THE WEAK ELLIPTIC HARNACK INEQUALITY REVISITED

JIAXIN HU AND ZHENYU YU

AsstracT. In this paper we firstly derive the weak elliptic Harnack inequality from the generalized
capacity condition, the tail estimate of jump measure and the Pé@moaquality, for any regular
Dirichlet form without killing part on a measure metric space, by using the lemma of growth and
the John-Nirenberg inequality. We secondly show several equivalent characterizations of the weak
elliptic Harnack inequality for any (not necessarily regular) Dirichlet form. We thirdly present some
consequences of the weak elliptic Harnack inequality.
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1. INTRODUCTION AND MAIN RESULTS

In 1961, Moser showed ir8p] that the followingelliptic Harnack inequality denoted by (H),
is true: for any compadd’ in a domainD c R" and for any functioru which is non-negative,
harmonic (with respect to the symmetric, uniformly elliptic divergence-form operatdp) iwe
have

supu < Cinf u,

D’ b
whereC = C(D’, D) = 1 is a constant depending only &, D. The importance of this inequality
is that the constar® is independent of function (but may depend on two domais, D). If
furtherD’, D are two concentric balls, for example Dbf= B(x, R) andD’ = B(x, R/2), then

sup u<C inf u, (1.1)
B(x,R/2) B(x.R/2)

where the constar@ > 1 is independent not only of functian but also of balB. The inequality
(1.2) says that a function, which is both non-negative and harmonic in a ball, is nearly constant
around the center. The reader may consult a b86kTheorem 2.1.1] for more details.
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A symmetric, uniformly elliptic operator gives arise to a strongly local, regular Dirichlet form
in the Hilbert spacé?(R", dx) (see for examplel[d, Chapter 1] on the basic theory of Dirichlet
forms on a Hilbert space). The elliptic Harnack inequality plays an important role in analysis, for
example, in showing the uniformly localdttier continuity of harmonic functions, or in obtaining
the lower estimate of the heat kernel, for a given Dirichlet form on a metric space.

Since the Moser’s celebrated pape#]| there has been an increasing interest in the study on the
Harnack inequality for local Dirichlet forms. In 1972, Bombieri and Giust|[used the geometric
analysis to prove a Harnack inequality for elliptidfdrential equations on minimal surfaces. In
1980, Safonov37] obtained the elliptic Harnack inequalities for partiaffdrential operators in
non-divergence form. After that, the elliptic Harnack inequality was extended in various settings,
see for example, by Benedetto and Trudindes, [Theorem 3] in 1984 for De Giorgi classes on
Euclidean spaces, by Biroli and Mosd] [n 1995 for a certain class of local Dirichlet forms on
discontinuous media, by Strum], Proposition 3.2] in 1996 for time-dependent local Dirichlet
forms on compact metric spaces, and by @die] in 1997 for non-divergence elliptic operators
on Riemannian manifolds with non-negative curvature. In 2005, Barlbpwheorem 2] showed
that the elliptic Harnack inequality is equivalent to an annulus-type Harnack inequality for Green’s
functions in the context of random walks on graphs. In 2015, Grigor'yan, Hu and24géve
an equivalent characterization for the elliptic Harnack inequality and the mean exit time estimate
combined, for any strongly local, regular Dirichlet form on a metric measure space, by using a
more general Poincainequality and the generalized capacity inequality (see also an earlier work
[22]). In 2018, Barlow and Murugar4] showed that the elliptic Harnack inequality is stable
under bounded perturbations for strongly local, regular Dirichlet forms on a length metric space,
but assuming the existence of Green function. Recently, this result has been improved by Barlow,
Chen and Murugan in3], without assuming the existence of Green functions and a length but
assuming the relative ball-connectedness.

The Harnack inequality above is investigated only for local Dirichlet forms. In recent years,
the people have begun to study the elliptic Harnack inequality for non-local operators or non-local
Dirichlet forms. It can be imagined that the classical Harnack inequality like the verkigmE
longer holds for non-local operators (see, for examp|eSection 3] and18, Theorem 2.2] for
a-stable processes). Instead, a weak Harnack inequafiigreint from (.1) should take place. In
this direction, the reader may refer tbg Theorem 1.2],17] and [18, Theorem 1.6] for non-local
integro-diferential operators3f] for the fractional non-local linearized Monge-Arage equation,
and [L3] for pure jump type Dirichlet forms.

In this paper, we are concerned with the weak elliptic Harnack inequality under a more general
framework (We do not touch the parabolic Harnack inequality in this paper). Our underlying space
is a metric measure space, which may be bounded or unbounded, and our Dirichlet form is mixed,
which may be local or non-local, whose jump kernel may not exist. The main results of this paper
are as follows:

¢ to establish the weak elliptic Harnack inequality for local or non-local regular Dirichlet
forms (Theoreni.8 below);

¢ to study the relationship amongfidirent versions of the weak elliptic Harnack inequality
appearing in the literature (Theorel® below).

Let us state our framework of this paper. Lbt,{d) be a locally compact separable metric space
andu be a Radon measure & with full support. The triple i, d, 1) is called ametric measure
space Denote byB (x,r) an open metric ball of radius> 0 centered ax, that is,

Br(X) :=B(xr):={ye M:d(y,x) <r},
and its volume function is denoted by

V(xr):=u(B(xr)).
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For a ballB = B(x,r) andaA > 0, the letteriB := B(x, Ar) denotes the concentric ball Bf In this
paper, we assume that every bB{k, r) is precompact.

Note that a ball in a metric space may not have a unique centre and radius, and even if the centre
is fixed, the radius may not be unique. For this reason we always require a ball to have a fixed
centre and radius in this paper. When we pick up a B@ll s) contained in a bigger baB(x,r),
we always assume that its radisis less than 2 Let Rbe any number in (@liam(M)]. Since the
metric space considered in this paper may be bounded or unboundedntherkR may be finite
or infinite.

We say that theolume doubling conditiovD) holds if there exists a consta@}, > 1 such
that for allx e M andr > O,

V(x,2r) < C,V(Xr). (1.2)

It is known that if condition (VD) holds, then there exists a positive numibesuch that for all
x,ye MandallO<r < R< oo,

V(X R) d(x,y) + R\®
vy < (7) 49

with the same constaf, in (1.2), see for example[3, Proposition 5.1].
We say that theeverse volume doubling conditigiRVD) holds if there exist two positive
constant£y < 1 andd; such thatforalke MandO<r < R<R

V(x,R) R\%
Voo = C (—) . (1.4)

p

Letw : M x [0,0) — [0,00) be a map such that(x,-) is continuous, strictly increasing,
w(x, 0) = 0, for any fixedx in M. Assume that there exist positive constad{sC, andg, > 3;
suchthatforallO<r < R< oo andallx,y € M withd(x,y) < R,

RY:  w(x,R) R\
C (—) <——=x<C (—) : 1.5
(7] = = (-5
For convenience, we write for any metric bBlk= B(x, R)

w(B) := w(x, R).

Note that the symboM(B) is sensitiveto the center and radius of bdl
Denote the norm imP := LP(M,u) (1 < p < ) by

lulp = ( fM |U(X)|p#(dx))l/p,

and||ul|L~ := esugepy lU(X)|, where esup is the essential supremum.
Let (&, ) be a regular Dirichlet form in? without killing part, that is,

&(u,v) = M, v) + EV(u, v), (1.6)

where&® is thelocal part (or difusion par) and&®) is thejump part Let Fioc be a space of all
measurable functionson M such that for every precompact open suli$etf M, there exists
some functiorv € F such thatu = v for u-almost everywhere it). Then, there exists a unique
Radon measurel(V(u) := d'U¢u, u such that

S(L)(u,u):fdl“(")(w
M

for u € Fioc N L™, see for exampleld, Lemma 3.2.3, and the first two paragraphs on p.130],
wherein the symbol&© = &) andd,ugfj)u> = 2dr(®(u, uy are used instead. For the jump part,
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there exists a uniqgue Radon measiiex, dy) defined onM x M\diag such that
- [ w9 -uwraexdy w.7)

MxM\diag
for all continuous functiona € F with compact supports oM. For simplicity, we let the measure
J = 0 on diag and will drop diag in expressidh x M\diag in (L.7) when no confusion arises. In
the sequel, set
&) := &(u, u)

for convenience.

For any non-empty open subgetof M, let Co(Q2) be a space of all continuous functions with
compact supports if2. Denote byF (Q2) the closure ofF N Cy(Q2) in the norm of

VEC ) + ().
Recall that for any non-empty open sub€edf M, the form €, ¥ (Q)) is a regular Dirichlet form
in L2(Q) if (&, F) is regular. Let{PtQ} 0 be the heat semigroup associated wéh# (2)). Let

t>
F':={v+a: veF, acR}

be a vector space that contains constant functions. We extend the dongato @t as follows:
forallu,ve ¥ anda, b € R, set

Eu+av+Db):=8U,v).

We point that the extension is well defined by usitd).

LetU e V (that meandJ is precompact and the closure dfis contained inv) be two non-
empty open subsets &f. We say that a measurable functigns a cutgf functionfor U € V,
denoted by € cutof(U, V), if ¢ € ¥, and

¢=1onU,
¢ =0 on VC,
0<¢<1onM.

It is known that if €, F) is regular, the set cuffi{U, V) is non-empty for any two non-empty open
subsetd) € V of M.
We introduce conditions (Gcap) and (Cap

Definition 1.1 (condition (Gcap)) We say thatondition (Gecapholds if for any ue 7’ N L* and
any two concentric metric ballsgB= B(Xp, R), B := B(xo, R+ r) with0 < R< R+r < R, there
exists some e cutaf(By, B) such that

2 C 2
E(Ug, ¢) < WO ) fBu du, (1.8)

where C> 0is a constant independent of By, B, but¢ may depend on u.

Definition 1.2 (condition (Cap)). We say thatondition (Cap) holds if there exists a constant
C > 0 such that for all balls B of radius R lessan R

1(B)
w(B)’
where the capacitgap@, Q) for any two open subsets@Q of M is defined by

cap@, Q) = inf{E(p, @) : ¢ € cutdt(A, Q)}.

cap((23)B,B) < C (1.9)

Clearly, condition (Gcap) implies condition (Cgpby takingu = 1 in (1.8) and by using the
second inequality in1(.5).
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Definition 1.3 (condition (FK)) We say that conditiofFK) holds if there exist three positive
constants €, v ando € (0,1) such that for any ball B= B(x,r) with0 < r < ¢R and any
non-empty open subset®B,

Ce* (uB)Y
A1(D) > @ (m) , (2.10)
where1(D) is defined by
u@)= ot S

I .
ueF (D)\(O)  [|ull3

Without loss of generality, we can assume that § < 1 by noting that% > 1.

Definition 1.4 (condition (P1)) We say that conditio(P!) holds if there exist two constants 1,
C > 0 such that for any metric ball B= B(xg, r) with0 < r < R/k and any ue ¥’ n L*,

[ (u—uB)ZduscMB){ [arvws [ (u(x)—u(y))2J<dx,dy>}, (L.11)
B xB (xB)x(xB)

where  is the average of the function u over B, that is,

uB:ﬁ%fBudy::ﬁuqu

For a transition kernel(x, E) defined onM x 8(M) whereB(M) is the collection of all Borel
subsets oM, denote by

J(x E) ::f.](x,dy). (1.12)
E
We introduce condition (TJ).

Definition 1.5 (condition (TJ)) We say that conditio(irJ) holds if there exists a transition kernel
J(x, E) on M x 8(M) such that, for any point x in M and any:R0,

J(dx, dy) = J(x, dy)u(dx) and
(1.13)

J(x, B(x, R)°) < W R

for a non-negative constant C independent d® x

For an open subsé&® of M and a functionf € L%(Q), we say that a function € ¥ is f-
superharmonigresp. f-subharmonigin Q if for any non-negative € ¥ (Q),

E(U, ) > (f,p) (resp.&E(u, ¢) < (f, ¢)). (1.14)

We say that a function € ¥ is f-harmonicin Q if uis both f-superharmonic ané-subharmonic
in Q. If f =0, anf-superharmonic is shortenedperharmonicand a similar notion applies to an
f-subharmonic or affi-harmonic.

For any two open subsets € Q of M and any measurable functiondenote by

Tua(v) =esup | [V(y)II(x dy). (1.15)
xeU Joe

We introducecondition(wEH), theweak elliptic Harnack inequality.

Definition 1.6 (condition (WEH)) We say that conditio(wEH) holds if there exist four universal
constants pj, o in (0,1) and G4 > 1 such that, for any two concentric balls B= B(Xp,r) C
Br := B(xo, R) With 0 < r < 6R, R< 'R, any function fe L*(Bg), and for any ue ¥’ n L™ that
is non-negative, f-superharmonic irkB

1/p
(JCB uPd,u) < Ch (eérrwfu+w(Br)(T%BR’BR(u_)+||f||Lm(BR))), (1.16)
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where u := 0V (-u) is the negative part of function u, an%g’R,BR is defined byX.15), that is,

T%BR,BR(U—) = esup u-(y)J(x, dy).
xe3Br Y M\Br

We remark that the constantsgo-, Cy are all independent ofgxR, r, f and u.
Remark 1.7. If u is superharmonic, non-negative iikBhen (.16 reads

1/p
(JC uPd,u) <Cq (e‘i3nfu + W(Br)TgsR,BR(U—))- 2.17)

If the form(&, F) is strongly local and u is harmonic, non-negative ig, Bhen (L.16) becomes

1/p
(JC upd,u) <Cq eIian u, (1.18)

and in this situation, we in fact have that the weak Harnack inequalii is equivalent to the
strong Harnack inequalityl(.1), since the inequalityl(18) is equivalent to the following
infu> — | f 1.1
en'a? u> aexp( TS a})) oranya>0 (1.19)
by using the equivalend&EH) < (WEH2) in Theoreml.9 below where conditiogwEH2) will
be stated in Definitios.3 and by using the fact thatl(19 = (H) in [24, from Corollary 7.3 to
Theorem 7.8 on pages 1525-1535]

The weak elliptic Harnack inequality says that for any functipmvhich is non-negative and
superharmonic in a baBg, its mean value over a smaller concentric tllin the LP-quantity
(not a norm) for a smalb € (0, 1), can be controlled by its essential infimum over the smaller ball
B, plus a tail estimate outside the bBj.

The main results of this paper are stated in Theorg@and1.9 below.

Theorem 1.8. Let(&, ) be a regular Dirichlet form in B(M, i) without killing part. Then
(VD) + (RVD) + (Gcap)+ (TJ) + (Pl) = (WEH). (1.20)

We will prove Theoreni.8 at the end of Sectiod. For this, we need to show the following
implications:

(VD) + (RVD) + (PI) = (FK) (see Sectio), (1.21)
(VD) + (FK) + (Gcap)+ (TJ) = (LG) (see SectioR), (1.22)
(VD) + (LG) + (Cap.) + (PI) = (wEH) (see Sectio#), (1.23)

where condition (LG) is a refinement of thmmma of growtho be stated in Lemma.5below.

We remark that if the metric spac#(d) is unbounded and the scaling functiofx, r) is
independent of poink, a similar implication to 1.21) was obtained for strongly local Dirichlet
forms (cf. [24, Theorem 5l1]), and for purely jump Dirichlet forms (cf.14, Propositions B and
7.4]). Here we generalize this result to the case when the scaling funefign) may depend on
point x and the metric space may be bounded or unbounded.

Our Theoreml.8 is an extension of a similar result ii3, Theorem 3.1] in the sense that,
instead of assuming condition (TJ) in this paper, the following stronger hypothesis than condition
(TJ) was assumed il B]: the jump kernel(x, y) exists and satisfies the followimpintwiseupper
estimate c

J(xy) <
V(x, d(x, y))w(x, d(x, y))
for u x y-almost all &, y) in M x M \ diag. Also the metric spacé, d) considered in13] is
assumed to be unbounded. We emphasize that we do not assume the jumpkesadxists,
neither the boundedness of the metric space.




WEAK ELLIPTIC HARNACK EQUALITY 7

Liu and Murugan 31, Theorem 1.2] show that the parabolic Harnack inequality implies the
existence of the jump kernd(x,y) for a pure jump regular Dirichlet form. A natural question
arises whether the weak elliptic Harnack inequality also implies the existence of the jump kernel.
The answer is negative. In fact, the papgrdection 15] has given an example on the ultra-metric
space where the jump measure satisfies both conditions (PI) and (TJ) (noting that condition (Gcap)
automatically holds since it follows directly from condition (TJ) and the ultra-metric property), but
the jump kernel does not exist. By TheorérBabove, the weak elliptic Harnack inequality is true,
however, the jump kernel does not exist in this case. We will give the details in S&ction

Let us explain the idea of proving the weak elliptic Harnack inequality in ThedrénThe
proof essentially consists of the following two steps (under the case Wked).

(1) To obtain the so-calletheasure-to-point lemmas follows: for some: € (0, 1) and for
any non-negative superharmonic functionin a ball B, there exists a constant > O,
depending only o but independent of the bal and the functionu, such that

M >e = infux>n. (1.24)
n(B) 1B
(2) To obtain the so-calledrossover lemmas follows: there exist three universal numbers
p,é in (0,1) andC > 0 such that, for any non-negative superharmonic funatiom a
ball Bgr, any concentric balB, of Bgr with 0 < r < §R and for any positive number
A2 W(BR)T%BR,BR(U‘)’

1/p 1/p
( (U+2A) IDd,u) (JC (u+ /l)‘pdu) <C. (1.25)
By By

The implication (.24) says that, if the occupatianeasureof a superlevel set
{u>a} fora>0

in a ball B for a functionu, which is non-negative, superharmoniddnis bounded from below by
a constang, then the functioru should be also bounded from below by a positive numjaeat
almost allpointsnear the center.

The measure-to-point lemma is essentially the same akeahesma of growthintroduced by
Landis in 9], [30] in studying solutions of elliptic second order PDEs (local Dirichlet forn#'in
This Lemma of growth has been reformulated and extended to the case for pure jump type (non-
local) Dirichlet forms on the metric measure spacef, Lemma 4.1], see also a forthcoming
paper P1] for mixed (either local or non-local) Dirichlet forms defined k.€) without killing
part (cf. Lemma3.5 below). An alternative version of Lemma of growth for pure jump type
(non-local) Dirichlet forms on metric space was statedLi®) Proposition 3.6].

We remark that the measure-to-point lemma is originated from the work by Mesdrtjeorem
2], and developed by Krylov and Safond7], [28], [37]. The reader may consult the reference
[33, Section 3] for the classical case.

Once the measure-to-point lemma has been established, one needs further to show the crossover
lemma (.25, where the Poincérinequality comes into a stage. To achiet§), one needs to
show that, for anyu € ¥’ N L* that is superharmonic and non-negative in a Ba#ind for any
positive numbenr bounded from below by a tail (in the case of local Dirichlet forms, any number
A > 0 will be fine), the logarithm function

In(u+ Q)

belongs to the space BM@&R), for some numbeé € (0, 1) that is independent af, 1 and ball
B. After that, the rest of the proof is standard: one makes use of LeBi®ia Appendix for an

exponential function
c
exp(£9) for anyb > llglewo
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for g := In(u+ 1), which is valid from the John-Nirenberg inequality (see Len8&in Appen-
dix), and we are eventually led to the desired crossover lemin2§)((see Lemma.4 below).

Besides the version of the weak elliptic Harnack inequality stated in Defintti@rthere are
several other versions in the literature, see for exanifedroposition 3.6],24, Lemma 7.2], 20,
Lemma 4.5]. We list all of them in Sectidhand term as conditions (WEH1), (WEH2), (WEH3),
(WEH4). We shall show that the first three conditions (WEH1), (WEHZ2), (WEH3) are equivalent
one another, each of which implies condition (WEH4).

Theorem 1.9. Let (&, ) be a Dirichlet form in [B(M, x). If condition(VD) holds, then
(WweEH) & (wEH1l)s (WEH2) < (WEH3) (1.26)
= (WEH4). (1.27)
We will prove Theorend.9at the end of Sectioh.

2. RBER-KRAHN INEQUALITY AND DIRICHLET HEAT KERNEL

In this section, we show that for a regular Dirichlet form without killing part on a metric space,
if the measure satisfies conditions (VD) and (RVD), then the Poinicaquality implies the Faber-
Krahn inequality. Although this conclusion is known to the expert, there is no a direct proof in
the literature, and we will give a self-contained proof for convenience. Here we do not assume the
existence of the jump kernel, neither the independence of point for the scaling functioor
result can be viewed as an extension of the previous wtkTheorem 5.1] for a local Dirichlet
form for the doubling measure, anfl, Lemmas 5.2, 5.3] for a non-local Dirichlet form for the
Ahlfors-regular measure. See alsidl] Proposition 3.4.1]. As a by-product, we derive that the
Dirichlet heat kernepg(x, y) exists and satisfies an upper bound, for any Baif radius less than
oR.

We introduce condition (Nagf), which is theNash inequality on a ball B

Definition 2.1 (condition (NasB)). We say that conditio(Nasts) holds if there exist three pos-
itive constantsr € (0, 1) andv, C such that for any metric ball B of radiusa (0, cR) and any
ue ¥ (B), c

™ < sl (I1uli3 + W(B)E(U, 1)) . (2.1)
We remark that constants C amgo- are all independent of ball B and function u.

We show that the Poincainequality implies the Nash inequality on a ball.

Lemma 2.2. Assume tha(&, ) is a regular Dirichlet form in 2(M, u) without killing part. If
conditions(VD) and(Pl) are satisfied, then conditiafiNashs) holds, that is,

(VD) + (PI) = (Nash).

Proof. Since the proof is quite long, we divided into two steps.
Stepl. We show that there exists a const@nt 0 such that for alk > 0 and allu € ¥ n L*
with ||ully > 0
Cllu?
inf V(z9)’
Zesupp ()
whereug(X) is the average of functiomover a ballB(x, s), that is,

=7}
u(2u(d2 forxe M, s> 0.
V9 Jses (2u(dz)
The proof is motivated by38, Theorem 2.4]. At this step, we do not need condition (PI). To this
end, let|ull; > 0, and denote by

As:={xe M :d(x supp ) < s},

llugl3 < (2.2)

Us(X) =
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the s-neighborhood of the support af Clearly, we see thaig(x) = 0 whenx lies outside the set
As, sinceu(z) = 0 forze B(x,s) € M \ supp (). It follows that
luls_ _ 2%Cylull
infV(x,s) = inf V(x9)’
supp ()

XeAg Xe
where we have used the fact that for aty A,
1 2%C,

<
infV(x,s) = inf V(x,8)’
X€As Xesupp ()

since there exists a poirte supp (1) such thatd(z x) < s, and thus by1.3)

V(z 9 d(z x) + s\*® s+s\% 4
VoS scy( - ) <c,(223)" = 2%c,, (2.4)

Iuglleo < 2.3)

from which,

- - - SUpL <2%C, sup 1 __ G
infV(X,9) xea V(X9 ~ H resupp ) V(Z. ) inf V(x,9)°
xeAs xesupp ()

On the other hand,

ot = [ g (] louea) e
- [ 75 [ " U@ a0cs () (@)
- [ o ([ e
- [ o [ s VocgH(@)uea

V(z s
< Lupp@)|U(Z)|m#(dZ)

xeB(z9)
V(z9) d
= lu(?!| sup u(d2) < 272C,||ull1, (2.5)
Lupp h) xeB(z9) V(X 9) HiE

since for anyz € supp (1) and anyx € B(z 9),
V(z 9) <
V(xs) ~
by virtue of 2.4). Therefore, it follows from?2.3), (2.5) that
(2%C,.)Iull?

inf V(z9)’
zesupp ()

2%C,

2
llusll < [luslleollusllz <

thus showing2.2) with C := (2%2C,)2.

Step2. We show that condition (Naghholds. We assume that condition (PI) holds.

Fix a ballB := B(xo,r) with r € (0, %), where constant is the same as in condition (PI). Let
se (0, zEK) be a number to be determined later on, and fix a funatien7 (B) N L*(M, x). Since
M is separable, there is a countable family of poiyty=, such thatM c (J72; B(yi, s). By the
doubling property, we can find a subsequepg§?; C {yi}i2; such thatM = (J;2; B with B; :=
B(x, 9), and{%Bi};’;1 are pairwise disjoint (se€p, Theorem 1.16]). The over-lapping number
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2ioq 1 Is bounded by some integdly depending only om andC,, that is, 3>;°; 1o < No.
From this, we have for any measurable functips O,

i; ff(zxsi)xM g(x,y)Jd(dx dy) = ffoM a(x, y)i; Lo (X)I(dx dy)

< No f fM a3y, (2.6)

We estimate the termfu — ug||3 by

= < > [ 1069 - us09fu(e
i=1 i

< 2; ( fB | (U(X) = Uzg,* + luzg, — us(x)|2),u(dx)) = 2(11 + 12). (2.7)

For 11, we have by condition (PI),

Iy = .; fBi U(X) - Uz, [Pu(dX) < .; szi U(X) ~ Uzg,[Pu(dX)

N W(x ® e
SC;W(XHZS){ 2B a <u>+ff(2ksi)x(zxsi)(u()() ") J(dx,dy)}. @8)

For I, note that for any € B; = B(x;, 5), the function % (2 = 0 whenz € (2B;)° c B(x, 9)°.
Using the Cauchy-Schwarz inequality and condition (PI), we have foxani,

09~ teal? = | [ 29D 1) - (et < [ D) - uan )

V(X 9 v V9
2%C, ,
< f o Voo~ U @) < G | 1@ - s (@)
Cwx.29 (1 o)
< V(% 9) {zksi dreu) + f f(%i)x(szi)(U(x) u(y))?ddxdy)r,  (2.9)

where we have used the fact that for atw B;,

V(x,s) d(x,X) +s d ,
Vos <G ) <7

by virtue of (L.3). Therefore, it follows that

:w - — ug(X))%u(d
R Z; fB (2~ U0

oo CwW(x;, 29) o ) ,
S;fi V(X, 9) { B, ar <u>+ff(2KBi)x(2KBi)(U(X) Ho)) J(dx,dy)}u(dx)

= N : (L) _ )
C;W(X',Zs){ s dr-uy + f f( 2KBi)X(ZKBi)(u(x) u(y)) J(dx,dy)}‘ (2.10)

Combining .8) and .10, we conclude from4.7) that

llu—ugll3 < 2011 + 12)

N W(x (L Y,
SC;W(X"ZS) {fszi dr <u>+ff(2KBi)X(2KBi)(u(x) u(y))=J(dx, dy)} (2.11)
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for a positive constant depending only on the constants from condition (VD) (independent of
Sinceu € 7(B), if 2«B; ¢ B, we see thati(x) = u(y) = 0 whenx,y € 2«B;, thus b,gdI"(u) =

0, and so the integral in the above summation vanishes. In other words, the summa&dri)in (

is taken only over the indicassuch that (2B;) N B # 0. Set

Q:= sup WwW(x,S). (2.12)
i(2Bi)NB#0

Sincew(x;, 2s) < Co2%2w(x;, ) by using (L.5), we obtain that

Zw(m [ CCRT Y

<QZ [, f (00 - u)2(dx 0y

<Q-No f fM (U6 - uy)? ek dy) (using @.6)

= NoQED (u, u). (2.13)
On the other hand,

> wix. dr®qu) < wf drOquy = fwl ar®
;w(x S)Lsi <u><Q; e W =Q M; 2 ATO(U)

< NoQ f dr™(uy = NoQEM (u, u). (2.14)
M
Therefore, combining.13 and @.14), we conclude fromZ.11) that for alls € (0, 2:'3()
llu = ugl3 < C {NoQEM (u, u) + NoQEW (u, u)} = CNoQE(U). (2.15)

It is left to estimateQ for any s € (0, %). We distinguish two cases wherx r or not.
Indeed, letzy € (2¢B;j) N B. By (1.5), we have

. . . B B2
W6, 9 _ W(%,9)  w(x,2«s) <Cil(2js)l‘02(2Ks

W(ZO, S) h W(X|, 2KS) W(ZO, S) ?) =C (K),
whilst fors<r

R
Thus,

WX, 8) _ W(X, 9 Wz 9 _ C(§)ﬁl
W(Xo,1)  W(Z0,5) W(Xo,I) ~
if (2«B;j) N B # 0 ands < r. From this, we obtain

B1
Q= sup w(x,9<c (S) W(Xp,r) if s<r. (2.16)
i(2B)NB#0

Plugging @.16) into (2.15, we have
2 ’ S\
lu-ud3 < (2] wixo. NEW) (2.17)
if s<r. Note that ifs < r, then for anyx € supp (1) c B(Xo, )

V(xo,T) d(xo, X) +r\*® o~ [T\
V(x5 ~ C( ) deCﬂ(g) ’
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which gives by 2.2) that

Cljulf?

U < ——1 c(f)dz I (2.18)
2= inf V(x,s) = \s/ V(x.r) '
Xesupp ()

Therefore, we conclude fron2(17), (2.18 that for all 0< s<r A ;Fi,

2 2 2
IullZ < 2(llu - ugli3 + llus3)

SC((FS)ﬁlw(xo,r)S(u)+(£)d2 Uil ]

2.1
s) Voo (2:49)
On the other hand, if < s< 2%, it is clear that
s\A1
llull3 < (F) llull3. (2.20)
Summing up 2.19 and @.20, we obtain for all O< s< 2%,
2
2 §)ﬁl ) ([)dz llull$
wmsC&,(meB@+mm%-s Voo
2s\P1 r\® [z
a2 | [ =2 2 o 1
<C2 (( r ) (Wio, NEW) + IIUl2) + ( 23) e r)]. 2.21)

We minimize the right-hand side 02 21) in s (0, 2:3), for example, by choosingsuch that

B1 A 2
Gﬂ(mmnam+m@=(ﬂdlwl

2s) V(xo,r)’
that is,

NI =

1
Iul? JW@
V(0. 1) (W(x0, 1)E(U) + [lull3)
We postpone verifying thate (O, 2%). Therefore, it follows that

B
||u||2 ﬁ1+132 dy
2 ’ 1
lul; < C (—)

(2.22)

2 B1+d
ull5 + w(Xg, r)&(u) )12 |
Voory)  (IuE+wlo.nEwW)
thus showing that
B
@) 2 I\
Iulp ™" = C (Ul + weo.NEW) | 75 |

for all u e #(B) n L. Hence, condition (Nagf) holds witho = % andv = ﬁ—;.

It remains to verify that the numbaergiven by @.22) satisfies conditiors € (0, 2:3). Indeed, by
the Cauchy-Schwarz inequality, we have for any ¥ (B),

IUllF < V/(xo, )Ilull3,
from which, we see that, using the fact that (0, R/«),

1 _
r Jlull? S luiz Y% r R
s=3 <slo—s <= <.
2 V(0. ) (W(x0. 1EU) + [lull2) 2\ V(xo, N)llull; 2 %
The proof is complete.
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We derive the on-diagonal upper bound of the Dirichlet heat kernel on any ball by using condi-

tion (Naskg). In particular, we derive the Faber-Krahn inequality.

Lemma 2.3. Let(&, ¥) be a regular Dirichlet form in B. If conditions(VD), (RVD) and(Nastg)
hold, then the Dirichlet heat kerneffx, y) exists and satisfies

C (w(B)
ot < g (0

for any ball B of radius r< %, where CA are two universal constants independent of &d

1/v
) forallt>0 (2.23)

constantr- comes from conditiofNashs). Consequently, we have

(VD) + (RVD) + (Nashs) = (FK).

Proof. Assume tha# > 1 is a number to be chosen, s@e2()) below. LetB := B(xo, r) with

oR
0 —_— 2.24
<r<— (2.24)

SinceAr is less tharrR, we can apply condition (Naghon a ballB(xo, Ar) and obtain for any

u € ¥ (B(Xg, Ar))

Clluliz”
212v 1 2
W™ < Go (I1ullZ + w(xo, AE()). (2.25)
Note that for allu € F(B(xo, 1)),
ol = [ idh < Vo) ul (2.26)
B(xo.r)
Since F(B(Xo,r)) c F(B(xo, Ar)) for any A > 1, it follows (2.26), (2.25 that for anyu €
7 (B(%o. 1))
2v
C(V(x0, 1)?|ullz) Cllul”
uizt? < ull3 + —————W(Xo, Ar)&E(U
llull5 V%o, A)” | VX, AYY wW(Xo, Ar)E(U)
_ V(XO’ r) 2(1+v) \N(XO’ ) 2v
= C(V(xo,Ar)) ™" + Vo, A)” llullf” &E(u).
By condition (RVD), we have
Vi) _ 1 (L1}
V(X,Ar) ~ CqA% \2C) ~°
provided that
1
A=CY%@C) > 1. (2.27)
Therefore, for alu € F(B(Xo, 1)),
2+2yv < 2 (XO’ ) 2y 292
llull3 CV( ry llullz”&(u), (2.28)
which gives that
V(X0.1)" \ ovay oy o CH(B) oo 2y
&(u) = 20 W0% Ar)IIUII2 lully™ = w(B) [ull™ = Nully =

Applying [23, Lemma 5.5] withU = B(xo,r), a = C’*\jé(% , we conclude that the Dirichlet heat
kernel p2(x, y) exists and satisfie2(23.

We will show that condition (FK) follows from2a.28).

Indeed, leD c B be an open subset, and leg ¥ (D). Noting that

Ul < p(D)Ilull3
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by the Cauchy-Schwarz inequality, we see fréh2@ and (L.5) that

u(D )) |u||2V8(u)_C,,W(B)(u( )

"™ < 2Cu00, Ar)( ® ®

) W),

thus showing that

14(D) = &u ¢ (u(B))V‘

in >
ueF (OO} [Jul5 ~ W(B) \u(D)
Therefore, the Faber-Krahn inequality holds for any Badif radiusr satisfying @.24). O

We remark that if the metric spac#1(d) is connected and unbounded, then condition (VD)
implies condition (RVD), see for exampl23, Corollary 5.3]. In this case, we have that conditions
(VD), (PI) will imply condition (FK), since condition (RVD) is automatically true.

3. A REFINEMENT OF LEMMA OF GROWTH

In this section we shall derive the lemma of growth for any two concentric Bali8 with
0 < ¢ < 1, which is a refinement of the version stated in a forthcoming paflr $ee also
[20, Lemma 4.1]. The lemma of growth will follow from conditions (VD), (Gcap), (FK), (TJ).
The basic tool in the proof is to use the celebrated De-Giorgi iteration technique for occupation
measures (instead of fb-norms). Although the idea is essentially the same a&1h [20, Proof
of Lemma 4.1], we sketch the proof for the reader’s convenience.

Before we address the lemma of growth, we give the following preliminary. Forreach, let
Fn be a function on [Deo) given by

Fn(r) = %(r +4/r2+ n—lz] - 2_1n forr € (o0, ). (3.1)

Clearly,F,(0) = 0, and for anyr € (—co, 0),

0<Fi(r) == (1+ ;)s 1,

Vr2 +n-?
ooy 1 n
0<Fl= i < 2
Fn(r) =2 ry uniformly in (—oo, 00) asn — co. (3.2)

Proposition 3.1. Let(&, ) be a regular Dirichlet form in B(M, 1) without killing part and let i
be given by3.1). Then forany ke ¥’ NnL* andany0< ¢ € ¥ N L,

&(uy, ¢) < limsup&(u, Fy, (W) (3.3)
k— oo

for a subsequenciy k=1 of {N}n>1.

Proof. Note that the functionBn(u), F/,(u)¢ belong toF NL* for eachn > 1 by using Proposition
8.4in Appendix. Sincep > 0in M, we have

E(Fn(u), ¢) < E(u, Fp(U)g) (n=1) (3.4)

by using 8.2) in Appendix.
Write u = v + afor somev € ¥ anda € R. SinceF,(v+ a) — Fn(a) is a normal contraction of
v e F, we have

fn:= Fn(u) — Fn(@) = Fa(v+ @) — Fn(a) € F# and &(fy, fn) < E(V, V).
Since ¢ + @), — a, is also a normal contraction gfe F, we also have

fi=u,—-a,=(v+a),—-a, eF.
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On the other hand, by the dominated convergence theorem,
2
fn ; f asn — oo.
Sincef, € ¥ and
sup&(fn, fn) < E(V,V) < oo,
n

there exists a subsequer{dg},., converging tof weakly in terms of the energy noréby using
Lemma8.5in Appendix. Therefore,

8(ur9) = 8(f +ar¢) =8(f.¢) = lim &E(fn. )
= lim &(Fn,(U) - Fn (@), ¢) = lim sup&(Fn, (), ¢) < lim sup&(u, Fr, (U)y)

k— oo k— oo

by virtue of 3.4), thus showingd.3). The proof is complete. m|

We recall condition (LG), termed tHemma of growthwhich was introduced in20, Lemma
4.1] for the case whew(x, r) = r? andf = 0. Note that the following notion of lemma of growth
involves a given functiorf.

Definition 3.2. For any two fixed numbers,§ in (0, 1), we say thattondition LGg, §) holds
if there exist four constants € (0,1),&0 € (O, %) and,C_ > 0 such that, for any ball B=
B(xo, R) with radius Re (0,R), any function fe L*(B), and for any ue ¥’ n L* which is
f-superharmonic and non-negative in B, if for some @

-0
W(B) [ Tawg g(u-) + I fllL(p)
B _ 1 - (10| 1+ (T ) . @5
u(B) ca

then
einfu > ea, (3.6)
oB

where the tail E%aB’B(u_) is defined by1.19), that is
Tasgg(u) = esup u_(y)J(x, dy).
a7 xe32pJM\B
For simplicity, we write conditioh.G(g, 6) by condition(LG) without mentioning:, 6.

We remark that the constantseg, 6, C_ are all independent af §. Recall that condition (EP),
termed theenergy producbf a functionu with some cuté function¢, was introduced inZ1].

Definition 3.3 (Condition (EP)) We say that theondition (EP)is satisfied if there exist two
universal constants C 0,Cp > 0 such that, for any three concentric ballg B= B(Xp, R),
B := B(Xo, R+r) andQ := B(xo, R) With0 < R< R+r < R < R, and for any Lt ¥’ N L*, there
exists some e cutaf(Bo, B) such that

c (R\® (, ,
W(Xo, ) (T) fQ udu + 3LXQC u(x)u(y)¢“(x)J(dx, dy). (3.7)

Condition (EP) plays an important role in deriving condition (LG). The following has been
proved in R1].

E(ug) < ga(u, ug?) +

Lemma 3.4([21]). Assume thafS, ¥) is a regular Dirichlet form in 2 without killing part. Then
(Geap)+ (TJ) = (EP) (3.8)

We shall prove the lemma of growth, where condition (EP) is our starting point, instead of from
condition (Gcap). The idea is essentially adopted fré 21].
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Lemma 3.5. Let(&, ) be a regular Dirichlet form in B without killing part. If conditiongVD),
(FK), (TJ)and(EP)are satisfied, then conditioh. G) holds withé = 1/v and G = Co + 8, + dy,
where the constants, v are taken same as in conditigfK) and G same as in conditiofEP).
Namely, we have
(VD) + (FK) + (TJ)+ (EP)= (LG). (3.9)
Consequently,
(VD) + (Gcap)+ (FK) + (TJ) = (LG). (3.10)

Proof. Note that any functiom € ¥ admits aquasi-continuousersionu [19, Theorem 2.1.3,
p.71]. We will use the same letterto denote some quasi-continuous modificatiom.oFor any
u € ¥ and any open subsgX of M, a functionu belongs to the spacg (Q) if and only ifu = 0
g.e. inQ°¢, where g.e. mearguasi-everywherésee [19, Corollary 2.3.1, p.98]).

We shall show the implicatior8(9).
Fix a ball B := B(xo, R) with radius 0< R < R and a functionf € L*(B). Letu € ¥/ N L®
be a function that i -superharmonic and non-negativeBn We will show that 8.6) is true if
condition @.5) is satisfied for soma > O.

To do this, denote

B; := B(Xop,r) for anyr > 0,

so thatBg = B = B(Xo, R). Fix four numbers, b andr, r, such that

O<a<b<w and%zsr1<r2<R, (3.11)

and set
_p(Byn{u<a))

- and my  #(Brz N {U<b)

H (Bfl) - H (sz)
Set alsov := (b - u), and

My = u(By, N{u<aj), M :=u(B, n{u<bhy)).
Let B be any intermediate concentric ball betwdkpandB;,, so that
B, C B:= Brvp CBr,(O<p<ra—ry).

Applying condition (EP) to the tripl®,,, B, B, and the functiorv, we see that there exists some
function¢ e cutdf(B;,, B) such that

Vo) < SEuve?) + —Z (r—z)co VAl
2 w(xo.0)\p/ Js,

13 [ vueEIx dy). (3.12)
Br,xBf,
Without loss of generality, we can assume & quasi-continuous. Then we have
2
= [ s [ ¢2(@) di=—2 [ (v (313
Br,N{u<a) Br, b-a (b-2a)* Jg,
S e
>1 on{u<a}

Consider the set

E:=Bn{u<hbl.
By the outer regularity oft, for anye > 0, there is an open s&tsuch thae c Q c B, and
w(Q) <u(E)+e <M +e (3.14)

On the other hand, sinee= 0 g.e. outsideB andv = 0 outside{u < b}, we see thapv =0 g.e.
in EC. Sincegv € ¥ andg¢v = 0 g.e. inQ° c E€, we conclude that

¢V € F(Q). (3.15)
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By the definition of1, (Q2), we have
24, < SV
[ @< T

Using again the fact thatv vanishes outsid€ and combining this inequality with3(13, we
obtain that

24 20 8(¢V)
™S b aye )Zf B KR TR v M D
By condition (FK) and 8.14),

CE1 ,U(Brz) Y CE1 ,U(Brz) Y
) 2 s (0] = e (fees) 547
from which, it follows by @3.16) that
~ 8(¢V) W(Bl’z) M(Brz) -
m < b- a7 . C,;l (fﬁg+6) .
Lettinge — 0, we obtain that, using the fact thas = (B’
= Cr m |\’ _ Ce (mp)”
m < b-ay (,U(Trz)) - W(Br,)E(pV) = (b-a)? - W(Br,)E(AV), (3.18)

where the constanisandCrg are the same as in condition (FK).

We estimate the terr&(¢v) on the right-hand side o3(18 by applying the inequality3.12).
For this, we need to estimate the tefifv, v¢?). This can be done by using tliesuperharmonicity
of u and using condition (TJ).

Indeed, sincerp € F(Q) N L® andp € F N L>, the functionvg® = v - ¢ € F(Q) c F(B),
which is non-negative. Ldt, be given by 8.2) for n > 1. Sinceu is f-superharmonic i3 and
IF/ll < 1 and since the functioR/,(b — u)vé? is non-negative and belongs to the sp&qE) so

that it can be used as a test function, we have

&(b ~ u, Fr(b - u)vg?) = ~&(u, Fi(b - u)ve?) < ~(f, F(b - u)ve?)

f Vg2 < 1|l f v

|’2

< ||f||Loo(Br2)b;1(Br2 {u<b}) (usingv < bliycpy)
= bl|f[lL~(g,,) M- (3.19)
Applying (3.3) with u replaced by — u and withe = v¢?, we obtain by 8.19
E(v, vp?) = E((b — u),, ve?) < Iirp sup&(b — u, Fy, (b — uvg®) < bl f|lL~(g, )To. (3.20)

Therefore, plugging3.20 into (3.12 and then using the facts that
supp ¢) ¢ B and J(dx dy) = J(x, dy)u(dX),

we see that

3 — ) Co
&(vg) < SblfllL~(e,,) Mo + > Vdu
2

W (X0.p) \ p

+3f~v(x),u(dx)-esup v(y)J(x, dy). (3.22)
5 b

xeB VB,
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Sincev = (b-u), <bin By, c Bg = B, we have

V2du < b?u(By, N {u < b)) = b?Mp.
Br,
Sincev=(b-u), <b+u_in M, we also have
[vou@aesup[ vpacdy < bivesup[ wpIcxay

B xeB Br2 xeB B?Z

IA

bmpesup | (b+u-(y))JI(x dy)

xeB Br2

bm, [b esup J(x, dy) + TEBrz (u)].

xeB VB,
Thus, using the fact that for any poixgin M and any O< p < rp —ry,
WB,) _ wio.ra) _ (rz)ﬁ2
= <Cyp=2
W(Xo0,p)  W(Xo,p) p
by virtue of (1.5), it follows from (3.21) that

3 _ CG (rz)CO+ﬁ2 e
E(vp) < SblfflLe + = b
(Vo) > I fllLe(e,)Me W(B.) | My
+3bﬁ'12(besgp ) J(x,dy)+T~B~,Br2(u_)). (3.22)
xeB Brz
We look at the third term on the right-hand side 8f22).
Observing by {.5) that for anyx € B c By,,
B B2
w(Br,) __ W(xo.r2) < Cz( r ) (3.23)
W(X,r2—=T1—p)  W(XT2—T1-p) ro—ri—p
we have by condition (TJ) that
esup| J(x,dy) < esup J(x,dy) < esup
xeB VB, xeB v B(Xr2-ri-p)° xeB W(X, T2 =1~ p)
CGC ( ) )/32
. 3.24
W(Br,) \r2—ri—-p (3:29)

Plugging @.24) into (3.22), we obtain

. bZ'mZ

CGC (r2 Cothy
W(sz) (;)
CC ra

w(B,) (

3 _
E(vg) < §b||f”L°°(Br2)mZ+

B
p) + TE,BrZ (U_)]

w(Br,) (TEBrZ (u) + ||f||L°°(Br2))
b b

+3bmy (b P

1+

c'mez (E)Cﬁﬁz
W(Bl'z) p

provided that O< p < (ro — r1)/2, since in this case

( I ),32 <(r_2)ﬁz <(r_2)Co+ﬁ2
re-ri-p/ “\p) “\p '
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From this, we obtain by3(18 that

B b e[ B (Tas, )+ I,

Dividing this inequality byu (By,) and then using the facts that

my my
= and mp =
ﬂ(Brl) #(Brz)

m

and that, for any2 <ry <rp,

d d d
<C,|—=] <C <C,|— by using (.3
p(Bry) — T\ M\ra—ry "\p (by using ¢.3)
we conclude that, for all & p < (r2 — r1)/2 with 2 < ry <y,

W(Br,) (Tg g, (W) + Iflloe,
b

b )ZM(B@ ( r_2)°°+ﬁ2 1.

<ClC 1+v
=T (b—a H(Bry) \ p

b 2 r Cotpp+d: W(Brz) (TBrl+,,,Br2(u—)+”f“Lm(sz)) 1+y
o L e L

whereC := C'CgC, > 0 depends only on the constants from the hypotheses (but is independent
of the numbergp, a, b, r1, r» and the functiond, u). We will apply 3.25 to show @.5).
In fact, letd, £ be any two fixed numbers in (0). Consider the following sequences

Ro=(0+2%1-0)R and a :=(s+2"1-¢))a fork>0.
Clearly,Ry = R, ap = a, R« \, 6R, andak \, caask — o0, and

% <Rk < R¢p foranyk > 1.

Set
_ H(Br N (u<ad)

u(Br,)

Applying (3.25 with
a=a, b=ac1, =R rz=Re1 and
p=pc=(Rec1-R)/2=2 H1-6)R
we obtain for allk > 1

2 Co+B,+d2
-1 Rk-1 1y
C 2

whereAy is given by

W(BRr, ;) (TBRk+pk,BR,<_1(U—) +|If ||L°°(BRk_1))
Aci=1+ a .
1

SinceBrp, € Baro)r/a for anyk > 1 by noting that

Re+p = (0 + 2741 -6)) R+ 2* 1 (1- )R <

B+0)R
4

and sincau- = 0in B = Br 2 Br_, by using the fact that is non-negative, we have

TBRk+pk,BRk_l (u) = TBRk+pk,BR(u—) < TB(3+5)R/4,BR(U—)-
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Sinceay_1 > ga andw(Bg, ,) < W(B), it follows that

W(B) (TB(3+6)R/4,B(U—) +1l f||L°°(B))

<1
Acs 1+ ca

= A foranyk > 1.

Since foranyjk > 1

—-(k-1)(1 _ k k
A1 _ &+ 2 1-¢) < 2 and Ri-1 < 2 ’
a1 (2KD-26K(1-5 1l-e Re1—-Re ™ 1-6

we obtain from 8.26), (3.27) that

l1-¢) \1-6
where the constant3, 4, g are respectively given by
D:=C(l-g)2(1-06)Cotbord)  1:224+Co+B,+dy and qi=1+v.

ok 2 ok Co+B+02 . P
+v .
my < CA(—) ( ) m. 7 = DA-2"-m_,,

Iterating the inequality3.28), we have for alk > 1
me < (DA)- 2% | < (DA)- 2% (DA 21D, mg_z)q
= (DA)M4 . pikeda(k-1) mgzz <...

< (DA)l+q+~--+qk‘1 . 2/l(k+q(k—1)+~~-+qk‘1) . mgk.

Since
k1 _(k+ 1)q+k q
k+gk-21)+---+ k‘lzq ( < k,
q(k — 1) q Q- 17 - 1)2q
K K
L1 9 -1 g
1+q+---+( _q—lgq—l’

it follows that
K

[ E—: I q
my < ((DA)T - 2w7 - my)”
from which, we conclude that if

Al
2617 . (DA)TT - mp <

NI

il

then
I(Iim mq=0
by using the fact thag > 1. Note that 8.31) is equivalent to
4 __q 1
my <2 @ ~.(DA) &1,
that is,

u(Bn{u<aj)

Mo < 2 @ Ipdialy
u(B) -

= go(l-8)?(1-6)"|1+

W(B) (Tays,6(1) + 1l |

ga

whereegg, 8, C are universal constants given by

g0 1= 27VE@ Y -1CV@D 172 9:=1/y, and C_ := Co+f, + th,

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

, (3.33)

(3.34)
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since by 8.29

1

Z_ﬁz_lD_qfll Z‘ﬁz—l (C(l —e)Y(1- 6)—(Co+,32+d2)) a1

s0((1 - £)2(1 - 5)Coperee)”

Note that the constants, 8, C, are all universal, all of which are independent of the numbgts
the ballB and the functiond, u.

The inequality 8.33 is just the hypothesis3(5). With a choice ofgp, 8,C. in (3.34), the
assumptiong.3]) is satisfied, and hence, we had32. Therefore,

u(6B N {u < £a))

wos)

thus showing that3.6) is true.
Finally, the implication 8.10 follows directly from @3.8) and @3.9). The proof is complete. O

4. PROOF OF WEAK ELLIPTIC HARNACK INEQUALITY
In this section, we prove Theorein3.
Proposition 4.1. If v e #” and v> 0in Bg with 0 < R < R, then
T%B’B(v_) < T%BR,BR(V—) (4.1)
for any Bc %BR, where (V) is defined by1.15.

Proof. Sincev > 0 in Bg, we see that_ = 0 in Bg, and hence,

Tsgp(v-) =esup| v-(y)J(x.dy) = esup [ v_(y)J(x.dy)

3 c 3
xe3B VB xe3B v Bg

<esup| v_(y)J(x.dy) < esup [ Vv_(y)I(xdy)
xeB B& XE%BR B%
= T%BR,BR(V_)’
thus showing4.1). m|

We remark that an alternative version of the tail for a functiouitside a balB(xg, R) is defined
in [13] by

: V(2|
Taily(v; Xo, R) 1= f d2). 4.2
W0 R) = | e Vo A0 D)W 40, )2 4.2
If condition(J<) holds, that is, if3(dx, dy) = J(X, y)u(dX)u(dy) for a non-negative functiod(x, y)
with
J(Xy) < ¢ (4.3)
7T V(X (X, y)w(x, d(x, Y)) '
for any (x,y) in M x M \ diag, for some constari@ > 0, then for any functiorv and any ball

Br:= B(Xo, R with0 < R< R,

Tsp. 8.(V) < C Tailu(V; 0, R) (4.4)

for a constan€C’ > 0 independent oBg, v.
Indeed, for any two pointg € 2Bg andy € B, sinced(x,y) > ¥ andd(x, X) < 2R, it follows
by using (.3 and the triangle inequality that

V(x0,d00.Y) _ V(%0 d(x0, %) +d(x.¥)) _ c (d(Xo, X) + d(x0, X) + d(x, y)\*®
V(x.d(xy) ~ V(x d(x.y)) - d(xy)
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@ 2.3R)*
-c, (1 2(xo. X)) <C, (1 N —4) = C, 7%, (4.5)

d(x.y) iR

whilst by using (.5),
W00, 400, ) _ W0, d00,X) + d(x ) _ - (d(xO, X) +d(xy) )ﬁz

wx, d(xy)) ~ w(x, d(x,y)) d(x.y)
d(Xo, X) B2 3R B2
=C, (1+ a0c y)) _c2(1+ %—R] = Codf2. (4.6)

Therefore, by 4.3), (4.5), (4.6
pu(dy)

Civiy)l
T V) = esu V(WII(x, dy) < esu
o) = 3 BE WIIGx o) XeaBp ge, V(% d(x y))w(x, d(x. )

- f C(C.7%)(CoA2)IVY)
~ Jig V(%o, d(Xo, Y))W(Xo, d(Xo, Y))

u(dy) = C'Taily(v; o, R),

thus showing4.4).

The inequality 4.4) says that the tail of a functiom defined in this paper is slightly weaker
than that defined in1[3], and therefore, so is the weak elliptic Harnack inequality introduced in
Definition 1.6.

Proposition 4.2. Ifu e ¥/ N L* andA > 0, thenIn(u; + 1) € ¥/ N L™,

Proof. For s € R, we define

F(s) = In(s; + ).
Sinceu € L™, we see thaF(u) € L*. For anys;, S, € R, we assumes), > (s); without loss of
generality. Then

F(s1) - F(s9)l = In(1+

by using the elementary inequality

(s1)+ ~ (82)+) L) () _Is1- 9
(S2)+ + 4 ()e+d — 2

In(1+ x) < x foranyx > 0.

Thus,F is Lipschitz onR. Therefore, by 21] (see also 20, Proposition A.2 in Appendix] for a
purely jump Dirichlet form), we conclude that

F(u)e 7/,

thus showing that
Fu =In(uy +2) e ¥/ nL™.
The proof is complete. m]

The following will be used shortly.

Proposition 4.3. (see[20, Lemma 3.7] Let a function ue ¥’ N L* be non-negative in an open
set Bc M and¢ € ¥/ N L™ be such thap = 0in B®. Leta > 0and set y := u+ A. Then we have
¢?u; € 7(B) and

uotut) < -3 [[ @09 nap|in Bl sexdy

2
+369(g,9) - 2 f f uﬂ(y)¢—”J(dx,dy)

We show the followingcrossover lemma
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Lemma 4.4 (the crossover lemmajssume that condition®D), (Cap.) and (PI) are satisfied.
Letue ¥' N L™ be f-superharmonic and non-negative in a ball 8 B(xo, R) with radius less
than R. If

A2 W(BR)(T3 g, g (U-) + I fllLo(en)) (4.7)

1/p 1/p
(JLI; ufd,u) (JLE; u;pd,u) <C wherey=u+21 (4.8)

forany B := B(xo,r) withO <r < m, where C> 0, p € (0, 1) are two constants independent

of Br, 1, u, f, and the constant > 1 comes from conditio(PlI).

then we have

Proof. The proof is motivated by36, Section 4] and{, Proposition 5.7] for dtusions. The key
is to show that the logarithm function i is a BMO function (cf. Definitior8.1in Appendix).
Our result covers both afflusion and a jump process.

Let B := B(z r) be an arbitrary ball contained Eﬁaurle)BR- Without loss of generality, we may
assume that

3 3
<2 R= R

P A+ D) 2+ D)
see for exampled, Remark 3.16]. Then

R (4.9)

2B c %BR = B(xo, ZR), (4.10)
since by the triangle inequality, for any poixe 2«B = B(z 2«r),

3
d(x, Xo) < d(x,2) + d(z Xo) < 2«r + mR
3 3 3
S D) A DA
Letu e ¥’ N L* be f-superharmonic and non-negativeBr. Applying Propositiord.1with B
replaced by 2B, we have

Ts,828(U-) < Tag, g (U-)- (4.11)
Let A be a number satisfyingt(7). Without loss of generality, we assume that

W(BR)(T%BR’BR(U_) +[Ifllsq) > O (thusd > 0).

Otherwise, we consider + & for somee > 0 and then let — 0. We shall show that
3
Inu, c BMO (4-(4K—-|-1)BR) (412)

Indeed, note that I + 1) € #' N L™ by using Propositiod.2. Applying condition (PI) to the
function Inu, + 1), we have by 1.11) that

(. + - (n(u. + e
B
(L) _ 2
< Cw(B) {fKB dr-{n(u; + 2)) + ff(KB)X(KB) (In(ur(X) + ) — In(uy(y) + 2))°I(dx dy)}

= CwW(B) { f Bdr(L)(In uy) + f f( . (B)(m ‘ljjg;)zj(dx, dy)}, (4.13)

where we have used the fact that O (thusu,. = u) in Bg D «B.
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We estimate the right-hand side @£ {3). Indeed, using condition (Capto the two concentric
balls B, xB), we have by {.3), (1.5

n(3<8)  u®
E(, ¢) < C (%KB) <C W(B) (4.14)
for someg € cutoff (KB, %KB).

On the other hand, using the Leibniz and chain ruledl#f)(-), we see that
f g*drdnu,) = - f ¢2drOqu,, uph

= - f drquy, ¢?uyty + 2 f putdrO(uy, ¢)

= 6V +2 [ gt )

(4.15)
By the Cauchy-Schwarz inequality,
2f¢>U}1dF(L)<uA,¢> = 2f¢dF(L)<In U ) < %quzdr(%n Uy + zfdr<L)<¢>
= % f ?drOnuy)y + 280, ¢), (4.16)
from which, it follows by @.15 that
f g?drOnuy) < -280 (U, ?ur?) + 46M(9, 9). (4.17)

We estimate the first term on the right-hand side.

Indeed, since = 0 in (%’KB)C > (2«¢B)°, using Propositiort.3with B being replaced by«B
we obtain that & ¢?u;* € 7 (2«B), and

Oy 202 1 2 2 ua(y)
wott) < - [ @onaopfn i aexay

Q) B ¢2()
ORI e <ECEVRNCED

Noting that&(u., ¢?u;t) > (f,¢?u;?) sinceu is f-superharmonic iBg > 2«B, we see by 1.6)
(4.18 that

~EB (U, g2 = ~E(ur, ¢2u;) + D (un, $2urh)
< —(f,0%u") + EN (s, 62Uy

CGTREE S | R GORXGO [ 4 ECEY

Q) B ¢*(X)
rae00-2 [ we) e, (4.19)

Since¢ = 1 in kB, we have

) (y)
- ﬂ&B)X(&B)(¢2(X)/\¢2(y))|ln o ey < - [, f( e 029 s, .20

whilst, sinceg = 0in (3kB)° and 0< ¢ < 1in M,

— ¢2( ) _ ¢2( )
f f(zks)x(z@c (y)u X )J(dx, dy) = f f( S WS e )J(dx, dy)
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I l
< u-(y,
(3xB)x(«B)° ua

(%)

<3, Jesu [ uwmIcaniuey
A J(3kB) | xe(3uB) Y (1B

3
K (EKB) Tsp.208(U-)

| =

>~ =

3\*
< 26(30) HETjoqe () @.21)

where in the last inequality we have used condition (VD) and inequdityl). From this, condi-
tion (4.7), and using the fact thé@%) > Cy by (1.5), (4.9), we obtain

$*(¥) 1 (3\®
_fvﬂ%B)x(&B)C /l(y}u_(x)\](dx,d)’) zc,l (EK) #(B)T%BR,BR(U—)

IA

< : (2 * B)T

) W(BR)T%BR,BR(U_) N(EK) ﬂ( ) %BR’BR(U_)

_ 3\* w(B) u(B)

) C"(EK) w(Br) = Cw(B)’ (4.22)

Therefore, plugging4.20 and @.22) into (4. 19) we obtain
_S(L)(u/l ¢ u/ll) < (f ¢2U;1)—— f u/l(y)

(KB)X(KB) U/l( X)
Plugging @.23), (4.14) into (4.17), it follows that

fqbzdl“('-)(In Uy)

| J(dx dy)+389 (g, ¢)+2¢M (4.23)

w(B)

IA

—28B(uy, g?urh) + 481 (9, ¢)

IA

3 2, -1y UA(Y) )
201,00 - [ i 28 ey + 66000

+actB) + 48V (g, 9)

w(B)
—_2(f. s2u=1) — UA(Y) J(dx d C,,U( B)
AT ff(KB)X(KB) " 1+ Oy
from which, using the fact that = 1 in kB, we have
dr ff n B2 50 dy) < —2(f, g2ty + ¢ HB). 4.24
Jparoamus ff G e < 2 sun e @2
Since
~2(f, ¢?uyh) = —2ng8 fo?urtdu < ZfZKBHluﬂldu
I fllL=(BR) 2u(3xB) .
< 2£KB Tdﬂ < m (by using @-7))
c“((B)) (by condition (VD) and 1.5)),
we have by plugging4.24) into (4.13,
[ (= (nuedu < ow(e) (- 201,07 + ¢ AT < Cuce)
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which yields that, using the Cauchy-Schwarz inequality,

2
( f Inu, - (Inuﬂ)smu) < u(B) ( f (Inu, - (INuy)’du| < C”u(B)?,
B B
that is,
JC|In u; — (Inuy)gldu < C3 (4.25)
B

for all ballsBin 4(%”)83 and alla satisfyir_lg @.7), whereCs is a universal constant independent
of Bg, B, 4 and the functionsi, f, thus proving 4.12).
Applying Corollary8.3in Appendix with function Iru, andBg = 4(4K+1) Br, we have

{JC exp( 2 n uﬂ) d,_l} {f exp( Zin uﬂ) d,u} < (1+cy)?

for any ballB satisfies 1B C Br and any

b > [ln Uallgyo( (3 BR)’ (4.26)

4(4K+ 1)

In particular, for anyB; := B(Xg,r) with 0 < r <
numberb satisfying ¢.26),

{f exp(% In uﬁ) d,u} {fsr exp(—c—é In uﬁ) d,u} <(1+c)? (4.27)

Finally, choosing) = 2 %2 +Cz so that §.26) is satisfied and letting := = € (0, 1), we conclude
from (4.27) that

{ f exp(plnuy) dﬂ} { f exp(-plnu,) dll} <1+
By By

thus showing4.8). The proof is complete. m|

T SO that 1B C 72+ Br and for any

We are now in a position to prove Theordn8.

Proof of Theoreni.8 We need to show the implicatiod.Q0. Indeed, by Lemma&.5, condition
(LG) is true. LetBR := B(xp, R) be a metric ball irM with 0 < R < R, where constant comes
from condition (LG). LetB; := B(xo, r) with

1
0 <r< R Where(S = m (428)

andk is the same constant as in condition (Pl). uet ¥’ N L* be a function that is non-negative,
f-superharmonic ilBg. We need to show that

1 1/p -
(IJ(Br) upd,u) <C (Eé?f u+ w(By) (T% BR,BR(U—) +||f ||L°°(BR))) (4.29)

for some universal numbegse (0, 1) andC > 1, both of which are independent B, r, u, f.
To do this, letl be a number determined by

1= W(Bg) (T%BR’BR(U_) + ||f|||_oo(BR)). (4.30)

We claim that for any € (0, 6R]
1/p
(JC ufdu) <C eénf uywithuy =u+ 2 (4.31)
B :

for some constar® independent oBg, 1, u, f.
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Indeed, by Lemmat.4, there exist two positive constangse (0,1) andc’, independent of

Bgr, 1, u, f, such that
1/p 1/p
(JCB ug’du) ( Jg u;pdu) <c (4.32)

forany O< r < 26R. Lets = p/6, wheref = % with constanty coming from condition (FK).
Without loss of generality, assumie> 1. Thuss e (0,1). Let

b i= w(Br) (T35, 26, ((U)-) + 1llL~@y ).
Define the functiorg by
g(@ =a’(1+ %J) for anya € (0, +). (4.33)

Using the facts thatuj)- < u- in M and B, ¢ %BR, we have, by Propositiod.1 with B being
replaced by B, that

b =w(Br) (TgBr,zsr((U/l)—) + ||f||L°°(Br)) <W(Br) (T%(zsr),zsr (u) + ||f||L°°(Br))

< W(BR) (T35 () + [llm(e)) = 2 (4.34)
Clearly, for anya > 2,
p(B N {uy <a))  uB N’ >aP) pJ[ T
By - ) <a g ufde (4.35)

Note thatu, € ¥’ N L* is f-superharmonic, non-negative iB2c Bg. To look at whether the
hypotheses in condition (LG) are satisfied or not, we consider two cases.
Case 1 Assume that there exists a numlgr> 1) such that

2w(Br) (TgBr,ZB,((UA)—) + ||f|||_°°(B,))
a

-0
802—(2+C|_)9 (1+ %)) 802—(2+C|_)9 1+

= apji u/_lpd,u, (4.36)
that is,
1s _ 20\ 4 o NP
(@) =all+ = =& u,"du , (4.37)
B

where the constar®®, comes from condition (LG) ang; := £2-?*C)?  |n this case, by using
(4.35 and @.36), we have

2w(Br) (T%Br,zar((u/l)—) +I f||L°0(Br)) i
a

p(Br N {uy < aj)
u(Br)

< apﬁ u,Pdu = go2 BrCU0 1 4
2w(Br) (T%Br’B,((U/l)—) + ||f||L°°(B,))

< g2 @CUI (1 4
a

-0
W(B:) (Tauzg, g ((U)-) + [1flloe, |

l 9
éa

=eo(1-1/2%@-1/2)%Y |1+
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sinceT%Br’Br((u,l)_) < T%Br’ZBr((u})_) by noting thatu, is non-negative in B;. Therefore, we see
that the assumptior8(5), with B being replaced b, andu replaced byu,, is true. Thus, all the
hypothesis in condition LG( 5) are satisfied witle = 6 = 1/2. Therefore, it follows that

1 1 20\ ~ip
elinf u > éa =3 (1+ E) el/p(f u;pdp) (using @.37))
Br

2B
-1/s 1/p
> % (1 + %’) /Pt (JCB ufdy) (using @.32)

1 e
> é3_1/581/;3(:,—1 (J[ ufl)d,u) (using @.34) anda > A1),
Br

which gives that

1/p
(Jg ufdp) < 20’811/p31/5e1inf uj.
r 1

ZBr
Thus, the inequality4.31) is true in this case.
Case 2. Assume that4.37) is not satisfied for ang € (1, +0). In this case, noting that

lim g(a) = +oo

a—+oo

andg is continuous on (Oro0), we have that

-1/p
(9@)"° > & p(ﬁ u;pdu) : (4.38)

for anya € (4, +0).
If 2 =0, thenb = 0 by (4.34). By definition @.33, we haveg(a) = a® for anya > 0. From this
and using 4.39), it follows that

~1/p
&P (Jg u;pd,u) < g(a)V/s = afor anya e (0, +c).
. -p —1/P . .
Lettinga — 0, we have(fBr uPdu) " = 0, which gives that

1/p
(;f? ugcbl) =0
Br

by using @.32), thus showing4.31).
In the sequel, we assume thiat- 0. Sinceg is continuous on (G+c0), we have from4.38 by

lettinga \ 4 that
COREELN

from which, we see by usingt(34)

1/s 2b vs 1/s 1/p
37CA=A 1+7 = Q)" 2 &)

1/p
B

~ -1/p

r

-1/p
u;pdﬂ) . (4.39)

T

Thus, we have

IA

-1/
¢ (Ji u;pd,u) i (using @.32)

c's;/P3Y%a (using @.39). (4.40)

IA
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Therefore, combining Case 1 and Case 2, we always have
1/p
(JC ugd,u) < C(A +einfuy) < 2Ceinfu, (4.41)
B 3B iB

forany O<r < 26R.
On the other hand, by condition (VD),

1 1
uPdu > f uPdu > —f uPdu, (4.42)
Jll;r A u(Br) iB A Cuu (%Br) 1B, A

2

from which, it follows by @.417) that

1/p
(JC ugdﬂ) < Ceinfu,
ip ip
20r 2°0r

for 0 < r < 26R, thus proving our claim4.31) by renaming /2 by r, as desired.
Therefore, we obtain by}(31)

1 0 1/p 1 b 1/p
— uPd <|—= utd < C’einfu
(,U(Br) B, 'u) (N(Br) B H) B
e (eligrr\f U+ W(BR) (T%BR,BR(U_) +If ||Lm(BR))) (4.43)

forO<r <6R

Finally, we show that the termy(Bgr) on the right-hand side o#(43 can be replaced by a
smaller onen(B;) for any O< r < §R, by adjusting the value of constant.

Indeed, fix a number in (0,6R). Leti > 1 be an integer such that, setting= 6“R for any
k>0,

ria=0"R<r<sR=r;. (4.44)
By Propositior4.1, we see that
T%Bri,lﬁBfi,l (U_) S T% BR’BR(U_). (4.45)
By (1.5 and @.44),
i—lR i—lR B2
w(er) = “oe Dt < ) W(B) < Co #ow(B).  (4.46)

Sinceu is f-superharmonic irBy, ,, applying é.43 with R being replaced by;_; and then
using @.45, (4.46), we conclude that

1 1/p
p ' ai .
(ll(Br) " u du) <C (eglfu +wW(Br,_,) (T%BM’B[F1 () + Il (Bril)))
=C’ (eIBrr']f u+ C26_2r32W(Br) (T% BRsBR(u_) + || flle(BR)))
<C (eérrﬁ u+ w(By) (T%BR,BR(U—) +||f ||L°°(BR))) ,

thus showing that condition (wWEH) holds. The proof is complete. m|
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5. OrHer EQUIVALENT CHARACTERIZATIONS
In this section, we prove Theorein9. Denote by
_ #ANB)
wa(A) =

u(B)
theoccupation measuref the setAin B.
The following version of the weak elliptic Harnack inequality was introduced 8 Proposi-
tion 3.6] whenf = 0, and we label it by condition (WEH1).

(5.1)

Definition 5.1 (condition (WEH1)) We say that conditio(wEH1) holds if there exist two univer-
sal constants € (0, 1) andé; € (0, 1/4) such that, for any two concentric ballgB= B(Xg, R)
B(xo,r) =: By with Re (0,0R), r € (0,61R), any function fe L*(Bg), any numben, € (0, 1] and
for any function ue ¥’ N L* which is non-negative, f-superharmonic ig,B for some a> 0,

we, ({u>a}) = W > 11,

then
einfu> £1a—w(B) (T:_sBR 5 (L) + ||f|||_oo(BR)), (5.2)
BAr 4 ?
wheree; = £1(177) € (0, 1) depends only on, (independent ofr, R, f,u, a).
We show that condition (WEH) defined in Definitidn6is equivalent to condition (WEH1).

Proposition 5.2. Assume thaf€, ¥) is a Dirichlet form in (M, u). If condition(VD) holds, then
(WEH) & (WEH1).

Proof. The proof was essentially given ihd, Proof of Theorem 3.1 and Remark 3.9] wherein the
jump kernel is assumed to exist ahc: 0. For the reader’s convenience, we sketch the proof. We
mention that the jump kernel here may not exist.

We first show (WEH)= (WEH1).
Assume that condition (WEH) holds. Lete ¥’ N L* be non-negativef-superharmonic in a ball
Br(Xo) With R € (0,0R). Letn, be any number in (] andr any number in (5R/4), where
constan® is the same as in condition (WEH). Assume that

we, ({u>a)) > 7y (5.3)
for somea > 0. We will show that condition (WEH1) holds with = % and

e 1/p
£1(m1) = (C24%2Ch) (—2] : (5.4)
C/l
where constant€,, 8, are the same as il 6) andCy, p the same as in condition (WEH), while
the numbeC, comes from {.2). It suffices to show§g.2).
Indeed, we have byl(16), with r replaced by 4, that

1/p
(JCB4r upd,u) <Cq (eéﬂfu + W(Xo, 4r) (T%BR,BR(U—) + ||f||Lm(BR))) . (5.5)

Sinceu(Bar) < Ciu(By) by condition (VD), we have by5(3)

1/p 1 1/p 1 1/p
(JC upd,u) 2( 5 upd,u] 2(2— apdp)
Bur Ciu(Br) Jg Cin(Br) I njuzay

1/p 1/p
_ a[%fa})] > (’7_12) a (5.6)
c? c2
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By the second inequality irL(5),

_ W(xo,T) 1
w(B;) = W, 4r)W(xo, ar) > C24ﬁ2W(XO’ ar). (5.7)
Therefore, pluggingd.6) and 6.7) into (5.5), we obtain

IA

1/p 1/p
(%) a ( Ji updﬂ) <Ch (eéﬂfu + W(Xo, 4r) (T%BR’BR(U_) + ||f||Lm(BR)))
" Zs

IA

CH (einfu + Codl2w(xo, 1) (TgBR BR(u_) + ||f|||_oo(BR)))
By 4

IA

Co4P2Cyy (einf u+w(By) (TgBR BR(u_) +||f IILm(BR))) ,
BAr 4 ?

which gives that

1/p
. -1 771
eEgrlfu > (C24ﬁ2CH) [C—EJ a—-w(B) (T%BR,BR(U—) + ||f|||_oo(BR))

= 218 W(B1) T3, () + Il

thus showing§.2) with &1 given by 6.4). Hence, condition (WEH1) holds.
We show the opposite implication (WEHZ) (WEH).
We will use the Krylov-Safonov covering lemma on the doubling space as follows, see for example
[13, Lemma 3.8] or 26, Lemma 7.2]. Suppose that condition (VD) holds. Ldte a number in
(0, R/5) andE c B, (xg) a measurable set. For any numpex (0, 1), we define

. H(E N Bsy(X))
[El, = U {B5p(x) N Br(xo) : X € Br(Xo) andW(xp)) > 77}.

O<p<r
Then either
[E]; = Br(Xo)
or

W(EL) > Tu(®)

Assume that condition (WEH1) holds. We show (WEH).

To do this, lety be any fixed number in (Q). Leto € (0,1) ands; € (0, 1/4) be the constants
coming from condition (WEH1). LeBg := B(xo, R) be any metric ball with 6< R < oRandr any
number in (O%R]. Letu e ¥/ nL* be any function that is non-negativiesuperharmonic ifBg.
We define

Al = {x € Bi(xo) : u(x) > te' — %}

for anyt > 0 andi > 0, where constar € (0, 1) will be determined later and is given by

T = Cowl(%0, 57) T30 (U-) + Il (5.8)

with constanCz asin .5).
Obviously, we have\|"! c A} for anyi > 1. Letx be any point inB;(xp) andp be any number
in (O,r). If

Bs,(X) N Br(x0) € [AT],, (5.9)
which is equivalent to the fact thatAl=1 N Bs,(X)) > nu(B,(X)) by the definition of N=1],,, then

(AT 0 Bsy(X) > m(B(X)) 2 G *n(Bsy (X)),
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sinceu(B,(X)) > C;3u(Bs,(X)) by using condition (VD). Let := £1(C;%). SinceB(x,§) c
B(xo, R), the functionu is non-negative f-superharmonic irB(x, §). Noting that » < 5r <
5%R= 6,8 and
p(Bsp() n{uxte ™t - 1)) K (Bs() N A
1(Bsy (X)) — u(Bsp(¥)

we apply condition (WEH1) on two concentric baBgx, %*), B(x, 50) for n; = C;3n and for those
t > 0 such that

-3
>C,n,

a=té1- 1 > 0.
e

It follows that, using the fact that(x, 50) < w(x, 5r) < Cow(Xg, 5r) by (1.5),

. i T
B%Qf() u> 8(t8' t- rg) — W(X, 5p) (TgB(x,g),B(x,g)(U—) + ||f|||_oo(B(x,§)))

P T

> S(tsl 1_ 1TS) - CZW(XOa 5r) (T%BR,BR(U—) + ||f”L°°(BR))
. T . T
i-1 i

_ _ Tt 1

s(ts 1_8) te 1o (5.10)

where we have used the fact that
T3pxB).Bx B)(U-) < Tsp, g (U-)

by Proposition4.1 sinceB(x, §) c %BR = B(xo, %R) for any x in B;(xp). Clearly, the inequality
(5.10 also holds for thosewhents'~1 — &g < 0, and hence, it is true for arnty> 0, provided that
(5.9 is satisfied.

Therefore, for any balBs,(x) satisfying 6.9), we haveBs,(x) N By (Xo) C A'[ which implies that

[AI71], c Al for anyt > 0 and anyi > 1.

By the Krylov-Safonov covering lemma with = i-1 we must have that for arty> 0 and any
i > 1, eitherAl=1 = B (xo) (thusAl = B(xo)) or

1 . - .

Eﬂ(A{ Y < p([AT) < (A, (5.11)

We choose an integgr> 1 such that
0
o M) i
u(Br (%0))
Suppose thatl™ # B, (xo). Using the fact thadi-! c Al, we haveAk % B;(xo) for all 0 < k <
j — 1. Hence, we obtain fronb(11) that

w(AY > %M(Ag"z) > > nj—l_lu(Ato) > nu(Br (Xo))-

n

Sincen € (0,1), this inequality holds trivially Whe|74\tj_1 = By(xp). Therefore, using condition
(WEH1) again, we have

- T
i |
int u> o) (187 = 77— ) = W(B) Ty, () + 1 flvcen)

e1(n) +1

T
1-¢

. T .
> e1(n) (tsj_l - r) —T > elpte ™ -

= M

HAD) )7 _alm+1

By T 1o ¢

> e1(mt (
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wherey = log, . From this, it follows that, for any> 0 and any € (0, % Rl
0 Y

#(At) Scs( einf u+ )

u(Br(x0) ~ U \Bulw)  1-e

for some positive constawt depending only oy (for examplecs = %&51).
Therefore, for any & p < y and anya > 0,

0
r (X0

H(Br(%0)) u(Br(xo))
sp[f tP~ ldt+c3(e|nfu+ T ) f tP-1- th]
0 Bar (Xo) 1-¢) Ja
T Y
<ci(p,n,e)|aP + ( einf u+ ) aP7|.
Bur (X0) — &

By choosinga such that

a= einf u+ ,
Bar (Xo) 1-¢

we conclude by usings(8), (1.5) that for any O< r < %R

T p
f uPdu < 2c4(p, 71, a)( elnf u+ )
B (%) (X0 l1-e

p
CEW(B) Ty, 5,(0) + i)
l1-¢

< 2¢4(p, 1. €) Bgi(r;g)u +

p
< cs(p, 7, €) (einf u+w(Br) (TgBR,BR(U—) + ||f||L°°(BR))) :

thus showing that condition (WEH) holds with= 73. The proof is complete. m|
We introduce condition (WEH2) (cf24, Lemma 7.2] for the local Dirichlet form).

Definition 5.3 (condition (WEH2)) We say that conditioflwEH2) holds if there exist three uni-
versal constants-, 6, in (0, 1) and C> 0 such that, for any two concentric ballB= B(Xp, R)
B(Xo, 1) =: B, with Re (0, 0R), r € (0, 5-R), any number a 0, any function fe L*(Bg), and for
any ue ¥’ n L* which is non-negative, f-superharmonic ig,Bve have

m) - w(Br) (TgBR,BR(U—) + ”f”L‘X‘(BR))- (5.12)
We remark that the constanis 6», C are all independent of BB;, a, f and u.
Remark 5.4. Leta> 0. If

eianu > aexp(—
r

a)Br({U > a}) =0,
then 6.1 is trivially satisfied since & 0in B;. On the other hand, if
we ({u>a})) =1,

then 6.12 is also trivially satisfied since & a in B;. Thus, in order to shows(12), it syfices to
consider the cas@ < wg, ({u > a}) < 1 only.

We have the following.

Proposition 5.5. Let (&, ) be a Dirichlet form in 2. Then
(WEH) = (WEH2).
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Proof. Assume that condition (WEH) holds with four constapts, o in (0, 1) andCy > 1. Fixa
ball Br := B(Xo, R) with R € (0, o'R) and fix another concentric bd} := B(Xg, r) with0 < r < 6R.
Letu e ¥’ N L* be non-negativef-superharmonic iBg. Then

1 1/p _
(/J(Br) . Updﬂ) <Ch (eér?fu +W(Br) (T%BR,BR(U—) + ||f||L°°(BR)))- (5.13)

In order to show condition (WEH2), we shall prove thatl(2) holds with
6=6 and C:=InCy + 1/p. (5.14)
To see this, letibe any positive number. By Remald, we may assume
O<wp(fu>a}) <1l

Note that, using the elementary inequalityir 1 — )l( forany O< x <1,

1/p
updu) > (

= aexp(F—lj Inwe, (fu> a})) > aexp(F—lj (1 ;))

" wg (fu>a)
)—an (_ C—InCH )
ay) P es (uz a)

1/p
P = @Pur (> a))!?

1
(M(Br) B, u(Br) BrN{u=a}

1/p
>

> aexp(—wB W

'”—H) ex (_L)
vguza)) P\ ws (U a)
> aCy exp(—

= aexp(

C :
m) (Slncea)Br({U > a.}) < 1) (515)
Plugging 6.15 into (5.13 and then dividing byCH on the both sides, we conclude that

C .
etz ap) = o 8 (T, )+ ke
thus showing thaty.12) holds with constants,, C chosen as ing.14). The proof is complete. o

aexp(—

We introduce condition (WEHS3).

Definition 5.6 (condition (WEH3)) We say that conditio(wEH3) holds if there exist two univer-
sal constantsr, 63 in (0, 1) such that, for any two concentric ballssB= B(Xg, R) > B(xo,r) =:
B with Re (0,0R), r € (0,63R], any number; € (0, 1], any function fe L*(Bg), and for any
ue ¥’ n L* which is non-negative, f-superharmonic ig,B for some a> 0,

u(Br N {u > aj) N

we ({u>aj) = (B =13

and
W(B) (T3, 50(U) + Fllm(@n) < Flro)a
foramap F: (0, 1] — (O, 1], then we have
eianu > F(nz)a (5.16)

We show condition (WEH2) alone implies condition (WEH3) for any Dirichlet fornh.n
Proposition 5.7. Let (&, ) be a Dirichlet form in 12, then
(WEH2) = (WEH3).
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Proof. Assume that condition (WEH2) holds with constamis,, C. We shall show that condition
(WEH3) holds with the same and withéds, F being given by

1
03 =02 and F(n3) = > exp(—ng). (5.17)
3

To see this, fix a balBg := B(xo, R) with R € (0, oR) and fix another concentric ball, :=
B(Xo, r) with 0 < r < 62R. Letns € (0, 1] andr € (0, 62R] be any two numbers. Lete ¥/ N L*®
be any function that is non-negativiesuperharmonic iBg. If for somea > 0,

we,({u=a}) > n3
and if

1 C
wW(Br) (T%BR,BR(U—) + ||f|||_°°(BR)) <F(p)a= > exp(—n—) a,
3

then by condition (WEH2),

E|Brr]f u=> aexp(—m) — W(Br) (T%BR,BR(U_) + ||f|||_00(BR))

C 1 C 1 C
> aexp(——) -z eXp(——) a== eXp(——) a=F(n)a
n3) 2 M3 2 73

This proves thatg.16) is true, and so condition (WEH3) holds. The proof is complete. ]
The following shows that condition (WEH3) implies condition (WEH1).
Proposition 5.8. Let (&, ) be a Dirichlet form in 2. If condition(VD) holds, then
(WEH3) = (WEH1).

Proof. Assume that condition (WEH3) holds with constamtss in (0, 1) and a mag- : (0, 1] —
(0, 1]. We show that condition (WEH1) holds with the samand with constants

F(n,/C3
01 = 6—83 and &1 = &1(my) = %
so thats, € (0, %1) ande; = e1(n1) € (0, 1), where constants, is the same as inl(2 andC,, 3,
same as in1.5).
To see this, fix two concentric balBg := B(xp,R) D B(Xo,r) =: B, with R € (0,0R), r €
(0,61R]. Letn,; € (0,1] be any fixed number. Lat € #' N L* be any function that is non-
negative,f-superharmonic iflBr. Suppose that for sonae> 0,

wg, (Iu> a)) > ;. (5.19)

We need to show thab(2) is satisfied.
Indeed, since < §1R = 63R/8 so that

Ba C Br, (5.20)
3

(5.18)

the functionu is non-negative andi-superharmonic ing_r. By (5.19 and condition (VD)
3

_HBgnfu=a) pBniuxal)

Ws3Bg (U > a) = WBg, ({U > a})

3 u(Bsr) a u(Bsr)
we, ({u > ahu(Br) _ nu(Br) _ m
= —" > > = = 1a. 5.21
() W(By) 3 (-21)
We distinguish two cases.
Casel when 5
F(n./Cp)

W(B,) (T%BR’BR(U_) + ||f||Lm(BR)) <sa= (5.22)

—a
C2882
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In this case, we have

W(5353_;) (nggr By (U-) + ||f||L°<>(B§,)) = W(Bsgr) (TBGr,Bgr (u)+ ||f||L°°(Bgr))
or »=aor 0

o3 03 3 03 93 3

< W(Bgr) (TgBR,BR(U—) + ||f||L°°(BR))

< CaB™W(Br) Tp, g (u) + I flogen)
< F(n,/Cha= F(na)a,

where in the first inequality we have used the fact

TBQ,B& (u) < T%BR,BR(U—)
03 93

sinceBg - %BR andu is non-negative ifBg, whilst in the second inequality we have used the fact
3
that

W(Bg)  W(Xo,8r) (8r )/32
= <Cy|—] =C8%
wE)  who.r) ’
by virtue of (L.5). Therefore, applying (WEH3) witBgr being replaced bﬁg_r, we obtain
3

eBinfu > F(n3)a. (5.23)
Ar
Noting that
F(Ul/cg) 3
LT o g < Fm/C)) = F(na), (5.24)
we see that

Fra > Flrs)a—w(B) (Tyg e ) + 11 fllen)
> gla—w(Br)(T%BR’BR(u_)+||f|||_oo(BR)). (5.25)

Plugging 6.25) into (5.23), it follows that
einfu > F(p5)a > s1a— W(B) (T;BR 5 (U) + ||f|||_oo(BR)),
Bar 47

thus showing thaty.2) is true in this case.
Case2 when

(B (T3, 5,(00) + 1l > e12

In this case, we immediately see that

eBinu > 0> ga-w(B) (T%BR,BR(U—) + ||f||Loo(BR)),
thus showing thaty.2) is true again.

Therefore, we always have th& ) holds, no matter th€asel happens or not. This proves
condition (WEH1). The proof is complete. m|

The following another version of the weak elliptic Harnack inequality was essentially intro-
duced in RO, Lemma 4.5] wherf = 0, and the jump kernel exists and satisfies the upper and
lower bounds.
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Definition 5.9 (condition (WEH4)) We say that conditio(lwEH4) holds if there exist three uni-
versal constantsr, €4, 64 in (0, 1) such that, for any ball B := B(xXo, R) with R € (0,0R), any
function fe L*(BR), and for any ue ¥’ N L* which is non-negative and f-superharmonic ig, B
if for some a> 0,

u(64Brnfu>a)) 1
> = >
Wauba({U = 1) u(04BR) "2
and
W(04BR) (TgaR,BR(U—) + ||f||L“(BR)) < &48,
then
einf u> gqa (5.26)
3(64BR)

Proposition 5.10. Let (&, ¥) be a Dirichlet form in 2, then
(WEH3) = (WEH4).

Proof. In fact, condition (WEH4) is a special case of condition (WEH3) with= 1, &4 = F(1/2)
andé, = 63. The proof is complete. m]

We are now in a position to prove Theordn®.

Proof of Theorem..9. We have the following conclusions:

(WEH) < (wWEH1) (Propositiorb.2),
(WEH) = (wEH2) (Propositiorb.5),
= (wWEH3) (Propositiorb.7),
= (wEH1) (Propositiorb.8),

thus showing that the equivalences inJg) are all true.
Finally, the implication (WEH3} (WEH4) in (1.27) follows immediately by Propositiof.10
The proof of Theorem..9is complete. m|

6. CONSEQUENCES OF WEAK HARNACK INEQUALITY

In this section, we look at two consequences of the weak Harnack inequality. One is that we
obtain the Hblder continuity of any harmonic function if conditions (WEH) and (TJ) hold for
any regular Dirichlet form without killing part, see Lemr6a& below. The Hblder continuity of
harmonic functions was investigated in various settings, see for exad(pldheorem 5.3] for
a certain class of integrotierential equations iiR" (see also I8, Theorem 1.7] inR" under
a weaker assumption), and3 Theorem 2.1] for a pure-jump Dirichlet form. Here we have
extended this conclusion to a more general situation where the jump kernel does not necessarily
exist. Although the proof is standard, we sketch the proof for completeness of this paper.

The other consequence of the weak Harnack inequality is that we can obtain a Lemma of growth
for any globally non-negative, superharmonic function (Len@xidelow), which leads to a lower
bound of the mean exit time on a ball (Lem@&&below). The lower bound of the mean exit time
plays an important role in obtaining the heat kernel estimate.

Recall that for an open subgetof M, a functionu € ¥ is harmonicin Q if for any non-negative
¢ € F(Q),

E(u, ) = 0.
For any ballB € M and any functioru € L*(B, u), we define

eosau ;= esupu — einfu.
B B B
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Lemma 6.1. Let(&, ) be a regular Dirichlet form in B(M, i) without killing part. If conditions
(WEH)and(TJ)hold, then there exist two constagts (0, 1) and C> 0 such that, for any xe M,
0 < r < oR and any harmonic function u in(&, r),

S
eoscu < Cl|u|pe (8) , O<p<r. (6.1)
B(x0.0) r

We remark that constants are independertf R u, X, T, .

Proof. Fix a ballB(xo,r) for 0 < r < oR. Set
B, := B(Xo,p) foranyp > 0.
Let u be a harmonic function iB,. Without loss of generality, we assume thalf_ (v < co. Let
Mo = |lUllLe, Mg = e'i\zwfu, K:=Mpy-nyp
so that 0< K < 2|u|L~.
We will construct two sequencésy}n=o, { Mn}n=0 Of positive numbers such that for eagh
M1 < M<My<Myg and Mp—m, = Ko™,

m, < u(xX) <M, foranyxe Byn, (6.2)

whered, B are two constants to be determined so that

0>61 Be(0,1), and 2;2198 <1, (6.3)

whereA := (21*1/PCy)1 € (0,1) andp, 6 € (0, 1) andCy > 1 come from condition (WEH). Once
this is true, then we are done by noting th@tlj follows, since for any G< p < r, there is some

integerj > 0 such that

o1t < /F) < 6‘1,

from which, we see byg.2) that
. s
€osa < eosa < Mj —m; = Ko~ 8 < 26°|ull (’F)) .
P r(}*j

We will show 6.2) inductively. Indeed, assume that there exists an integet such that§.2)
holds for anyn < k— 1. We need to construaty, My such that §.2) still holds forn = k and for
0, B satisfying 6.3).

To do this, set for ang e M

Mi1 + my_1\ 2061%
V(9 = (u0g - ) o (6.4)
Clearly, we have byg.2) for n = k — 1 that
Mi_1 — me_q 20k-18  kg-(k-1)8 ogk-1)8
V(x| < k=Mt - _ (65)

2 K 2 K
for almost allx € B, j-¢-).

Note that for any poiny € B(xo, ro-&=1)¢, there is some integgr> 1 such that
ro K < d(y, xo) < re I+,

For simplicity, setM_, = Mg andm_, = mp for anyn > 1. By (6.2), for anyy € B(xo, rg~®=1=D)\
B(xo,ro~®D) (j > 1),

K 3 My-1 + Mk_1 _ My-1 + Mk_1
Spep ) =) - 5 M- —————
Mk-1 + M1

= My-j-1 = Mi-jo1 + M jo1 = 5
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M1 — M1

< Myjo1 — Myojo1 — >

< kg-tei-g _ K gy
— 2 b

from which, it follows that

_ B
v(y) < 20" -1 < Z(d ()gjo)) — 1 for anyy e B(xo, rg-&)c, (6.6)
r
On the other hand, we similarly have that, for any B(xo, r6~&= =)\ B(xo, re~ &) (j > 1),
K B My-1 + M1 , M1 + Mg
WV(Y) = u(y) - - 5 Z Mk-j-1— — %
My_1 + My
= M_jo1 — Micjor + Myoj1 — klfm(l
_ _ My-1 — M1
> = (Mk—j—l IT1<_J_1) + 5
s _kg-ki-8 , Ko
iy 2 9
which gives that
, B
V) > 1-20F>1- 2(d %’_f’)) for anyy e B(xo, ro- & D)c, 6.7)
r
We distinguish two cases: either
B,y N {V < 0}) > 1(B,y)/2, (6.8)
or
(B g N {V > 0}) > (B, ) /2. (6.9)
If (6.8) holds, we will show that for almost evere B, -«
V@ <1- 4. (6.10)

Temporally assume tha6 (L0 holds true. Then byg.4), we see that for any poiate B -,
K Mica+ M1 K(I-4) | Mg+ meg

201 v(z) + 2 = 1B " 2

K(l - /l) —(k-1) Mg-1 — M1

= My B, KL KD
2 T2

u@ =

+ Mk-1

@9‘("‘1)5 + ;0_("_1)5 + M1 (using 6.2)

2- )
= QKO""} +meg < KO+ meq,

where in the last inequality we have used the factﬁgéﬂg < 1in (6.3). Therefore, setting
m=mc; and Mg =m+ Ko™ < My,

we obtain thatn, < u(z) < M for a.ez € B,,«, thus showing thatd.2) holds whem = k, which
finishes the induction step from< k-1 ton = k in the case wher5(8) holds.

We turn to show §.10. Indeed, consideh := 1 — v. Clearly, the functiorh is harmonic in
B,4-«-n and also is non-negative B, ,-«-1 by using 6.5. Applying (WEH) to the functiorh in
B s« andf = 0, we find that

i

1/p
; -k
hpdu] < Ch (emf h+w(xo,r6 ") Tsg a0y (h_)), (6.11)

(T Brok
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where we have used the fact tifat < § so thatr6 < 5 - rg~ <. Note that by 6.8),

1/p 1 1/p
(JC hpdu] [ f (1- v)pdu]
B u (Bm_k) B, ,-kN{v<0}

1/p
{y(Bmk n{v< 0})) L >
u(B)

\%

rg—K

Also note that by §.6),

d(y, %)\’
ho(y) = (1-vy)- = (Uy) - 1): < 2[( %_k )) - 1]
for anyy € B(xo, ro-k1)c = BS, (- From this, we have by condition (TJ)

T%Bre-(k—l)sBre-(k—l)(h_): sup f h-(y)J(x. dy)

C
xe$B 1) VBt

B
<2 sup l(d(y’ )IEO)) —llJ(x, dy)
Bcg (k-1)

x€3Bry-(k-1) re

(o)

d(y, xo) Y’
=2 sup f l( ) - 1]J(x, dy)
3 Z B, -kt j+1\B, gk | r@—k

X€3 Byt j=1

(o)

< ZZ sup (641 — 1) I(x, dy)
j=1 XE%Bm_(k_l) B, -kt j+1\B, gkt |

< ZZ (6 —1)  sup J(x, dy)
=1 X€3Byg-tcn) Bk

< ZZ (6 —1)  sup J(x, dy)

Il
iy

j XE% Brg—(k—l) B(X7r97k+j/4)c
(o)

<20 (0¥ - 1) sup ;_H ’
1:1 xe%Bre_(k_l) W(X, r6=*1/4)

whereC > 0 is the same constant as ih13. Since

W(x, ro7%1/4) . W(x, rok+ly S C.0/A
W(X0,T07K) T CodBaw(xo,r67%) ~ CodP2

foranyx e %Brg—(k—l) by using (L.5), it follows from (6.13) that

2CC4P2 &, gli+1B _ 1
—k 2
W(XO’ r )T%Bre-(k-l)’Bre-(k-l)(h_) = C1 Z .

= gl

Therefore, substitutings(12), (6.14) into (6.11), we obtain
; 1/p -1 _ —K
grler}: h= (CHZ ) W(XO’ 0 )T%%—(k—l»%—(k—l)(h‘)

l+1B _ 1

> (CHZJ‘/p)_l _ 2CC24ﬁ2 i

B
C1 = o

(6.12)

(6.13)

(6.14)

(6.15)
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Sinced™! < 6, we see that for ang € (0,3,/2)
-1

© © 918112 51BL/2 8CC, P2
g (601408 _ 1) < ) gibagli 2 < - ( C, 21/p)
= B2 = 2 =
J-;l J.;l 1-9P/2 " 1P/ C1
provided that the numbeis suficiently large, which depends only érbut is independent ¢, 6.
For such a numbdr we now choosg € (0,,/2) to be so small that

i g~ B (9(j+1),3 _ 1) < gh ZI: (9(]+1),3 _ 1) <P (0(|+1)ﬁ _ 1)

j=1 =1

i o1y S

IA

It follows that

DA P " g (g0 8CC4P- -1
]Z:; T = ;9 181 (9(J+1)B _ 1) + j;lg iB1 (9(J+1)ﬁ _ 1) < Z(C—iCHZUP) ’

from which, we see by§.15 that

grier—]I h= (CH 21/ p) Cl

- 2CC,4P2 8CC,452
1 2 _2( Cz c
1

Thereforey < 1 - 1in B,,«, thus showing§.10 when ©.9) is satisfied, as desired.
It remains to consider the case whéndj is satisfied. We need to show

-1
L2l p) = (2cu2v?) " = 4.

V> -1+1 in B« (6.16)

Indeed, consider the functidn= 1 + v. Similar to the argument above, settiMy = My_1 and
me = My — K&, one can obtaing 16). The proof is complete. m|

From the above, we immediately get thélder continuity of harmonic functions.

Lemma 6.2. Let(&, ) be a regular Dirichlet form in B without killing part. If conditiongwEH)
and(TJ) hold, then there exist three constants>(,6 € (0,1] ande € (0, 1) such that, for any
ball B (Xg, r) with r < oR and for any globally bounded function u, which is harmonic {xg3r),

0
09 - uo) < € 2 - 617

for almost every points,¥ € B (X, er).

Proof. Let the functionu € L* be harmonic irB (xo, r) with r < oR. By Lemmas.1,
oV
eoscu < Cljul|Le (—) , O<p<r. (6.18)
B(X0.0) r

We show that.17) holds for6 = B, = 1/4.

Indeed, letx be any pointx in B(xo, r/4), the functioru is harmonic inB(x, %r) C B(xo,r). Let
y be a point inB(xg, r/4). Applying (6.18 with xg replaced byx, r by %r and withp = %d(x, y),
we obtain

B B
lu(x) — uy)l < L osc U< CllullLe (M) = Czﬁ(w) ullLe,

(x.3d(xy)) 3r/4

thus showing§.17). The proof is complete. m|
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Another consequence of the weak elliptic Harnack inequality is that it implies a lower bound of
the mean exit time on a ball, as we will see below.

Recall that the operatof® is the generator of the Dirichlet forn&(7 (Q)) for any non-empty
open subse® of M. For a ballB c M, let the functionEB be a weak solution of the Poisson-type
equation-£Bu = 1in B, that is

E(EB,¢) = (1,¢) forany 0< ¢ € F(B). (6.19)

We say thatondition(E;) holds if there exist three constar@s> 0 ando-, ¢ in (0, 1) such that,
for all ballsB c M with radius less thanrR,

einf EB(x) > CW(B). (6.20)

We say thatondition(E) holds if there exist two constan® > 0 ando in (0, 1) such that, for
all ballsB c M with radius less thaoR,

IEB|L~ < CW(B). (6.21)
Lemma 6.3. Let(&, ) be a regular Dirichlet form in B. Then
(VD) + (Cap.) + (FK) + (WEH) = (E>) + (E2). (6.22)
Proof. Note that by P4, Theorem 9.4 p.1542]
(FK) = (EJ), (6.23)

(observing that we only use condition (FK) at this stage).
It remains to show the implication

(VD) + (Cap.) + (FK) + (WEH) = (E>). (6.24)
Let 5§ be the same constant as in condition (wEH). Without loss of generality, assumﬁed@t
Let B := B(xo, R) be a ball inM with R < oR. Letu be the unique weak solution such that

E(U, 9) = (158, ) forany 0< ¢ € F(B). (6.25)

It is known thatu € #(B), u > 0 in M, andu is superharmonic i, see for exampleZ2, Lemma
5.1]. Applying (1.16) in condition (WEH) on the function and the balB, and withf = 0,r = §R,
and noting thati = 0 in M, we obtain

1/p
(]C updy) < Cqeinfu. (6.26)
5B 6B
On the other hand, we have by condition (Cpap
1(B)
E(p, ¢) < CW(B) (6.27)

for someg € cutdf ((2/3)B, B).
Takinge = ¢ in (6.25 and using condition (VD), we see that

&) = (oo ) = | otk = u(oB) > C1o%u(e) (6.28)

Takingy = uin (6.25 and using the Cauchy-Schwarz inequality aB@7), it follows that

£(u.¢) < VU EW.9) = V(Loe 1) VE@.9) < C fé B“d’“/%‘ (6.29)

Therefore, combiningd.28 and 6.29, we obtain

f udu > Cu(B)W(B). (6.30)
6B
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Since by 6.23
Ul < IEB|IL~ < CW(B),
we conclude by@.26) that

f udu = f uP - ut~Pdu < (Cw(B)): P f uPdu = (CW(B)) P u(5B) JC uPdu
6B 6B 6B 6B
< C’W(B)l‘pu(B)(e(SiQf u)P < C”W(B)l‘py(B)(e(siQf EB)P,
thus showing§.20) by (6.30. The proof is complete. m|

Finally, we show that the weak elliptic Harnack inequality also implies a Lemma of growth,
termedcondition(LGg), for anyglobal non-negative superharmorfienction.
We say thatondition(LGy) holds if there exist four constants €o, 7,6 € (0, 1) such that, for
any ballB := B(xo, R) with radiusR € (0, cR) and for anyu € ¥’ n L*® that is superharmonic in
B and non-negative globally iM, if
u(6BN{u<aj)

PR (6.31)

for somea > 0, then

e(;'qu > na. (6.32)

We remark that the superharmonic functwin condition (L&) is required to be non-negative
globallyin M, instead of being non-negatil@cally in condition (LG) given in Definitior8.2

Lemma 6.4. Let(&, ) be a regular Dirichlet form in B. Then
(WEH) = (LGy). (6.33)
Proof. Letu € ¥’ N L* be superharmonic iB and non-negative globally iM. Assume that
(6.37) holds, namely,
u(@6B N {u> a}) u@Bn{u<al)
=1- >1- €0.

u@B) u@B)
Sinceu- = 0in M, we see that

TgB B (U_) =0.
4 PR-DR
Applying (1.16 with r = §Randf = 0, it follows that
1/p 1/p
. _ _ oBn{u=>aj) _
f 1 p s c-L ( 11— en)t/P
ein ux=Cy (JEBU du) > Cy a( (3B) >C(1-€0)’Pa,
thus showing thatd.32) is true withn = C (1 — €0)*/P. The proof is complete. O

Lemma6.3above gives a direct, simpler proof of obtaining a lower bound of the mean exit time
from the weak elliptic Harnack inequality. We remark that this conclusion can also be obtained in
a more indirect way, without recourse to condition (FK). Indeed, the implication

(VD) + (Cap,) + (LGo) = (E>)
has been proved in a forthcoming pap2t][for any regular Dirichlet form irL2. Combining this
with (6.33), we have
(VD) + (Cap.) + (WEH) = (VD) + (Cap.) + (LGo) = (E>),

from which, we also obtain condition {ffrom the weak elliptic Harnack inequality but without
using (FK). We do need condition (FK) in Lemnga3, not only in deriving condition (E) but
also in deriving condition (E).
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7. AN EXAMPLE

In this section we give an example to illustrate Theore® We show that the assumptions
(VD), (RVD), (Gcap), (TJ), (PI) are all satisfied so that the weak Harnack inequality holds, but the
jump kernel does not exist. This example is essentially taken fi@dction 15], see als@]].

Example 7.1 (Ultra-metric space)Let 3, a1, @, be three positive numbers. LE&W;, d;, ;) for
i = 1,2 be two ultrametric spaces, whergid an ultra-metric:

di(x.y) < maxdi(x,2),di(zy)} forall x,y,ze M,
and the measurg, is Ahlfors-regular:
Clr% < 1 (B(x,r)) < Cr% forall x; € Mjand all r > 0 (7.1)

for some constant G 1. Let J be a function on Mx M; for i = 1,2 such that fory;-almost all
X, Yi € M;,
Ji (%, i) = c (%, yi) ) (7.2)

Consider the product space M M; x M2 equipped with product measuge:= uq X u, and
the metric
d(x,y) 1= max{dy (X1, Y1), d2 (X2, y2)} for x = (X1, X2),y = (y1,¥2) in M.

Clearly, (M, d, u) is an ultrametric space and for any pointx (xg, X2) in M, the metric ball
B(x,r) in M can be written as

B(x,r) = B(x1,r) x B(x,r) forany r> 0. (7.3)
From this, we see that for any point=x(x1, x2) in M and any r> 0,
V(% 1) = p(B(X, 1)) = pp (B (X1, 1)) pp (B (%2, 1)) = r+772 =, (7.4)

wherea := a1 + a. For simplicity, let the scaling function(w, r) be defined by
w(x,r) = a(x)r? for any point xe M and any r> 0,

where &X) is a measurable function on M with€ < a(x) < C for all x e M (C > 1). Clearly,
such a function w satisfie4.6) and

C P <w(x,r) < Crl. (7.5)

Define the measure J ad®(M x M) by Jdx dy) = J(x, dy)u(dX), where Jx, dy) is a transition
function on Mx B(M) given by

J(X, dy) = Ja(Xe, Y1)u1(dy1)dx, (dy2) + J2(X2, Y2)uo(dy2)dx, (dy1) (7.6)

for any points x= (X1, X2),Y = (Y1, ¥2) in M, wheresy(dX) is the Dirac measure concentrated at
point b. By {.4) and (7.6), we have for any i~ 0 and any point x= (x1, X2) € M,

f I(x.dy) = f (100, y)wa(dy ), (dy2) + oz, Y2)pio(dy2)Si (1))
B(x.r)¢ B(x.r)¢

- [ ntay@n+ [ B0eyoy)
B(xq,r)° B(xz.r)¢
C C 2C C
<—+—==—=x<
8 BT w(xr)
which is exactly conditioTJ).
Let (&, F) be a Dirichlet form in 12 (M, i) defined by

&u,v) = ffM M(U(X)—U(Y)) (V) -v)) I(xdy)udy), uvedF,

(using (7.1, (7.2 and (7.5)), (7.7)
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where the spacg is the closure of the set

n
{Z Cilg :neN,c €R, Bjis a compact bal}
i=0
under the inner product

VEC) + C ezmy

By [6, Theorem 2.2]the form(&, F) is regular and non-local. Bya.4), the measurg satisfies
conditions(VD) and (RVD), whilst condition(Gcap)automatically holds since it follows directly
from condition(TJ) and the ultrametric property. Hence, conditiopD), (RVD), (Gcap) (TJ)in
Theoreml.8 are satisfied.

It remains to verify conditioriPl). Indeed, let B= B(X,r) be a metric ball in M. Writing up
X' = (Xo, Yo) With Xg € My, Yo € M2, we see B= B(Xp, ) X B(yo, r) by using 7.3). By (7.6), (7.2

2
U — U)X dVu(dy) = f{f (U(X1, X2) = U(Y1, X2)) q
Jo S0 —uomzaceaputan = [ { [ BRI )
(U(x1, X2) = U(X1. ¥2))? }
+ d dx).
jl;(yo,r) da(Xo, yo)22th Ho(dy2) ¢ u(dX)
The firstintegral on the right-hand side is estimated as follows: for{aqnyk,) € B(xo, r)xB(yo, I),
f (U(X, X2) — U(Y1, X2))?
Bxo.1) di(xq, yp)@th

(u(Xe, X2) — (Y1, X2))?

p1(dyr)

\

\%

raitax+f

o1 f (U(X1, X2) — U(y1, X2))?
B

— 2
c? f f (U(x1, X2) = U1, X2)) 1 (Ayn(dy) (using €.0)
B(yo.r) v B(xo.r)

()

by using the fact that, + a» = a, from which, we have

(u(xg, X2) — U(y1, X2))? . f f(u(xl’ X5) — U(Y1, X2))2
dya)u(d) > C dy)a(dx).
fsfsuo,r) RRATTNE G 5 s T u(dyu(dy)
Similarly, the second integral is estimated by

(U0, X0) — U, ¥2))°
”[B j*;’(yo’f) do(Xo, yo)22th po(dy2)u(dX)

1 (u(x1, X2) — U(X4, ¥2))?
c fB fB u(dy)u(d)

rOH-ﬁ

v

B 2
- ot [ [ S0 gy (swappingla. ) with (31.32)

Therefore, we conclude from above that, using the elementary inequalitha> (a + b)?/2,

_ 2 -1 (U(X]_, XZ) - u(Yl’ XZ))Z
|| [ e - upraceayuieny > c { | _— u(dyp(dy
_ 2
N fB jl; (U(y1, Y2) — U(y1, X2)) ,u(dx)u(dy)}

rCH-B

1 (U(x1, X2) = U(y1, Y2))?
c fB fB u(dX)p(cy)

\%

\%

2r(1/+ﬁ
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v

2
M(B) f f (U(x) = u(y))“u(dx)u(dy) (using (7.4)
= 2 f (u - ug)?du

2
> b f (u-ug)?dy (using (.5),

thus showing that conditiofPl) with x = 1 is satisfied.
Therefore, all the hypotheses in Theorér are satisfied, and the weak elliptic Harnack in-
equality follows. We mention that the jump kernel does not exist.Byi( this case.

8. APPENDIX

In this appendix, we collect some known results that have been cited in this paper. Recall the
John-Nirenberg inequality for BMO functions on a doubling space.

Definition 8.1 (BMO function). For a locally integrable function u on an open $&tthe seminorm
lullemo(q) is defined by

lullemo() = SUpJC |u — ug|d,
BcQ JB

where the supremum is taken over all the balls containg@.ifhe spac&8MO(Q) consists of all
locally integrable functions u of2 such thaf|ullsmo(q) < co.

The following was addressed ifh,[Theorem 5.2].
Lemma 8.2(John-Nirenberg inequality)Let (M, d, ) be a metric measure space satisfying con-
dition (VD). If u € BMO(Q) for a non-empty open subsetof M, then

u({x e B:u—ug| > 4}) > ciu(B) exp(—i)
llullemo()

for any ball with12B ¢ Q and anyd > 0, where constants;cc, are independent of,u, Q and
ball B.

The following is a folklore, see for examplé,[Corollary 5.6].

Lemma 8.3. Let(M, d, ) be a metric measure space satisfying condi{db). Let B := B(Xg, R)
be a ball in M. Then for any & BMO(By)

{JC exp( 5 )d,u} {Ji exp(—;—éu) du} <(1+¢p)? (8.1)

for any ball B with12B C By and any b> ||ullsmo(s,), Where the constants @, are the same as
in LemmaB.2

The following has been proved in a forthcoming pay2d.[

Proposition 8.4. Let (8, ) be a regular Dirichlet form in B without killing part. Assume that a
function Fe C%(R) satisfies

F” >0, sup|F’| < co, SUpF" < oo.
R R

Then for any up € F’ N L*, both functions Fu), F’(u)¢ belong to the spacé&’ N L*. Moreover,
if further ¢ > 0in M, then

E(F(u), ) < &(u, F'(u)y). (8.2)

The following is taken from in32, Lemma 2.12].
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Lemma 8.5. Let(&, ¥) be a Dirichlet form in 2. If each f, € ¥ and

2
fo 5 f, sup&(f,) < oo,
n

then fe #, and there exists a subsequence, still denotefdJysuch that § & f weakly, that is,

E(fn, @) = &(1, )
as n— oo for anyy € . Moreover, we have
&E(f) < Iirr1n inf &(fn).

REFERENCES

[1] D. Aacro, L. Berkovits, O. E. Kansanen, anp H. Yug, John-Nirenberg lemmas for a doubling measus¢udia
Math., 204 (2011), pp. 21-37.
[2] M. T. BarLow, Some remarks on the elliptic Harnack inequalByll. London Math. Soc., 37 (2005), pp. 200-208.
[3] M. T. Barrow, Z.-Q. Gien, ano M. Muruaan, Stability of EHI and regularity of MMD spacgBreprint, (2020).
[4] M. T. BarLow anp M. MuruGan, Stability of elliptic Harnack inequalityAnn. of Math. (2), 187 (2018), pp. 777—
823.
[5] R. F. Bass anp Z.-Q. Guen, Regularity of harmonic functions for a class of singular stable-like procesdath.
Z., 266 (2010), pp. 489-503.
[6] A. Benpikov, A. GriGor' vaN, E. Hu, anp J. Hu, Heat kernels and non-local Dirichlet forms on ultrametric spaces
Ann. Sc. Norm. Super. Pisa Cl. Sci., XXII (2021), pp. 399-461.
[7]1 M. BroLt anp U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous me#iin. Mat.
Pura Appl. (4), 169 (1995), pp. 125-181.
, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spatteé\ccad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 6 (1995), pp. 37-44.
[9] A. Bsorn anp J. Biorn, Nonlinear potential theory on metric spacesl. 17 of EMS Tracts in Mathematics,
European Mathematical Society (EMS)irth, 2011.
[10] E. Bomerier: anp E. Gusti, Harnack’s inequality for elliptic dferential equations on minimal surfagdsvent.
Math., 15 (1972), pp. 24—-46.
[11] S. Boutaves, T. CouLHoN, aNp A. Sikora, A new approach to pointwise heat kernel upper bounds on doubling
metric measure spaceadv. Math., 270 (2015), pp. 302—-374.
[12] X. CasrEg, Nondivergent elliptic equations on manifolds with nonnegative curva@menm. Pure Appl. Math., 50
(1997), pp. 623-665.
[13] Z.-Q. Guen, T. Kumacal, anp J. WANG, Elliptic Harnack inequalities for symmetric non-local Dirichlet forpis
Math. Pures Appl. (9), 125 (2019), pp. 1-42.
[14] —, Stability of heat kernel estimates for symmetric non-local Dirichlet foibesm. Amer. Math. Soc., 271
(2021), pp. »89.
[15] E. DrBeneperro anD N. S. TRubINGER, Harnack inequalities for quasi-minima of variational integradmnales de
I'Institut Henri Poincar C, Analyse non linaire, 1 (1984), pp. 295-308.
[16] A. D1 Castro, T. Kuusi, anp G. Ricaruccr, Nonlocal Harnack inequalities). Funct. Anal., 267 (2014), pp. 1807—
1836.
[17] ——, Local behavior of fractional p-minimizersAnn. Inst. H. Poinca& Anal. Non Lireaire, 33 (2016),
pp. 1279-1299.
[18] B. Dypa anp M. Kassmann, Regularity estimates for elliptic nonlocal operatpfnal. PDE, 13 (2020), pp. 317—
370.
[19] M. FukushiMa, Y. OsHiMa, aND M. Takebpa, Dirichlet forms and symmetric Markov process@éalter de Gruyter
& Co., Berlin, 2011.
[20] A. GriGor’van, E. Hu, anp J. Hu, Two-sided estimates of heat kernels of jump type Dirichlet foAds. Math.,
330 (2018), pp. 433-515.
[21] ——, Parabolic mean value inequality and on-diagonal upper bound of the heat k@@22. to appear.
[22] A. GriGor’yan anp J. Hu, Heat kernels and Green functions on metric measure sp&zesgd. J. Math., 66 (2014),
pp. 641-699.
[23] ——, Upper bounds of heat kernels on doubling spatéssc. Math. J., 14 (2014), pp. 505-563.
[24] A. Gricor’yvan, J. Hu, anp K.-S. Lau, Generalized capacity, Harnack inequality and heat kernels of Dirichlet
forms on metric measure spacdsMath. Soc. Japan, 67 (2015), pp. 1485-1549.
[25] J. Hemvonen, Lectures on analysis on metric spacesiversitext, Springer-Verlag, New York, 2001.

(8]




48 HU AND YU

[26] J. Kinwunen anp N. SuanmucaLingam, Regularity of quasi-minimizers on metric spaddsanuscripta Mathematica,
105 (2001), pp. 401-423.

[27] N. V. Kryrov anp M. V. Saronov, An estimate for the probability of alision process hitting a set of positive
measureDokl. Akad. Nauk SSSR, 245 (1979), pp. 18-20.

, A property of the solutions of parabolic equations with measurablgicnts Izv. Akad. Nauk SSSR
Ser. Mat., 44 (1980), pp. 161-175, 239.

[29] E. M. Lanpis, Some questions in the qualitative theory of second-order elliptic equations (case of several inde-
pendent variableslUspehi Mat. Nauk, 18 (1963), pp. 3—62.

[30] E. M. Lanpis, Second order equations of elliptic and parabolic typel. 171 of Translations of Mathematical
Monographs, American Mathematical Society, Providence, RI, 1998. Translated from the 1971 Russian original
by Tamara Rozhkovskaya, with a preface by Nina Ural'tseva.

[31] G. Lw ano M. Muruaan, Parabolic Harnack inequality implies the existence of jump kerRetential Analysis,
(2020).

[32] Z. M. Ma anp M. ROckNER, Introduction to the theory of (nonsymmetric) Dirichlet forrimiversitext, Springer-
Verlag, Berlin, 1992.

[33] D. MaLbonapo, On the elliptic Harnack inequalityProc. Amer. Math. Soc., 145 (2017), pp. 3981-3987.

[34] D. Marponapo anD P. R. Sivga, Harnack inequality for the fractional nonlocal linearized Monge-Ampére equa-
tion, Calc. Var. Partial Offerential Equations, 56 (2017), pp. Paper No. 103, 45.

[35] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for ellipffedéntial equations
Comm. Pure Appl. Math., 13 (1960), pp. 457—468.

[36] J. Moser, On Harnack’s theorem for elliptic gierential equationsComm. Pure Appl. Math., 14 (1961), pp. 577—
591.

[37] M. V. Saronov, Harnack’s inequality for elliptic equations and Holder property of their solutjafep. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 96 (1980), pp. 272-287, 312. Boundary value problems of
mathematical physics and related questions in the theory of functions, 12.

[38] L. Sarorr-Coste, A note on Poincaré, Sobolev, and Harnack inequalitisternat. Math. Res. Notices, 2 (1992),
pp. 27-38.

[39] ——, Aspects of Sobolev-type inequaliti€ambridge University Press, Cambridge, 2002.

[40] L. Swvestre, HOlder estimates for solutions of integrof@rential equations like the fractional Laplaciadiana
Univ. Math. J., 55 (2006), pp. 1155-1174.

[41] K.-T. Srurm, Analysis on local Dirichlet spaces. Ill. The parabolic Harnack inequalityMath. Pures Appl. (9),
75 (1996), pp. 273-297.

(28]

THE DEPARTMENT OF M ATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEDING 100084, GiNa.
E-mail addresshujiaxin@tsinghua.edu.cn

THE DEPARTMENT OF M ATHEMATICAL SCIENCES, TSINGHUA UNiversiTY, BEning 100084, P.R. @iNa.
E-mail addressyuzy18@mails.tsinghua.cn



	1. Introduction and main results
	2. Faber-Krahn inequality and Dirichlet heat kernel
	3. A refinement of lemma of growth
	4. Proof of weak elliptic Harnack inequality
	5. Other equivalent characterizations
	6. Consequences of weak Harnack inequality
	7. An example
	8. Appendix
	References

