F )
is strongly local and if condition (S1/2) is satisfied (thus (E,F ) is also conservative), we have by [22,
Theorem 5.7] that, for any ballB := B(x,R) with 0 < R< ∞ and any 0< t < ∞,

Pt1Bc ≤ C exp
(
−c′tΨ

(cR
t

))
in

1
2

B.

From this and using condition (DUE), we obtain (1.33) by applying the standard semigroup property
argument. The proof is complete. �

Notation. LettersC,C′ denote positive constants which may change at any occurrence, whilst the
lettersCi for i = 1,2, ∙ ∙ ∙ are fixed and are randomly selected to use. The term “forany(or all) x” means
“for an arbitraryx” but the statement followed isindependentof the choice ofx.

2. Condition (ABB)

In this section, we first collect the basic properties on energy measures associated with a regular
Dirichlet form and then derive condition (ABB) from condition (Gcap+).

Recall that any regular Dirichlet form (E,F ) in L2 admits a uniqueBeurling-Deny decomposition(cf.
[16, Theorem 3.2.1 on p.120]):

E(u, v) = E(L)(u, v) + E(J)(u, v) + E(K)(u, v), (2.1)

whereE(L) is thediffusion partassociated with a unique Radon measuredΓL (the notionsE(c),dμc
〈u,v〉 are

instead used in [16]):

E(L)(u, v) =
∫

M
dΓL(u, v), (2.2)
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whilst E(J) is the jump part with a unique Radon measured j defined on (M × M)\diag:

E(J)(u, v) =
∫ ∫

(M×M)\diag

(u(x) − u(y))(v(x) − v(y))d j, (2.3)

and finally,E(K) is thekilling part associated with a Radon measuredk:

E(K)(u, v) =
∫

M
u(x)v(x)dk(x). (2.4)

For simplicity, we will dropdiag in expressionM ×M\diag in (2.3) when no confusion arises. Note that
E(K) ≡ 0 in our paper and thus

E(u, v) = E(L)(u, v) + E(J)(u, v). (2.5)

Recall that for anyu ∈ F , the measuredΓL(u) B dΓL(u,u) is well-defined and unique (cf. [16, lines
above Lemma 3.2.3 on p.126]). Moreover, it satisfies the following properties: for anyu, v,w ∈ F ∩ L∞,

• thechain rule([16, Lemma 3.2.5 on p.127]):

dΓL(uv,w) = udΓL(v,w) + vdΓL(u,w); (2.6)

• theproduct rule([16, Theorem 3.2.2 on p.129]):

dΓL(F(u), v) = F′(u)dΓL(u, v) (2.7)

for anyF ∈ C1(R) with F(0) = 0;
• thestrong locality: if u ∈ F is constant inΩ andv ∈ F is arbitrary, then

1ΩdΓL(u, v) = 0 onM (2.8)

(cf. [16, Corollary 3.2.1 on p.128], or [33, formula (3.8) on p.387]), and

dΓL(u+, v) = 1{u>0}dΓL(u, v) on M, (2.9)

whereu+ = u∨ 0 (cf. [33, formula (3.14) on p.390]);
• theCauchy-Schwarz inequality: for any f ∈ L2(M, ΓL(u)), g ∈ L2(M, ΓL(v))

∫

M
| f g|dΓL(u, v) ≤

(∫

M
f 2dΓL(u)

)1/2 (∫

M
g2dΓL(v)

)1/2

(2.10)

(cf. [33, on p. 390]).

By the strong locality (2.8) of dΓL, we can define for any constanta ∈ R

dΓL(u+ a) = dΓL(u),

so that the chain rule (2.6) still holds if u, v ∈ F ′ ∩ L∞. Moreover, for anyu ∈ F ′ ∩ L∞, we have

dΓL(|u| ) =dΓL(u), (2.11)

sincedΓL(u+,u−) = 0 by using (2.9), (2.8), and

dΓL(|u|) = dΓL(u+ + u−,u+ + u−) =dΓL(u+) + 2dΓL(u+,u−)+dΓL(u−)

= dΓL(u+)+dΓL(u−) =dΓL(u).

We define themeasure dΓΩ(u, v) by

dΓΩ(u, v)(x) B dΓL(u, v)(x) +
∫

Ω

(u(x) − u(y)) (v(x) − v(y))d j. (2.12)

The measuredΓΩ(u, v) is well-defined for anyu, v ∈ F ′ andΩ ⊂ M. For simplicity, denote bydΓΩ(u) B
dΓΩ(u,u), and in particular, whenΩ = M, we denote bydΓ(u) B dΓM(u) so that

E(u, v) =
∫

M
dΓ(u, v) for anyu, v ∈ F ′.

It turns out (see for example [33, formula (3.5) on p.387]) that for anyf ,u ∈ F ′ ∩ L∞,
∫

M
f dΓ(u) = E( f u,u) −

1
2
E( f ,u2). (2.13)
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The following is general.

Proposition 2.1. Let (E,F ) be a regular Dirichlet form in L2 without killing part, and dΓΩ given by
(2.12) for an open subsetΩ of M. Then, for any f∈ F ′ ∩ L∞ with f ≥ 0 in Ω and for anyϕ ∈ F ′ ∩ L∞

with supp[ϕ] ⊂ U ⊂ Ω, we have
∫

Ω

f dΓΩ(ϕ) =
∫

U
f dΓU(ϕ) +

∫

U×(Ω\U)
( f (x) + f (y))ϕ2(x)d j. (2.14)

Proof. Since supp[ϕ] ⊂ U ⊂ Ω, we see that
∫

Ω×Ω
f (x) (ϕ(x) − ϕ(y))2 d j

=

(∫

U×U
+

∫

(Ω\U)×U
+

∫

U×(Ω\U)
+

∫

(Ω\U)×(Ω\U)

)

f (x) (ϕ(x) − ϕ(y))2 d j

=

∫

U×U
f (x) (ϕ(x) − ϕ(y))2 d j +

∫

(Ω\U)×U
f (x)ϕ2(y)d j +

∫

U×(Ω\U)
f (x)ϕ2(x)d j

=

∫

U×U
f (x) (ϕ(x) − ϕ(y))2 d j +

∫

U×(Ω\U)
( f (x) + f (y))ϕ2(x)d j

by using the symmetry ofd j. It follows by definition (2.12) that
∫

Ω

f dΓΩ(ϕ) =

∫

Ω

f dΓL(ϕ) +
∫

Ω×Ω
f (x) (ϕ(x) − ϕ(y))2 d j

=

∫

U
f dΓU(ϕ) +

∫

U×U
f (x) (ϕ(x) − ϕ(y))2 d j

+

∫

U×(Ω\U)
( f (x) + f (y))ϕ2(x)d j

=

∫

U
f dΓU(ϕ) +

∫

U×(Ω\U)
( f (x) + f (y))ϕ2(x)d j,

thus showing (2.14). �

The following is needed.

Proposition 2.2. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then, for any open
subsetΩ of M and for any u∈ F ′ ∩ L∞, φ ∈ F ∩ L∞ with supp[φ] ⊂ Ω,

∫

Ω

u2dΓΩ(φ) ≤ 4
∫

Ω

φ2dΓΩ(u) + 2E(u2φ, φ), (2.15)

where dΓΩ is defined by (2.12). In particular, whenΩ = M, we have
∫

M
u2dΓ(φ) ≤ 4

∫

M
φ2dΓ(u) + 2E(u2φ, φ) (2.16)

for any u∈ F ′ ∩ L∞, φ ∈ F ∩ L∞.

Inequality (2.16) was addressed in [28] but with u ∈ F ∩ L∞ (instead ofu ∈ F ′ ∩ L∞ here). We sketch
the proof for the reader’s convenience.

Proof. For anyu ∈ F ′ ∩ L∞, φ ∈ F ∩ L∞, note that

u2 ∈ F ′ ∩ L∞ and u2φ ∈ F ∩ L∞.

For dΓL we shall show that
∫

Ω

u2dΓL(φ) ≤ 2E(L)(u2φ, φ) + 4
∫

Ω

φ2dΓL(u). (2.17)

Indeed,u ∈ L2(M,dΓL(φ)), since
∫

M
u2dΓL(φ) ≤ ‖u‖2∞

∫

M
dΓL(φ) = ‖u‖2∞ E

(L)(φ) ≤ ‖u‖2∞ E(φ) < ∞.
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Similarly, φ ∈ L2(M,dΓL(u)). By (2.6), (2.7), (2.10), it follows that
∫

M
u2dΓL(φ) =

∫

M
dΓL(u2φ, φ) − 2

∫

M
uφdΓL(u, φ)

≤ E(L)(u2φ, φ) +
1
2

∫

M
u2dΓL(φ) + 2

∫

M
φ2dΓL(u),

which gives that
∫

M
u2dΓL(φ) ≤ 2E(L)(u2φ, φ) + 4

∫

M
φ2dΓL(u). (2.18)

Sinceφ is supported inΩ, we see by (2.8) thatdΓL(φ) = 0 outsideΩ, and the two integrals in (2.18) are
actually overΩ, thus proving (2.17).

For d j we shall show that
∫

Ω×Ω
u2(x)(φ(x) − φ(y))2d j ≤ 2E(J)(u2φ, φ) + 4

∫

Ω×Ω
φ2(x)(u(x) − u(y))2d j. (2.19)

Indeed, note that

1
2

(u2(x) + u2(y))(φ(x) − φ(y))2 ≤ 2(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))

+2(φ2(x) + φ2(y))(u(x) − u(y))2,

see [19, the inequality on lines 3-4 on p. 447] withf = u andg = φ. Integrating overΩ × Ω againstd j
and using the symmetry ofd j, it follows that

∫

Ω×Ω
u2(x)(φ(x) − φ(y))2d j ≤ 2

∫

Ω×Ω
(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))d j

+4
∫

Ω×Ω
φ2(x)(u(x) − u(y))2d j. (2.20)

On the other hand, using the fact that supp[φ] ⊂ Ω,
∫

Ω×Ω
(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))d j =

(∫

M×M
−

∫

Ω×Ωc
−

∫

Ωc×Ω
−

∫

Ωc×Ωc

)

∙ ∙ ∙

= E(J)(u2φ, φ) −
∫

Ω×Ωc
φ2(x)u2(x)d j −

∫

Ωc×Ω
φ2(y)u2(y)d j ≤ E(J)(u2φ, φ).

Plugging this into (2.20), we obtain (2.19).
Finally, summing up (2.17), (2.19), we conclude by (2.5) that

∫

Ω

u2dΓΩ(φ) =

∫

Ω

u2dΓL(φ) +
∫

Ω×Ω
u2(x)(φ(x) − φ(y))2d j

≤ 2E(L)(u2φ, φ) + 4
∫

Ω

φ2dΓL(u)

+2E(J)(u2φ, φ) + 4
∫

Ω×Ω
φ2(x)(u(x) − u(y))2d j

= 2E(u2φ, φ) + 4
∫

Ω

φ2dΓΩ(u),

thus proving (2.15). �

Condition (ABB) follows directly from condition
(
Gcap+

)
by using (2.15).

Lemma 2.3. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then

(Gcap+)⇒ (ABB).
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Proof. Let B0 B B(x0,R), B B B(x0,R + r) andΩ B B(x0,R′) be any three concentric balls with
0 < R < R+ r < R′ < R. For u ∈ F ′ ∩ L∞, we have by condition

(
Gcap+

)
that there exists some

g ∈ κ-cutoff(B0, B) independent ofu where 1≤ κ < ∞, such that

E(u2g,g) ≤
C
ψ(r)

∫

B
u2dμ ≤

C
ψ(r)

∫

Ω

u2dμ.

Since supp[g] ⊂ B ⊂ Ω, it follows from (2.15) with φ replaced byg that
∫

Ω

u2dΓΩ(g) ≤ 4
∫

Ω

g2dΓΩ(u) + 2E(u2g,g)

≤ 4
∫

Ω

g2dΓΩ(u) +
2C
ψ(r)

∫

Ω

u2dμ. (2.21)

Let φ = 1∧ g. Clearly,φ ∈ cutoff(B0, B). On the other hand, since

dΓL(φ) = dΓL(1∧ g) = 1{g≤1}dΓL(g) ≤dΓL(g)

and sinceg ≤ κφ in M and|φ(x) − φ(y)| ≤ |g(x) − g(y)| for anyx, y in M, we have
∫

Ω

u2dΓΩ(φ) =

∫

Ω

u2dΓL(φ) +
∫

Ω×Ω
u2(x) (φ(x) − φ(y))2 d j

≤
∫

Ω

u2dΓL(g) +
∫

Ω×Ω
u2(x) (g(x) − g(y))2 d j =

∫

Ω

u2dΓΩ(g)

≤ 4
∫

Ω

g2dΓΩ(u) +
2C
ψ(r)

∫

Ω

u2dμ (using (2.21))

≤ 4κ2
∫

Ω

φ2dΓΩ(u) +
2C
ψ(r)

∫

Ω

u2dμ,

thus showing (1.12). Hence, condition (ABB) is true. �

3. Conservativeness and condition (S1/2)

In this section we first derive condition (ABB+) from conditions (ABB), (J≤). We then derive condi-
tion (SL2) from conditions (ABB+), (J≤). We next derive the conservativeness of the form (E,F ) from
condition (SL2). Finally, we derive condition (S1/2) from conditions (PMV2), (SL2).

The following is frequently used.

Proposition 3.1. Let B1 B B(x0,R1), B2 B B(x0,R2) be two concentric balls with0 < R1 < R2 < R. If
condition(VD) holds, then there exists some constant C> 0 independent of B1, B2 such that

sup
x∈B1

∫

Bc
2

dμ(y)
V(x, y)ψ(x, y)

≤
C

ψ(R2 − R1)
. (3.1)

In particular, when R1 ↓ 0, we have for all x in M,
∫

B(x,R)c

dμ(y)
V(x, y)ψ(x, y)

≤
C
ψ(R)

for any0 < R< R. (3.2)

Consequently, if conditions(VD), (J≤) hold, then

sup
x∈B1

∫

Bc
2

J(x, y)dμ(y) ≤
C

ψ(R2 − R1)
. (3.3)

Proof. Setr B R2 − R1. SinceBc
2 ⊂ B(x, r)c for any pointx ∈ B1, we see by (1.4), (1.6) that

∫

Bc
2

dμ(y)
V(x, y)ψ(x, y)

≤
∫

B(x,r)c

dμ(y)
V(x, y)ψ(x, y)

=

∞∑

m=0

∫

B(x,2m+1r)\B(x,2mr)

dμ(y)
V(x, y)ψ(x, y)

≤
∞∑

m=0

V(x,2m+1r)
V(x,2mr)ψ(2mr)

≤
C
ψ(r)

∞∑

m=0

(
2m+1r
2mr

)α ( r
2mr

)β1
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≤
C′

ψ(r)

∞∑

m=0

2−mβ1 =
C
ψ(r)

for a constantC independent ofx0,R1,R2, thus proving (3.1). Estimate (3.2) is clear.
If conditions (VD), (J≤) hold, we see by (3.1) that for anyx ∈ B1

∫

Bc
2

J(x, y)dμ(y) ≤
∫

Bc
2

Cdμ(y)
V(x, y)ψ(x, y)

≤
C′

ψ(R2 − R1)
,

thus showing (3.3). The proof is complete. �

TheL2-norm of the tent functionΦB0 for any ballB0 is controlled byμ(B0) if condition (VD) holds.

Corollary 3.2. LetΦB0 be the tent function sitting on a ball B0 defined as in (1.13). If condition(VD)
holds, then (1.15) is true.

Proof. Let B0 = B(x0,R) with 0 < R< ∞. We have by definition (1.13)

||ΦB0 ||
2
2 =

∫

B(x0,R)
Φ2

B0
dμ +

∫

B(x0,R)c
Φ2

B0
dμ

= μ(B0) +
∫

B(x0,R)c

μ(B0)ψ(R)
V(x0, x)ψ(x0, x)

dμ (sinceΦB0 = 1 in B0)

≤ μ(B0) +
Cμ(B0)ψ(R)

ψ(R)
= (1+ C)μ(B0) (using (3.2) with x = x0),

thus showing (1.15). �

3.1. Condition (ABB+). In this subsection, we derive condition (ABB+) from condition (ABB) and
condition (J≤).

For n ≥ 0, let Bn B B(x0,Rn) be an increasing sequence of concentric balls with

0 < Rn < Rn+1 < ∞.

SetUn B Bn+1 \ Bn, R′n B
1
2(Rn + Rn+1), and let

B′n B B(x0,R
′
n) (3.4)

be an intermediate ball so thatBn ⊂ B′n ⊂ Bn+1 for eachn ≥ 0. For anyN ≥ 0, let

ΦN B
N∑

n=0

anϕn (3.5)

for a sequence{an}∞n=0 of nonnegative numbers, whereϕn ∈ cutoff(Bn, B′n) if Rn+1 < R, andϕn = 1 in M

if Rn+1 ≥ R (we allow R= ∞). Note thatΦN ∈ F ∩ L∞ for anyN ≥ 0, no matterRN+1 < Ror RN+1 ≥ R,
by using the fact that 1∈ F whenR< ∞ (cf. Proposition7.1 in Appendix).

Proposition 3.3. Assume that(E,F ) is a regular Dirichlet form in L2 without killing part. LetΦN be
defined by (3.5) for a sequence of nonnegative numbers{an}∞n=0, andΩ be an open subset of M with
BN ⊂ Ω, N ≥ 1. Then for any nonnegative f∈ F ′ ∩ L∞

∫

Ω

f dΓΩ(ΦN) ≤
N∑

n=0

a2
n

∫

Ω

f dΓΩ(ϕn) + 2
N−1∑

n=0

N∑

m=n+1

anam

∫

B′n×(Ω\Bm)
( f (x) + f (y)) d j. (3.6)

We remark that the two setsB′n andΩ \ Bm appearing in the last integral in (3.6) for anym≥ n+ 1 are
separated by distanceRm − R′n ≥

1
2(Rn+1 − Rn), and this property will be needed in order to control the

jump part.

Proof. By the bilinearity ofdΓΩ,

dΓΩ(ΦN) = dΓΩ
( N∑

n=0

anϕn,

N∑

m=0

amϕm

)
=

N∑

n=0

a2
ndΓΩ(ϕn) + 2

N−1∑

n=0

N∑

m=n+1

anamdΓΩ(ϕn, ϕm),
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from which we see for anyf ∈ F ′ ∩ L∞,
∫

Ω

f dΓΩ(ΦN) =
N∑

n=0

a2
n

∫

Ω

f dΓΩ(ϕn) + 2
N−1∑

n=0

N∑

m=n+1

anam

∫

Ω

f dΓΩ(ϕn, ϕm). (3.7)

We look at the last integral in (3.7).
For anym≥ n+ 1, sinceϕm = 1 in supp[ϕn], we see thatdΓL(ϕn, ϕm) = 0 by (2.8), andϕnϕm = ϕn in

M. By definition (2.12), we have for anym≥ n+ 1

dΓΩ(ϕn, ϕm) = dΓL(ϕn, ϕm) +
∫

Ω

(ϕn(x) − ϕn(y)) (ϕm(x) − ϕm(y))d j

=

∫

Ω

(ϕn(x)(1− ϕm(y)) + ϕn(y)(1− ϕm(x))) d j.

Since supp[ϕn] ⊂ B′n and 1− ϕm = 0 onBm, it follows that for anym≥ n+ 1
∫

Ω

f dΓΩ(ϕn, ϕm) =

∫

Ω×Ω
f (x) (ϕn(x)(1− ϕm(y)) + ϕn(y)(1− ϕm(x))) d j

=

∫

B′n×(Ω\Bm)
f (x)ϕn(x)(1− ϕm(y))d j +

∫

(Ω\Bm)×B′n

f (x)ϕn(y)(1− ϕm(x))d j

≤
∫

B′n×(Ω\Bm)
f (x)d j +

∫

(Ω\Bm)×B′n

f (x)d j (since 0≤ ϕn ≤ 1 in M)

=

∫

B′n×(Ω\Bm)
( f (x) + f (y)) d j (using the symmetry ofd j). (3.8)

Plugging (3.8) into (3.7), we obtain (3.6). �

The following is elementary.

Proposition 3.4. Let {an B A−1̃an}n≥0 be a sequence of non-increasing numbers given by

ãn B

(
μ(B0)ψ(R)
μ(Bn)ψ(λnR)

)1/2

and AB
∞∑

n=0

ãn (3.9)

for balls Bn B λnB0, λ > 1, B0 B B(x0,R) with 0 < R< R. Let

bk B
∞∑

n=k

an (k ≥ 0) (3.10)

so that b0 =
∑∞

n=0 an = 1. If condition(VD) holds, then

lim
λ↓1




∞∑

n=0

a2
n + sup

k≥0

1

b2
k+1

∞∑

n=k

a2
n


 = 0. (3.11)

Moreover, there exist two positive constants CB C(λ) and C′ B C′(λ), both of which are independent
of B0, such that

∞∑

n=0

anbn+1μ(Bn) ≤ C(λ)μ(B0), (3.12)

ãn ≤ C′an ≤ Can+1 ≤ C2bn+1 ≤ C2bn ≤ C3ãn for all n ≥ 0. (3.13)

Proof. We show that there exist two positive constantsc1, c2 independent ofB0 such that for all integers
n,m≥ 0 and allλ > 1,

c1λ
−(α+β2)n/2 ≤

an+m

am
=

ãn+m

ãm
≤ c2λ

−β1n/2. (3.14)

Indeed, we have by definition (3.9)
(
ãn+m

ãm

)2

=
μ(Bm)ψ(λmR)

μ(Bn+m)ψ(λn+mR)
≤

ψ(λmR)
ψ(λn+mR)

(sinceμ(Bm) ≤ μ(Bn+m))
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≤ C−1
(
λmR
λn+mR

)β1

= C−1λ−β1n (using (1.6))

whilst by (1.4), (1.6)
(
ãn+m

ãm

)2

=
μ(Bm)ψ(λmR)

μ(Bn+m)ψ(λn+mR)
≥ C−1

(
λmR
λn+mR

)α
∙C−1

(
λmR
λn+mR

)β2

= C−2λ−(α+β2)n,

thus showing (3.14) after extracting the square root.
Thus, for allm≥ 0 and allλ > 1,

c1̃am

1− λ−(α+β2)/2
≤
∞∑

n=m

ãn ≤
c2̃am

1− λ−β1/2
, (3.15)

wherec1, c2 are the same as in (3.14); this is because we have by (3.14)
∞∑

n=m

ãn =

∞∑

k=0

ãm+k ≤
∞∑

k=0

c2λ
−β1k/2ãm =

c2̃am

1− λ−β1/2
,

whilst the opposite inequality follows from
∞∑

n=m

ãn =

∞∑

k=0

ãm+k ≥
∞∑

k=0

c1λ
−(α+β2)k/2ãm =

c1̃am

1− λ−(α+β2)/2
.

In particular, sincẽa0 = 1 by definition (3.9), we see by (3.15) with m= 0 that

c1

1− λ−(α+β2)/2
≤ A =

∞∑

n=0

ãn ≤
c2

1− λ−β1/2
. (3.16)

We claim that
c1ak

1− λ−(α+β2)/2
≤ bk =

∞∑

n=k

an ≤
c2ak

1− λ−β1/2
for all k ≥ 0. (3.17)

Indeed, for allk ≥ 0 and allλ > 1, we see by (3.15) with m= k that

bk =

∞∑

n=k

an =

∞∑

n=k

ãn

A
≤

c2

1− λ−β1/2

ãk

A
=

c2ak

1− λ−β1/2
,

whilst the opposite inequality also follows from

bk =

∞∑

n=k

ãn

A
≥

c1

1− λ−(α+β2)/2

ãk

A
=

c1ak

1− λ−(α+β2)/2
.

This proves our claim.
We now show (3.11). Indeed, it follows from (3.14) that for allm≥ 0 and allλ > 1,

∞∑

n=m

a2
n =

∞∑

n=m

(
ãn

A

)2

=
1
A2

∞∑

k=0

ã2
m+k ≤

1
A2

∞∑

k=0

(
c2λ
−β1k/2

)2
ã2

m

=
c2

2

A2(1− λ−β1)
ã2

m =
c2

2

1− λ−β1
a2

m (3.18)

≤
c−2

1 c2
2

(
1− λ−(α+β2)/2

)2

1− λ−β1
ã2

m (using (3.16)). (3.19)

Takingm= 0 in (3.19) and using the fact that̃a0 = 1, we obtain

lim
λ↓1

∞∑

n=0

a2
n ≤ lim

λ↓1

c−1
1 c2

2

(
1− λ−(α+β2)/2

)2

1− λ−β1
= 0. (3.20)
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On the other hand, for anyk ≥ 0, we see by (3.17), (3.18) with m= k that

1

b2
k+1

∞∑

n=k

a2
n ≤

(
1− λ−(α+β2)/2

c1ak+1

)2 c2
2

1− λ−β1
a2

k =

(
c2

c1

)2
(
1− λ−(α+β2)/2

)2

1− λ−β1

(
ak

ak+1

)2

≤

(
c2

c1

)2
(
1− λ−(α+β2)/2

)2

1− λ−β1
∙
(
c−1

1 λ(α+β2)/2
)2

(using (3.14) with n = 1),

which implies that

lim
λ↓1

sup
k≥0

1

b2
k+1

∞∑

n=k

a2
n ≤ lim

λ↓1



c2

c2
1



2
(
1− λ−(α+β2)/2

)2

1− λ−β1

(
c−1

1 λ(α+β2)/2
)2

= 0. (3.21)

Combining (3.20), (3.21), we obtain (3.11).
We next show (3.12). Indeed, by (3.17), (3.14),

bn+1 ≤
c2an+1

1− λ−β1/2
≤

c2

(
c2λ
−β1/2an

)

1− λ−β1/2
=

c2
2an

λβ1/2 − 1
. (3.22)

Therefore, it follows from (3.9), (1.6) that
∞∑

n=0

anbn+1μ(Bn) ≤
∞∑

n=0

c2
2a2

n

λβ1/2 − 1
μ(Bn) =

c2
2

λβ1/2 − 1

∞∑

n=0

(A−1ãn)2μ(Bn)

=
c2

2

A2(λβ1/2 − 1)

∞∑

n=0

μ(B0)ψ(R)
ψ(λnR)

≤ C(λ)μ(B0)
∞∑

n=0

C−1
( R
λnR

)β1

≤ C(λ)μ(B0),

thus proving (3.12).
It remains to show (3.13). Indeed, we have the following equivalences (up to constantC(λ))

ãn = Aan
by (3.14)
� an+1

by (3.17)
� bn+1

for all n ≥ 0, and thus (3.13) follows. The proof is complete. �

Condition (ABB+) will follow from conditions (ABB), (J≤).

Lemma 3.5. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then

(VD) + (ABB) + (J≤)⇒ (ABB+). (3.23)

In order to prove the implication (3.23), one needs to construct a new cutoff functionφ for any ballB0

in M by using condition (ABB). Although the proof is quite technical, the idea of constructing such a new
cutoff functionφ is simple (see [1, Lemma 2.1 and Lemma 5.1] for the unbounded metric space): starting
from any ballB0, dividing the spaceM into finitely many (whenM is bounded) or infinitely many (when
M is unbounded) concentric balls{Bn}∞n=0, and lettingϕn be the cutoff function for neighboring concentric
balls Bn, B′n in Bn+1 by using condition (ABB), and then considering a finite or an infinite combination
φ =

∑
n≥0 anϕn, we will see that such a functionφ is the desired by choosing suitable coefficients{an}

and suitable radii of ballsBn.

Proof. Let 0< R< R, and

Rn B λnR and R′n B
λ + 1

2
Rn for anyn ≥ 0,

whereλ > 1 is some number to be chosen later on. Set

Bn B B(x0,Rn), B′n B B(x0,R
′
n) for n ≥ 0
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so thatBn ⊂ B′n ⊂ Bn+1. For thosen’s with Rn+1 < R, applying condition (ABBζ) to the triple
(Bn, B′n, Bn+1), we have for allu ∈ F ′ ∩ L∞

∫

Bn+1

u2dΓBn+1(ϕn) ≤ ζ

∫

Bn+1

dΓBn+1(u) +
C

ψ(R′n − Rn)

∫

Bn+1

u2dμ

≤ ζ

∫

Bn+1

dΓ(u) +
C(λ)
ψ(R)

∫

Bn+1

u2dμ, (3.24)

for someϕn ∈ cutoff(Bn, B′n), where we have used the fact that

ψ(R′n − Rn) = ψ
(λ − 1

2
Rn

)
≥ ψ

(λ − 1
2

R
)
≥ c(λ)ψ(R) (3.25)

for all n ≥ 0 by using (1.6). For thosen’s with Rn+1 ≥ R andR< ∞, we takeϕn = 1 in M so that (3.24)
is automatically satisfied at this time.

Let φ be the function defined by

φ =

∞∑

n=0

anϕn (3.26)

where {an}n≥0 is given in Proposition3.4 and {ϕn}n≥0 defined as above. In order to prove condition
(ABB+), we divide the proof into three steps.

Step1. We showφ ∈ cutoff(B0,M). For this, we first showφ ∈ F . Consider a partial summation

ΦN B
N∑

n=0

anϕn.

It suffices to show that the sequence{ΦN}∞N=0 converges toφ in the norm ofF . For this, it is enough to
show that{ΦN} is a Cauchy inF : for anyk ≥ 0,

‖ΦN+k − ΦN‖F =
∥∥∥∥

N+k∑

n=N+1

anϕn

∥∥∥∥
F
≤

∞∑

n=N+1

an||ϕn||F =

∞∑

n=N+1

an

(
||ϕn||

2
2 + E(ϕn)

)1/2
→ 0 (3.27)

asN→ ∞.
Indeed, as 0≤ ϕn ≤ 1 in M, we see

||ϕn||
2
2 =

∫

M
ϕ2

ndμ =

∫

B′n

ϕ2
ndμ ≤ μ

(
B′n

)
≤ μ (Bn+1) . (3.28)

On the other hand, lettingu = 1 in (3.24), we have
∫

Bn+1

dΓBn+1(ϕn) ≤
C(λ)
ψ(R)

∫

Bn+1

dμ =
C(λ)μ (Bn+1)

ψ(R)
. (3.29)

Applying (2.14) with Ω = M, f = u2,U = Bn+1, ϕ = ϕn where supp[ϕn] ⊂ B′n ⊂ Bn+1, we obtain for all
u ∈ F ′ ∩ L∞

∫

M
u2dΓ(ϕn) ≤

∫

Bn+1

u2dΓBn+1(ϕn) +
∫

Bn+1×Bc
n+1

(u2(x) + u2(y))ϕ2
n(x)d j

≤
∫

Bn+1

u2dΓBn+1(ϕn) +
∫

B′n×Bc
n+1

(u2(x) + u2(y))d j. (3.30)

In particular, whenu = 1, it follows that

E(ϕn) =

∫

M
dΓ(ϕn) ≤

∫

Bn+1

dΓBn+1(ϕn) + 2
∫

B′n×Bc
n+1

d j

≤
C(λ)μ (Bn+1)

ψ(R)
+ 2

∫

B′n×Bc
n+1

d j (using (3.29))

≤
C′(λ)μ (Bn+1)

ψ(R)
(3.31)
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since, using (3.3) with R1,R2 being respectively replaced byR′n,Rn+1, we have
∫

B′n×Bc
n+1

d j =

∫

B′n




∫

Bc
n+1

J(x, y)dμ(y)


 dμ(x) ≤

∫

B′n

C
ψ(Rn+1 − R′n)

dμ(x)

≤
C(λ)μ

(
B′n

)

ψ(R)
≤

C(λ)μ (Bn+1)
ψ(R)

.

Thus we see by (3.28), (3.31) that

||ϕn||
2
2 + E(ϕn) ≤ μ (Bn+1) +

C′(λ)μ (Bn+1)
ψ(R)

≤ Cμ (Bn)

for some constantC > 0 independent ofn. Therefore, it follows from (3.27) that

‖ΦN+k − ΦN‖F ≤
∞∑

n=N+1

an

(
||ϕn||

2
2 + E(ϕn)

)1/2
≤

∞∑

n=N+1

an (Cμ (Bn))1/2

=
√

C
∞∑

n=N+1

ãn

A
μ (Bn)1/2 =

√
C

A

∞∑

n=N+1

(
μ(B0)ψ(R)
μ(Bn)ψ(λnR)

)1/2

μ (Bn)1/2 (using (3.9))

=

√
C

A
(μ(B0)ψ(R))1/2

∞∑

n=N+1

1

ψ(λnR)1/2
≤

C′

ψ(λN+1R)
(using (1.6)),

which tends to 0 asN → ∞, thus showing that{ΦN} is a Cauchy inF . SinceΦN converges pointwise
to φ, we see thatφ ∈ F , and‖ΦN − φ‖F → 0 asN → ∞. Noting thatφ =

∑∞
n=0 anϕn = 1 onB0, we see

φ ∈ cutoff(B0,M), as desired.
Step2. We show that (1.17) holds for the functionφ defined by (3.26) and{an}n≥0 given by (3.9), if λ

is sufficiently close to 1.
Indeed, applying (3.6) with f = u2,Ω = M and then lettingN→ ∞, we obtain that for anyu ∈ F ′∩L∞

∫

M
u2dΓ(φ) = lim

N→∞

∫

M
u2dΓ(ΦN) (using (2.13) sinceΦN → φ in F )

≤
∞∑

n=0

a2
n

∫

M
u2dΓ(ϕn) + 2

∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

(
u2(x) + u2(y)

)
d j

≤
∞∑

n=0

a2
n




∫

Bn+1

u2dΓBn+1(ϕn) +
∫

B′n×Bc
n+1

(u2(x) + u2(y))d j


 (by (3.30))

+2
∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

(
u2(x) + u2(y)

)
d j. (3.32)

The second term on the right-hand side in (3.32) is absorbed into the third (double summation) when
m= n+ 1 becausea2

n � anan+1 by (3.13). Thus, it follows that
∫

M
u2dΓ(φ) ≤

∞∑

n=0

a2
n

∫

Bn+1

u2dΓBn+1(ϕn) + C(λ)
∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

(
u2(x) + u2(y)

)
d j

≤
∞∑

n=0

a2
n

(

ζ

∫

Bn+1

dΓ(u) +
C(λ)
ψ(R)

∫

Bn+1

u2dμ

)

(by (3.24))

+C(λ)
∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

(
u2(x) + u2(y)

)
d j. (3.33)

The double summation on the right-hand side in (3.33) contains the following term
∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

u2(x)d j ≤
∞∑

n=0

an




∞∑

m=n+1

am




∫

B′n×Bc
n+1

u2(x)d j (sinceBc
m ⊂ Bc

n+1)
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=

∞∑

n=0

anbn+1

∫

B′n

u2(x)




∫

Bc
n+1

d j


 dμ(x) (wherebn =

∞∑

m=n

am)

≤ C(λ)
∞∑

n=0

a2
n

ψ(R)

∫

Bn+1

u2dμ

by using (3.3) and the fact thatbn+1 � an in (3.13), and hence, it is absorbed into the second term on the
right-hand side in (3.33). Rearranging the terms in (3.33), we conclude that

∫

M
u2dΓ(φ) ≤ ζ

∞∑

n=0

a2
n

∫

Bn+1

dΓ(u) +
C1(λ)
ψ(R)

∞∑

n=0

a2
n

∫

Bn+1

u2dμ

+C2(λ)
∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

u2(y)d j

C ζ I1 +
C1(λ)
ψ(R)

I2 + C2(λ)I3 (3.34)

for two positive constantsC1(λ),C2(λ) depending only onλ. We estimateI1, I2, I3 separately.
Indeed, setUm B Bm+1 \ Bm. For anym≥ 1, note that

φ =

∞∑

n=0

anϕn =

m−1∑

n=0

anϕn + amϕm +

∞∑

n=m+1

anϕn

= amϕm + bm+1 ≤ am + bm+1 = bm onUm,

since onUm, we haveϕn = 0 for anyn ≤ m− 1 whilstϕn = 1 for anyn ≥ m+ 1. Thus

bm+1 ≤ φ ≤ bm on Bm+1 \ Bm for all m≥ 0. (3.35)

For I1, we have by (3.35)

I1 =

∞∑

n=0

a2
n

∫

Bn+1

dΓ(u) =
∞∑

n=0

a2
n




∫

B0

dΓ(u) +
n∑

m=0

∫

Um

dΓ(u)




≤
∞∑

n=0

a2
n

∫

B0

φ2dΓ(u) +
∞∑

m=0




∞∑

n=m

a2
n




∫

Um

(
φ

bm+1

)2

dΓ(u) (sinceφ = 1 onB0)

≤ max





∞∑

n=0

a2
n, sup

k≥0

1

b2
k+1

∞∑

n=k

a2
n





∫

M
φ2dΓ(u) ≤

1
8(ζ + 1)

∫

M
φ2dΓ(u) (3.36)

if λ is close enough to 1 by using (3.11).
For I2, we similarly have

I2 =

∞∑

n=0

a2
n

∫

Bn+1

u2dμ =

∞∑

n=0

a2
n




∫

B0

u2dμ +
n∑

m=0

∫

Um

u2dμ




≤ max





∞∑

n=0

a2
n, sup

k≥0

1

b2
k+1

∞∑

n=k

a2
n





∫

M
φ2u2dμ ≤

1
8(ζ + 1)

∫

M
φ2u2dμ (3.37)

if λ is close enough to 1.
For I3, we need more care. In fact, for anyn ≥ 0 and anyk ≥ m≥ n+ 1

dist(B′n, B
c
k) ≥ Rk − R′n =

(
1−

λ + 1
2

λn−k
)
Rk ≥

(
1−

λ + 1
2

λ−1
)
Rk =

1− λ−1

2
Rk,

and hence, we have by condition (J≤) that for anyy ∈ Bc
k

∫

B′n

J(x, y)dμ(x) ≤
∫

B′n

Cdμ(x)
V(x, y)ψ(x, y)

≤
∫

B′n

Cdμ(x)

V(x, 1−λ−1

2 Rk)ψ(1−λ−1

2 Rk)
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≤
C′(λ)μ(Bn+1)

V(x0,Rk)ψ(Rk)
=

C′(λ) (̃ak)
2 μ(Bn+1)

μ(B0)ψ(R)
(using (1.3), (3.9))

≤
C(λ)b2

k+1μ(Bn)

μ(B0)ψ(R)
(using (3.13), (1.4)).

It follows by exchanging the order of summations that

I3 =

∞∑

n=0

∞∑

m=n+1

anam

∫

B′n×Bc
m

u2(y)d j =
∞∑

n=0

∞∑

m=n+1

anam

∫

Bc
m

u2(y)

(∫

B′n

J(x, y)dμ(x)

)

dμ(y)

=

∞∑

n=0

∞∑

m=n+1

anam

∞∑

k=m

∫

Bk+1\Bk

u2(y)

(∫

B′n

J(x, y)dμ(x)

)

dμ(y)

≤
∞∑

n=0

∞∑

m=n+1

anam

∞∑

k=m

C(λ)b2
k+1μ(Bn)

μ(B0)ψ(R)

∫

Bk+1\Bk

(
φ

bk+1

)2

u2dμ (using (3.35))

=
C(λ)

μ(B0)ψ(R)

∞∑

k=1

∫

Bk+1\Bk

φ2u2dμ




k−1∑

n=0

anμ(Bn)
k∑

m=n+1

am




≤
C(λ)

μ(B0)ψ(R)

∞∑

k=1

∫

Bk+1\Bk

φ2u2dμ ∙Cμ(B0) =
C′(λ)
ψ(R)

∫

Bc
1

φ2u2dμ, (3.38)

since by (3.12)
k−1∑

n=0

anμ(Bn)
k∑

m=n+1

am ≤
k−1∑

n=0

anbn+1μ(Bn) ≤ Cμ(B0).

Therefore, substituting (3.38), (3.37), (3.36) into (3.34), we conclude that
∫

M
u2dΓ(φ) ≤ ζ I1 +

C1(λ)
ψ(R)

I2 + C2(λ)I3

≤
1
8

∫

M
φ2dΓ(u) +

C(λ)
ψ(R)

∫

M
φ2u2dμ

if λ is close enough to 1, thus proving (1.17).
Step3. It remains to show (1.16). Indeed, we have by definition (1.13) thatΦB0 = φ = 1 onB0, whilst

for anyx ∈ Um = Bm+1 \ Bm (m≥ 0)

ΦB0(x) =

(
μ(B0)ψ(R)

V(x0, x)ψ(x0, x)

)1/2

�

(
μ(B0)ψ(R)

μ(Bm)ψ(λmR)

)1/2

= ãm (by definition (3.9))

� bm � φ (by (3.13), (3.35)),

thus showing (1.16). The proof is complete. �

3.2. Condition (SL2). In this subsection, we derive condition (SL2) from conditions (ABB+), (J≤).

Lemma 3.6. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then

(VD) + (ABB+) +
(
Cap≤

)
+ (J≤)⇒ (SL2).

Consequently, we have
(VD) + (Gcap+) + (J≤)⇒ (SL2).

Proof. Let δ ∈ (0,1) be a number to be picked up later on. Let

B0 B B(x0,R) and BB B(x0, r)

be any two concentric balls with 0< R< r < Rso thatB0 ⊂ B. Without loss of generality, assume that

0 < 2δ−1R< r < R. (3.39)
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Otherwise, condition (SL2) is automatically true, since if12δr ≤ R< r, then

ψ(R)
ψ(r)

≥
ψ(1

2δr)

ψ(r)
≥ C−1 > 0,

and hence, inequality (1.22) is satisfied by Remark1.1.
By condition (ABB+), there exists someφ ∈ cutoff(B0,M) such that both (1.16) and (1.17) are satis-

fied. By (1.16), the functionφ decays at the same rate as the tent functionΦB0 sitting onB0, and hence,
there exists some numberδ ∈ (0,1) such that

esup
(δ−1B0)c

φ2 ≤ esup
(δ−1B0)c

(CΦB0)
2 = C2 esup

x∈(δ−1B0)c

μ(B0)ψ(R)
V(x0, x)ψ(x0, x)

≤ C2 μ(B0)ψ(R)
μ(δ−1B0)ψ(δ−1R)

≤ C2 ψ(R)
ψ(δ−1R)

≤ C′
( R

δ−1R

)β1

≤
1
4

if δ is sufficiently small. With a choice ofδ, we can have

esup
(δ−1B0)c

φ ≤
1
2
. (3.40)

(The set (δ−1B0)c may be empty if (M,d) is bounded. In this case, we have esup(δ−1B0)c φ = 0, and (3.40)
is also true.)

Define a functionφB0 by
φB0 := (φ − a)+ with a := esup

( 1
2 B)c

φ ≥ 0. (3.41)

Sinceδ−1B0 = B(x0, δ
−1R) ⊂ B(x0,

r
2) = 1

2B by using (3.39), we see by (3.40)

a = esup
( 1

2 B)c
φ ≤ esup

(δ−1B0)c
φ ≤

1
2
,

and hence,φB0 = (φ − a)+ ≥
1
2 on B0, sinceφ = 1 onB0.

We claim thatφB0 ∈ F (1
2B), and

dΓ(φB0) ≤ dΓ(φ) in M (3.42)

φB0 ≤ φ ≤ φB0 + Cb in M with b :=

(
μ(B0)ψ(R)
μ(B)ψ(r)

)1/2

, (3.43)

whereC is some universal constant independent ofB0, B.
Indeed, by the Markov property of (E,F ), we seeφB0 = (φ − a)+ ∈ F . Clearly,φB0 = 0 in (1

2B)c by
definition (3.41), thus showingφB0 ∈ F (1

2B) by using [16, Corollary 2.3.1 on p. 98].
To show (3.42), noting that|φB0(x) − φB0(y)| ≤ |φ(x) − φ(y)| for any pointsx, y in M, we have

∫

M
|φB0(x) − φB0(y)|2J(x, y)dμ(y) ≤

∫

M
|φ(x) − φ(y)|2J(x, y)dμ(y),

whilst by (2.9)
dΓL(φB0) = dΓL((φ − a)+ ) =1{φ>a}dΓL(φ) ≤dΓL(φ).

It follows by definition (2.12) that

dΓ(φB0)(x) = dΓL(φB0)(x) +

{∫

M

(
φB0(x) − φB0(y)

)2 J(x, y)dμ(y)

}

dμ(x)

≤ dΓL(φ)(x) +

{∫

M
(φ(x) − φ(y))2 J(x, y)dμ(y)

}

dμ(x) = dΓ(φ)(x),

thus showing (3.42).
By definition (3.41) and using (1.16), (1.13), we have

φB0 ≤ φ ≤ φB0 + a = φB0 + esup
( 1

2 B)c
φ ≤ φB0 + C esup

( 1
2 B)c

ΦB0
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≤ φB0 + C



μ(B0)ψ(R)

μ(1
2B)ψ(1

2r)




1/2

≤ φB0 + C′b,

thus showing (3.43). This proves our claim.
Note that by condition

(
Cap≤

)
, there exists someφB ∈ cutoff(3

4B, B) such that

E(φB) =
∫

M
dΓ(φB) ≤

Cμ (B)
ψ(r)

. (3.44)

We now have three functionsφB0, φ, φB with concentric ballsB0 ⊂ δ−1B0 ⊂ 1
2B, see Figure2.

Figure 2. Three functionsφB0, φ, φB and concentric ballsB0 ⊂ δ−1B0 ⊂ 1
2B.

We define the integralI (t) by

I (t) :=
∫

M
(1− PB

t 1B)2 φ2
B0

dμ (t > 0)

whereφB0 is given by (3.41). Then for anyt > 0

d
dt

I (t) = 2
∫

M
(1− PB

t 1B) φ2
B0

(

−
∂

∂t
PB

t 1B

)

dμ = 2E(PB
t 1B, (1− PB

t 1B) φ 2
B0

)

= −2E(φB − PB
t 1B, (1− PB

t 1B) φ 2
B0

) + 2E(φB, (1− PB
t 1B) φ2

B0
)

C I1(t) + I2(t). (3.45)

To estimateI1(t), note that

φ2
B0

= φ 2
B0
φB in M (3.46)

since supp[φB0] ⊂
1
2B andφB = 1 in 3

4B. It follows from (2.16), with u being replaced byφB0 andφ by
φB − PB

t 1B, that

I1(t) = −2E(φB − PB
t 1B, (1− PB

t 1B) φ 2
B0

)

= −2E(φB − PB
t 1B, (φB − PB

t 1B) φ 2
B0

) (using (3.46))

= 4
∫

M
(φB − PB

t 1B)2dΓ(φB0) −
∫

M
φ2

B0
dΓ(φB − PB

t 1B). (3.47)

On the other hand, we see by condition (ABB+) that
∫

M
(φB − PB

t 1B)2dΓ(φB0) ≤
∫

M
(φB − PB

t 1B)2dΓ(φ) (using (3.42))

≤
1
8

∫

M
φ2dΓ(φB − PB

t 1B) +
C
ψ(R)

∫

M
(φB − PB

t 1B)2φ2dμ.
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From this and using the fact thatφ2 ≤ 2(φ 2
B0

+ C2b2) in M by (3.43), we obtain by (3.47)

I1(t) ≤
∫

M

(
1
2
φ2 − φ 2

B0

)

dΓ(φB − PB
t 1B) +

4C
ψ(R)

∫

M
(φB − PB

t 1B)2φ2dμ

≤ C2b2
∫

M
dΓ(φB − PB

t 1B) +
4C
ψ(R)

∫

M
(φB − PB

t 1B)2(2φ 2
B0

+ 2C2b2)dμ

= C2b2E(φB − PB
t 1B) +

8C
ψ(R)

{

I (t) + C2b2
∫

M
(φB − PB

t 1B)2dμ

}

≤ C

{
1

ψ(R)
I (t) + b2E(PB

t 1B) +
μ(B0)
ψ(r)

}

(3.48)

for some universal constantC > 0 independent ofB0, B, t, where we have used the facts that

E(φB − PB
t 1B) ≤ 2

(
E(φB) + E(PB

t 1B)
)
≤

2Cμ (B)
ψ(r)

+ 2E(PB
t 1B) (using (3.44))

and that, using definition ofb in (3.43) and condition (VD),

b2

ψ(R)

∫

M
(φB − PB

t 1B)2dμ ≤
b2

ψ(R)

∫

B
dμ =

μ(B)
ψ(R)

∙
μ(B0)ψ(R)
μ(B)ψ(r)

=
μ(B0)
ψ(r)

.

In order to estimateI2(t), noting thatφB is constant on the support of function (1− PB
t 1B) φ2

B0
so that

E(L)(φB, (1− PB
t 1B) φ 2

B0
) = 0,

it follows that

I2(t) = 2E(φB, (1− PB
t 1B) φ 2

B0
) = 2E(J)(φB, (1− PB

t 1B) φ2
B0

)

= 4
∫

M
(1− PB

t 1B(x)) φ 2
B0

(x)

{∫

M
(φB(x) − φB(y))J(x, y)dμ(y)

}

dμ(x)

= 4
∫

1
2 B

(1− PB
t 1B(x)) φ 2

B0
(x)





∫

( 3
4 B)c

(1− φB(y))J(x, y)dμ(y)





dμ(x)

≤
C
ψ(r)

∫

1
2 B

(1− PB
t 1B(x)) φ 2

B0
(x)dμ(x) (using (J≤) and (3.3))

≤
C
ψ(r)

∫

1
2 B
φ2dμ ≤

C
ψ(r)

∫

M
(CΦB0)

2dμ (using (3.43) and (1.16))

≤ C′
μ(B0)
ψ(r)

(using (1.15)). (3.49)

Therefore, plugging (3.49), (3.48) into (3.45), we obtain that for anyt > 0

d
dt

I (t) ≤ I1(t) + I2(t) ≤ C

{
1

ψ(R)
I (t) + b2E(PB

t 1B) +
μ(B0)
ψ(r)

}

.

Integrating over (0, t) and then usingI (0) = 0, we have for anyt > 0
∫

M
(1− PB

t 1B)2 φ 2
B0

dμ = I (t) ≤ C exp

(
Ct
ψ(R)

) (

b2
∫ t

0
E(PB

s1B)ds+
μ(B0)
ψ(r)

t

)

≤ C exp

(
Ct
ψ(R)

) (
μ(B0)ψ(R)
ψ(r)

+
μ(B0)
ψ(r)

t

)

, (3.50)

where we have used the fact that

b2
∫ t

0
E(PB

s1B)ds≤
μ(B0)ψ(R)

2ψ(r)
,
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because we have− d
ds

∥∥∥PB
s1B

∥∥∥2
2
= 2E(PB

s1B) for anys> 0, which implies that

b2
∫ t

0
E(PB

s1B)ds =
b2

2

∫ t

0

{

−
d
ds

∥∥∥PB
s1B

∥∥∥2
2

}

ds=
b2

2

(
μ(B) −

∥∥∥PB
t 1B

∥∥∥2
2

)

≤
b2

2
μ(B) =

1
2
μ(B) ∙

μ(B0)ψ(R)
μ(B)ψ(r)

=
μ(B0)ψ(R)

2ψ(r)
.

Finally, we derive condition (SL2) from (3.50). Indeed, noting that by (1.16), (3.43)

ΦB0 ≤ Cφ ≤ C(φB0 + Cb) in M,

it follows from (3.50) that for anyt > 0,
∫

B

(
1− PB

t 1B

)2
Φ2

B0
dμ ≤

∫

B

(
1− PB

t 1B

)2
∙C2(2φ 2

B0
+ 2C2b2)dμ

≤ C

(

I (t) + b2
∫

B

(
1− PB

t 1B

)2
dμ

)

≤ C′μ(B0) exp

(
Ct
ψ(R)

) (
ψ(R)
ψ(r)

+
t

ψ(r)

)

+ b2μ(B)

≤ Cμ(B0)

(
ψ(R)
ψ(r)

+
t

ψ(r)

)

exp

(
Ct
ψ(R)

)

,

thus proving (1.22). The proof is complete. �

As we have seen, in order to show condition (SL2), we need to consider any two concentric balls
B0 ⊂ B and construct a new functionφB0, belonging to the spaceF , vanishing outside1

2B, but is
comparable with the tent functionΦB0 sitting on the smaller ballB0.

3.3. Conservativeness.In this subsection, we derive the conservativeness of the form (E,F ) from con-
dition (SL2) when (M,d) is unbounded. However, if (M,d) is bounded, we can get the conservativeness
directly, without using condition (SL2).

Lemma 3.7. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then the following two
statements are true.

(1) If (M,d) is bounded, then(E,F ) is conservative.
(2) If (M,d) is unbounded and condition(SL2) is satisfied, then(E,F ) is conservative.

Consequently, if conditions(VD), (J≤), (ABB) are satisfied, then(E,F ) is conservative.

Proof. (1) Assume that (M,d) is bounded. By Proposition7.1 in Appendix, we have 1∈ F . It follows
that for anyt > 0

d
dt
‖Pt1‖

2
2 = −2E(Pt1,Pt1) = −2E(1,P2t1) = 0,

which implies that (Pt1,Pt1) = (1,1), and hence
∫

M
(1− P2t1)dμ = (1,1)− (1,P2t1) = (1,1)− (Pt1,Pt1) = 0.

Thus,Pt1 = 1 for anyt > 0, showing that (E,F ) is conservative.
(2) Assume that (M,d) is unbounded and condition (SL2) is satisfied. LetB0 B B(x0,R) ⊂ B B

B(x0, r) be any two concentric balls. Then we have from condition (SL2) that, using the fact thatPB
t 1B ≤

Pt1 ≤ 1 in M,
∫

B0

(1− Pt1)2dμ ≤
∫

B0

(1− PB
t 1B)2dμ ≤

∫

B
(1− PB

t 1B)2Φ 2
B0

dμ (sinceΦB0 = 1 in B0)

≤ Cμ(B0)

(
ψ(R)
ψ(r)

+
t

ψ(r)

)

exp

(
Ct
ψ(R)

)

→ 0 asr → ∞.

Thus,Pt1 = 1 in B0. SinceB0 is an arbitrary ball, we havePt1 = 1 in M, thus proving that (E,F ) is
conservative. The proof is complete. �
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3.4. Condition (S1/2). In this subsection, we derive condition (S1/2) from conditions (PMV2), (SL2).

Lemma 3.8. Assume that(E,F ) is a regular Dirichlet form in L2 without killing part. Then

(VD) + (PMV2) + (SL2)⇒ (S1/2). (3.51)

Proof. In order to show condition (S1/2), it suffices to assume that 0< t < ψ(δR) by Remark1.2, where
δ comes from condition (PMV2). For a pointx0 in M, let

BB B(x0,R).

We will show that

1− PB
t 1B ≤ C

(
t

ψ(R)

)1/2

in
1
2

B (3.52)

for any 0< R< Rand any 0< t < ψ(δR).
Indeed, if 2ψ−1(t) ≥ R, then (3.52) is automatically satisfied, since in this case we have

t
ψ(R)

≥
ψ(R/2)
ψ(R)

≥ C−2 > 0

for some constantC > 0. In the sequel, assume that 2ψ−1(t) < R< R.
Let r B ψ−1(t) and

B0 B B(x0, r)

so thatB0 ⊂ 1
2B. For any openΩ ⊃ B, let

uB PΩ
t 1Ω − PB

t 1B.

Then the functionu is nonnegative inM and caloric in (0,∞) × B. Applying condition (PMV2) to this
functionu over (0, t) × B0, we have

esup
1
2 B0

u(t, ∙) ≤ C




1
tμ(B0)

∫ t

t
2

ds
∫

B0

u2(s, ∙)dμ



1/2

+
1

μ(B0)
sup

s∈[ t
2 ,t]

∫

( 1
2 B0)c

u(s, ∙)Φ2
B0

dμ

≤ C′



1
μ(B0)

sup
s∈[ t

2 ,t]

∫

M
u2(s, ∙)Φ2

B0
dμ




1/2

, (3.53)

since the first term on the right-hand side is controlled by, using the fact thatΦB0 = 1 in B0,

1
tμ(B0)

∫ t

t
2

ds
∫

B0

u2(s, ∙)dμ ≤
1

tμ(B0)

∫ t

t
2

ds
∫

M
u2(s, ∙)Φ2

B0
dμ

≤
1

2μ(B0)
sup

s∈[ t
2 ,t]

∫

M
u2(s, ∙)Φ2

B0
dμ,

whilst the second one is controlled by, using the Cauchy-Schwarz inequality and (1.15),

1
μ(B0)

∫

( 1
2 B0)c

u(s, ∙)Φ2
B0

dμ ≤
1

μ(B0)

{∫

M
u2(s, ∙)Φ2

B0
dμ

}1/2 {∫

M
Φ2

B0
dμ

}1/2

≤
(Cμ(B0))1/2

μ(B0)

{∫

M
u2(s, ∙)Φ2

B0
dμ

}1/2

≤
√

C





1
μ(B0)

sup
s∈[ t

2 ,t]

∫

M
u2(s, ∙)Φ2

B0
dμ





1/2

for anys ∈ [ t
2, t].

On the other hand, by (3.2) and using the fact thatu ≤ 1 in (0,∞) × M,
∫

Bc
u2(s, ∙)Φ2

B0
dμ ≤

∫

Bc
Φ2

B0
dμ =

∫

B(x0,R)c

μ(B0)ψ(r)
V(x0, x)ψ(x0, x)

dμ ≤ C
μ(B0)ψ(r)
ψ(R)

.
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It follows from condition (SL2) that, using the fact thatt = ψ(r),
∫

M
u2(s, ∙)Φ2

B0
dμ =

∫

B
u2(s, ∙)Φ2

B0
dμ +

∫

Bc
u2(s, ∙)Φ2

B0
dμ

≤
∫

B

(
1− PB

s1B

)2
Φ2

B0
dμ + C

μ(B0)ψ(r)
ψ(R)

≤ Cμ(B0)

(
ψ(r)
ψ(R)

+
s

ψ(R)

)

exp

(
Cs
ψ(r)

)

+ C
μ(B0)ψ(r)
ψ(R)

≤ 2Cμ(B0)

(
ψ(r)
ψ(R)

+
t

ψ(R)

)

exp

(
Ct
ψ(r)

)

≤ C′
μ(B0)t
ψ(R)

(3.54)

for anys ∈ [ t
2, t]. Therefore, we obtain from (3.53), (3.54) that

esup
B(x0,

1
2ψ
−1(t))

(
PΩ

t 1Ω − PB
t 1B

)
= esup

1
2 B0

(
PΩ

t 1Ω − PB
t 1B

)

≤ C′



1
μ(B0)

sup
s∈[ t

2 ,t]

∫

M
u2(s, ∙)Φ2

B0
dμ




1/2

≤ C

(
t

ψ(R)

)1/2

(3.55)

for any 0< t < ψ(δR) and for anyΩ ⊃ B ⊃ B0 = B(x0, ψ
−1(t)), whereC > 0 is some universal constant

independent oft, B0, B.
We further extend inequality (3.55) over 1

2B (not only overB(x0,
1
2ψ
−1(t))) by using the standard

covering argument. Namely, we show that

esup
1
2 B

(
PΩ

t 1Ω − PB
t 1B

)
≤ C

(
t

ψ(R)

)1/2

(3.56)

for any 0< t < ψ(δR) and any openΩ ⊃ B = B(x0,R) with 2ψ−1(t) < R< R.
Indeed, by condition (VD), there is a finite family{B(zi ,

1
2r)}Ni=1 of balls with each centerzi in 1

2B
such that12B ⊂ ∪i B(zi ,

1
2r), wherer = ψ−1(t). Applying (3.55) with B0 being replaced byB(zi , r) andB

replaced byBi B B(zi ,
R
2), we have that, using the fact thatPBi

t 1Bi ≤ PB
t 1B in M,

esup
B(zi ,

1
2 r)

(
PΩ

t 1Ω − PB
t 1B

)
≤ esup

B(zi ,
1
2 r)

(
PΩ

t 1Ω − PBi
t 1Bi

)
≤ C

(
t

ψ(R/2)

)1/2

≤ C′
(

t
ψ(R)

)1/2

for an arbitrary pointzi , thus showing (3.56).
Finally, since (E,F ) is conservative by Proposition3.7, whenΩ is expanding toM, we see that

PΩ
t 1Ω → Pt1 = 1. From this and using (3.56), we obtain (3.52), as desired. The proof is complete. �

Recall that condition (S1/2) gives a pointwise upper bound of the survival function 1− PB
t 1B, whilst

condition (SL2) gives an upper bound of this function in the weighted norm ofL2. The above lemma
says that one needs theL2 mean-value inequality to obtain pointwise estimate of function 1−PB

t 1B from
its L2 estimate.

4. On-diagonal upper estimate

In this section, we first derive theL1 mean-value inequality from itsL2-version and then obtain on-
diagonal upper estimate of the heat kernel by using theL1 mean-value inequality.
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4.1. Mean-value inequality. In this subsection, we derive theL1 mean-value inequality from itsL2

version.

Proposition 4.1(L2-version). Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then

(Gcap+) + (FKν) + (J≤)⇒ (PMV2). (4.1)

Consequently, for any B0 := B(x0,R) with 0 < R < δR whereδ comes from condition(FKν) and for any
function u: (0, s] → F ′ ∩ L∞ that is nonnegative, subcaloric in(0, s] × B0 with s= ψ(R), we have

esup
[ 3s

4 ,s]×( 1
2 B0)

u ≤ C(ν)Aθ max{A,T}1−θ , (4.2)

whereθ B 2ν
1+3ν , and T is defined by (1.20) and

AB




2
sμ(B0)

∫ s

s
2

∫

B0

u2(t, ∙)dμdt



1/2

. (4.3)

Proof. The implication (4.1) has been obtained in the forthcoming paper [17], and so (1.19) is true.

Minimizing the right-hand side of (1.19) in ε, for example, takingε =
(

A
T

)θ
, we obtain (4.2). The proof

is complete. �

We derive condition (PMV1) from condition (PMV2).

Lemma 4.2(L1-version). Let (E,F ) be a regular Dirichlet form in L2. Then

(PMV2)⇒ (PMV1).

Consequently, we have
(Gcap+) + (FKν) + (J≤)⇒ (PMV1). (4.4)

Proof. Assume that the functionu : (0, s] → F ′ ∩ L∞ is nonnegative, subcaloric in (0, ψ(R)] × B0,
whereB0 B B(x0,R) with 0 < R < δR and s = ψ(R). We shall show that there exist two constants
C > 0, c0 ∈ (0,1) such that (1.21) is satisfied. The proof is divided into two steps.

Step1. We will construct domains{Dn}n≥0, {Q+
n }n≥1 contained in [s2, s] × B0 such thatQ+

n ⊂ Dn for
eachn (see Figure3 below), and

esup
Dn−1

u = esup
Dn−1∩Q+

n

u for anyn ≥ 1. (4.5)

Indeed, letr0 B c0R, wherec0 ∈ (0, 1
2) is some small number to be chosen. DefineDn by

Dn B
[
s−

1
2

n∑

k=0
ψ(

r0

2k
), s

]
× B(x0,

n∑

k=0

r0

2k
) (n ≥ 0). (4.6)

The domains{Dn}n≥0 is expanding to the domainD∞ where

D∞ B
[
s−

1
2

∞∑

k=0
ψ(

r0

2k
), s

]
× B(x0,

∞∑

k=0

r0

2k
).

Note that by (1.6),

∞∑

k=0
ψ(

r0

2k
) =

∞∑

k=0
ψ(

c0R

2k
) ≤ ψ(R)

∞∑

k=0
C

(
c0R/2k

R

)β1

=
Ccβ1

0 ψ(R)

1− 2−β1
≤ ψ(R) = s (4.7)

if c0 is chosen to be sufficiently small, for example, if

Ccβ1
0

1− 2−β1
≤ 1.

In this case, we have by (4.7)

D∞ =
[
s−

1
2

∞∑

k=0
ψ(

r0

2k
), s

]
× B(x0,

∞∑

k=0

r0

2k
) ⊂

[ s
2
, s

]
× B(x0,2r0) ⊂

[ s
2
, s

]
× B(x0,R), (4.8)

since 2r0 = 2c0R< R for c0 <
1
2.
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Starting from domains{Dn}n≥0, we will inductively construct domains{Q+
n ⊂ Qn ⊂ Dn}n≥1 such that

(4.5) holds. Indeed, sinceDn−1 can be covered by finitely many cylinders of forms
[
t −

1
4
ψ(

r0

2n ), t
]
× B(x,

r0

2n+1
)

by varying points (t, x) in Dn−1, we can choose one cylinder (not necessarily unique)

Q+
n B

[
sn −

1
4
ψ(

r0

2n ), sn

]
× B(xn,

r0

2n+1
) with (sn, xn) ∈ Dn−1 (4.9)

such that the essential supremum ofu over Dn−1 is attained onDn−1 ∩ Q+
n , that is, equality (4.5) is

satisfied. With the point (sn, xn) chosen above, we set forn ≥ 1

Qn B
[
sn −

1
2
ψ(

r0

2n ), sn

]
× B(xn,

r0

2n ). (4.10)

Clearly,Q+
n ⊂ Qn.

We claim thatQn ⊂ Dn for anyn ≥ 1, so that

Q+
n ⊂ Qn ⊂ Dn ⊂ D∞ (n ≥ 1). (4.11)

See Figure3.

Figure 3. Points (sn+1, xn+1) are in domainsDn ⊂ Dn+1 ⊂ [ s
2, s] × B0.

Indeed, as (sn, xn) ∈ Dn−1, we see by definition (4.6) of Dn−1 that

s−
1
2

n−1∑

k=0

ψ(
r0

2k
) ≤ sn ≤ s and d(x0, xn) ≤

n−1∑

k=0

r0

2k
(n ≥ 1). (4.12)

Thus for any (t, x) ∈ Qn

s ≥ sn ≥ t ≥ sn −
1
2
ψ(

r0

2n ) (by definition (4.10) of Qn)

≥ s−
1
2

n−1∑

k=0

ψ(
r0

2k
) −

1
2
ψ(

r0

2n ) = s−
1
2

n∑

k=0

ψ(
r0

2k
) (by (4.12)), (4.13)

whilst by (4.12), (4.10), using the triangle inequality,

d(x0, x) ≤ d(x0, xn) + d(xn, x) ≤
n−1∑

k=0

r0

2k
+

r0

2n =

n∑

k=0

r0

2k
, (4.14)

thus showing (t, x) ∈ Dn. This provesQn ⊂ Dn, as claimed.
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Step2. We show that (1.21) is satisfied. Indeed, let forn ≥ 1

un(t, x) B u(t + sn − ψ(
r0

2n ), x). (4.15)

The functionun is well-defined for anyt ∈ (0, ψ( r0
2n )] and anyx ∈ B0, sincet + sn − ψ( r0

2n ) ∈ (0, s] by
noting that

s ≥ sn ≥ t + sn − ψ(
r0

2n ) ≥ 0+ sn − ψ(
r0

2n )

≥ s−
1
2

n−1∑

k=0

ψ(
r0

2k
) − ψ(

r0

2n ) (using (4.12))

> s−
∞∑

k=0

ψ(
r0

2k
) ≥ s− s= 0 (using (4.7)).

Note thatun is nonnegative, subcaloric in (0, tn] × Bn, where

Bn B B(xn,
r0

2n ) and tn B ψ(
r0

2n ) for n ≥ 1. (4.16)

Applying (PMV2) to the functionun with respect to ballBn, it follows from (4.2), with B0 being replaced
by Bn ands replaced bytn, that for anyn ≥ 1

Mn B esup
Dn−1

u = esup
Dn−1∩Q+

n

u ≤ esup
Q+

n

u (using (4.5)) (4.17)

= esup
[sn− 1

4ψ(
r0
2n ),sn]×B(xn,

r0
2n+1 )

u (using definition (4.9))

= esup
[ 3

4ψ(
r0
2n ),ψ(

r0
2n )]×( 1

2 Bn)

un (using definition (4.15))

= esup
[ 3tn

4 ,tn]×( 1
2 Bn)

un ≤ CAθn (An ∨ Tn)1−θ , (4.18)

whereAn,Tn are respectively given by

An B




2
tnμ(Bn)

∫ tn

tn
2

∫

Bn

u2
n(t, ∙)dμdt



1/2

=

(
1
|Qn|

∫

Qn

u2(t, ∙)dμdt

)1/2

(by definition (4.10)),

Tn B
1

μ(Bn)
sup

t∈[ tn
2 ,tn]

∫

( 1
2 Bn)c

(un)+(t, ∙)Φ2
Bn

dμ =
1

μ(Bn)
sup

t∈[sn− 1
2ψ(

r0
2n ),sn]

∫

( 1
2 Bn)c

u+(t, ∙)Φ2
Bn

dμ, (4.19)

whereΦBn is the tent function sitting on ballBn defined by (1.13) but with B0 replaced byBn.
Note that{Mn}n≥1 defined by (4.17) is increasing sinceDn−1 ⊂ Dn. For simplicity, setU B B(x0, r0),

In B
[
sn −

1
2
ψ(

r0

2n ), sn

]
and Un B

1
2

Bn = B(xn,
r0

2n+1
) for n ≥ 1.

Then for anyn ≥ 1

Tn =
1

μ(Bn)
sup
t∈In

∫

Uc
n

u+(t, ∙)Φ2
Bn

dμ

= ψ(
r0

2n ) sup
t∈In

(∫

U\Un

+

∫

M\(U∪Un)

)
u+(t, x)dμ(x)

V(xn, x)ψ(xn, x)
C T(1)

n + T(2)
n . (4.20)

In order to estimateT(1)
n , using the fact thatIn × U ⊂ [sn − 1

2ψ( r0
2n ), sn] × B(x0, r0) ⊂ Dn by using (4.13)

and definition (4.6), we have that for anyn ≥ 1

T(1)
n = ψ(

r0

2n ) sup
t∈In

∫

U\Un

u+(t, x)dμ(x)
V(xn, x)ψ(xn, x)

≤ ψ(
r0

2n ) sup
t∈In

(
esup
U\Un

u
) ∫

Uc
n

dμ(x)
V(xn, x)ψ(xn, x)
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≤ ψ(
r0

2n )
(
esup

Dn

u
) C

ψ( r0
2n+1 )

≤ C′Mn+1 (using (3.2)). (4.21)

For T(2)
n , using the general fact that there exists some constantC > 0 such that

C−1V(x, y) ≤ V(y, x) ≤ CV(x, y) for all x, y in M,

we have for anyx ∈ Uc
n,

V(x0, x)
V(xn, x)

≤ C
V(x, x0)
V(x, xn)

≤ C

(
d(x0, xn) + d(xn, x)

d(xn, x)

)α
≤ C′2nα (4.22)

sinced(x0, xn) ≤ 2r0 for all n by (4.12) andd(x, xn) ≥ 2−(n+1)r0. Similarly, using the monotonicity ofψ
and (1.6), we have for anyx ∈ Uc

n

ψ(x0, x)
ψ(xn, x)

≤
ψ(d(x0, xn) + d(xn, x))

ψ(d(xn, x))
≤ C2nβ2.

Thus for anyx ∈ Uc
n

V(x0, x)ψ(x0, x)
V(xn, x)ψ(xn, x)

≤ C2n(α+β2).

From this, we obtain for anyn ≥ 1

T(2)
n = ψ(

r0

2n ) sup
t∈In

∫

M\(U∪Un)

u+(t, x)dμ(x)
V(xn, x)ψ(xn, x)

≤ ψ(
r0

2n ) sup
t∈In

∫

M\(U∪Un)

u+(t, x)dμ(x)
V(x0, x)ψ(x0, x)

∙ esup
x<(U∪Un)

V(x0, x)ψ(x0, x)
V(xn, x)ψ(xn, x)

≤ ψ(r0) sup
t∈In

∫

Uc

u+(t, x)dμ(x)
V(x0, x)ψ(x0, x)

∙C2n(α+β2) ≤ C′2n(α+β2)T (4.23)

whereT is defined by

T B ψ(R) sup
t∈[ s

2 ,s]

∫

Uc

u+(t, x)dμ(x)
V(x0, x)ψ(x0, x)

. (4.24)

Therefore, substituting (4.23), (4.21) into (4.20), we obtain

Tn = T(1)
n + T(2)

n ≤ C(2n(α+β2)T + Mn+1) (n ≥ 1). (4.25)

In order to estimateAn in (4.19), let K be defined by

K =
2

sμ(B0)

∫ s

s
2

∫

B0

u(t, ∙)dμdt =
1
|Q|

∫

Q
u, (4.26)

whereQB [ s
2, s] × B0. Then

A2
n =

1
|Qn|

∫

Qn

u2 ≤
1
|Qn|

∫

Qn

u ∙ esup
Dn

u (sinceQn ⊂ Dn by (4.11))

≤ Mn+1
1
|Qn|

∫

Q
u (sinceQn ⊂ D∞ ⊂ Q)

=
|Q|
|Qn|

KMn+1 ≤ C2n(α+β2)KMn+1, (4.27)

where we have used the fact that, noting thatd(xn, x0) ≤ 2r0 by (4.12) andr0 = c0R, s= ψ(R),

|Q|
|Qn|

=

s
2V(x0,R)

1
2ψ( r0

2n )V(xn,
r0
2n )

=
ψ(R)V(x0,R)

ψ(c0R
2n )V(xn,

c0R
2n )
≤ C2n(α+β2).

Therefore, substituting (4.27), (4.25) into (4.18), we obtain

Mn ≤ C
(
2n(α+β2)KMn+1

)θ/2 {(
2n(α+β2)KMn+1

)1/2
∨

(
2n(α+β2)T + Mn+1

)}1−θ

≤ CKθ/22n(α+β2)Mθ/2
n+1

{
(KMn+1)1/2 ∨ (T + Mn+1)

}1−θ
. (4.28)
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We claim that there exists some constantC > 0 independent ofu, B0 such that

M1 ≤ C(K + T). (4.29)

Indeed, if there exists some integern ≥ 1 such thatMn ≤ K or Mn ≤ T, then

M1 = esup
D0

u ≤ Mn ≤ K + T,

and hence, estimate (4.29) is true.
In the sequel, assume thatMn ≥ K ∨ T for all n ≥ 1. Then by (4.28)

Mn ≤ CKθ/2bnM1−θ/2
n+1 for all n ≥ 1

wherebB 2α+β2. Iterating this inequality, we have that, settingγ = 1− θ/2 = 1+2ν
1+3ν ,

M1 ≤
(
CKθ/2b

)
Mγ

2 ≤
(
CKθ/2b

) (
CKθ/2b2Mγ

3

)γ
≤ ∙ ∙ ∙

≤
(
CKθ/2

)1+γ+γ2+∙∙∙
b1+2γ+3γ2+∙∙∙Mγn

n+1

=
(
CKθ/2

) 1
1−γ b

1
(1−γ)2 Mγn

n+1→ C′K asn→ ∞,

sinceu is bounded by a positive constantC(u) in (0, s] × B0 andMγn

n+1 ≤ C(u)γ
n
→ 1 asn→ ∞. Thus,

estimate (4.29) is true again. This proves our claim.
Finally, note that by definition (4.26),

K =
2

sμ(B0)

∫ s

s
2

∫

B0

u(t, x)dμ(x)dt ≤
1

μ(B0)
sup

t∈[ s
2 ,s]

∫

B0

u+(t, ∙)dμ

and that, using definition (4.24) andU = B(x0, r0) = B(x0, c0R),

T = ψ(R) sup
t∈[ s

2 ,s]

∫

Uc

u+(t, x)dμ(x)
V(x0, x)ψ(x0, x)

≤
C

μ(B0)
sup

t∈[ s
2 ,s]

∫

M
u+(t, x)dμ(x)

whereC is a constantC independent ofB0. Therefore, it follows from (4.29) that

esup
[s− 1

2ψ(c0R),s]×B(x0,c0R)

u = esup
D0

u = M1 ≤ C(K + T) ≤
C

μ(B0)
sup

t∈[ s
2 ,s]

∫

M
u+(t, ∙)dμ,

thus showing (1.21). Hence, condition (PMV1) is satisfied. The proof is complete. �

The result in Lemma4.2 can be viewed as a generalization of [13, Subsection 4.6]. The idea of the
proof is to construct a sequence of points such that the subcaloric function attains its maximum when
the domains are expanding, which yields an iteration inequality by using theL2-version of parabolic
mean-value inequality, and then we get the desired by solving this iteration inequality.

4.2. Condition (DUE). In this subsection, we derive condition (DUE) from (PMV1).

Lemma 4.3. The following implication is true:

(PMV1)⇒ (DUE).

Proof. Let x0 ∈ M and 0< t < ψ(R). For any nonnegativef ∈ L1 ∩ L∞, let u(s, x) = Ps+t−t′ f (x) for
(s, x) ∈ (0,∞) × M, wheret′ = t ∧ ψ(δR) and the constantδ comes from condition (PMV1). Clearly,

t′ ≥ C−1t

for all 0 < t < ψ(R), whereC is a constant independent oft,R. Thenu is nonnegative, caloric in
(0,∞) × M. Applying condition (PMV1) to the functionu over cylinder (0, t′] × B(x0, ψ

−1(t′)), we have
by (1.21) that forμ-almost allx ∈ B(x0, c0ψ

−1(C−1t)) ⊂ B(x0, c0ψ
−1(t′)),

Pt f (x) = u(t′, x) ≤
C

V(x0, ψ−1(t′))
sup

t′
2 ≤s≤t′

∫

M
u(s, x)dμ(x)

≤
C′

V(x0, ψ−1(t))
‖ f ‖L1 (since‖Psf ‖1 ≤ ‖ f ‖1). (4.30)



32 HU AND LIU

We shall show that forμ-almost allx ∈ B0 B B(x0,R) with 0 < R< R

Pt f (x) ≤
C

V(x0, ψ−1(t))

(

1+
R

ψ−1(t)

)α
‖ f ‖L1 (4.31)

for all nonnegativef ∈ L1 ∩ L∞, whereC > 0 is a constant independent ofB0, f , t, x.
Indeed, by the doubling property, we can cover the ballB0 by a finite number of balls{B(ξi , c0ψ

−1(C−1t))}Ni=1
with each centerξi in B0. It follows from (4.30) with x0 being replaced byξi that, for μ-almost all
z ∈ B(ξi , c0ψ

−1(C−1t)),

Pt f (z) ≤
C

V(ξi , ψ−1(t))
‖ f ‖L1 =

C

V(x0, ψ−1(t))
V(x0, ψ

−1(t))
V(ξi , ψ−1(t))

‖ f ‖L1

≤
C′

V(x0, ψ−1(t))

(

1+
R

ψ−1(t)

)α
‖ f ‖L1 (usingd(x0,ξi) < Rand (1.3)).

Varyingz in the ballB0, we obtain (4.31), as desired.
Applying [20, Theorem 2.2], we conclude from (4.31) that there exists a pointwise defined heat kernel

pt(x, y) on (0,∞) × M × M such that for allx ∈ B0, all 0 < t < ψ−1(R) and ally ∈ M,

pt(x, y) ≤
C

V(x0, ψ−1(t))

(

1+
R

ψ−1(t)

)α
, (4.32)

whereC > 0 is some constant independent ofx, y, t,R. In particular, lettingR→ 0, we obtain that for
all x, y in M and all 0< t < ψ(R),

pt(x, y) ≤
C

V(x, ψ−1(t))
, (4.33)

thus showing that condition (DUE) is true. The proof is complete. �

5. Truncated Dirichlet form

In order to obtain off-diagonal upper estimate of the heat kernelpt(x, y), we need to truncate the form
(E,F ) by any numberρ > 0, and this truncated bilinear form (E(ρ),F (ρ)) is also a regular Dirichlet
form in L2. In this section, we will show the existence and the upper bound of the heat kernelqt(x, y)
associated with the truncated Dirichlet form (E(ρ),F (ρ)) for anyρ > 0.

For anyρ > 0, let

E(ρ)(u, v) = E(L)(u, v) +
∫

M

∫

B(x,ρ)
(u(x) − u(y))(v(x) − v(y))J(x, y)dμ(y)dμ(x). (5.1)

By (2.5), we see that

E(u, v) = E(ρ)(u, v) +
∫

M

∫

M
(u(x) − u(y))(v(x) − v(y))Jρ(x, y)dμ(y)dμ(x), (5.2)

whereJρ(x, y) is defined by

Jρ(x, y) B 1{d(x,y)≥ρ}J(x, y) for any (x, y) ∈ M × M. (5.3)

By conditions (VD), (J≤), we have by (3.2)

sup
x∈M

∫

M
Jρ(x, y)dμ(y) = sup

x∈M

∫

B(x,ρ)c
J(x, y)dμ(y) ≤

C
ψ(ρ)

(5.4)

for some constantC > 0 independent ofρ. It follows from [24, Proposition 4.2] that the form (E(ρ),F )
is closable, and its closure (E(ρ),F (ρ)) is also a regular Dirichlet form onL2. Let {Qt B Q(ρ)

t }t≥0 be the
heat semigroup corresponding to (E(ρ),F (ρ)). The form (E(ρ),F (ρ)) is ρ-local, that is,E(ρ)(u, v) = 0 for
anyu, v ∈ F (ρ) such thatu is constant in someρ-neighbourhoodof supp[v].
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Proposition 5.1. Let {Qt B Q(ρ)
t } be the heat semigroup associated with(E(ρ),F (ρ)) defined by (5.1). If

conditions(VD), (J≤), (DUE) hold, then{Qt} admits the heat kernel qt(x, y) pointwise defined on(0,∞)×
M × M for anyρ > 0. Moreover,

qt(x, y) ≤
C

V(x, ψ−1(t))
exp

(
Ct
ψ(ρ)

)

(5.5)

for all x, y in M and all0 < t < ψ(R), where C> 0 is some constant independent of t, x, y andρ.

Proof. For anyρ > 0, we see by (5.4) that

Kρ B sup
x∈M

∫

M
Jρ(x, y)dμ(y) ≤

C
ψ(ρ)

, (5.6)

which implies thatF = F (ρ), since by (5.2)
∣∣∣E(u) − E(ρ)(u)

∣∣∣ =

∣∣∣∣∣

∫

M×M
(u(x) − u(y))2Jρ(x, y)dμ(y)dμ(x)

∣∣∣∣∣

≤ 4‖u‖22 sup
x∈M

∫

M
Jρ(x, y)dμ(y) ≤ 4Kρ ‖u‖

2
2 .

Let f ∈ L2 be nonnegative inM andu(t, x) := Qt f (x). Thenu is caloric with respect toE(ρ) in (0,∞)×M,
that is, for anyt > 0 and any nonnegative functionϕ ∈ F (ρ)

(
∂

∂t
u(t, ∙), ϕ) + E(ρ)(u(t, ∙), ϕ) = 0.

For t > 0, x ∈ M, we let
v(t, x) B exp(−2tKρ)u(t, x).

Thenv is subcaloric with respect toE in (0,∞) × M, since for any nonnegative functionϕ ∈ F

(
∂

∂t
v(t, ∙), ϕ) + E(v(t, ∙), ϕ) = exp(−2tKρ)

{
− 2Kρ(u(t, ∙), ϕ) + (

∂

∂t
u(t, ∙), ϕ) + E(ρ)(u(t, ∙), ϕ)

+

∫

M

∫

M
(u(t, x) − u(t, y))(ϕ(x) − ϕ(y))Jρ(x, y)dμ(y)dμ(x)

}

≤ exp(−2tKρ)
{
− 2Kρ(u(t, ∙), ϕ)

+

∫

M

∫

M

[
u(t, x)ϕ(x) + u(t, y)ϕ(y)

]
Jρ(x, y)dμ(y)dμ(x)

}

≤ 0.

By the parabolic maximum principle (cf. [21, Lemma 4.16]), we have

v(t, x) = exp(−2tKρ)Qt f (x) ≤ Pt f (x) for (t, x) ∈ (0,∞) × M,

which combines with (5.6) to yield that, for anyt > 0,

Qt f ≤ exp(2tKρ)Pt f ≤ exp

(
Ct
ψ(ρ)

)

Pt f in M. (5.7)

Therefore, it follows from condition (DUE) that

Qt f (x) ≤ exp

(
Ct
ψ(ρ)

)

Pt f (x) ≤ exp

(
Ct
ψ(ρ)

)
C

V(x, ψ−1(t))
‖ f ‖1 (5.8)

for all 0 < t < ψ(R) andμ-almost all x in M, whereC > 0 is independent oft, x, f , ρ. Applying
[20, Theorem 2.2], we conclude from (5.8) that there exists a pointwise defined heat kernelqt(x, y) on
(0,∞) × M × M such that for allx, y ∈ M and all 0< t < ψ−1(R),

qt(x, y) ≤
C

V(x, ψ−1(t))
exp

(
Ct
ψ(ρ)

)

,

thus showing (5.5). The proof is complete. �
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Proposition5.1 gives an on-diagonal upper estimate ofqt(x, y). In order to obtain an off-diagonal
upper estimate, we need to estimate the tailQt1Bc for any ballB.

For anyt > 0 and any pointx in M, we replaceQt f for any f ∈ L2 by its pointwise realization:

Qt f (x) B
∫

M
qt(x, y) f (y)dμ(y). (5.9)

This pointwise definition makes sense sinceqt(x, y) is pointwise defined for eachx, y in M andt > 0.

Lemma 5.2. Let {Qt B Q(ρ)
t } be the heat semigroup associated with(E(ρ),F (ρ)) defined by (5.1). If

conditions(S1/2), (J≤) hold, then for any t> 0 and any0 < ρ ≤ R
4 with 0 < R< ∞,

Qt1B(x0,R)c ≤

(
C2t
ψ(ρ)

) 1
2

([
R
4ρ

]
−1

)

pointwise in B(x0,2ρ), (5.10)

where C2 ≥ 1 is some universal constant independent of t, x0,R andρ, and [b] denotes the integer part
of a number b.

Proof. Let BB B(x0,R) be any ball with 0< R< ∞. By condition (S1/2), we have that for allt > 0,

1− PB
t 1B ≤

(
Ct
ψ(R)

)1/2

in
1
2

B, (5.11)

whereC > 0 is some constant independent oft and ballB.
Applying Lemma7.2with Ω = B, f = 1B in Appendix, we have by (5.4) that for anyt > 0

PB
t 1B − QB

t 1B ≤ 2t esup
x∈M

∫

B(x,ρ)c
J(x, y)dμ(y) ≤

Ct
ψ(ρ)

in B.

From this, we have by (5.11) that

1− QB
t 1B ≤ 1− PB

t 1B +
Ct
ψ(ρ)

≤ C1





(
t

ψ(R)

)1/2

+
t

ψ(ρ)





in
1
2

B (5.12)

for all t > 0, whereC1 ≥ 1 is some constant independent oft, B andρ.
We show (5.10). Without loss of generality, assume thatC2t

ψ(ρ) ≤ 1 with constantC2 ≥ 1 to be deter-
mined below; otherwise (5.10) is automatically true sinceQt1B(x0,R)c ≤ 1 in M. For t > 0, let

φ(R, t) B C1





(
t

ψ(R)

)1/2

+
t

ψ(ρ)




,

which is non-decreasing int ∈ [0,∞) for anyR. Let

r = 2ρ and k =

[
R
4ρ

]

≥ 1.

SinceBc = B(x0,R)c ⊂ B(x0, kr)c and t
ψ(ρ) ≤

1
C2
≤ 1, applying Lemma7.3in Appendix and using (5.12),

we have that inB(x0,2ρ) = B(x0, r),

Qt1Bc ≤ Qt1B(x0,kr)c ≤ φ(r − ρ, t)k−1 = φ(ρ, t)k−1 =


C1





(
t

ψ(ρ)

)1/2

+
t

ψ(ρ)








k−1

≤


2C1

(
t

ψ(ρ)

)1/2

k−1

=

( √
2C1t
ψ(ρ)

) 1
2(k−1)

=

(
C2t
ψ(ρ)

) 1
2(

[
R
4ρ

]
−1)

whereC2 :=
√

2C1 ≥ 1, thus showing (5.10) with such a constantC2. The proof is complete. �

We now derive off-diagonal upper estimate ofqt(x, y) by using the on-diagonal upper bound (5.5) and
the tail estimate (5.10).
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Proposition 5.3. Let qt(x, y) be the heat kernel of theρ-local Dirichlet form (E(ρ),F (ρ)) in L2 for any
ρ > 0. If conditions(DUE), (S1/2), (J≤) hold, then

qt(x, y) ≤ C

{
1

V(x, ψ−1(t))
+

1
V(y, ψ−1(t))

} (
C2t

2ψ(ρ)

) 1
2(

[
d(x,y)

8ρ

]
−1)

exp

(
Ct
ψ(ρ)

)

(5.13)

for any0 < t < ψ(R) and any x, y ∈ M with d(x, y) ≥ 8ρ, where C> 0 is a constant independent of t, x, y
andρ, and C2 is the same as in (5.10).

Proof. Let ρ > 0 and 0< t < ψ(R). Let x, y be any two distinct points inM such that

8ρ ≤ r B d(x, y) < R.

By the semigroup property, we have

qt(x, y) =

∫

M
qt/2(x, z)qt/2(z, y)dμ(z)

≤
∫

B(x, r
2)c

qt/2(x, z)qt/2(z, y)dμ(z) +
∫

B(y, r
2)c

qt/2(x, z)qt/2(z, y)dμ(z)

C I1 + I2.

For I1, we have by (5.5), (5.10) that

I1 =

∫

B(x, r
2)c

qt/2(x, z)qt/2(z, y)dμ(z) ≤ esup
z∈M

qt/2(z, y) ∙ Q t
2
1B(x, r

2)c(x)

≤
C

V(y, ψ−1(t/2))
exp

(
Ct/2
ψ(ρ)

)

∙

(
C2t/2
ψ(ρ)

) 1
2

([
r

8ρ

]
−1

)

≤
C

V(y, ψ−1(t))
exp

(
Ct
ψ(ρ)

)

∙

(
C2t

2ψ(ρ)

) 1
2

([
r

8ρ

]
−1

)

,

since 0< ρ ≤ r
8.

For I2, we similarly have that

I2 =

∫

B(y, r
2)c

qt/2(x, z)qt/2(z, y)dμ(z) ≤
C

V(x, ψ−1(t))
exp

(
Ct
ψ(ρ)

)

∙

(
C2t

2ψ(ρ)

) 1
2

([
r

8ρ

]
−1

)

.

Therefore, it follows that

qt(x, y) ≤ I1 + I2 ≤ C

{
1

V(x, ψ−1(t))
+

1
V(y, ψ−1(t))

}

exp

(
Ct
ψ(ρ)

)

∙

(
C2t

2ψ(ρ)

) 1
2

([
r

8ρ

]
−1

)

,

thus proving (5.13). The proof is complete. �

6. Proof of Theorem 1.3

In this section, we shall finish proving Theorem1.3. The main task is to derive condition (UE) from
conditions (S1/2), (DUE), (J≤).

6.1. Off-diagonal upper bound. In this subsection we will derive condition (UE). We need the follow-
ing result about a generator perturbated by a bounded operator in a Banach space.

Proposition 6.1. [35, Theorem 3.5 and formula (13)]Let Δ be the (non-positive definite) infinitesimal
generator of a strongly continuous semigroup{Qt}t≥0 on a Banach spaceH , and let A be a bounded
linear operator fromH toH . Then the semigroup{Pt}t≥0 generated byΔ + A can be expressed by

Pt =

∞∑

n=0

Q(n)
t , (6.1)
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where Q(0)
t = Qt, and

Q(n)
t =

∫ t

0
Qt−sAQ(n−1)

s ds for each n≥ 1 (6.2)

is well-defined, strongly continuous onH . If {Qt}t≥0 is further contractive onH , then

‖Q(n)
t ‖ ≤

(t‖A‖)n

n!
for each n≥ 0. (6.3)

For anyρ > 0, we define the operatorA(ρ) by

A(ρ) f (x) = 2
∫

B(x,ρ)c
( f (y) − f (x))J(x, y)dμ(y) for x ∈ M. (6.4)

The following says thatA(ρ) is well-defined onL2 if conditions (VD), (J≤) hold.

Proposition 6.2. If conditions(VD), (J≤) hold, then the operator A(ρ) defined by (6.4) is bounded from
L2 to L2 for eachρ > 0, that is

‖A(ρ)‖L2→L2 B sup
‖ f ‖2=1

‖A(ρ) f ‖2 ≤
C3

ψ(ρ)
(6.5)

for some positive constant C3 independent ofρ.

Proof. By the Cauchy-Schwarz inequality, we have by (5.4) that for anyf ∈ L2,

‖A(ρ) f ‖22 = 4
∫

M

( ∫

M

( f (y) − f (x))Jρ(x, y)dμ(y)
)2

dμ(x)

≤ 4
∫

M

( ∫

M

| f (y) − f (x)|2Jρ(x, y)dμ(y) ∙
∫

M

Jρ(x, y)dμ(y)
)
dμ(x)

≤
4C
ψ(ρ)

∫

M

∫

M

2( f (x)2 + f (y)2)Jρ(x, y)dμ(y)dμ(x)

=
16C
ψ(ρ)

∫

M

∫

M

f (x)2Jρ(x, y)dμ(y)dμ(x)

= 16

(
C
ψ(ρ)

)2 ∫

M

f (x)2dx,

thus showing (6.5) with C3 = 4C independent ofρ. �

The following gives the relationship between two semigroups{Pt} and{Qt}.

Lemma 6.3. If conditions(VD), (J≤) hold,, then for anyρ > 0 and any nonnegative f∈ L2,

Pt f (x) ≤ Qt f (x) + 2
∫ t

0
ds

∫

M
Qt−sJρ(∙, z)(x) ∙ Psf (z)dμ(z) (6.6)

for any t> 0 andμ-almost all x∈ M, where Jρ(x, y) is defined by (5.3).

Proof. Note that
L = L(ρ) + A(ρ), (6.7)

whereL, L(ρ) are the infinitesimal generators of{Pt}t≥0, {Qt}t≥0 respectively, andA(ρ) is given by (6.4).
In fact, we have for anyf ∈ dom(L) and anyg ∈ F

(−L f ,g) = E( f ,g) = E(ρ)( f ,g) +
∫

M×M
( f (x) − f (y))(g(x) − g(y))Jρ(x, y)dμ(y)dμ(x)

= (−L(ρ) f ,g) − 2
∫

M
g(x)

{∫

M
( f (y) − f (x))Jρ(x, y)dμ(y)

}

dμ(x)

= (−L(ρ) f ,g) − (A(ρ) f ,g).

SinceA(ρ) is bounded fromL2 to L2 by Proposition6.2, it follows that dom(L) = dom(L(ρ)), and so (6.7)
is true.
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Therefore, it follows from Proposition6.1with Δ = L(ρ), A = A(ρ) that

Pt =

∞∑

n=0

Q(n)
t , (6.8)

whereQ(0)
t = Qt, and

Q(n)
t =

∫ t

0
Qt−sA

(ρ)Q(n−1)
s ds for eachn ≥ 1. (6.9)

We show (6.6). Indeed, the series
∑∞

n=0 Q(n)
t is absolutely convergent in the norm of‖∙‖L2→L2, since for

anyt > 0
∫ t

0

∥∥∥∥Qt−sA
(ρ)Q(n)

s

∥∥∥∥
L2→L2

ds≤
∫ t

0

∥∥∥∥A(ρ)Q(n)
s

∥∥∥∥
L2→L2

ds (sinceQt is contractive inL2)

≤
∫ t

0
‖A(ρ)‖L2→L2 ∙ ‖Q(n)

s ‖L2→L2ds

≤
∫ t

0
‖A(ρ)‖L2→L2 ∙

(s‖A(ρ)‖L2→L2)n

n!
ds (using (6.3))

=
(‖A(ρ)‖L2→L2)n+1

n!

∫ t

0
snds≤

1
(n+ 1)!

(
C3

ψ(ρ)
t

)n+1

(using (6.5)),

which yields that
∞∑

n=0

∫ t

0

∥∥∥∥Qt−sA
(ρ)Q(n)

s

∥∥∥∥
L2→L2

ds≤
∞∑

n=0

1
(n+ 1)!

(
C3

ψ(ρ)
t

)n+1

= exp

(
C3

ψ(ρ)
t

)

− 1.

Exchanging the order of summation and integration, we obtain from (6.8) that for anyf ∈ L2 and any
t > 0,

Pt f =

∞∑

n=0

Q(n)
t f = Qt f +

∞∑

n=1

∫ t

0
Qt−sA

(ρ)Q(n−1)
s f ds

= Qt f +
∫ t

0
Qt−sA

(ρ)





∞∑

n=1

Q(n−1)
s f





ds

= Qt f +
∫ t

0
Qt−sA

(ρ)Psf ds (using (6.8) again). (6.10)

On the other hand, we see by (6.4) that for anyt, s> 0 and any nonnegativef ,g ∈ L2

(
QtA

(ρ)Psf ,g
)

=
(
A(ρ)Psf ,Qtg

)
(using the symmetry ofQt)

=
∫

M

(
2
∫

M

(Psf (y) − Psf (x))Jρ(x, y)dμ(y)
)
Qtg(x)dμ(x)

≤
∫

M

(
2
∫

M

Psf (y)Jρ(x, y)dμ(y)
)
Qtg(x)dμ(x)

= 2
∫

M

Psf (y)
( ∫

M

Qtg(x)Jρ(x, y)dμ(x)
)
dμ(y)

= 2
∫

M

Psf (y)
( ∫

M

g(x)QtJρ(∙, y)(x)dμ(x)
)
dμ(y)

= 2
∫

M

g(x)
( ∫

M

Psf (y)QtJρ(∙, y)(x)dμ(y)
)
dμ(x),

which gives that forμ-almost everyx in M,

QtA
(ρ)Psf (x) ≤ 2

∫

M
Psf (y)QtJρ(∙, y)(x)dμ(y). (6.11)

Finally, plugging (6.11) into (6.10), we obtain (6.6). �
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Remark 6.4. Observe that a slightly sharper inequality with respect to (6.6) was obtained by using the
complicated Meyer decomposition in [11, formula (4.34)] wherein the factor “2” in (6.6) is replaced by
“1”. Here we give a simpler analytic proof by using an early result in year 1953 by Phillips [35].

The following gives the relationship between the two heat kernelspt(x, y) andqt(x, y).

Lemma 6.5. Let pt(x, y) be the heat kernel of a regular Dirichlet form(E,F ) in L2 without killing part,
and qt(x, y) be the heat kernel of theρ-local Dirichlet form(E(ρ),F (ρ)) in L2 for anyρ > 0. If conditions
(VD), (J≤), (S1/2) hold, then

pt(x, y) ≤ qt(x, y) +
Ct

V(x, ρ)ψ(ρ)
(6.12)

for all 0 < t ≤ 1
4C2

ψ(ρ) andμ-almost all x, y ∈ M, where C> 0 is some constant independent of t, x, y
andρ, and constant C2 is the same as in (5.10).

Proof. Let {Qt = Q(ρ)
t } be a pointwise realization of the heat semigroup of (E(ρ),F (ρ)) as defined in (5.9).

We first show that there exists a constantC > 0 such that for allx, z ∈ M, ρ > 0 and all 0< t ≤ 1
4C2

ψ(ρ),

QtJρ(∙, z)(x) ≤
C

V(x, ρ)ψ(ρ)
, (6.13)

whereJρ(x, y) is defined by (5.3).
Indeed, noting that for anyy, z ∈ M,

Jρ(z, y) = 1{d(y,z)≥ρ}J(y, z) ≤
C

V(y, ρ)ψ(ρ)
,

we see that for anyt > 0 and anyx, z ∈ M

QtJρ(∙, z)(x) =

∫

M
qt(x, y)Jρ(y, z)dμ(y) ≤

∫

M
qt(x, y)

C
V(y, ρ)ψ(ρ)

dμ(y)

=
C
ψ(ρ)

∞∑

k=0

∫

B(x,(k+1)ρ)\B(x,kρ)

qt(x, y)
V(y, ρ)

dμ(y)

≤
C′

V(x, ρ)ψ(ρ)

∞∑

k=0

(k+ 2)αQt1B(x,kρ)c(x), (6.14)

where we have used the fact that for anyy in B(x, (k+ 1)ρ) \ B(x, kρ)

1
V(y, ρ)

=
1

V(x, ρ)
V(x, ρ)
V(y, ρ)

≤
C

V(x, ρ)

(
d(x, y) + ρ

ρ

)α
≤

C′

V(x, ρ)
(k+ 2)α

by virtue of (1.3).
On the other hand, we have from inequality (5.10), which follows from condition (S1/2) and condition

(J≤), that for anyk ≥ 4,

Qt1B(x,kρ)c(x) ≤

(
C2t
ψ(ρ)

) 1
2

([
kρ
4ρ

]
−1

)

≤

(
1
4

) 1
2( k

4−1)
= 2

(
1
2

) k
4

(6.15)

if C2t
ψ(ρ) ≤

1
4, that is, if

t
ψ(ρ)

≤
1

4C2
. (6.16)

(Note thatB(x, kρ)c may be empty but (6.15) still holds in this case sinceQt1B(x,kρ)c = 0 in M.)
Thus, plugging (6.15) into (6.14) and using the fact thatQt1B(x,kρ)c ≤ 1 in M, we obtain for anyx, z in

M and anyρ > 0,

QtJρ(∙, z)(x) ≤
C′

V(x, ρ)ψ(ρ)





∑

0≤k≤3

(k+ 2)αQt1B(x,kρ)c(x) +
∑

k≥4

(k+ 2)αQt1B(x,kρ)c(x)




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≤
C

V(x, ρ)ψ(ρ)


1+

∑

k≥4

(k+ 2)α ∙ 2

(
1
2

) k
4


 ≤

C′

V(x, ρ)ψ(ρ)

provided that t
ψ(ρ) ≤

1
4C2

, thus proving (6.13).

Therefore, it follows from (6.6), (6.13) that for all 0< t ≤ 1
4C2

ψ(ρ) and forμ-almost allx ∈ M,

Pt f (x) ≤ Qt f (x) + 2
∫ t

0
ds

∫

M
Qt−sJρ(∙, z)(x) ∙ Psf (z)dμ(z)

≤ Qt f (x) + 2 esup
s∈(0,t],z∈M

Qt−sJρ(∙, z)(x)
∫ t

0
‖Psf ‖1 ds

≤ Qt f (x) +
2C′t

V(x, ρ)ψ(ρ)
‖ f ‖1

for any nonnegativef ∈ L2 ∩ L1, thus proving (6.12). The proof is complete. �

We remark that inequality (6.12) was obtained in [11, the proof of Proposition 5.3] on the unbounded
metric space by using the probabilistic approach.

We are now in a position to derive an off-diagonal upper bound of the heat kernelpt(x, y).

Lemma 6.6. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then

(VD) + (S1/2) + (J≤) + (DUE)⇒ (UE).

Proof. We shall use (6.12) to derive condition (UE). Indeed, letx, y be any two distinct fixed points in
M and 0< t < ψ(R). Let r := d(x, y) and

ρ =
r
4k
, (6.17)

wherek ≥ 2 is an integer to be determined below. Without loss of generality, assume that

r ≥ 4kψ−1(4C2t) ⇔ ψ(ρ) = ψ(
r
4k

) ≥ 4C2t, (6.18)

whereC2 is the same as in (5.10); otherwise, condition (UE) follows directly from (DUE).
By condition (6.18), we see that

d(x, y) = 4kρ > ρ ≥ ψ−1(4C2t) > ψ−1(t) (6.19)

so thatt ≤ 1
4C2

ψ(ρ). It follows from condition (VD) and (1.7) that

V(x, y)
V(x, ψ−1(t))

=
V(x,d(x, y))
V(x, ψ−1(t))

≤ C′
(
d(x, y)
ψ−1(t)

)α
≤ C

(
ψ(x, y)

t

)α/β1

. (6.20)

Exchanging the order ofx andy and noting thatV(x, y) � V(y, x), we similarly have

V(x, y)
V(y, ψ−1(t))

≤ C

(
ψ(x, y)

t

)α/β1

. (6.21)

On the other hand, we have by (6.17), (1.6) that

ψ(ρ) = ψ(
r
4k

) ≥ C(k)ψ(r) = C(k)ψ(x, y). (6.22)

Therefore, using (6.20)-(6.22), it follows from (5.13) that

qt(x, y) ≤
C

V(x, y)

(
ψ(x, y)

t

)α/β1
(

C2t
2C(k)ψ(x, y)

) 1
2( k

2−1)

exp

(
Ct

C(k)ψ(x, y)

)

≤
C′(k)
V(x, y)

(
t

ψ(x, y)

) 1
2( k

2−1)− α
β1

(6.23)

since t
ψ(x,y) ≤ 1 by using (6.19). From this, we conclude from (6.12) that

pt(x, y) ≤ qt(x, y) +
Ct

V(x, ρ)ψ(ρ)
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≤
C′(k)
V(x, y)

(
t

ψ(x, y)

) 1
2( k

2−1)− α
β1
+

C(k)t
V(x, y)ψ(x, y)

≤
C(k)t

V(x, y)ψ(x, y)
(6.24)

for any 0< t < ψ(R) andμ-almost all pointsx, y in M, provided that

1
2

(
k
2
− 1)−

α

β1
≥ 1 ⇔ k ≥ 6+

4α
β1
. (6.25)

Condition (6.25) will be guaranteed if we take a large integerk, for example, ifk = 7+
[

4α
β1

]
.

Finally, for any 0 < t < ψ(R), by using [20, Theorem 2.2], there exists anE-nest{Fn}n≥1 on M
independent oft such that

pt(x, ∙) ∈ C({Fn})

for any pointx in M, and thatpt(x, y) = 0 whenever one of pointsx, y lies outside the set

M0 B
∞⋃

n=1
Fn.

Therefore, it follows from (6.24) that

pt(x, y) ≤
Ct

V(x, y)ψ(x, y)

for any 0< t < ψ(R) and any two pointsx, y in M, if

t ≤
1

4C2
ψ(ρ) =

1
4C2

ψ

(
d(x, y)

4k

)

.

Hence, condition (UE) is true. The proof is complete. �

As we have seen, in order to obtain off-diagonal upper estimate of the heat kernelpt(x, y), we need to
truncate the jump part of the biliear formE by any positive numberρ and then derive upper estimate of
the heat kernelq(ρ)

t (x, y) associated with the truncated form (E(ρ),F (ρ)), and finally use the relationship
(6.12) between the original heat semigroups{Pt} and the truncated heat semigroup{Q(ρ)

t }.

6.2. Conditions (Gcapε) and (FK ν). In this subsection we will derive conditions (Gcapε) and (J≤) from
conditions (UE) and (C).

Lemma 6.7. Let (E,F ) be a regular Dirichlet form in L2. Then

(UE)+ (C)⇒ (J≤) + (Gcapε).

Proof. We first show the implication (UE)⇒ (J≤). The proof is standard.
Indeed, letA, B be any two disjoint compact subsets ofM and f ,g ∈ F ∩C0(M) be any two functions

supported onA, B respectively. By condition (UE), we see that for anyx ∈ A, y ∈ B and any 0< t < ψ(R)

pt(x, y) ≤
Ct

V(x, y)ψ(x, y)
.

It follows that

2
∫

A

∫

B
f (x)g(y)d j(x, y) = −E( f ,g) = lim

t→0

1
t
(Pt f − f ,g) = lim

t→0

1
t
(Pt f ,g)

= lim
t→0

1
t

∫

A

∫

B
f (x)g(y)pt(x, y)dμ(y)dμ(x)

≤ lim sup
t→0

1
t

∫

A

∫

B
f (x)g(y)

Ct
V(x, y)ψ(x, y)

dμ(y)dμ(x)

=

∫

A

∫

B
f (x)g(y)

C
V(x, y)ψ(x, y)

dμ(y)dμ(x).
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Since (E,F ) is regular, the functions
∑n

i=1 fi(x)gi(y) with fi ,gi ∈ F ∩C0(M), supp[fi ]∩supp[gi ] = ∅,1 ≤
i ≤ n, constitute a dense subalgebra ofC0(M × M \ diag), see for example [16, Lemma 1.4.2 on p.29].
Thus, the measured j has a density functionJ on (M × M) \ diag, which satisfies

J(x, y) ≤
C

2V(x, y)ψ(x, y)
,

thus showing that condition (J≤) is true.
It remains to show the implication (UE)+ (C)⇒ (Gcapε). In fact, we will show

(UE)+ (C)⇒ (S+)⇒ (Gcapε), (6.26)

wherecondition(S+) means that: there exists some constantC5 ≥ 1 such that for any 0< δ ≤ 1
2, any ball

B′ := B(x0,R′) with 0 < R′ < Rand any 0< t < ψ(R), x ∈ (1− δ)2B′,

1− PB′
t 1B′(x) ≤

C5t
ψ(δR′)

, (6.27)

where{PΩ
t } for any ballΩ is understood to be a pointwise realization of the heat semigroup, that is

PΩ
t f (x) =

∫

M
pΩt (x, y) f (y)dμ(y)

for anyt > 0 and any pointx in M, whose existence is guaranteed by condition (DUE).
Indeed, for anyx ∈ (1− δ)B′, δ ∈ (0,1] and any 0< t < ψ(R), we see by condition (UE) that

Pt1(B′)c(x) =

∫

B(x0,R′)c
pt(x, y)dμ(y) ≤

∫

B(x,δR′)c
pt(x, y)dμ(y)

=

∫

B(x,δR′)c

Ct
V(x, y)ψ(x, y)

dμ(y) ≤
Ct

ψ(δR′)
(6.28)

by using (3.2) with R replaced byδR′, whereC is some positive constant independent oft, B′, δ.
We will derive (6.27) by using (6.28). Indeed, applying (7.2) in Appendix withΩ = M, U = B′,K =

(1− δ
2)B′ and f = 1(1−δ)B′ , we obtain

Pt1(1−δ)B′ − PB′
t 1(1−δ)B′ ≤ sup

s∈(0,t]
esup

(
(1− δ2)B′

)c
Ps1(1−δ)B′ in M,

which yields that, using condition (C),

1− PB′
t 1(1−δ)B′ ≤ 1− Pt1(1−δ)B′ + sup

s∈(0,t]
esup

(
(1− δ2)B′

)c
Ps1(1−δ)B′

= Pt1((1−δ)B′)c + sup
s∈(0,t]

esup
z∈

(
(1− δ2)B′

)c
Ps1(1−δ)B′(z) in M. (6.29)

We look at the two terms on the right-hand side of (6.29).
Indeed, applying (6.28) with B′ replaced by (1− δ)B′, we see that

Pt1((1−δ)B′)c(x) ≤
Ct

ψ(δ(1− δ)R′)
≤

C′t
ψ(δR′)

(6.30)

for anyx ∈ (1− δ)2B′ and any 0< t < ψ(R) if δ ∈ (0, 1
2], whereC′ is independent ofx, t, δ, B′.

On the other hand, for anyz ∈
(
(1− δ

2)B′
)c

, we have (1− δ)B′ ⊂ B(z, δ2R′)c, and so using (6.28) again,

Ps1(1−δ)B′(z) ≤ Ps1B(z, δ2R′)c(z) ≤
Cs

ψ( δ2R′)
≤

C′s
ψ(δR′)

. (6.31)

Substituting (6.31), (6.30) into (6.29), we have

1− PB′
t 1B′(x) ≤ 1− PB′

t 1(1−δ)B′(x) ≤
C′t

ψ(δR′)
+ sup

s∈(0,t]

C′s
ψ(δR′)

≤
Ct

ψ(δR′)

for anyx ∈ (1− δ)2B′, any 0< t < ψ(R) and anyδ ∈ (0, 1
2], thus proving condition (S+).
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We will show that for anyλ > 0, anyδ ∈ (0, 1
2] and any ballB′ of radiusR′ with 0 < R′ < R, we have

1 ≥ sup
M

(λh) ≥ inf
(1−δ)2B′

(λh) ≥ w(s), (6.32)

wherew(s) is given by

w(s) := 1−C5s−1 + (C5 − 1+ C5s−1)e−s ≥ 1−C5s−1 (6.33)

with s= λψ(δR′) and constantC5 ≥ 1 given by (6.27), and the functionh is defined by

h :=
∫ ∞

0
e−λtPB′

t 1B′dt. (6.34)

This can be done by using (6.27). Indeed, sincePB′
t 1B′ ≤ 1 in M, we see by (6.34)

h ≤
∫ ∞

0
e−λtdt =

1
λ

in M,

thus showing the leftmost inequality of (6.32).
On the other hand, we have by (6.34), (6.27) that, usings= λψ(δR′),

inf
(1−δ)2B′

(λh) = λ inf
(1−δ)2B′

∫ ∞

0
e−λtPB′

t 1B′dt ≥ λ
∫ ψ(δR′)

0
e−λt

(

1−
C5t

ψ(δR′)

)

dt

=

∫ s

0
e−x

(
1−C5s−1x

)
dx= (1− e−s) −C5s−1 (

1− e−s− se−s) = w(s),

thus showing the rightmost inequality of (6.32).
Finally, we show that condition (Gcapε) is true by using (6.32). To do this, we need to construct some

(1+ ε)-cutoff(B0, B) for anyε ∈ (0,1) and for any two concentric ballsB0, B.
Indeed, leth be defined by (6.34). Thenh ∈ F (B′) ∩ L∞, which satisfies

E(h, ϕ) + λ(h, ϕ) = (1B′ , ϕ) = ‖ϕ‖1 (6.35)

for any nonnegativeϕ ∈ F (B′). Define the function

φ :=
λh

w(s)
=

λh

1−C5s−1 + (C5 − 1+ C5s−1)e−s
, (6.36)

wheres= λψ(δR′). Clearly, such a functionφ ∈ F (B′) because so ish, and moreover,h ≥ 1 on (1−δ)2B′

by (6.32),

φ =
λh

w(s)
≤

1
w(s)

≤ 1+ ε in M

if s≥ 1+ε
ε C5, since in this case we have by (6.33)

w(s) ≥ 1−C5s−1 ≥ (1+ ε)−1.

Thus,φ is one (1+ ε)-cutoff function for any pair ((1− δ)2B′, B′) if we chooseλ such that

λψ(δR′) = s=
1+ ε

ε
C5. (6.37)

It remains to show that (1.10) is true for any measurable functionu with u2φ ∈ F (B′). Indeed, we
have by (6.35) with ϕ = u2φ ∈ F (B′) that

E(u2φ, φ) =
λ

w(s)
E(u2φ, h) =

λ

w(s)

{∥∥∥u2φ
∥∥∥

1 − λ(h,u2φ)
}

≤
λ

w(s)

∥∥∥u2φ
∥∥∥

1 =
(1+ ε)ε−1C5

w(s)ψ(δR′)

∫

M
u2φdμ (using (6.37))

≤
(1+ ε)2ε−1C5

ψ(δR′)

∫

M
u2φdμ (sincew(s) ≥ (1+ ε)−1)

≤
4C5ε

−1

ψ(δR′)

∫

M
u2φdμ (since 0< ε ≤ 1). (6.38)

We shall use (6.38) to derive (1.10).
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Indeed, for any two concentric ballsB0 = B(x,R), B := B(x0,R+ r) with 0 < R < R+ r < R, we
chooseδ = r

2(R+r) ∈ (0, 1
2) so that (1− δ)2 ≥ 1− 2δ = R

R+r . ReplacingB′ by B(x0,R+ r) in (6.38) so that

(1− δ)2B′ = B(x0, (1− δ)
2(R+ r)) ⊃ B(x0,R) = B0,

we conclude thatφ ∈ (1+ ε)-cutoff (B0, B), and

E(u2φ, φ) ≤
4C5ε

−1

ψ(δ(R+ r))

∫

B(x0,R+r)
u2φdμ ≤

Cε−1

ψ(r)

∫

M
u2φdμ

for some positive constantC independent ofε, B0, B,u. This proves that condition (Gcapε) holds for any
ε ∈ (0,1). The proof is complete. �

We derive the Faber-Krahn inequality from conditions (DUE), (VD), (RVD).

Lemma 6.8. Let (E,F ) be a regular Dirichlet form in L2. Then

(DUE)+ (VD) + (RVD)⇒ (FKν).

Proof. We will show the following
E(u)

‖u‖22
≥

C−1

ψ(R)

(
μ(B)
μ(Ω)

)ν
(6.39)

for any B := B(x0,R) with 0 < R < δR and any non-empty open subsetΩ of B, whereδ ∈ (0, 1
3] is a

small number to be picked up.
Indeed, by the spectral resolution, we see for anys> 0, f ∈ F

E( f ,Psf ) =
∫ ∞

0
λe−λsd(Eλ f , f ) ≤

∫ ∞

0
λd(Eλ f , f ) = E( f ).

From this, we have for anyt > 0, f ∈ F

‖ f ‖22 − tE( f ) ≤ ‖ f ‖22 −
∫ t

0
E( f ,Psf )ds= ‖ f ‖22 +

∫ t

0

d
ds

( f ,Psf )ds= ( f ,Pt f ). (6.40)

On the other hand, we see by condition (DUE) that for any nonnegativef ∈ F (Ω)

( f ,Pt f ) =

∫

Ω×Ω
f (x) f (y)pt(x, y)dμ(y)dμ(x) ≤ esup

x,y∈Ω
pt(x, y) ‖ f ‖21

≤ esup
x∈Ω

C

V(x, ψ−1(t))
‖ f ‖21 for any 0< t < ψ(R). (6.41)

If 0 < t ≤ ψ(2R), then for anyx ∈ Ω ⊂ B

μ(B)
V(x, ψ−1(t))

≤
V(x,2R)

V(x, ψ−1(t))
≤ C

(
2R

ψ−1(t)

)α
(using (1.4))

≤ C′
(
ψ(2R)

t

)α/β1

(using (1.7)),

which combines with (6.41) to yield that

( f ,Pt f ) ≤
C4

μ(B)

(
ψ(2R)

t

)α/β1

‖ f ‖21

for some universal constantC4 independent ofB,Ω, t, f .
From this and (6.40), it follows that for any nonnegativef ∈ F (Ω)

‖ f ‖22 − tE( f ) ≤
C4

μ(B)

(
ψ(2R)

t

)α/β1

‖ f ‖21

≤ C4
μ(Ω)
μ(B)

(
ψ(2R)

t

)α/β1

‖ f ‖22 for any 0< t ≤ ψ(2R) (6.42)

since‖ f ‖21 ≤ μ(Ω) ‖ f ‖22 for any f ∈ L2 supported onΩ by the Cauchy-Schwarz inequality.
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On the other hand, ifψ(2R) ≤ t < ψ(R), then for anyx ∈ Ω

μ(B)
V(x, ψ−1(t))

≤
V(x,2R)

V(x, ψ−1(t))
≤ C

(
2R

ψ−1(t)

)α1

(using (1.5))

≤ C′
(
ψ(2R)

t

)α1/β2

(using (1.7)),

which combines with (6.41) to yield that

( f ,Pt f ) ≤
C4

μ(B)

(
ψ(2R)

t

)α1/β2

‖ f ‖21 .

From this and (6.40), it follows that for any nonnegativef ∈ F (Ω)

‖ f ‖22 − tE( f ) ≤ C4
μ(Ω)
μ(B)

(
ψ(2R)

t

)α1/β2

‖ f ‖22 for anyψ(2R) ≤ t < ψ(R). (6.43)

We distinguish two cases.
Case1 whenμ(Ω)

μ(B) ≤
1

2C4
. In this case, we have

t1 := ψ(2R)

(

2C4
μ(Ω)
μ(B)

)β1/α

≤ ψ(2R).

Applying (6.42) with t = t1, we obtain

‖ f ‖22 − t1E( f ) ≤ C4
μ(Ω)
μ(B)

(
ψ(2R)

t1

)α/β1

‖ f ‖22 =
1
2
‖ f ‖22

and hence,
E( f )

‖ f ‖22
≥

1
2t1

=
1

2ψ(2R)

(

2C4
μ(Ω)
μ(B)

)−β1/α

≥
C−1

ψ(R)

(
μ(B)
μ(Ω)

)β1/α

.

This proves that (6.39) holds withν = β1/α.
Case2 whenμ(Ω)

μ(B) ≥
1

2C4
. In this case, we have

t2 := ψ(2R)

(

2C4
μ(Ω)
μ(B)

)β2/α1

≥ ψ(2R).

To secure conditiont2 < ψ(R), we need further to restrict the range ofR. In fact, if R< ∞ and if R< δR
with δ ≤ 1

2 to be chosen, then

t2 = ψ(2R)

(

2C4
μ(Ω)
μ(B)

)β2/α1

≤ ψ(2δR) (2C4)β2/α1 (sinceμ(Ω) ≤ μ(B))

≤ C



2δR

R




β1

(2C4)β2/α1 ψ(R) = C (2δ)β1 (2C4)β2/α1 ψ(R) < ψ(R)

provided thatδ is sufficiently small, for example,

C (2δ)β1 (2C4)β2/α1 =
1
2
⇔ δ =

1
2

(
1

2C
(2C4)−β2/α1

)1/β1

. (6.44)

With this choice ofδ, applying (6.43) with ψ(2R) ≤ t = t2 < ψ(R), we obtain

‖ f ‖22 − t2E( f ) ≤ C4
μ(Ω)
μ(B)

(
ψ(2R)

t2

)α1/β2

‖ f ‖22 =
1
2
‖ f ‖22

and hence,
E( f )

‖ f ‖22
≥

1
2t2

=
1

2ψ(2R)

(

2C4
μ(Ω)
μ(B)

)−β2/α1

≥
C−1

ψ(R)

(
μ(B)
μ(Ω)

)β1/α

since μ(B)
μ(Ω) ≥ 1 andβ2

α1
≥ β1

α . Thus (6.39) holds again withν = β1/α and withδ defined by (6.44).
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Therefore, condition (FKν) is true withν = β1/α. �

6.3. The reverse volume doubling condition.In this subsection, we derive the reverse volume dou-
bling property from the Faber-Krahn inequality.

Lemma 6.9. Let (E,F ) be a regular Dirichlet form in L2. Then

(FKν) + (J≤) + (VD) ⇒ (RVD).

Proof. We divide the proof into three steps.
Step1. We show that there exists a constantε0 ∈ (0, 1

2) such that the space (M,d) is (1− ε0)-annulus
connected, that is, for any ballBB B(x0,R) with 0 < R< R, the annulus

B \ ε0B , ∅. (6.45)

To show (6.45), we distinguish two cases according to whetherR< δRor not, where constantδ comes
from condition (FKν).

Case1 when 0< R< δR. Indeed, letε ∈ (0,1) be any number such that

B \ εB = ∅. (6.46)

ThenΩ B εB = B is both open and closed, and so it is compact. By Proposition7.1 in Appendix, the
function 1Ω ∈ F (Ω). Applying condition (FKν) with respect to the pair (Ω, B) = (εB, B), we see that

E(1Ω)

‖1Ω‖22
≥ λ1(Ω) ≥

C−1

ψ(R)

(
μ(B)
μ(Ω)

)ν
=

C−1

ψ(R)
.

From this and usingΩ = εB = B, we have

C−1μ(Ω)
ψ(R)

≤ E(1Ω) = E(L)(1Ω) + E(J)(1Ω) = E(J)(1Ω)

=

∫

M×M
(1Ω(x) − 1Ω(y))2d j = 2

∫

Ω×Ωc
d j = 2

∫

(εB)×Bc
d j

≤
Cμ(Ω)

ψ((1− ε)R)
(using (3.3))

=
Cμ(Ω)
ψ(R)

ψ(R)
ψ((1− ε)R)

≤
(1− ε)−β2C′μ(Ω)

ψ(R)
(using (1.6)),

which implies thatε ≥ 1 − C1/β2
6 for some universal constantC6 > 1. Chooseε1 ∈ (0,1) to be some

number such thatε1 < 1−C1/β2
6 , for example,

ε1 B 1−
1
2

C1/β2
6 . (6.47)

It follows that
B(x0,R) \ B(x0, εR) , ∅ (6.48)

for any ballB of radiusRwith 0 < R< δRand for any 0≤ ε ≤ ε1 with ε1 given by (6.47).
Case2 whenR< ∞ andδR≤ R< R. Then, noting thatB = B(x0,R) ⊃ B

(
x0,3δR/4

)
and

B
(
x0, ε1

(
3δR/4

) )
⊃ B

(
x0, ε13δR/4

)
=
ε1(3δ)

4
B,

we see from (6.48), with Rbeing replaced by 3δR/4, that

B \
(ε1(3δ)

4
B
)
⊃ B

(
x0,3δR/4

)
\ B

(
x0, ε1

(
3δR/4

) )
, ∅.

Therefore, lettingε0 B
ε1(3δ)

4 < ε1, we conclude that (6.45) holds with thisε0 for any ballB of radius
Rwith 0 < R< R.
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Step2. We show that there exist two constantsδ0 ∈ (0, 1
4),C0 > 1 such that, for any ballB of radiusR

with 0 < R< R, we have
μ(B)
μ(δ0B)

≥ C0 (6.49)

by using condition (6.45).
Indeed, letBB B(x0,R). By condition (6.45), the setB \ ε0B is not empty, and so there exists a point

y in B\ ε0B such that the two ballsB(x0,
ε0
2 R) andB(y, ε0

2 R) are disjoint, but both of which are contained
in ball B(x0, (1+

ε0
2 )R). From this, we see that

V
(
x0, (1+

ε0

2
)R

)
≥ V

(
x0,

ε0

2
R
)
+ V

(
y,
ε0

2
R
)
.

On the other hand, using (1.3) and the fact thatd(x0, y) < R, we have

V
(
x0,

ε0
2 R

)

V
(
y, ε0

2 R
) ≤ C

(
R+

ε0
2 R

ε0
2 R

)α
= C

(
1+ 2ε−1

0

)α
,

from which, it follows that

V
(
x0, (1+

ε0

2
)R

)
≥ V

(
x0,

ε0

2
R
)
+ C−1

(
1+ 2ε−1

0

)−α
V
(
x0,

ε0

2
R
)

=
[
1+ C−1

(
1+ 2ε−1

0

)−α ]
V
(
x0,

ε0

2
R
)
.

LettingR′ = (1+
ε0
2 )R, we obtain from above that

V(x0,R
′) ≥

[
1+ C−1

(
1+ 2ε−1

0

)−α ]
V
(
x0,

ε0

2+ ε0
R′

)
.

Thus, by letting

δ0 =
ε0

2+ ε0
< 1 and C0 = 1+ C−1

(
1+ 2ε−1

0

)−α
> 1

and by renamingR′ by R, we see that (6.49) holds for any ballB of radiusRwith 0 < R< R.
Step3. Finally, we show that condition (RVD) is satisfied by using condition (6.49). Indeed, for any

0 < r < R< R, there exists some integerN ≥ 1 such that

δN
0 ≤

r
R
< δN−1

0 .

It follows from (6.49) that

V(x0,R)
V(x0, r)

≥
V(x0,R)

V(x0, δ
N−1
0 R)

≥ CN−1
0 ≥ C−1

0 (C0)
ln( R

r )

ln(δ−1
0 ) = C−1

0

(R
r

) ln(C0)

ln(δ−1
0 )
,

thus showing (1.5) with α1 =
ln(C0)
ln(δ−1

0 )
> 0, and so condition (RVD) is satisfied. The proof is complete.�

We mention that a similar argument in the proof of Lemma 6.9 was addressed by Carron in [8], see
also [13, Lemma 2.2(2)] by Coulhon and Grigor’yan.

7. Appendix

In this Appendix, we first give the following result and then collect the known results that have been
used in this paper.

Proposition 7.1. Let (E,F ) be a regular Dirichlet form in L2 on a metric measure space(M,d, μ). If Ω
is a non-empty open compact subset of M, then the indicator1Ω ∈ F (Ω). In particular, if M is bounded
and every metric ball is assumed to be precompact, thencutoff(M,M) = {1}.
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Proof. SinceΩ is open and compact, the indicator function 1Ω ∈ C0(M), the space of all continuous
functions with compact support inM. By [16, Lemma 1.4.2 on p.29], there exists a sequence{un} of
functions fromF ∩C0(M) with supp[un] ⊂ Ω such thatun→ 1Ω uniformly onM asn→ ∞. Therefore,
there is some integern such thatun ≥ 1

2 in Ω, thus showing that 1Ω = 2(1
2 ∧ un) ∈ F . Since the function

1Ω vanishes outsideΩ, we see that 1Ω ∈ F (Ω) by using [16, Corollary 2.3.1 on p. 98]).
If M is bounded, thenM is compact, sinceM is the closure of a ballB and every metric ball is assumed

to be precompact. Thus 1∈ F and so cutoff(M,M) = {1}. �

The following results are known.

Lemma 7.2([24, Proposition 4.6]). LetΩ be a non-empty open set in M and f∈ L2∩L∞ be nonnegative
in M. Then for any t> 0 andμ-almost every x∈ Ω,

|PΩ
t f (x) − QΩ

t f (x)| ≤ 2t‖ f ‖∞ esup
x∈M

∫

B(x,ρ)c
J(x, y)dμ(y). (7.1)

Lemma 7.3 ([24, Theorem 3.1]). Let {Qt B Q(ρ)
t }t≥0 be the heat semigroup of someρ-local Dirichlet

form (E(ρ),F (ρ)) in L2. Letφ(r, ∙) be a non-decreasing function in(0,∞) for any r > 0. Assume that for
any ball BB B(x, r) and for any t∈ (0,T0) where T0 ∈ (0,∞],

1− QB
t 1B ≤ φ(r, t) in

1
4

B.

Then for any ball B(x, r) with r > ρ and t∈ (0,T0), for any integer k≥ 1,

Qt1B(x,kr)c ≤ φ(r − ρ, t)k−1 in B(x, r).

Lemma 7.4([21, Lemma 4.18]). Assume that(E,F ) is a regular Dirichlet form in L2. Then for any two
open subsets U⊂ Ω of M, for any compact set K⊂ U, for any0 ≤ f ∈ L2 (M) and all t> 0,

esup
Ω

(
PΩ

t f − PU
t f

)
≤ sup

s∈(0,t]
esup
Ω\K

PΩ
s f . (7.2)

In particular, whenΩ = M, U = B for any metric ball B, we have for any t> 0

PB
t f (x) ≥ Pt f (x) − sup

s∈(0,t]
esup

x∈
(

1
2 B

)c
Ps f (x). (7.3)
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