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Abstract. In this paper we firstly derive the weak elliptic Harnack inequality from the generalized
capacity condition, the tail estimate of jump measure and the Poincaré inequality, for any regular
Dirichlet form without killing part on a measure metric space, by using the lemma of growth and
the John-Nirenberg inequality. We secondly show several equivalent characterizations of the weak
elliptic Harnack inequality for any (not necessarily regular) Dirichlet form. We thirdly present some
consequences of the weak elliptic Harnack inequality.
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1. Introduction and main results

In 1961, Moser showed in [36] that the followingelliptic Harnack inequality, denoted by (H),
is true: for any compactD′ in a domainD ⊂ Rn and for any functionu which is non-negative,
harmonic (with respect to the symmetric, uniformly elliptic divergence-form operator) inD, we
have

sup
D′

u ≤ C inf
D′

u,

whereC = C(D′,D) ≥ 1 is a constant depending only onD′,D. The importance of this inequality
is that the constantC is independent of functionu (but may depend on two domainsD′, D). If
furtherD′,D are two concentric balls, for example, ifD = B(x,R) andD′ = B(x,R/2), then

sup
B(x,R/2)

u ≤ C inf
B(x,R/2)

u, (1.1)

where the constantC ≥ 1 is independent not only of functionu, but also of ballB. The inequality
(1.1) says that a function, which is both non-negative and harmonic in a ball, is nearly constant
around the center. The reader may consult a book [39, Theorem 2.1.1] for more details.
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A symmetric, uniformly elliptic operator gives arise to a strongly local, regular Dirichlet form
in the Hilbert spaceL2(Rn,dx) (see for example [19, Chapter 1] on the basic theory of Dirichlet
forms on a Hilbert space). The elliptic Harnack inequality plays an important role in analysis, for
example, in showing the uniformly local Hölder continuity of harmonic functions, or in obtaining
the lower estimate of the heat kernel, for a given Dirichlet form on a metric space.

Since the Moser’s celebrated paper [36], there has been an increasing interest in the study on the
Harnack inequality for local Dirichlet forms. In 1972, Bombieri and Giusti [10] used the geometric
analysis to prove a Harnack inequality for elliptic differential equations on minimal surfaces. In
1980, Safonov [37] obtained the elliptic Harnack inequalities for partial differential operators in
non-divergence form. After that, the elliptic Harnack inequality was extended in various settings,
see for example, by Benedetto and Trudinger [15, Theorem 3] in 1984 for De Giorgi classes on
Euclidean spaces, by Biroli and Mosco [8] in 1995 for a certain class of local Dirichlet forms on
discontinuous media, by Strum [41, Proposition 3.2] in 1996 for time-dependent local Dirichlet
forms on compact metric spaces, and by Cabré [12] in 1997 for non-divergence elliptic operators
on Riemannian manifolds with non-negative curvature. In 2005, Barlow [2, Theorem 2] showed
that the elliptic Harnack inequality is equivalent to an annulus-type Harnack inequality for Green’s
functions in the context of random walks on graphs. In 2015, Grigor’yan, Hu and Lau [24] gave
an equivalent characterization for the elliptic Harnack inequality and the mean exit time estimate
combined, for any strongly local, regular Dirichlet form on a metric measure space, by using a
more general Poincaré inequality and the generalized capacity inequality (see also an earlier work
[22]). In 2018, Barlow and Murugan [4] showed that the elliptic Harnack inequality is stable
under bounded perturbations for strongly local, regular Dirichlet forms on a length metric space,
but assuming the existence of Green function. Recently, this result has been improved by Barlow,
Chen and Murugan in [3], without assuming the existence of Green functions and a length but
assuming the relative ball-connectedness.

The Harnack inequality above is investigated only for local Dirichlet forms. In recent years,
the people have begun to study the elliptic Harnack inequality for non-local operators or non-local
Dirichlet forms. It can be imagined that the classical Harnack inequality like the version (1.1) no
longer holds for non-local operators (see, for example [5, Section 3] and [18, Theorem 2.2] for
α-stable processes). Instead, a weak Harnack inequality different from (1.1) should take place. In
this direction, the reader may refer to [16, Theorem 1.2], [17] and [18, Theorem 1.6] for non-local
integro-differential operators, [34] for the fractional non-local linearized Monge-Ampère equation,
and [13] for pure jump type Dirichlet forms.

In this paper, we are concerned with the weak elliptic Harnack inequality under a more general
framework (We do not touch the parabolic Harnack inequality in this paper). Our underlying space
is a metric measure space, which may be bounded or unbounded, and our Dirichlet form is mixed,
which may be local or non-local, whose jump kernel may not exist. The main results of this paper
are as follows:

• to establish the weak elliptic Harnack inequality for local or non-local regular Dirichlet
forms (Theorem1.8below);
• to study the relationship among different versions of the weak elliptic Harnack inequality

appearing in the literature (Theorem1.9below).

Let us state our framework of this paper. Let (M,d) be a locally compact separable metric space
andμ be a Radon measure onM with full support. The triple (M,d, μ) is called ametric measure
space. Denote byB (x, r) an open metric ball of radiusr > 0 centered atx, that is,

Br (x) := B (x, r) := {y ∈ M : d(y, x) < r},

and its volume function is denoted by

V (x, r) := μ (B (x, r)) .
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For a ballB = B (x, r) andλ > 0, the letterλB := B (x, λr) denotes the concentric ball ofB. In this
paper, we assume that every ballB(x, r) is precompact.

Note that a ball in a metric space may not have a unique centre and radius, and even if the centre
is fixed, the radius may not be unique. For this reason we always require a ball to have a fixed
centre and radius in this paper. When we pick up a ballB(y, s) contained in a bigger ballB(x, r),
we always assume that its radiuss is less than 2r. Let Rbe any number in (0,diam(M)]. Since the
metric space considered in this paper may be bounded or unbounded, thenumberR may be finite
or infinite.

We say that thevolume doubling condition(VD) holds if there exists a constantCμ ≥ 1 such
that for allx ∈ M andr > 0,

V(x,2r) ≤ CμV(x, r). (1.2)

It is known that if condition (VD) holds, then there exists a positive numberd2 such that for all
x, y ∈ M and all 0< r ≤ R< ∞,

V(x,R)
V(y, r)

≤ Cμ

(
d(x, y) + R

r

)d2

(1.3)

with the same constantCμ in (1.2), see for example [23, Proposition 5.1].
We say that thereverse volume doubling condition(RVD) holds if there exist two positive

constantsCd ≤ 1 andd1 such that for allx ∈ M and 0< r ≤ R< R

V(x,R)
V(x, r)

≥ Cd

(R
r

)d1

. (1.4)

Let w : M × [0,∞) → [0,∞) be a map such thatw(x, ∙) is continuous, strictly increasing,
w(x,0) = 0, for any fixedx in M. Assume that there exist positive constantsC1,C2 andβ2 ≥ β1
such that for all 0< r ≤ R< ∞ and allx, y ∈ M with d(x, y) ≤ R,

C1

(R
r

)β1
≤

w(x,R)
w(y, r)

≤ C2

(R
r

)β2
. (1.5)

For convenience, we write for any metric ballB = B(x,R)

w(B) := w(x,R).

Note that the symbolw(B) is sensitiveto the center and radius of ballB.
Denote the norm inLp := Lp(M, μ) (1 ≤ p < ∞) by

||u||p :=

(∫

M
|u(x)|pμ(dx)

)1/p

,

and||u||L∞ := esupx∈M |u(x)|, where esup is the essential supremum.
Let (E,F ) be a regular Dirichlet form inL2 without killing part, that is,

E(u, v) = E(L)(u, v) + E(J)(u, v), (1.6)

whereE(L) is thelocal part (or diffusion part) andE(J) is thejump part. LetFloc be a space of all
measurable functionsu on M such that for every precompact open subsetU of M, there exists
some functionv ∈ F such thatu = v for μ-almost everywhere inU. Then, there exists a unique
Radon measuredΓ(L)〈u〉 := dΓ(L)〈u,u〉 such that

E(L)(u,u) =
∫

M
dΓ(L)〈u〉

for u ∈ Floc ∩ L∞, see for example [19, Lemma 3.2.3, and the first two paragraphs on p.130],
wherein the symbolsE(c) = E(L) anddμ(c)

〈u,u〉 = 2dΓ(L)〈u,u〉 are used instead. For the jump part,
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there exists a unique Radon measureJ(dx,dy) defined onM × M\diag such that

E(J)(u,u) =
"

M×M\diag

(u(x) − u(y))2J(dx,dy) (1.7)

for all continuous functionsu ∈ F with compact supports onM. For simplicity, we let the measure
J = 0 on diag and will drop diag in expressionM × M\diag in (1.7) when no confusion arises. In
the sequel, set

E(u) := E(u,u)

for convenience.
For any non-empty open subsetΩ of M, let C0(Ω) be a space of all continuous functions with

compact supports inΩ. Denote byF (Ω) the closure ofF ∩C0(Ω) in the norm of
√
E(∙, ∙) + (∙, ∙).

Recall that for any non-empty open subsetΩ of M, the form (E,F (Ω)) is a regular Dirichlet form
in L2(Ω) if (E,F ) is regular. Let

{
PΩ

t

}

t≥0
be the heat semigroup associated with (E,F (Ω)). Let

F ′ := {v+ a : v ∈ F , a ∈ R}

be a vector space that contains constant functions. We extend the domain ofE to F ′ as follows:
for all u, v ∈ F anda,b ∈ R, set

E(u+ a, v+ b) := E(u, v).

We point that the extension is well defined by using (1.6).
Let U b V (that meansU is precompact and the closure ofU is contained inV) be two non-

empty open subsets ofM. We say that a measurable functionφ is a cutoff function for U b V,
denoted byφ ∈ cutoff(U,V), if φ ∈ F , and

φ = 1 on U,

φ = 0 on Vc,

0 ≤ φ ≤ 1 on M.

It is known that if (E,F ) is regular, the set cutoff(U,V) is non-empty for any two non-empty open
subsetsU b V of M.

We introduce conditions (Gcap) and (Cap≤).

Definition 1.1 (condition (Gcap)). We say thatcondition (Gcap)holds if for any u∈ F ′ ∩ L∞ and
any two concentric metric balls B0 := B(x0,R), B := B(x0,R+ r) with 0 < R < R+ r < R, there
exists someφ ∈ cutoff(B0, B) such that

E(u2φ, φ) ≤
C

w(x0, r)

∫

B
u2dμ, (1.8)

where C> 0 is a constant independent of u, B0, B, butφ may depend on u.

Definition 1.2 (condition (Cap≤)). We say thatcondition (Cap≤) holds if there exists a constant
C > 0 such that for all balls B of radius R lessthan R

cap((2/3)B, B) ≤ C
μ(B)
w(B)

, (1.9)

where the capacitycap(A,Ω) for any two open subsets Ab Ω of M is defined by

cap(A,Ω) B inf {E(ϕ, ϕ) : ϕ ∈ cutoff(A,Ω)}.

Clearly, condition (Gcap) implies condition (Cap≤) by takingu = 1 in (1.8) and by using the
second inequality in (1.5).
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Definition 1.3 (condition (FK)). We say that condition(FK) holds if there exist three positive
constants CF, ν andσ ∈ (0,1) such that for any ball B:= B(x, r) with 0 < r < σR and any
non-empty open subset D⊂ B,

λ1(D) ≥
C−1

F

w(B)

(
μ(B)
μ(D)

)ν
, (1.10)

whereλ1(D) is defined by

λ1(D) := inf
u∈F (D)\{0}

E(u,u)

||u||22
.

Without loss of generality, we can assume that 0< ν < 1 by noting thatμ(B)
μ(D) ≥ 1.

Definition 1.4 (condition (PI)). We say that condition(PI) holds if there exist two constantsκ ≥ 1,
C > 0 such that for any metric ball B:= B(x0, r) with 0 < r < R/κ and any u∈ F ′ ∩ L∞,

∫

B
(u− uB)2dμ ≤ Cw(B)

{∫

κB
dΓ(L)〈u〉 +

∫

(κB)×(κB)
(u(x) − u(y))2J(dx,dy)

}

, (1.11)

where uB is the average of the function u over B, that is,

uB =
1
μ(B)

∫

B
udμ C

?

B
udμ

For a transition kernelJ(x,E) defined onM × B(M) whereB(M) is the collection of all Borel
subsets ofM, denote by

J(x,E) B
∫

E
J(x,dy). (1.12)

We introduce condition (TJ).

Definition 1.5 (condition (TJ)). We say that condition(TJ)holds if there exists a transition kernel
J(x,E) on M× B(M) such that, for any point x in M and any R> 0,

J(dx,dy) = J(x,dy)μ(dx) and

J(x, B(x,R)c) ≤
C

w(x,R)

(1.13)

for a non-negative constant C independent of x,R.

For an open subsetΩ of M and a functionf ∈ L2(Ω), we say that a functionu ∈ F is f -
superharmonic(resp. f -subharmonic) in Ω if for any non-negativeϕ ∈ F (Ω),

E(u, ϕ) ≥ ( f , ϕ) (resp.E(u, ϕ) ≤ ( f , ϕ)). (1.14)

We say that a functionu ∈ F is f -harmonicin Ω if u is both f -superharmonic andf -subharmonic
in Ω. If f ≡ 0, an f -superharmonic is shortenedsuperharmonic, and a similar notion applies to an
f -subharmonic or anf -harmonic.
For any two open subsetsU b Ω of M and any measurable functionv, denote by

TU,Ω(v) B esup
x∈U

∫

Ωc
|v(y)|J(x,dy). (1.15)

We introducecondition(wEH), theweak elliptic Harnack inequality.

Definition 1.6 (condition (wEH)). We say that condition(wEH) holds if there exist four universal
constants p, δ, σ in (0,1) and CH ≥ 1 such that, for any two concentric balls Br := B(x0, r) ⊂
BR := B(x0,R) with 0 < r ≤ δR, R< σR, any function f∈ L∞(BR), and for any u∈ F ′ ∩ L∞ that
is non-negative, f -superharmonic in BR,

(?

Br

updμ

)1/p

≤ CH

(

einf
Br

u+ w(Br )
(
T 3

4 BR,BR
(u−) + ‖ f ‖L∞(BR)

))

, (1.16)
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where u− := 0∨ (−u) is the negative part of function u, and T3
4 BR,BR

is defined by (1.15), that is,

T 3
4 BR,BR

(u−) = esup
x∈ 3

4 BR

∫

M\BR

u−(y)J(x,dy).

We remark that the constants p, δ, σ,CH are all independent of x0,R, r, f and u.

Remark 1.7. If u is superharmonic, non-negative in BR, then (1.16) reads
(?

Br

updμ

)1/p

≤ CH

(

einf
Br

u+ w(Br )T 3
4 BR,BR

(u−)

)

. (1.17)

If the form(E,F ) is strongly local and u is harmonic, non-negative in BR, then (1.16) becomes
(?

Br

updμ

)1/p

≤ CH einf
Br

u, (1.18)

and in this situation, we in fact have that the weak Harnack inequality (1.18) is equivalent to the
strong Harnack inequality (1.1), since the inequality (1.18) is equivalent to the following

einf
Br

u ≥ aexp

(

−
C

ωBr ({u ≥ a})

)

for any a> 0 (1.19)

by using the equivalence(wEH)⇔ (wEH2) in Theorem1.9 below where condition(wEH2) will
be stated in Definition5.3 and by using the fact that (1.19) ⇒ (H) in [24, from Corollary 7.3 to
Theorem 7.8 on pages 1525-1535].

The weak elliptic Harnack inequality says that for any functionu, which is non-negative and
superharmonic in a ballBR, its mean value over a smaller concentric ballBr in the Lp-quantity
(not a norm) for a smallp ∈ (0,1), can be controlled by its essential infimum over the smaller ball
Br , plus a tail estimate outside the ballBR.

The main results of this paper are stated in Theorems1.8and1.9below.

Theorem 1.8. Let (E,F ) be a regular Dirichlet form in L2(M, μ) without killing part. Then

(VD) + (RVD) + (Gcap)+ (TJ)+ (PI)⇒ (wEH). (1.20)

We will prove Theorem1.8 at the end of Section4. For this, we need to show the following
implications:

(VD) + (RVD) + (PI) ⇒ (FK) (see Section2), (1.21)

(VD) + (FK) + (Gcap)+ (TJ) ⇒ (LG) (see Section3), (1.22)

(VD) + (LG) + (Cap≤) + (PI) ⇒ (wEH) (see Section4), (1.23)

where condition (LG) is a refinement of thelemma of growthto be stated in Lemma3.5below.
We remark that if the metric space (M,d) is unbounded and the scaling functionw(x, r) is

independent of pointx, a similar implication to (1.21) was obtained for strongly local Dirichlet
forms (cf. [24, Theorem 5.1]), and for purely jump Dirichlet forms (cf. [14, Propositions 7.3 and
7.4]). Here we generalize this result to the case when the scaling functionw(x, ∙) may depend on
point x and the metric space may be bounded or unbounded.

Our Theorem1.8 is an extension of a similar result in [13, Theorem 3.1] in the sense that,
instead of assuming condition (TJ) in this paper, the following stronger hypothesis than condition
(TJ) was assumed in [13]: the jump kernelJ(x, y) exists and satisfies the followingpointwiseupper
estimate

J(x, y) ≤
C

V(x,d(x, y))w(x,d(x, y))
for μ × μ-almost all (x, y) in M × M \ diag. Also the metric space (M,d) considered in [13] is
assumed to be unbounded. We emphasize that we do not assume the jump kernelJ(x, y) exists,
neither the boundedness of the metric space.
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Liu and Murugan [31, Theorem 1.2] show that the parabolic Harnack inequality implies the
existence of the jump kernelJ(x, y) for a pure jump regular Dirichlet form. A natural question
arises whether the weak elliptic Harnack inequality also implies the existence of the jump kernel.
The answer is negative. In fact, the paper [6, Section 15] has given an example on the ultra-metric
space where the jump measure satisfies both conditions (PI) and (TJ) (noting that condition (Gcap)
automatically holds since it follows directly from condition (TJ) and the ultra-metric property), but
the jump kernel does not exist. By Theorem1.8above, the weak elliptic Harnack inequality is true,
however, the jump kernel does not exist in this case. We will give the details in Section7.

Let us explain the idea of proving the weak elliptic Harnack inequality in Theorem1.8. The
proof essentially consists of the following two steps (under the case whenf ≡ 0).

(1) To obtain the so-calledmeasure-to-point lemmaas follows: for someε ∈ (0,1) and for
any non-negative superharmonic functionu in a ball B, there exists a constantη > 0,
depending only onε but independent of the ballB and the functionu, such that

μ(B∩ {u > 1})
μ(B)

≥ ε ⇒ inf
1
2 B

u ≥ η. (1.24)

(2) To obtain the so-calledcrossover lemmaas follows: there exist three universal numbers
p, δ in (0,1) andC > 0 such that, for any non-negative superharmonic functionu in a
ball BR, any concentric ballBr of BR with 0 < r ≤ δR and for any positive number
λ ≥ w(BR)T 3

4 BR,BR
(u−),
(?

Br

(u+ λ)pdμ

)1/p (?

Br

(u+ λ)−pdμ

)1/p

≤ C. (1.25)

The implication (1.24) says that, if the occupationmeasureof a superlevel set

{u ≥ a} for a > 0

in a ballB for a functionu, which is non-negative, superharmonic inB, is bounded from below by
a constantε, then the functionu should be also bounded from below by a positive numberηa at
almost allpointsnear the center.

The measure-to-point lemma is essentially the same as theLemma of growthintroduced by
Landis in [29], [30] in studying solutions of elliptic second order PDEs (local Dirichlet form) inRn.
This Lemma of growth has been reformulated and extended to the case for pure jump type (non-
local) Dirichlet forms on the metric measure space in [20, Lemma 4.1], see also a forthcoming
paper [21] for mixed (either local or non-local) Dirichlet forms defined by (1.6) without killing
part (cf. Lemma3.5 below). An alternative version of Lemma of growth for pure jump type
(non-local) Dirichlet forms on metric space was stated in [13, Proposition 3.6].

We remark that the measure-to-point lemma is originated from the work by Moser [35, Theorem
2], and developed by Krylov and Safonov [27], [28], [37]. The reader may consult the reference
[33, Section 3] for the classical case.

Once the measure-to-point lemma has been established, one needs further to show the crossover
lemma (1.25), where the Poincaré inequality comes into a stage. To achieve (1.25), one needs to
show that, for anyu ∈ F ′ ∩ L∞ that is superharmonic and non-negative in a ballB and for any
positive numberλ bounded from below by a tail (in the case of local Dirichlet forms, any number
λ > 0 will be fine), the logarithm function

ln(u+ λ)

belongs to the space BMO(δB), for some numberδ ∈ (0,1) that is independent ofu, λ and ball
B. After that, the rest of the proof is standard: one makes use of Lemma8.3 in Appendix for an
exponential function

exp
(c
b

g
)

for anyb ≥ ||g||BMO
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for g := ln(u+ λ), which is valid from the John-Nirenberg inequality (see Lemma8.2 in Appen-
dix), and we are eventually led to the desired crossover lemma (1.25) (see Lemma4.4below).

Besides the version of the weak elliptic Harnack inequality stated in Definition1.6, there are
several other versions in the literature, see for example [13, Proposition 3.6], [24, Lemma 7.2], [20,
Lemma 4.5]. We list all of them in Section5 and term as conditions (wEH1), (wEH2), (wEH3),
(wEH4). We shall show that the first three conditions (wEH1), (wEH2), (wEH3) are equivalent
one another, each of which implies condition (wEH4).

Theorem 1.9. Let (E,F ) be a Dirichlet form in L2(M, μ). If condition(VD) holds, then

(wEH) ⇔ (wEH1)⇔ (wEH2)⇔ (wEH3) (1.26)

⇒ (wEH4). (1.27)

We will prove Theorem1.9at the end of Section5.

2. Faber-Krahn inequality and Dirichlet heat kernel

In this section, we show that for a regular Dirichlet form without killing part on a metric space,
if the measure satisfies conditions (VD) and (RVD), then the Poincaré inequality implies the Faber-
Krahn inequality. Although this conclusion is known to the expert, there is no a direct proof in
the literature, and we will give a self-contained proof for convenience. Here we do not assume the
existence of the jump kernel, neither the independence of point for the scaling functionw. Our
result can be viewed as an extension of the previous work [24, Theorem 5.1] for a local Dirichlet
form for the doubling measure, and [6, Lemmas 5.2, 5.3] for a non-local Dirichlet form for the
Ahlfors-regular measure. See also [11, Proposition 3.4.1]. As a by-product, we derive that the
Dirichlet heat kernelpB

t (x, y) exists and satisfies an upper bound, for any ballB of radius less than
σR.

We introduce condition (NashB), which is theNash inequality on a ball B.

Definition 2.1 (condition (NashB)). We say that condition(NashB) holds if there exist three pos-
itive constantsσ ∈ (0,1) andν,C such that for any metric ball B of radius r∈ (0, σR) and any
u ∈ F (B),

||u||2+2ν
2 ≤

C
μ(B)ν

||u||2ν1
(
||u||22 + w(B)E(u,u)

)
. (2.1)

We remark that constants C andν, σ are all independent of ball B and function u.

We show that the Poincaré inequality implies the Nash inequality on a ball.

Lemma 2.2. Assume that(E,F ) is a regular Dirichlet form in L2(M, μ) without killing part. If
conditions(VD) and(PI) are satisfied, then condition(NashB) holds, that is,

(VD) + (PI)⇒ (NashB).

Proof. Since the proof is quite long, we divided into two steps.
Step1. We show that there exists a constantC > 0 such that for alls > 0 and allu ∈ F ∩ L1

with ||u||1 > 0

||us||
2
2 ≤

C||u||21
inf

z∈supp (u)
V(z, s)

, (2.2)

whereus(x) is the average of functionu over a ballB(x, s), that is,

us(x) =
1

V(x, s)

∫

B(x,s)
u(z)μ(dz) for x ∈ M, s> 0.

The proof is motivated by [38, Theorem 2.4]. At this step, we do not need condition (PI). To this
end, let||u||1 > 0, and denote by

As := {x ∈ M : d(x, supp (u)) < s},
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the s-neighborhood of the support ofu. Clearly, we see thatus(x) ≡ 0 whenx lies outside the set
As, sinceu(z) = 0 for z ∈ B(x, s) ⊂ M \ supp (u). It follows that

||us||∞ ≤
||u||1

inf
x∈As

V(x, s)
≤

2d2Cμ||u||1
inf

x∈supp (u)
V(x, s)

, (2.3)

where we have used the fact that for anyx ∈ As,

1
inf
x∈As

V(x, s)
≤

2d2Cμ
inf

x∈supp (u)
V(x, s)

,

since there exists a pointz ∈ supp (u) such thatd(z, x) < s, and thus by (1.3)

V(z, s)
V(x, s)

≤ Cμ

(
d(z, x) + s

s

)d2

≤ Cμ
( s+ s

s

)d2

= 2d2Cμ, (2.4)

from which,

1
inf
x∈As

V(x, s)
= sup

x∈As

1
V(x, s)

≤ 2d2Cμ sup
z∈supp (u)

1
V(z, s)

=
2d2Cμ

inf
x∈supp (u)

V(x, s)
.

On the other hand,

||us||1 ≤
∫

As

1
V(x, s)

(∫

B(x,s)
|u(z)|μ(dz)

)

μ(dx)

=

∫

As

1
V(x, s)

(∫

supp (u)
|u(z)|1B(x,s)(z)μ(dz)

)

μ(dx)

=

∫

supp (u)
|u(z)|

(∫

As

1B(x,s)(z)

V(x, s)
μ(dx)

)

μ(dz)

=

∫

supp (u)
|u(z)|

(∫

As∩B(z,s)

1
V(x, s)

μ(dx)

)

μ(dz)

≤
∫

supp (u)
|u(z)|

V(z, s)
inf

x∈B(z,s)
V(x, s)

μ(dz)

=

∫

supp (u)
|u(z)| sup

x∈B(z,s)

V(z, s)
V(x, s)

μ(dz) ≤ 2d2Cμ||u||1, (2.5)

since for anyz ∈ supp (u) and anyx ∈ B(z, s),

V(z, s)
V(x, s)

≤ 2d2Cμ

by virtue of (2.4). Therefore, it follows from (2.3), (2.5) that

||us||
2
2 ≤ ||us||∞||us||1 ≤

(2d2Cμ)2||u||21
inf

z∈supp (u)
V(z, s)

,

thus showing (2.2) with C := (2d2Cμ)2.
Step2. We show that condition (NashB) holds. We assume that condition (PI) holds.
Fix a ball B := B(x0, r) with r ∈ (0, R

κ ), where constantκ is the same as in condition (PI). Let

s ∈ (0, R
2κ ) be a number to be determined later on, and fix a functionu ∈ F (B) ∩ L1(M, μ). Since

M is separable, there is a countable family of points{yi}∞i=1 such thatM ⊂
⋃∞

i=1 B(yi , s). By the
doubling property, we can find a subsequence{xi}∞i=1 ⊂ {yi}∞i=1 such thatM =

⋃∞
i=1 Bi with Bi :=

B(xi , s), and{15Bi}∞i=1 are pairwise disjoint (see [25, Theorem 1.16]). The over-lapping number
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∑∞
i=1 12κBi is bounded by some integerN0 depending only onκ andCμ, that is,

∑∞
i=1 12κBi ≤ N0.

From this, we have for any measurable functiong ≥ 0,
∞∑

i=1

"

(2κBi )×M
g(x, y)J(dx,dy) =

"

M×M
g(x, y)

∞∑

i=1

12κBi (x)J(dx,dy)

≤ N0

"

M×M
g(x, y)J(dx,dy). (2.6)

We estimate the term||u− us||22 by

||u− us||
2
2 ≤

∞∑

i=1

∫

Bi

|u(x) − us(x)|2μ(dx)

≤ 2
∞∑

i=1

(∫

Bi

(|u(x) − u2Bi |
2 + |u2Bi − us(x)|2)μ(dx)

)

C 2(I1 + I2). (2.7)

For I1, we have by condition (PI),

I1 =

∞∑

i=1

∫

Bi

|u(x) − u2Bi |
2μ(dx) ≤

∞∑

i=1

∫

2Bi

|u(x) − u2Bi |
2μ(dx)

≤ C
∞∑

i=1

w(xi ,2s)

{∫

2κBi

dΓ(L)〈u〉 +
"

(2κBi )×(2κBi )
(u(x) − u(y))2J(dx,dy)

}

. (2.8)

For I2, note that for anyx ∈ Bi = B(xi , s), the function 1B(x,s)(z) = 0 whenz ∈ (2Bi)c ⊂ B(x, s)c.
Using the Cauchy-Schwarz inequality and condition (PI), we have for anyx ∈ Bi

|us(x) − u2Bi |
2 =

∣∣∣∣

∫

M

1B(x,s)(z)

V(x, s)
(u(z) − u2Bi )μ(dz)

∣∣∣∣
2
≤

∫

M

1B(x,s)(z)

V(x, s)
|u(z) − u2Bi |

2μ(dz)

≤
∫

2Bi

1
V(x, s)

|u(z) − u2Bi |
2μ(dz) ≤

2d2Cμ
V(xi , s)

∫

2Bi

|u(z) − u2Bi |
2μ(dz)

≤
Cw(xi ,2s)

V(xi , s)

{∫

2κBi

dΓ(L)〈u〉 +
"

(2κBi )×(2κBi )
(u(x) − u(y))2J(dx,dy)

}

, (2.9)

where we have used the fact that for anyx ∈ Bi ,

V(xi , s)
V(x, s)

≤ Cμ

(
d(xi , x) + s

s

)d2

≤ 2d2Cμ

by virtue of (1.3). Therefore, it follows that

I2 =

∞∑

i=1

∫

Bi

(u2Bi − us(x))2μ(dx)

≤
∞∑

i=1

∫

Bi

Cw(xi ,2s)
V(xi , s)

{∫

2κBi

dΓ(L)〈u〉 +
"

(2κBi )×(2κBi )
(u(x) − u(y))2J(dx,dy)

}

μ(dx)

= C
∞∑

i=1

w(xi ,2s)

{∫

2κBi

dΓ(L)〈u〉 +
"

(2κBi )×(2κBi )
(u(x) − u(y))2J(dx,dy)

}

. (2.10)

Combining (2.8) and (2.10), we conclude from (2.7) that

||u− us||
2
2 ≤ 2(I1 + I2)

≤ C
∞∑

i=1

w(xi ,2s)

{∫

2κBi

dΓ(L)〈u〉 +
"

(2κBi )×(2κBi )
(u(x) − u(y))2J(dx,dy)

}

(2.11)
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for a positive constantC depending only on the constants from condition (VD) (independent of
u, s, Bi).

Sinceu ∈ F (B), if 2κBi ⊂ Bc, we see thatu(x) = u(y) = 0 whenx, y ∈ 2κBi , thus 12κBi dΓ
(L)〈u〉 =

0, and so the integral in the above summation vanishes. In other words, the summation in (2.11)
is taken only over the indicesi such that (2κBi) ∩ B , ∅. Set

Q := sup
i:(2κBi )∩B,∅

w(xi , s). (2.12)

Sincew(xi ,2s) ≤ C22β2w(xi , s) by using (1.5), we obtain that
∞∑

i=1

w(xi , s)
"

(2κBi )×(2κBi )
(u(x) − u(y))2J(dx,dy)

≤ Q
∞∑

i=1

"

(2κBi )×M
(u(x) − u(y))2J(dx,dy)

≤ Q ∙ N0

"

M×M
(u(x) − u(y))2J(dx,dy) (using (2.6))

= N0QE(J)(u,u). (2.13)

On the other hand,
∞∑

i=1

w(xi , s)
∫

2κBi

dΓ(L)〈u〉 ≤ Q
∞∑

i=1

∫

2κBi

dΓ(L)〈u〉 = Q
∫

M

∞∑

i=1

12κBi dΓ
(L)〈u〉

≤ N0Q
∫

M
dΓ(L)〈u〉 = N0QE(L)(u,u). (2.14)

Therefore, combining (2.13) and (2.14), we conclude from (2.11) that for alls∈ (0, R
2κ )

||u− us||
2
2 ≤ C

{
N0QE(L)(u,u) + N0QE(J)(u,u)

}
= CN0QE(u). (2.15)

It is left to estimateQ for anys ∈ (0, R
2κ ). We distinguish two cases whens≤ r or not.

Indeed, letz0 ∈ (2κBi) ∩ B. By (1.5), we have

w(xi , s)
w(z0, s)

=
w(xi , s)

w(xi ,2κs)
∙

w(xi ,2κs)
w(z0, s)

≤ C−1
1

( s
2κs

)β1
∙C2

(
2κs
s

)β2
= c′(κ),

whilst for s≤ r
w(z0, s)
w(x0, r)

≤ C−1
1

( s
r

)β1
.

Thus,
w(xi , s)
w(x0, r)

=
w(xi , s)
w(z0, s)

∙
w(z0, s)
w(x0, r)

≤ c
( s
r

)β1

if (2κBi) ∩ B , ∅ ands≤ r. From this, we obtain

Q = sup
i:(2κBi )∩B,∅

w(xi , s) ≤ c′
( s
r

)β1
w(x0, r) if s≤ r. (2.16)

Plugging (2.16) into (2.15), we have

||u− us||
2
2 ≤ C′

( s
r

)β1
w(x0, r)E(u) (2.17)

if s≤ r. Note that ifs≤ r, then for anyx ∈ supp (u) ⊂ B(x0, r)

V(x0, r)
V(x, s)

≤ Cμ

(
d(x0, x) + r

s

)d2

≤ 2d2Cμ
( r
s

)d2

,



12 HU AND YU

which gives by (2.2) that

||us||
2
2 ≤

C||u||21
inf

x∈supp (u)
V(x, s)

≤ C
( r
s

)d2 ||u||21
V(x0, r)

. (2.18)

Therefore, we conclude from (2.17), (2.18) that for all 0< s< r ∧ R
2κ ,

||u||22 ≤ 2
(
||u− us||

2
2 + ||us||

2
2

)

≤ C



( s
r

)β1
w(x0, r)E(u) +

( r
s

)d2 ||u||21
V(x0, r)


 . (2.19)

On the other hand, ifr ≤ s< R
2κ , it is clear that

||u||22 ≤
( s
r

)β1
||u||22. (2.20)

Summing up (2.19) and (2.20), we obtain for all 0< s< R
2κ ,

||u||22 ≤ C



( s
r

)β1 (
w(x0, r)E(u) + ||u||22

)
+

( r
s

)d2 ||u||21
V(x0, r)




≤ C2d2




(
2s
r

)β1 (
w(x0, r)E(u) + ||u||22

)
+

( r
2s

)d2 ||u||21
V(x0, r)


 . (2.21)

We minimize the right-hand side of (2.21) in s∈ (0, R
2κ ), for example, by choosings such that

(
2s
r

)β1 (
w(x0, r)E(u) + ||u||22

)
=

( r
2s

)d2 ||u||21
V(x0, r)

,

that is,

s=
r
2




||u||21
V(x0, r)

(
w(x0, r)E(u) + ||u||22

)




1
β1+d2

. (2.22)

We postpone verifying thats∈ (0, R
2κ ). Therefore, it follows that

||u||22 ≤ C′


||u||21

V(x0, r)




β1
β1+d2 (

||u||22 + w(x0, r)E(u)
) d2
β1+d2 ,

thus showing that

||u||
2(1+

β1
d2

)

2 ≤ C
(
||u||22 + w(x0, r)E(u)

) 
||u||21

V(x0, r)




β1
d2

,

for all u ∈ F (B) ∩ L1. Hence, condition (NashB) holds withσ = 1
κ andν = β1d2

.

It remains to verify that the numbers given by (2.22) satisfies conditions ∈ (0, R
2κ ). Indeed, by

the Cauchy-Schwarz inequality, we have for anyu ∈ F (B),

||u||21 ≤ V(x0, r)||u||
2
2,

from which, we see that, using the fact thatr ∈ (0,R/κ),

s=
r
2




||u||21
V(x0, r)

(
w(x0, r)E(u) + ||u||22

)




1
β1+d2

≤
r
2




||u||21
V(x0, r)||u||22




1
β1+d2

≤
r
2
<

R
2κ
.

The proof is complete. �
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We derive the on-diagonal upper bound of the Dirichlet heat kernel on any ball by using condi-
tion (NashB). In particular, we derive the Faber-Krahn inequality.

Lemma 2.3. Let (E,F ) be a regular Dirichlet form in L2. If conditions(VD), (RVD) and(NashB)
hold, then the Dirichlet heat kernel pB

t (x, y) exists and satisfies

esup
x,y∈B

pB
t (x, y) ≤

C
μ(B)

(
w(B)

t

)1/ν

for all t > 0 (2.23)

for any ball B of radius r< σR
A , where C,A are two universal constants independent of B, t and

constantσ comes from condition(NashB). Consequently, we have

(VD) + (RVD) + (NashB)⇒ (FK).

Proof. Assume thatA > 1 is a number to be chosen, see (2.27) below. LetB := B(x0, r) with

0 < r <
σR
A
. (2.24)

SinceAr is less thanσR, we can apply condition (NashB) on a ballB(x0,Ar) and obtain for any
u ∈ F (B(x0,Ar))

||u||2+2ν
2 ≤

C||u||2ν1
V(x0,Ar)ν

(
||u||22 + w(x0,Ar)E(u)

)
. (2.25)

Note that for allu ∈ F (B(x0, r)),

||u||1 =

∫

B(x0,r)
|u|dμ ≤ V(x0, r)

1/2||u||2. (2.26)

SinceF (B(x0, r)) ⊂ F (B(x0,Ar)) for any A > 1, it follows (2.26), (2.25) that for anyu ∈
F (B(x0, r))

||u||2+2ν
2 ≤

C
(
V(x0, r)1/2||u||2

)2ν

V(x0,Ar)ν
||u||22 +

C||u||2ν1
V(x0,Ar)ν

w(x0,Ar)E(u)

= C

(
V(x0, r)

V(x0,Ar)

)ν
||u||2(1+ν)

2 +
Cw(x0,Ar)
V(x0,Ar)ν

||u||2ν1 E(u).

By condition (RVD), we have

V(x0, r)
V(x0,Ar)

≤
1

CdAd1
=

(
1

2C

)1/ν

,

provided that

A = C−1/d1
d (2C)

1
νd1 > 1. (2.27)

Therefore, for allu ∈ F (B(x0, r)),

||u||2+2ν
2 ≤ 2C

w(x0,Ar)
V(x0, r)ν

||u||2ν1 E(u), (2.28)

which gives that

E(u) ≥
1

2C
V(x0, r)ν

w(x0,Ar)
||u||2+2ν

2 ||u||−2ν
1 ≥

C′μ(B)ν

w(B)
||u||2+2ν

2 ||u||−2ν
1 .

Applying [23, Lemma 5.5] withU = B(x0, r), a = C′ μ(B)ν

w(B) , we conclude that the Dirichlet heat

kernelpB
t (x, y) exists and satisfies (2.23).

We will show that condition (FK) follows from (2.28).
Indeed, letD ⊂ B be an open subset, and letu ∈ F (D). Noting that

||u||21 ≤ μ(D)||u||22
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by the Cauchy-Schwarz inequality, we see from (2.28) and (1.5) that

||u||2+2ν
2 ≤ 2Cw(x0,Ar)

(
μ(D)
μ(B)

)ν
||u||2ν2 E(u) ≤ C′′w(B)

(
μ(D)
μ(B)

)ν
||u||2ν2 E(u),

thus showing that

λ1(D) = inf
u∈F (D)\{0}

E(u)

||u||22
≥

c′

w(B)

(
μ(B)
μ(D)

)ν
.

Therefore, the Faber-Krahn inequality holds for any ballB of radiusr satisfying (2.24). �

We remark that if the metric space (M,d) is connected and unbounded, then condition (VD)
implies condition (RVD), see for example [23, Corollary 5.3]. In this case, we have that conditions
(VD), (PI) will imply condition (FK), since condition (RVD) is automatically true.

3. A refinement of lemma of growth

In this section we shall derive the lemma of growth for any two concentric ballsB, δB with
0 < δ < 1, which is a refinement of the version stated in a forthcoming paper [21], see also
[20, Lemma 4.1]. The lemma of growth will follow from conditions (VD), (Gcap), (FK), (TJ).
The basic tool in the proof is to use the celebrated De-Giorgi iteration technique for occupation
measures (instead of forL2-norms). Although the idea is essentially the same as in [21], [20, Proof
of Lemma 4.1], we sketch the proof for the reader’s convenience.

Before we address the lemma of growth, we give the following preliminary. For eachn ≥ 1, let
Fn be a function on [0,∞) given by

Fn(r) =
1
2


r +

√

r2 +
1
n2


 −

1
2n

for r ∈ (−∞,∞). (3.1)

Clearly,Fn(0) = 0, and for anyr ∈ (−∞,∞),

0 ≤ F′n(r) =
1
2

(

1+
r

√
r2 + n−2

)

≤ 1,

0 ≤ F′′n (r) =
1

2n2(r2 + n−2)3/2
≤

n
2
,

Fn(r)⇒ r+ uniformly in (−∞,∞) asn→ ∞. (3.2)

Proposition 3.1. Let (E,F ) be a regular Dirichlet form in L2(M, μ) without killing part and let Fn
be given by (3.1). Then for any u∈ F ′ ∩ L∞ and any0 ≤ ϕ ∈ F ∩ L∞,

E(u+, ϕ) ≤ lim sup
k→∞

E(u, F′nk
(u)ϕ) (3.3)

for a subsequence{nk}k≥1 of {n}n≥1.

Proof. Note that the functionsFn(u), F′n(u)ϕ belong toF ∩L∞ for eachn ≥ 1 by using Proposition
8.4 in Appendix. Sinceϕ ≥ 0 in M, we have

E(Fn(u), ϕ) ≤ E(u, F′n(u)ϕ) (n ≥ 1) (3.4)

by using (8.2) in Appendix.
Write u = v+ a for somev ∈ F anda ∈ R. SinceFn(v+ a) − Fn(a) is a normal contraction of

v ∈ F , we have

fn := Fn(u) − Fn(a) = Fn(v+ a) − Fn(a) ∈ F and E( fn, fn) ≤ E(v, v).

Since (v+ a)+ − a+ is also a normal contraction ofv ∈ F , we also have

f := u+ − a+ = (v+ a)+ − a+ ∈ F .
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On the other hand, by the dominated convergence theorem,

fn
L2

−→ f asn→ ∞.

Since fn ∈ F and
sup

n
E( fn, fn) ≤ E(v, v) < ∞,

there exists a subsequence
{
fnk

}
k≥1 converging tof weakly in terms of the energy normE by using

Lemma8.5 in Appendix. Therefore,

E(u+, ϕ) = E( f + a+, ϕ) = E( f , ϕ) = lim
k→∞
E( fnk, ϕ)

= lim
k→∞
E(Fnk(u) − Fnk(a), ϕ) = lim sup

k→∞
E(Fnk(u), ϕ) ≤ lim sup

k→∞
E(u, F′nk

(u)ϕ)

by virtue of (3.4), thus showing (3.3). The proof is complete. �

We recall condition (LG), termed thelemma of growth, which was introduced in [20, Lemma
4.1] for the case whenw(x, r) = rβ and f ≡ 0. Note that the following notion of lemma of growth
involves a given functionf .

Definition 3.2. For any two fixed numbersε, δ in (0,1), we say thatcondition LG(ε, δ) holds
if there exist four constantsσ ∈ (0,1), ε0 ∈ (0, 1

2) and θ,CL > 0 such that, for any ball B:=
B(x0,R) with radius R∈ (0, σR), any function f ∈ L∞(B), and for any u∈ F ′ ∩ L∞ which is
f -superharmonic and non-negative in B, if for some a> 0

μ(B∩ {u < a})
μ(B)

≤ ε0(1− ε)2θ(1− δ)CLθ



1+

w(B)
(
T 3+δ

4 B,B(u−) + || f ||L∞(B)

)

εa




−θ

, (3.5)

then
einf
δB

u ≥ εa, (3.6)

where the tail T3+δ
4 B,B(u−) is defined by (1.15), that is

T 3+δ
4 B,B(u−) = esup

x∈ 3+δ
4 B

∫

M\B
u−(y)J(x,dy).

For simplicity, we write conditionLG(ε, δ) by condition(LG) without mentioningε, δ.

We remark that the constantsσ, ε0, θ,CL are all independent ofε, δ. Recall that condition (EP),
termed theenergy productof a functionu with some cutoff functionφ, was introduced in [21].

Definition 3.3 (Condition (EP)). We say that thecondition (EP)is satisfied if there exist two
universal constants C> 0,C0 ≥ 0 such that, for any three concentric balls B0 := B(x0,R),
B := B(x0,R+ r) andΩ := B(x0,R′) with 0 < R< R+ r < R′ < R, and for any u∈ F ′ ∩ L∞, there
exists someφ ∈ cutoff(B0, B) such that

E(uφ) ≤
3
2
E(u,uφ2) +

C
w(x0, r)

(
R′

r

)C0 ∫

Ω

u2dμ + 3
∫

Ω×Ωc
u(x)u(y)φ2(x)J(dx,dy). (3.7)

Condition (EP) plays an important role in deriving condition (LG). The following has been
proved in [21].

Lemma 3.4([21]). Assume that(E,F ) is a regular Dirichlet form in L2 without killing part. Then

(Gcap)+ (TJ)⇒ (EP). (3.8)

We shall prove the lemma of growth, where condition (EP) is our starting point, instead of from
condition (Gcap). The idea is essentially adopted from [20, 21].
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Lemma 3.5. Let (E,F ) be a regular Dirichlet form in L2 without killing part. If conditions(VD),
(FK), (TJ) and(EP)are satisfied, then condition(LG) holds withθ = 1/ν and CL = C0 + β2 + d2,
where the constantsσ, ν are taken same as in condition(FK) and C0 same as in condition(EP).
Namely, we have

(VD) + (FK) + (TJ)+ (EP)⇒ (LG). (3.9)

Consequently,
(VD) + (Gcap)+ (FK) + (TJ)⇒ (LG). (3.10)

Proof. Note that any functionu ∈ F admits aquasi-continuousversionũ [19, Theorem 2.1.3,
p.71]. We will use the same letteru to denote some quasi-continuous modification ofu. For any
u ∈ F and any open subsetΩ of M, a functionu belongs to the spaceF (Ω) if and only if ũ = 0
q.e. inΩc, where q.e. meansquasi-everywhere(see [19, Corollary 2.3.1, p.98]).

We shall show the implication (3.9).
Fix a ball B := B(x0,R) with radius 0< R < σR and a functionf ∈ L∞(B). Let u ∈ F ′ ∩ L∞

be a function that isf -superharmonic and non-negative inB. We will show that (3.6) is true if
condition (3.5) is satisfied for somea > 0.

To do this, denote
Br := B(x0, r) for anyr > 0,

so thatBR = B = B(x0,R). Fix four numbersa,b andr1, r2 such that

0 < a < b < ∞ and
r2

2
≤ r1 < r2 < R, (3.11)

and set

m1 =
μ(Br1 ∩ {u < a})
μ
(
Br1

) and m2 =
μ(Br2 ∩ {u < b})
μ
(
Br2

) .

Set alsov := (b− u)+ and

m̃1 := μ(Br1 ∩ {u < a}), m̃2 := μ(Br2 ∩ {u < b}).

Let B̃ be any intermediate concentric ball betweenBr1 andBr2, so that

Br1 ⊂ B̃ := Br1+ρ ⊂ Br2 (0 < ρ < r2 − r1).

Applying condition (EP) to the tripleBr1, B̃, Br2 and the functionv, we see that there exists some
functionφ ∈ cutoff(Br1, B̃) such that

E(vφ) ≤
3
2
E(v, vφ2) +

C
w (x0, ρ)

(
r2

ρ

)C0 ∫

Br2

v2dμ

+3
∫

Br2×Bc
r2

v(x)v(y)φ2(x)J(dx,dy). (3.12)

Without loss of generality, we can assume thatφ is quasi-continuous. Then we have

m̃1 =

∫

Br1∩{u<a}
φ2dμ ≤

∫

Br1

φ2
(
(b− u)+

b− a

)2

︸        ︷︷        ︸
≥1 on{u<a}

dμ =
1

(b− a)2

∫

Br1

(φv)2dμ. (3.13)

Consider the set
E := B̃∩ {u < b}.

By the outer regularity ofμ, for anyε > 0 , there is an open setΩ such thatE ⊂ Ω ⊂ Br2 and

μ(Ω) ≤ μ(E) + ε ≤ m̃2 + ε. (3.14)

On the other hand, sinceφ = 0 q.e. outsidẽB andv = 0 outside{u < b}, we see thatφv = 0 q.e.
in Ec. Sinceφv ∈ F andφv = 0 q.e. inΩc ⊂ Ec, we conclude that

φv ∈ F (Ω). (3.15)



WEAK ELLIPTIC HARNACK EQUALITY 17

By the definition ofλ1 (Ω), we have
∫

Ω

(φv)2dμ ≤
E(φv)
λ1(Ω)

.

Using again the fact thatφv vanishes outsideΩ and combining this inequality with (3.13), we
obtain that

m̃1 ≤
1

(b− a)2

∫

Br1

(φv)2dμ ≤
1

(b− a)2

∫

Ω

(φv)2dμ ≤
E(φv)

(b− a)2λ1(Ω)
. (3.16)

By condition (FK) and (3.14),

λ1(Ω) ≥
C−1

F

w(Br2)

(
μ(Br2)

μ(Ω)

)ν
≥

C−1
F

w(Br2)

(
μ(Br2)

m̃2 + ε

)ν
, (3.17)

from which, it follows by (3.16) that

m̃1 ≤
E(φv)

(b− a)2
∙

w(Br2)

C−1
F

(
μ(Br2)

m̃2 + ε

)−ν
.

Letting ε → 0, we obtain that, using the fact thatm2 = m̃2
μ(Br2) ,

m̃1 ≤
CF

(b− a)2

(
m̃2

μ(Br2)

)ν
∙ w(Br2)E(φv) =

CF (m2)ν

(b− a)2
∙ w(Br2)E(φv), (3.18)

where the constantsν andCF are the same as in condition (FK).
We estimate the termE(φv) on the right-hand side of (3.18) by applying the inequality (3.12).

For this, we need to estimate the termE(v, vφ2). This can be done by using thef -superharmonicity
of u and using condition (TJ).

Indeed, sincevφ ∈ F (Ω) ∩ L∞ andφ ∈ F ∩ L∞, the functionvφ2 = vφ ∙ φ ∈ F (Ω) ⊂ F (B),
which is non-negative. LetFn be given by (3.2) for n ≥ 1. Sinceu is f -superharmonic inB and
‖F′n‖∞ ≤ 1 and since the functionF′n(b− u)vφ2 is non-negative and belongs to the spaceF (Ω) so
that it can be used as a test function, we have

E(b− u, F′n(b− u)vφ2) = −E(u, F′n(b− u)vφ2) ≤ −( f , F′n(b− u)vφ2)

≤
∫

M
| f |vφ2dμ ≤ || f ||L∞(Br2)

∫

Br2

vdμ

≤ || f ||L∞(Br2)bμ(Br2 ∩ {u < b}) (usingv ≤ b1{u<b})

= b|| f ||L∞(Br2)m̃2. (3.19)

Applying (3.3) with u replaced byb− u and withϕ = vφ2, we obtain by (3.19)

E(v, vφ2) = E((b− u)+, vφ
2) ≤ lim sup

k→∞
E(b− u, F′nk

(b− u)vφ2) ≤ b|| f ||L∞(Br2)m̃2. (3.20)

Therefore, plugging (3.20) into (3.12) and then using the facts that

supp (φ) ⊂ B̃ and J(dx,dy) = J(x,dy)μ(dx),

we see that

E(vφ) ≤
3
2

b|| f ||L∞(Br2)m̃2 +
C

w (x0, ρ)

(
r2

ρ

)C0 ∫

Br2

v2dμ

+ 3
∫

B̃
v (x) μ (dx) ∙ esup

x∈B̃

∫

Bc
r2

v(y)J(x,dy). (3.21)
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Sincev = (b− u)+ ≤ b in Br2 ⊂ BR = B, we have
∫

Br2

v2dμ ≤ b2μ(Br2 ∩ {u < b}) = b2m̃2.

Sincev = (b− u)+ ≤ b+ u− in M, we also have
∫

B̃
v (x) μ (dx) esup

x∈B̃

∫

Bc
r2

v(y)J(x,dy) ≤ bm̃2 esup
x∈B̃

∫

Bc
r2

v(y)J(x,dy)

≤ bm̃2 esup
x∈B̃

∫

Bc
r2

(b+ u−(y))J(x,dy)

= bm̃2


besup

x∈B̃

∫

Bc
r2

J(x,dy) + TB̃,Br2
(u−)


 .

Thus, using the fact that for any pointx0 in M and any 0< ρ < r2 − r1,

w(Br2)

w(x0, ρ)
=

w(x0, r2)
w(x0, ρ)

≤ C2

(
r2

ρ

)β2

by virtue of (1.5), it follows from (3.21) that

E(vφ) ≤
3
2

b|| f ||L∞(Br2)m̃2 +
CC2

w(Br2)

(
r2

ρ

)C0+β2

∙ b2m̃2

+3bm̃2


besup

x∈B̃

∫

Bc
r2

J(x,dy) + TB̃,Br2
(u−)


 . (3.22)

We look at the third term on the right-hand side of (3.22).
Observing by (1.5) that for anyx ∈ B̃ ⊂ Br2,

w(Br2)

w(x, r2 − r1 − ρ)
=

w(x0, r2)
w(x, r2 − r1 − ρ)

≤ C2

(
r2

r2 − r1 − ρ

)β2
, (3.23)

we have by condition (TJ) that

esup
x∈B̃

∫

Bc
r2

J(x,dy) ≤ esup
x∈B̃

∫

B(x,r2−r1−ρ)c
J(x,dy) ≤ esup

x∈B̃

C
w(x, r2 − r1 − ρ)

≤
CC2

w(Br2)

(
r2

r2 − r1 − ρ

)β2
. (3.24)

Plugging (3.24) into (3.22), we obtain

E(vφ) ≤
3
2

b|| f ||L∞(Br2)m̃2 +
CC2

w(Br2)

(
r2

ρ

)C0+β2

∙ b2m̃2

+3bm̃2


b

CC2

w(Br2)

(
r2

r2 − r1 − ρ

)β2
+ TB̃,Br2

(u−)




≤
C′b2m̃2

w(Br2)

(
r2

ρ

)C0+β2



1+

w(Br2)
(
TB̃,Br2

(u−) + || f ||L∞(Br2)

)

b



,

provided that 0< ρ ≤ (r2 − r1)/2, since in this case
(

r2

r2 − r1 − ρ

)β2
≤

(
r2

ρ

)β2
≤

(
r2

ρ

)C0+β2

.
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From this, we obtain by (3.18) that

m̃1 ≤ C′CF mν2 m̃2

(
b

b− a

)2 (
r2

ρ

)C0+β2



1+

w(Br2)
(
TB̃,Br2

(u−) + || f ||L∞(Br2)

)

b



.

Dividing this inequality byμ
(
Br1

)
and then using the facts that

m1 =
m̃1

μ(Br1)
and m2 =

m̃2

μ(Br2)

and that, for anyr2
2 ≤ r1 < r2,

μ(Br2)

μ(Br1)
≤ Cμ

(
r2

r1

)d2

≤ Cμ

(
r2

r2 − r1

)d2

≤ Cμ

(
r2

ρ

)d2

(by using (1.3))

we conclude that, for all 0< ρ ≤ (r2 − r1)/2 with r2
2 ≤ r1 < r2,

m1 ≤ C′CFm1+ν
2

(
b

b− a

)2 μ(Br2)

μ(Br1)

(
r2

ρ

)C0+β2



1+

w(Br2)
(
TB̃,Br2

(u−) + || f ||L∞(Br2)

)

b




≤ C

(
b

b− a

)2 (
r2

ρ

)C0+β2+d2

1+

w(Br2)
(
TBr1+ρ,Br2

(u−) + || f ||L∞(Br2)

)

b


 ∙m

1+ν
2 , (3.25)

whereC := C′CFCμ > 0 depends only on the constants from the hypotheses (but is independent
of the numbersρ, a,b, r1, r2 and the functionsf ,u). We will apply (3.25) to show (3.5).

In fact, letδ, ε be any two fixed numbers in (0,1). Consider the following sequences

Rk :=
(
δ + 2−k(1− δ)

)
R and ak :=

(
ε + 2−k(1− ε)

)
a for k ≥ 0.

Clearly,R0 = R, a0 = a, Rk ↘ δR, andak ↘ εa ask→ ∞, and

Rk−1

2
< Rk < Rk−1 for anyk ≥ 1.

Set

mk :=
μ(BRk ∩ {u < ak})

μ(BRk)
.

Applying (3.25) with

a = ak, b = ak−1, r1 = Rk, r2 = Rk−1 and

ρ = ρk := (Rk−1 − Rk)/2 = 2−k−1(1− δ)R,

we obtain for allk ≥ 1

mk ≤ CAk

(
ak−1

ak−1 − ak

)2 (
Rk−1

Rk−1 − Rk

)C0+β2+d2

m1+ν
k−1, (3.26)

whereAk is given by

Ak := 1+
w(BRk−1)

(
TBRk+ρk ,BRk−1

(u−) + || f ||L∞(BRk−1)

)

ak−1
.

SinceBRk+ρk ⊂ B(3+δ)R/4 for anyk ≥ 1 by noting that

Rk + ρk =
(
δ + 2−k(1− δ)

)
R+ 2−k−1(1− δ)R≤

(3+ δ)R
4

and sinceu− = 0 in B = BR ⊇ BRk−1 by using the fact thatu is non-negative, we have

TBRk+ρk ,BRk−1
(u−) = TBRk+ρk ,BR(u−) ≤ TB(3+δ)R/4,BR(u−).



20 HU AND YU

Sinceak−1 ≥ εa andw(BRk−1) ≤ w(B), it follows that

Ak ≤ 1+
w(B)

(
TB(3+δ)R/4,B(u−) + || f ||L∞(B)

)

εa
C A for anyk ≥ 1. (3.27)

Since for anyk ≥ 1

ak−1

ak−1 − ak
=
ε + 2−(k−1)(1− ε)

(
2−(k−1) − 2−k) (1− ε)

≤
2k

1− ε
and

Rk−1

Rk−1 − Rk
≤

2k

1− δ
,

we obtain from (3.26), (3.27) that

mk ≤ CA

(
2k

1− ε

)2 (
2k

1− δ

)C0+β2+d2

m1+ν
k−1 C DA ∙ 2λk ∙mq

k−1, (3.28)

where the constantsD, λ, q are respectively given by

D := C(1− ε)−2(1− δ)−(C0+β2+d2), λ := 2+ C0 + β2 + d2 and q := 1+ ν. (3.29)

Iterating the inequality (3.28), we have for allk ≥ 1

mk ≤ (DA) ∙ 2λk ∙mq
k−1 ≤ (DA) ∙ 2λk ∙

(
DA ∙ 2λ(k−1) ∙mq

k−2

)q

= (DA)1+q ∙ 2λk+λq(k−1) ∙mq2

k−2 ≤ ∙ ∙ ∙

≤ (DA)1+q+∙∙∙+qk−1
∙ 2λ(k+q(k−1)+∙∙∙+qk−1) ∙mqk

0 .

Since

k+ q(k− 1)+ ∙ ∙ ∙ + qk−1 =
qk+1 − (k+ 1)q+ k

(q− 1)2
≤

q

(q− 1)2
qk,

1+ q+ ∙ ∙ ∙ + qk−1 =
qk − 1
q− 1

≤
qk

q− 1
,

it follows that

mk ≤
(
(DA)

1
q−1 ∙ 2

λq

(q−1)2 ∙m0

)qk

, (3.30)

from which, we conclude that if

2
λq

(q−1)2 ∙ (DA)
1

q−1 ∙m0 ≤
1
2
, (3.31)

then
lim
k→∞

mk = 0 (3.32)

by using the fact thatq > 1. Note that (3.31) is equivalent to

m0 ≤ 2
− λq

(q−1)2
−1
∙ (DA)−

1
q−1 ,

that is,

μ(B∩ {u < a})
μ(B)

= m0 ≤ 2
− λq

(q−1)2
−1

D−
1

q−1 A−1/ν

C ε0(1− ε)2θ(1− δ)CLθ



1+

w(B)
(
T 3+δ

4 B,B(u−) + || f ||L∞(B)

)

εa




−θ

, (3.33)

whereε0, θ,CL are universal constants given by

ε0 := 2−λq/(q−1)2−1C−1/(q−1) < 1/2, θ := 1/ν, and CL := C0 + β2 + d2, (3.34)
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since by (3.29)

2
− λq

(q−1)2
−1

D−
1

q−1 = 2
− λq

(q−1)2
−1 (

C(1− ε)−2(1− δ)−(C0+β2+d2)
)− 1

q−1

= ε0
(
(1− ε)2(1− δ)C0+β2+d2

)1/ν
.

Note that the constantsε0, θ,CL are all universal, all of which are independent of the numbersε, δ,
the ballB and the functionsf ,u.

The inequality (3.33) is just the hypothesis (3.5). With a choice ofε0, θ,CL in (3.34), the
assumption (3.31) is satisfied, and hence, we have (3.32). Therefore,

μ(δB∩ {u < εa})
μ(δB)

= 0,

thus showing that (3.6) is true.
Finally, the implication (3.10) follows directly from (3.8) and (3.9). The proof is complete. �

4. Proof of weak elliptic Harnack inequality

In this section, we prove Theorem1.8.

Proposition 4.1. If v ∈ F ′ and v≥ 0 in BR with 0 < R< R, then

T 3
4 B,B(v−) ≤ T 3

4 BR,BR
(v−) (4.1)

for any B⊂ 3
4BR, where TU,Ω(v) is defined by (1.15).

Proof. Sincev ≥ 0 in BR, we see thatv− = 0 in BR, and hence,

T 3
4 B,B(v−) = esup

x∈ 3
4 B

∫

Bc
v−(y)J(x,dy) = esup

x∈ 3
4 B

∫

Bc
R

v−(y)J(x,dy)

≤ esup
x∈B

∫

Bc
R

v−(y)J(x,dy) ≤ esup
x∈ 3

4 BR

∫

Bc
R

v−(y)J(x,dy)

= T 3
4 BR,BR

(v−),

thus showing (4.1). �

We remark that an alternative version of the tail for a functionv outside a ballB(x0,R) is defined
in [13] by

Tailw(v; x0,R) :=
∫

B(x0,R)c

|v(z)|
V(x0,d(x0, z))w(x0,d(x0, z))

μ(dz). (4.2)

If condition(J≤) holds, that is, ifJ(dx,dy) = J(x, y)μ(dx)μ(dy) for a non-negative functionJ(x, y)
with

J(x, y) ≤
C

V(x,d(x, y))w(x,d(x, y))
(4.3)

for any (x, y) in M × M \ diag, for some constantC ≥ 0, then for any functionv and any ball
BR := B(x0,R) with 0 < R< R,

T 3
4 BR,BR

(v) ≤ C′ Tailw(v; x0,R) (4.4)

for a constantC′ > 0 independent ofBR, v.
Indeed, for any two pointsx ∈ 3

4BR andy ∈ Bc
R, sinced(x, y) ≥ R

4 andd(x0, x) ≤ 3
4R, it follows

by using (1.3) and the triangle inequality that

V(x0,d(x0, y))
V(x,d(x, y))

≤
V(x0,d(x0, x) + d(x, y))

V(x,d(x, y))
≤ Cμ

(
d(x0, x) + d(x0, x) + d(x, y)

d(x, y)

)d2
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= Cμ

(

1+
2d(x0, x)
d(x, y)

)d2

≤ Cμ


1+

2 ∙ 3
4R

1
4R




d2

= Cμ7
d2, (4.5)

whilst by using (1.5),

w(x0,d(x0, y))
w(x,d(x, y))

≤
w(x0,d(x0, x) + d(x, y))

w(x,d(x, y))
≤ C2

(
d(x0, x) + d(x, y)

d(x, y)

)β2

= C2

(

1+
d(x0, x)
d(x, y)

)β2
≤ C2


1+

3
4R
1
4R




β2

= C24β2. (4.6)

Therefore, by (4.3), (4.5), (4.6)

T 3
4 BR,BR

(v) = esup
x∈ 3

4 BR

∫

Bc
R

|v(y)|J(x,dy) ≤ esup
x∈ 3

4 BR

∫

Bc
R

C|v(y)|
V(x,d(x, y))w(x,d(x, y))

μ(dy)

≤
∫

Bc
R

C(Cμ7d2)(C24β2)|v(y)|

V(x0,d(x0, y))w(x0,d(x0, y))
μ(dy) = C′Tailw(v; x0,R),

thus showing (4.4).
The inequality (4.4) says that the tail of a functionv defined in this paper is slightly weaker

than that defined in [13], and therefore, so is the weak elliptic Harnack inequality introduced in
Definition1.6.

Proposition 4.2. If u ∈ F ′ ∩ L∞ andλ > 0, thenln(u+ + λ) ∈ F ′ ∩ L∞.

Proof. For s ∈ R, we define
F(s) = ln(s+ + λ).

Sinceu ∈ L∞, we see thatF(u) ∈ L∞. For anys1, s2 ∈ R, we assume (s1)+ ≥ (s2)+ without loss of
generality. Then

|F(s1) − F(s2)| = ln

(

1+
(s1)+ − (s2)+

(s2)+ + λ

)

≤
(s1)+ − (s2)+

(s2)+ + λ
≤
|s1 − s2|
λ

by using the elementary inequality

ln(1+ x) ≤ x for anyx ≥ 0.

Thus,F is Lipschitz onR. Therefore, by [21] (see also [20, Proposition A.2 in Appendix] for a
purely jump Dirichlet form), we conclude that

F(u) ∈ F ′,

thus showing that
F(u) = ln(u+ + λ) ∈ F ′ ∩ L∞.

The proof is complete. �

The following will be used shortly.

Proposition 4.3. (see[20, Lemma 3.7]) Let a function u∈ F ′ ∩ L∞ be non-negative in an open
set B⊂ M andφ ∈ F ′ ∩ L∞ be such thatφ = 0 in Bc. Letλ > 0 and set uλ := u+ λ. Then we have
φ2u−1
λ ∈ F (B) and

E(J)
(
u, φ2u−1

λ

)
≤ −

1
2

"

B×B
(φ2(x) ∧ φ2(y))

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy)

+3E(J)(φ, φ) − 2
"

B×Bc
uλ(y)

φ2(x)
uλ(x)

J(dx,dy).

We show the followingcrossover lemma.
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Lemma 4.4(the crossover lemma). Assume that conditions(VD), (Cap≤) and (PI) are satisfied.
Let u ∈ F ′ ∩ L∞ be f -superharmonic and non-negative in a ball BR := B(x0,R) with radius less
than R. If

λ ≥ w(BR)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
, (4.7)

then we have
(?

Br

up
λdμ

)1/p (?

Br

u−p
λ dμ

)1/p

≤ C where uλ = u+ λ (4.8)

for any Br := B(x0, r) with 0 < r ≤ R
16(4κ+1), where C> 0, p ∈ (0,1) are two constants independent

of BR, r,u, f , and the constantκ ≥ 1 comes from condition(PI).

Proof. The proof is motivated by [36, Section 4] and [7, Proposition 5.7] for diffusions. The key
is to show that the logarithm function lnuλ is a BMO function (cf. Definition8.1 in Appendix).
Our result covers both a diffusion and a jump process.

Let B := B(z, r) be an arbitrary ball contained in 3
4(4κ+1)BR. Without loss of generality, we may

assume that

r ≤ 2 ∙
3

4(4κ + 1)
R=

3
2(4κ + 1)

R< R, (4.9)

see for example [9, Remark 3.16]. Then

2κB ⊂
3
4

BR = B(x0,
3
4

R), (4.10)

since by the triangle inequality, for any pointx ∈ 2κB = B(z,2κr),

d(x, x0) ≤ d(x, z) + d(z, x0) < 2κr +
3

4(4κ + 1)
R

≤ 2κ ∙
3

2(4κ + 1)
R+

3
4(4κ + 1)

R=
3
4

R.

Let u ∈ F ′ ∩ L∞ be f -superharmonic and non-negative inBR. Applying Proposition4.1with B
replaced by 2κB, we have

T 3
2κB,2κB

(u−) ≤ T 3
4 BR,BR

(u−). (4.11)

Let λ be a number satisfying (4.7). Without loss of generality, we assume that

w(BR)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
> 0 (thusλ > 0).

Otherwise, we considerλ + ε for someε > 0 and then letε→ 0. We shall show that

ln uλ ⊂ BMO

(
3

4(4κ + 1)
BR

)

. (4.12)

Indeed, note that ln(u+ + λ) ∈ F ′ ∩ L∞ by using Proposition4.2. Applying condition (PI) to the
function ln(u+ + λ), we have by (1.11) that

∫

B

(
ln(u+ + λ) − (ln(u+ + λ))B

)2dμ

≤ Cw(B)

{∫

κB
dΓ(L)〈ln(u+ + λ)〉 +

"

(κB)×(κB)

(
ln(u+(x) + λ) − ln(u+(y) + λ)

)2J(dx,dy)

}

= Cw(B)

{∫

κB
dΓ(L)〈ln uλ〉 +

"

(κB)×(κB)

(
ln

uλ(x)
uλ(y)

)2
J(dx,dy)

}

, (4.13)

where we have used the fact thatu ≥ 0 (thusu+ = u) in BR ⊃ κB.
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We estimate the right-hand side of (4.13). Indeed, using condition (Cap≤) to the two concentric
balls (κB, 3

2κB), we have by (1.3), (1.5)

E(φ, φ) ≤ C
μ
(

3
2κB

)

w
(

3
2κB

) ≤ C′
μ(B)
w(B)

(4.14)

for someφ ∈ cutoff
(
κB, 3

2κB
)
.

On the other hand, using the Leibniz and chain rules ofdΓ(L)〈∙〉, we see that
∫
φ2dΓ(L)〈ln uλ〉 = −

∫
φ2dΓ(L)〈uλ,u

−1
λ 〉

= −
∫

dΓ(L)〈uλ, φ
2u−1
λ 〉 + 2

∫
φu−1
λ dΓ(L)〈uλ, φ〉

= −E(L)(uλ, φ
2u−1
λ ) + 2

∫
φu−1
λ dΓ(L)〈uλ, φ〉. (4.15)

By the Cauchy-Schwarz inequality,

2
∫
φu−1
λ dΓ(L)〈uλ, φ〉 = 2

∫
φdΓ(L)〈ln uλ, φ〉 ≤

1
2

∫
φ2dΓ(L)〈ln uλ〉 + 2

∫
dΓ(L)〈φ〉

=
1
2

∫
φ2dΓ(L)〈ln uλ〉 + 2E(L)(φ, φ), (4.16)

from which, it follows by (4.15) that
∫
φ2dΓ(L)〈ln uλ〉 ≤ −2E(L)(uλ, φ

2u−1
λ ) + 4E(L)(φ, φ). (4.17)

We estimate the first term on the right-hand side.
Indeed, sinceφ = 0 in

(
3
2κB

)c
⊃ (2κB)c, using Proposition4.3 with B being replaced by 2κB,

we obtain that 0≤ φ2u−1
λ ∈ F (2κB), and

E(J)(u, φ2u−1
λ ) ≤ −

1
2

"

(2κB)×(2κB)
(φ2(x) ∧ φ2(y))

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy)

+3E(J)(φ, φ) − 2
"

(2κB)×(2κB)c
uλ(y)

φ2(x)
uλ(x)

J(dx,dy). (4.18)

Noting thatE(uλ, φ2u−1
λ ) ≥ ( f , φ2u−1

λ ) sinceu is f -superharmonic inBR ⊃ 2κB, we see by (1.6),
(4.18) that

−E(L)(uλ, φ
2u−1
λ ) = −E(uλ, φ

2u−1
λ ) + E(J)(uλ, φ

2u−1
λ )

≤ −( f , φ2u−1
λ ) + E(J)(uλ, φ

2u−1
λ )

≤ −( f , φ2u−1
λ ) −

1
2

"

(2κB)×(2κB)
(φ2(x) ∧ φ2(y))

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy)

+ 3E(J)(φ, φ) − 2
"

(2κB)×(2κB)c
uλ(y)

φ2(x)
uλ(x)

J(dx,dy). (4.19)

Sinceφ = 1 in κB, we have

−
"

(2κB)×(2κB)
(φ2(x) ∧ φ2(y))

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy) ≤ −

"

(κB)×(κB)

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy), (4.20)

whilst, sinceφ = 0 in (3
2κB)c and 0≤ φ ≤ 1 in M,

−
"

(2κB)×(2κB)c
uλ(y)

φ2(x)
uλ(x)

J(dx,dy) = −
"

( 3
2κB)×(2κB)c

uλ(y)
φ2(x)
uλ(x)

J(dx,dy)
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≤
"

( 3
2κB)×(2κB)c

u−(y)
1

uλ(x)
J(dx,dy)

≤
1
λ

∫

( 3
2κB)





esup
x∈( 3

2κB)

∫

(2κB)c
u−(y)J(x,dy)




μ(dx)

=
1
λ
μ

(
3
2
κB

)

T 3
2κB,2κB

(u−)

≤
1
λ

Cμ

(
3
2
κ

)d2

μ(B)T 3
4 BR,BR

(u−), (4.21)

where in the last inequality we have used condition (VD) and inequality (4.11). From this, condi-
tion (4.7), and using the fact thatw(BR)

w(B) ≥ C1 by (1.5), (4.9), we obtain

−
"

(2κB)×(2κB)c
uλ(y)

φ2(x)
uλ(x)

J(dx,dy) ≤
1
λ

Cμ

(
3
2
κ

)d2

μ(B)T 3
4 BR,BR

(u−)

≤
1

w(BR)T 3
4 BR,BR

(u−)
Cμ

(
3
2
κ

)d2

μ(B)T 3
4 BR,BR

(u−)

= Cμ

(
3
2
κ

)d2 μ(B)
w(BR)

≤ C
μ(B)
w(B)

. (4.22)

Therefore, plugging (4.20) and (4.22) into (4.19), we obtain

−E(L)(uλ, φ
2u−1
λ ) ≤ −( f , φ2u−1

λ )−
1
2

"

(κB)×(κB)

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy)+3E(J)(φ, φ)+2C

μ(B)
w(B)

. (4.23)

Plugging (4.23), (4.14) into (4.17), it follows that
∫
φ2dΓ(L)〈ln uλ〉 ≤ −2E(L)(uλ, φ

2u−1
λ ) + 4E(L)(φ, φ)

≤ −2( f , φ2u−1
λ ) −

"

(κB)×(κB)

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy) + 6E(J)(φ, φ)

+4C
μ(B)
w(B)

+ 4E(L)(φ, φ)

≤ −2( f , φ2u−1
λ ) −

"

(κB)×(κB)

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy) + C′

μ(B)
w(B)

,

from which, using the fact thatφ = 1 in κB, we have
∫

κB
dΓ(L)〈ln uλ〉 +

"

(κB)×(κB)

∣∣∣∣ ln
uλ(y)
uλ(x)

∣∣∣∣
2
J(dx,dy) ≤ −2( f , φ2u−1

λ ) + C′
μ(B)
w(B)

. (4.24)

Since

−2( f , φ2u−1
λ ) = −2

∫

3
2κB

fφ2u−1
λ dμ ≤ 2

∫

3
2κB
| f |u−1

λ dμ

≤ 2
∫

3
2κB

|| f ||L∞(BR)

λ
dμ ≤

2μ(3
2κB)

w(BR)
(by using (4.7))

≤ C
μ(B)
w(B)

(by condition (VD) and (1.5)),

we have by plugging (4.24) into (4.13),
∫

B

(
ln uλ − (ln uλ)B

)2dμ ≤ Cw(B) ∙
(
− 2( f , φ2u−1

λ ) + C′
μ(B)
w(B)

)
≤ Cμ(B),
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which yields that, using the Cauchy-Schwarz inequality,
(∫

B
|ln uλ − (ln uλ)B| dμ

)2

≤ μ(B)

(∫

B

(
ln uλ − (ln uλ)B

)2dμ

)

≤ C′′μ(B)2,

that is, ?

B
|ln uλ − (ln uλ)B| dμ ≤ C3 (4.25)

for all ballsB in 3
4(4κ+1)BR and allλ satisfying (4.7), whereC3 is a universal constant independent

of BR, B, λ and the functionsu, f , thus proving (4.12).
Applying Corollary8.3 in Appendix with function lnuλ andB0 = 3

4(4κ+1)BR, we have
{?

B
exp

( c2

2b
ln uλ

)
dμ

}{?

B
exp

(
−

c2

2b
ln uλ

)
dμ

}

≤ (1+ c1)2

for any ballB satisfies 12B ⊆ 3
4(4κ+1)BR and any

b ≥ || ln uλ||BMO
(

3
4(4κ+1) BR

). (4.26)

In particular, for anyBr := B(x0, r) with 0 < r ≤ R
16(4κ+1) so that 12Br ⊆ 3

4(4κ+1)BR and for any
numberb satisfying (4.26),

{?

Br

exp
( c2

2b
ln uλ

)
dμ

}{?

Br

exp
(
−

c2

2b
ln uλ

)
dμ

}

≤ (1+ c1)2. (4.27)

Finally, choosingb = c2
2 +C3 so that (4.26) is satisfied and lettingp := c2

2b ∈ (0,1), we conclude
from (4.27) that

{?

Br

exp(p ln uλ) dμ

}{?

Br

exp(−p ln uλ) dμ

}

≤ (1+ c1)2,

thus showing (4.8). The proof is complete. �

We are now in a position to prove Theorem1.8.

Proof of Theorem1.8. We need to show the implication (1.20). Indeed, by Lemma3.5, condition
(LG) is true. LetBR := B(x0,R) be a metric ball inM with 0 < R< σR, where constantσ comes
from condition (LG). LetBr := B(x0, r) with

0 < r ≤ δR whereδ :=
1

32(4κ + 1)
(4.28)

andκ is the same constant as in condition (PI). Letu ∈ F ′ ∩ L∞ be a function that is non-negative,
f -superharmonic inBR. We need to show that

(
1
μ(Br )

∫

Br

updμ

)1/p

≤ C

(

einf
Br

u+ w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

(4.29)

for some universal numbersp ∈ (0,1) andC ≥ 1, both of which are independent ofBR, r,u, f .
To do this, letλ be a number determined by

λ = w(BR)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
. (4.30)

We claim that for anyr ∈ (0, δR]
(?

Br

up
λdμ

)1/p

≤ C einf
Br

uλ with uλ = u+ λ (4.31)

for some constantC independent ofBR, r, u, f .
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Indeed, by Lemma4.4, there exist two positive constantsp ∈ (0,1) andc′, independent of
BR, r,u, f , such that

(?

Br

up
λdμ

)1/p (?

Br

u−p
λ dμ

)1/p

≤ c′ (4.32)

for any 0< r ≤ 2δR. Let s = p/θ, whereθ = 1
ν with constantν coming from condition (FK).

Without loss of generality, assumeθ ≥ 1. Thuss ∈ (0,1). Let

b := w(Br )
(
T 3

2 Br ,2Br

(
(uλ)−

)
+ || f ||L∞(Br )

)
.

Define the functiong by

g(a) = as(1+
2b
a

) for anya ∈ (0,+∞). (4.33)

Using the facts that (uλ)− ≤ u− in M and 2Br ⊂ 3
4BR, we have, by Proposition4.1 with B being

replaced by 2Br , that

b = w(Br )
(
T 3

2 Br ,2Br

(
(uλ)−

)
+ || f ||L∞(Br )

)
≤ w(Br )

(
T 3

4(2Br ),2Br
(u−) + || f ||L∞(Br )

)

≤ w(BR)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
= λ. (4.34)

Clearly, for anya > λ,

μ(Br ∩ {uλ < a})
μ(Br )

=
μ(Br ∩ {u

−p
λ > a−p})

μ(Br )
≤ ap

?

Br

u−p
λ dμ. (4.35)

Note thatuλ ∈ F ′ ∩ L∞ is f -superharmonic, non-negative in 2Br ⊂ BR. To look at whether the
hypotheses in condition (LG) are satisfied or not, we consider two cases.

Case 1. Assume that there exists a numbera (> λ) such that

ε02−(2+CL)θ
(

1+
2b
a

)−θ
= ε02−(2+CL)θ



1+

2w(Br )
(
T 3

2 Br ,2Br

(
(uλ)−

)
+ || f ||L∞(Br )

)

a




−θ

= ap
?

Br

u−p
λ dμ, (4.36)

that is,
(
g(a)

)1/s
= a

(

1+
2b
a

)1/s

= ε
1/p
1

(?

Br

u−p
λ dμ

)−1/p

, (4.37)

where the constantCL comes from condition (LG) andε1 := ε02−(2+CL)θ. In this case, by using
(4.35) and (4.36), we have

μ(Br ∩ {uλ < a})
μ(Br )

≤ ap
?

Br

u−p
λ dμ = ε02−(2+CL)θ



1+

2w(Br )
(
T 3

2 Br ,2Br

(
(uλ)−

)
+ || f ||L∞(Br )

)

a




−θ

≤ ε02−(2+CL)θ



1+

2w(Br )
(
T 7

8 Br ,Br

(
(uλ)−

)
+ || f ||L∞(Br )

)

a




−θ

= ε0(1− 1/2)2θ(1− 1/2)CLθ



1+

w(Br )
(
T 3+1/2

4 Br ,Br

(
(uλ)−

)
+ || f ||L∞(Br )

)

1
2a




−θ

,
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sinceT 7
8 Br ,Br

(
(uλ)−

)
≤ T 3

2 Br ,2Br

(
(uλ)−

)
by noting thatuλ is non-negative in 2Br . Therefore, we see

that the assumption (3.5), with B being replaced byBr andu replaced byuλ, is true. Thus, all the
hypothesis in condition LG(ε, δ) are satisfied withε = δ = 1/2. Therefore, it follows that

einf
1
2 Br

uλ ≥
1
2

a =
1
2

(

1+
2b
a

)−1/s

ε
1/p
1

(?

Br

u−p
λ dμ

)−1/p

(using (4.37))

≥
1
2

(

1+
2b
a

)−1/s

ε
1/p
1 c′−1

(?

Br

up
λdμ

)1/p

(using (4.32))

≥
1
2

3−1/sε
1/p
1 c′−1

(?

Br

up
λdμ

)1/p

(using (4.34) anda > λ),

which gives that
(?

Br

up
λdμ

)1/p

≤ 2c′ε−1/p
1 31/s einf

1
2 Br

uλ.

Thus, the inequality (4.31) is true in this case.
Case 2.Assume that (4.37) is not satisfied for anya ∈ (λ,+∞). In this case, noting that

lim
a→+∞

g(a) = +∞

andg is continuous on (0,+∞), we have that

(
g(a)

)1/s > ε1/p1

(?

Br

u−p
λ dμ

)−1/p

, (4.38)

for anya ∈ (λ,+∞).
If λ = 0, thenb = 0 by (4.34). By definition (4.33), we haveg(a) = as for anya > 0. From this

and using (4.38), it follows that

ε
1/p
1

(?

Br

u−p
λ dμ

)−1/p

< g(a)1/s = a for anya ∈ (0,+∞).

Lettinga→ 0, we have
(>

Br
u−p
λ dμ

)−1/p
= 0, which gives that

(?

Br

up
λdμ

)1/p

= 0

by using (4.32), thus showing (4.31).
In the sequel, we assume thatλ > 0. Sinceg is continuous on (0,+∞), we have from (4.38) by

lettinga↘ λ that

(
g(λ)

)1/s ≥ ε1/p1

(?

Br

u−p
λ dμ

)−1/p

,

from which, we see by using (4.34)

31/sλ ≥ λ

(

1+
2b
λ

)1/s

=
(
g(λ)

)1/s ≥ ε1/p1

(?

Br

u−p
λ dμ

)−1/p

. (4.39)

Thus, we have
(?

Br

up
λdμ

)1/p

≤ c′
(?

Br

u−p
λ dμ

)−1/p

(using (4.32))

≤ c′ε−1/p
1 31/sλ (using (4.39)). (4.40)
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Therefore, combining Case 1 and Case 2, we always have

(?

Br

up
λdμ

)1/p

≤ C(λ + einf
1
2 Br

uλ) ≤ 2C einf
1
2 Br

uλ (4.41)

for any 0< r ≤ 2δR.
On the other hand, by condition (VD),

?

Br

up
λdμ ≥

1
μ(Br )

∫

1
2 Br

up
λdμ ≥

1

Cμμ
(

1
2Br

)
∫

1
2 Br

up
λdμ, (4.42)

from which, it follows by (4.41) that




?

1
2 Br

up
λdμ



1/p

≤ C′ einf
1
2 Br

uλ

for 0 < r ≤ 2δR, thus proving our claim (4.31) by renamingr/2 by r, as desired.
Therefore, we obtain by (4.31)

(
1
μ(Br )

∫

Br

updμ

)1/p

≤

(
1
μ(Br )

∫

Br

up
λdμ

)1/p

≤ C′ einf
Br

uλ

= C′
(

einf
Br

u+ w(BR)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

(4.43)

for 0 < r ≤ δR.
Finally, we show that the termw(BR) on the right-hand side of (4.43) can be replaced by a

smaller onew(Br ) for any 0< r ≤ δR, by adjusting the value of constantC′.
Indeed, fix a numberr in (0, δR). Let i ≥ 1 be an integer such that, settingrk = δkR for any

k ≥ 0,

ri+1 = δi+1R≤ r < δiR= ri . (4.44)

By Proposition4.1, we see that

T 3
4 Bri−1 ,Bri−1

(u−) ≤ T 3
4 BR,BR

(u−). (4.45)

By (1.5) and (4.44),

w(Bri−1) =
w(x0, δ

i−1R)
w(x0, r)

w(x0, r) ≤ C2

(
δi−1R

r

)β2
w(Br ) ≤ C2δ

−2β2w(Br ). (4.46)

Sinceu is f -superharmonic inBri−1, applying (4.43) with R being replaced byri−1 and then
using (4.45), (4.46), we conclude that

(
1
μ(Br )

∫

Br

updμ

)1/p

≤ C′
(

einf
Br

u+ w(Bri−1)
(
T 3

4 Bri−1 ,Bri−1
(u−) + || f ||L∞(Bri−1)

))

= C′
(

einf
Br

u+ C2δ
−2β2w(Br )

(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

≤ C

(

einf
Br

u+ w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

,

thus showing that condition (wEH) holds. The proof is complete. �
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5. Other equivalent characterizations

In this section, we prove Theorem1.9. Denote by

ωB(A) :=
μ(A∩ B)
μ(B)

, (5.1)

theoccupation measureof the setA in B.
The following version of the weak elliptic Harnack inequality was introduced in [13, Proposi-

tion 3.6] whenf ≡ 0, and we label it by condition (wEH1).

Definition 5.1 (condition (wEH1)). We say that condition(wEH1)holds if there exist two univer-
sal constantsσ ∈ (0,1) andδ1 ∈ (0,1/4) such that, for any two concentric balls BR := B(x0,R) ⊃
B(x0, r) =: Br with R∈ (0, σR), r ∈ (0, δ1R), any function f∈ L∞(BR), any numberη1 ∈ (0,1] and
for any function u∈ F ′ ∩ L∞ which is non-negative, f -superharmonic in BR, if for some a> 0,

ωBr ({u ≥ a}) =
μ(Br ∩ {u ≥ a})
μ(Br )

≥ η1,

then

einf
B4r

u > ε1a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
, (5.2)

whereε1 = ε1(η1) ∈ (0,1) depends only onη1 (independent of x0, r,R, f ,u,a).

We show that condition (wEH) defined in Definition1.6 is equivalent to condition (wEH1).

Proposition 5.2. Assume that(E,F ) is a Dirichlet form in L2(M, μ). If condition(VD) holds, then

(wEH)⇔ (wEH1).

Proof. The proof was essentially given in [13, Proof of Theorem 3.1 and Remark 3.9] wherein the
jump kernel is assumed to exist andf ≡ 0. For the reader’s convenience, we sketch the proof. We
mention that the jump kernel here may not exist.

We first show (wEH)⇒ (wEH1).
Assume that condition (wEH) holds. Letu ∈ F ′ ∩ L∞ be non-negative,f -superharmonic in a ball
BR(x0) with R ∈ (0, σR). Let η1 be any number in (0,1] and r any number in (0, δR/4), where
constantδ is the same as in condition (wEH). Assume that

ωBr ({u ≥ a}) ≥ η1 (5.3)

for somea > 0. We will show that condition (wEH1) holds withδ1 = δ4 and

ε1(η1) =
(
C24β2CH

)−1


η1

C2
μ



1/p

, (5.4)

where constantsC2, β2 are the same as in (1.5) andCH , p the same as in condition (wEH), while
the numberCμ comes from (1.2). It suffices to show (5.2).

Indeed, we have by (1.16), with r replaced by 4r, that
(?

B4r

updμ

)1/p

≤ CH

(

einf
B4r

u+ w(x0,4r)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

. (5.5)

Sinceμ(B4r ) ≤ C2
μμ(Br ) by condition (VD), we have by (5.3)

(?

B4r

updμ

)1/p

≥




1

C2
μμ(Br )

∫

Br

updμ



1/p

≥




1

C2
μμ(Br )

∫

Br∩{u≥a}
apdμ



1/p

= a



ωBr ({u ≥ a})

C2
μ



1/p

≥



η1

C2
μ



1/p

a. (5.6)
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By the second inequality in (1.5),

w(Br ) =
w(x0, r)
w(x0,4r)

w(x0,4r) ≥
1

C24β2
w(x0,4r). (5.7)

Therefore, plugging (5.6) and (5.7) into (5.5), we obtain


η1

C2
μ



1/p

a ≤

(?

B4r

updμ

)1/p

≤ CH

(

einf
B4r

u+ w(x0,4r)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

≤ CH

(

einf
B4r

u+ C24β2w(x0, r)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

≤ C24β2CH

(

einf
B4r

u+ w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

,

which gives that

einf
B4r

u ≥
(
C24β2CH

)−1


η1

C2
μ



1/p

a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

= ε1a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
,

thus showing (5.2) with ε1 given by (5.4). Hence, condition (wEH1) holds.
We show the opposite implication (wEH1)⇒ (wEH).

We will use the Krylov-Safonov covering lemma on the doubling space as follows, see for example
[13, Lemma 3.8] or [26, Lemma 7.2]. Suppose that condition (VD) holds. Letr be a number in
(0,R/5) andE ⊂ Br (x0) a measurable set. For any numberη ∈ (0,1), we define

[E]η =
⋃

0<ρ<r

{

B5ρ(x) ∩ Br (x0) : x ∈ Br (x0) and
μ(E ∩ B5ρ(x))

μ(Bρ(x))
> η

}

.

Then either
[E]η = Br (x0)

or

μ([E]η) ≥
1
η
μ(E).

Assume that condition (wEH1) holds. We show (wEH).
To do this, letη be any fixed number in (0,1). Letσ ∈ (0,1) andδ1 ∈ (0,1/4) be the constants

coming from condition (wEH1). LetBR := B(x0,R) be any metric ball with 0< R< σRandr any
number in (0, δ110R]. Let u ∈ F ′ ∩ L∞ be any function that is non-negative,f -superharmonic inBR.
We define

Ai
t :=

{
x ∈ Br (x0) : u(x) > tεi −

T
1− ε

}

for anyt > 0 andi ≥ 0, where constantε ∈ (0,1) will be determined later andT is given by

T = C2w(x0,5r)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
(5.8)

with constantC2 as in (1.5).
Obviously, we haveAi−1

t ⊂ Ai
t for any i ≥ 1. Let x be any point inBr (x0) andρ be any number

in (0, r). If
B5ρ(x) ∩ Br (x0) ⊂ [Ai−1

t ]η, (5.9)

which is equivalent to the fact thatμ(Ai−1
t ∩ B5ρ(x)) > ημ(Bρ(x)) by the definition of [Ai−1

t ]η, then

μ(Ai−1
t ∩ B5ρ(x)) > ημ(Bρ(x)) ≥ C−3

μ ημ(B5ρ(x)),
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sinceμ(Bρ(x)) ≥ C−3
μ μ(B5ρ(x)) by using condition (VD). Letε := ε1(C−3

μ η). SinceB(x, R
2) ⊂

B(x0,R), the functionu is non-negative,f -superharmonic inB(x, R
2). Noting that 5ρ < 5r ≤

5δ110R= δ1
R
2 and

μ
(
B5ρ(x) ∩ {u ≥ tεi−1 − T

1−ε }
)

μ(B5ρ(x))
≥
μ
(
B5ρ(x) ∩ Ai−1

t

)

μ(B5ρ(x))
≥ C−3

μ η,

we apply condition (wEH1) on two concentric ballsB(x, R
2), B(x,5ρ) for η1 = C−3

μ η and for those
t > 0 such that

a := tεi−1 −
T

1− ε
> 0.

It follows that, using the fact thatw(x,5ρ) < w(x,5r) ≤ C2w(x0,5r) by (1.5),

einf
B20ρ(x)

u > ε
(
tεi−1 −

T
1− ε

)
− w(x,5ρ)

(
T 3

4 B(x,R2 ),B(x,R2 )(u−) + || f ||L∞(B(x,R2 ))

)

≥ ε
(
tεi−1 −

T
1− ε

)
−C2w(x0,5r)

(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

= ε
(
tεi−1 −

T
1− ε

)
− T = tεi −

T
1− ε

, (5.10)

where we have used the fact that

T 3
4 B(x,R2 ),B(x,R2 )(u−) ≤ T 3

4 BR,BR
(u−)

by Proposition4.1 sinceB(x, R
2) ⊂ 3

4BR = B(x0,
3
4R) for any x in Br (x0). Clearly, the inequality

(5.10) also holds for thoset whentεi−1 − T
1−ε ≤ 0, and hence, it is true for anyt > 0, provided that

(5.9) is satisfied.
Therefore, for any ballB5ρ(x) satisfying (5.9), we haveB5ρ(x)∩Br (x0) ⊂ Ai

t, which implies that

[Ai−1
t ]η ⊂ Ai

t for anyt > 0 and anyi ≥ 1.

By the Krylov-Safonov covering lemma withE = Ai−1
t , we must have that for anyt > 0 and any

i ≥ 1, eitherAi−1
t = Br (x0) (thusAi

t = Br (x0)) or

1
η
μ(Ai−1

t ) ≤ μ([Ai−1
t ]η) ≤ μ(A

i
t). (5.11)

We choose an integerj ≥ 1 such that

η j <
μ(A0

t )

μ(Br (x0))
≤ η j−1.

Suppose thatAj−1
t , Br (x0). Using the fact thatAi−1

t ⊂ Ai
t, we haveAk

t , Br (x0) for all 0 ≤ k ≤
j − 1. Hence, we obtain from (5.11) that

μ(Aj−1
t ) ≥

1
η
μ(Aj−2

t ) ≥ ∙ ∙ ∙ ≥
1
η j−1
μ(A0

t ) ≥ ημ(Br (x0)).

Sinceη ∈ (0,1), this inequality holds trivially whenAj−1
t = Br (x0). Therefore, using condition

(wEH1) again, we have

einf
B4r (x0)

u > ε1(η)
(
tε j−1 −

T
1− ε

)
− w(Br )

(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

≥ ε1(η)
(
tε j−1 −

T
1− ε

)
− T ≥ ε1(η)tε j−1 −

ε1(η) + 1
1− ε

T

≥ ε1(η)t

(
μ(A0

t )

μ(Br (x0))

) 1
γ

−
ε1(η) + 1

1− ε
T,
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whereγ = logε η. From this, it follows that, for anyt > 0 and anyr ∈ (0, δ110R],

μ(A0
t )

μ(Br (x0))
≤

c3

tγ

(

einf
B4r (x0)

u+
T

1− ε

)γ

for some positive constantc3 depending only onη (for example,c3 =
ε1(η)+1
ε1(η) ).

Therefore, for any 0< p < γ and anya > 0,
?

Br (x0)
updμ = p

∫ ∞

0
tp−1μ(Br (x0) ∩ {u > t})

μ(Br (x0))
dt ≤ p

∫ ∞

0
tp−1 μ(A

0
t )

μ(Br (x0))
dt

≤ p

[∫ a

0
tp−1dt+ c3

(

einf
B4r (x0)

u+
T

1− ε

)γ ∫ ∞

a
tp−1−γdt

]

≤ c4(p, η, ε)

[

ap +

(

einf
B4r (x0)

u+
T

1− ε

)γ
ap−γ

]

.

By choosinga such that

a = einf
B4r (x0)

u+
T

1− ε
,

we conclude by using (5.8), (1.5) that for any 0< r ≤ δ110R
?

Br (x0)
updμ ≤ 2c4(p, η, ε)

(

einf
B4r (x0)

u+
T

1− ε

)p

≤ 2c4(p, η, ε)




einf
B4r (x0)

u+

C2
25β2w(Br )

(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

1− ε




p

≤ c5(p, η, ε)

(

einf
Br (x0)

u+ w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))p

,

thus showing that condition (wEH) holds withδ := δ1
10. The proof is complete. �

We introduce condition (wEH2) (cf. [24, Lemma 7.2] for the local Dirichlet form).

Definition 5.3 (condition (wEH2)). We say that condition(wEH2) holds if there exist three uni-
versal constantsσ, δ2 in (0,1) and C> 0 such that, for any two concentric balls BR := B(x0,R) ⊃
B(x0, r) =: Br with R∈ (0, σR), r ∈ (0, δ2R), any number a> 0, any function f∈ L∞(BR), and for
any u∈ F ′ ∩ L∞ which is non-negative, f -superharmonic in BR, we have

einf
Br

u ≥ aexp

(

−
C

ωBr ({u ≥ a})

)

− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
. (5.12)

We remark that the constantsσ, δ2,C are all independent of BR, Br ,a, f and u.

Remark 5.4. Let a> 0. If
ωBr ({u ≥ a}) = 0,

then (5.12) is trivially satisfied since u≥ 0 in Br . On the other hand, if

ωBr ({u ≥ a}) = 1,

then (5.12) is also trivially satisfied since u≥ a in Br . Thus, in order to show (5.12), it suffices to
consider the case0 < ωBr ({u ≥ a}) < 1 only.

We have the following.

Proposition 5.5. Let (E,F ) be a Dirichlet form in L2. Then

(wEH)⇒ (wEH2).
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Proof. Assume that condition (wEH) holds with four constantsp, δ, σ in (0,1) andCH ≥ 1. Fix a
ball BR := B(x0,R) with R ∈ (0, σR) and fix another concentric ballBr := B(x0, r) with 0 < r ≤ δR.
Let u ∈ F ′ ∩ L∞ be non-negative,f -superharmonic inBR. Then

(
1
μ(Br )

∫

Br

updμ

)1/p

≤ CH

(

einf
Br

u+ w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

))

. (5.13)

In order to show condition (wEH2), we shall prove that (5.12) holds with

δ2 = δ and C := ln CH + 1/p. (5.14)

To see this, leta be any positive number. By Remark5.4, we may assume

0 < ωBr ({u ≥ a}) < 1.

Note that, using the elementary inequality lnx ≥ 1− 1
x for any 0< x ≤ 1,

(
1
μ(Br )

∫

Br

updμ

)1/p

≥

(
1
μ(Br )

∫

Br∩{u≥a}
apdμ

)1/p

=
(
apωBr ({u ≥ a})

)1/p

= aexp

(
1
p

lnωBr ({u ≥ a})

)

≥ aexp

(
1
p

(

1−
1

ωBr ({u ≥ a})

))

≥ aexp

(

−
1/p

ωBr ({u ≥ a})

)

= aexp

(

−
C − ln CH

ωBr ({u ≥ a})

)

= aexp

(
ln CH

ωBr ({u ≥ a})

)

∙ exp

(

−
C

ωBr ({u ≥ a})

)

≥ aCH exp

(

−
C

ωBr ({u ≥ a})

)

(sinceωBr ({u ≥ a}) ≤ 1). (5.15)

Plugging (5.15) into (5.13) and then dividing byCH on the both sides, we conclude that

aexp

(

−
C

ωBr ({u ≥ a})

)

≤ einf
Br

u+ w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
,

thus showing that (5.12) holds with constantsδ2,C chosen as in (5.14). The proof is complete. �

We introduce condition (wEH3).

Definition 5.6 (condition (wEH3)). We say that condition(wEH3)holds if there exist two univer-
sal constantsσ, δ3 in (0,1) such that, for any two concentric balls BR := B(x0,R) ⊃ B(x0, r) =:
Br with R ∈ (0, σR), r ∈ (0, δ3R], any numberη3 ∈ (0,1], any function f∈ L∞(BR), and for any
u ∈ F ′ ∩ L∞ which is non-negative, f -superharmonic in BR, if for some a> 0,

ωBr ({u ≥ a}) =
μ(Br ∩ {u ≥ a})
μ(Br )

≥ η3

and

w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
≤ F(η3)a

for a map F: (0,1] 7−→ (0,1], then we have

einf
Br

u ≥ F(η3)a. (5.16)

We show condition (wEH2) alone implies condition (wEH3) for any Dirichlet form inL2.

Proposition 5.7. Let (E,F ) be a Dirichlet form in L2, then

(wEH2)⇒ (wEH3).
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Proof. Assume that condition (wEH2) holds with constantsσ, δ2,C. We shall show that condition
(wEH3) holds with the sameσ and withδ3, F being given by

δ3 = δ2 and F(η3) =
1
2

exp

(

−
C
η3

)

. (5.17)

To see this, fix a ballBR := B(x0,R) with R ∈ (0, σR) and fix another concentric ballBr :=
B(x0, r) with 0 < r ≤ δ2R. Let η3 ∈ (0,1] andr ∈ (0, δ2R] be any two numbers. Letu ∈ F ′ ∩ L∞

be any function that is non-negative,f -superharmonic inBR. If for somea > 0,

ωBr ({u ≥ a}) ≥ η3
and if

w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
≤ F(η3)a =

1
2

exp

(

−
C
η3

)

a,

then by condition (wEH2),

einf
Br

u ≥ aexp

(

−
C

ωBr ({u ≥ a})

)

− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

≥ aexp

(

−
C
η3

)

−
1
2

exp

(

−
C
η3

)

a =
1
2

exp

(

−
C
η3

)

a = F(η3)a.

This proves that (5.16) is true, and so condition (wEH3) holds. The proof is complete. �

The following shows that condition (wEH3) implies condition (wEH1).

Proposition 5.8. Let (E,F ) be a Dirichlet form in L2. If condition(VD) holds, then

(wEH3)⇒ (wEH1).

Proof. Assume that condition (wEH3) holds with constantsσ, δ3 in (0,1) and a mapF : (0,1]→
(0,1]. We show that condition (wEH1) holds with the sameσ and with constants

δ1 =
δ3
8

and ε1 := ε1(η1) =
F(η1/C

3
μ)

C28β2
, (5.18)

so thatδ1 ∈ (0, 1
4) andε1 = ε1(η1) ∈ (0,1), where constantsCμ is the same as in (1.2) andC2, β2

same as in (1.5).
To see this, fix two concentric ballsBR := B(x0,R) ⊃ B(x0, r) =: Br with R ∈ (0, σR), r ∈

(0, δ1R]. Let η1 ∈ (0,1] be any fixed number. Letu ∈ F ′ ∩ L∞ be any function that is non-
negative,f -superharmonic inBR. Suppose that for somea > 0,

ωBr ({u ≥ a}) ≥ η1. (5.19)

We need to show that (5.2) is satisfied.
Indeed, sincer ≤ δ1R= δ3R/8 so that

B8r
δ3
⊆ BR, (5.20)

the functionu is non-negative andf -superharmonic inB8r
δ3

. By (5.19) and condition (VD)

ωδ3B 8r
δ3

(u ≥ a) = ωB8r ({u ≥ a}) =
μ(B8r ∩ {u ≥ a})
μ(B8r )

≥
μ(Br ∩ {u ≥ a})
μ(B8r )

=
ωBr ({u ≥ a})μ(Br )

μ(B8r )
≥
η1μ(Br )
μ(B8r )

≥
η1

C3
μ

:= η3. (5.21)

We distinguish two cases.
Case1 when

w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
≤ ε1a =

F(η1/C
3
μ)

C28β2
a. (5.22)
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In this case, we have

w(δ3B8r
δ3

)

(

T 3
4 B 8r
δ3
,B 8r
δ3

(u−) + || f ||L∞(B 8r
δ3

)

)

= w(B8r )

(

TB 6r
δ3

,B 8r
δ3

(u−) + || f ||L∞(B 8r
δ3

)

)

≤ w(B8r )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

≤ C28β2w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

≤ F(η1/C
3
μ)a = F(η3)a,

where in the first inequality we have used the fact

TB 6r
δ3

,B 8r
δ3

(u−) ≤ T 3
4 BR,BR

(u−)

sinceB6r
δ3
⊆ 3

4BR andu is non-negative inBR, whilst in the second inequality we have used the fact

that

w(B8r )
w(Br )

=
w(x0,8r)
w(x0, r)

≤ C2

(
8r
r

)β2
= C28β2

by virtue of (1.5). Therefore, applying (wEH3) withBR being replaced byB8r
δ3

, we obtain

einf
B4r

u ≥ F(η3)a. (5.23)

Noting that

ε1 =
F(η1/C

3
μ)

C28β2
< F(η1/C

3
μ) = F(η3), (5.24)

we see that

F(η3)a ≥ F(η3)a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)

> ε1a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
. (5.25)

Plugging (5.25) into (5.23), it follows that

einf
B4r

u ≥ F(η3)a > ε1a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
,

thus showing that (5.2) is true in this case.
Case2 when

w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
> ε1a.

In this case, we immediately see that

einf
B4r

u ≥ 0 > ε1a− w(Br )
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
,

thus showing that (5.2) is true again.
Therefore, we always have that (5.2) holds, no matter theCase1 happens or not. This proves

condition (wEH1). The proof is complete. �

The following another version of the weak elliptic Harnack inequality was essentially intro-
duced in [20, Lemma 4.5] whenf ≡ 0, and the jump kernelJ exists and satisfies the upper and
lower bounds.
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Definition 5.9 (condition (wEH4)). We say that condition(wEH4) holds if there exist three uni-
versal constantsσ, ε4, δ4 in (0,1) such that, for any ball BR := B(x0,R) with R ∈ (0, σR), any
function f ∈ L∞(BR), and for any u∈ F ′ ∩ L∞ which is non-negative and f -superharmonic in BR,
if for some a> 0,

ωδ4BR({u ≥ a}) =
μ(δ4BR∩ {u ≥ a})
μ(δ4BR)

≥
1
2

and

w(δ4BR)
(
T 3

4 BR,BR
(u−) + || f ||L∞(BR)

)
≤ ε4a,

then
einf

1
2(δ4BR)

u ≥ ε4a. (5.26)

Proposition 5.10. Let (E,F ) be a Dirichlet form in L2, then

(wEH3)⇒ (wEH4).

Proof. In fact, condition (wEH4) is a special case of condition (wEH3) withη3 = 1
2, ε4 = F(1/2)

andδ4 = δ3. The proof is complete. �

We are now in a position to prove Theorem1.9.

Proof of Theorem1.9. We have the following conclusions:

(wEH) ⇔ (wEH1) (Proposition5.2),

(wEH) ⇒ (wEH2) (Proposition5.5),

⇒ (wEH3) (Proposition5.7),

⇒ (wEH1) (Proposition5.8),

thus showing that the equivalences in (1.26) are all true.
Finally, the implication (wEH3)⇒ (wEH4) in (1.27) follows immediately by Proposition5.10.

The proof of Theorem1.9 is complete. �

6. Consequences of weak Harnack inequality

In this section, we look at two consequences of the weak Harnack inequality. One is that we
obtain the Ḧolder continuity of any harmonic function if conditions (wEH) and (TJ) hold for
any regular Dirichlet form without killing part, see Lemma6.2 below. The Ḧolder continuity of
harmonic functions was investigated in various settings, see for example [40, Theorem 5.3] for
a certain class of integro-differential equations inRn (see also [18, Theorem 1.7] inRn under
a weaker assumption), and [13, Theorem 2.1] for a pure-jump Dirichlet form. Here we have
extended this conclusion to a more general situation where the jump kernel does not necessarily
exist. Although the proof is standard, we sketch the proof for completeness of this paper.

The other consequence of the weak Harnack inequality is that we can obtain a Lemma of growth
for any globally non-negative, superharmonic function (Lemma6.4below), which leads to a lower
bound of the mean exit time on a ball (Lemma6.3below). The lower bound of the mean exit time
plays an important role in obtaining the heat kernel estimate.

Recall that for an open subsetΩ of M, a functionu ∈ F is harmonicin Ω if for any non-negative
ϕ ∈ F (Ω),

E(u, ϕ) = 0.

For any ballB ⊆ M and any functionu ∈ L∞(B, μ), we define

eosc
B

u := esup
B

u− einf
B

u.
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Lemma 6.1. Let (E,F ) be a regular Dirichlet form in L2(M, μ) without killing part. If conditions
(wEH) and(TJ)hold, then there exist two constantsβ ∈ (0,1) and C> 0 such that, for any x0 ∈ M,
0 < r < σR and any harmonic function u in B(x0, r),

eosc
B(x0,ρ)

u ≤ C||u||L∞
(
ρ

r

)β
, 0 < ρ ≤ r. (6.1)

We remark that constants C, β are independentof R,u, x0, r, ρ.

Proof. Fix a ballB (x0, r) for 0 < r < σR. Set

Bρ := B (x0, ρ) for anyρ > 0.

Let u be a harmonic function inBr . Without loss of generality, we assume that||u||L∞(M) < ∞. Let

M0 := ||u||L∞ , m0 := einf
M

u, K := M0 −m0

so that 0≤ K ≤ 2‖u‖L∞ .
We will construct two sequences{mn}n≥0, {Mn}n≥0 of positive numbers such that for eachn,

mn−1 ≤ mn ≤ Mn ≤ Mn−1 and Mn −mn = Kθ−nβ,

mn ≤ u(x) ≤ Mn for anyx ∈ Brθ−n, (6.2)

whereθ, β are two constants to be determined so that

θ ≥ δ−1, β ∈ (0,1), and
2− λ

2
θβ ≤ 1, (6.3)

whereλ := (21+1/pCH)−1 ∈ (0,1) andp, δ ∈ (0,1) andCH ≥ 1 come from condition (wEH). Once
this is true, then we are done by noting that (6.1) follows, since for any 0< ρ < r, there is some
integer j ≥ 0 such that

θ− j−1 ≤
ρ

r
< θ− j ,

from which, we see by (6.2) that

eosc
Bρ

u ≤ eosc
Brθ− j

u ≤ Mj −mj = Kθ− jβ ≤ 2θβ‖u‖L∞
(
ρ

r

)β
.

We will show (6.2) inductively. Indeed, assume that there exists an integerk ≥ 1 such that (6.2)
holds for anyn ≤ k − 1. We need to constructmk,Mk such that (6.2) still holds forn = k and for
θ, β satisfying (6.3).

To do this, set for anyx ∈ M

v(x) =
(
u(x) −

Mk−1 + mk−1

2

) 2θ(k−1)β

K
. (6.4)

Clearly, we have by (6.2) for n = k− 1 that

|v(x)| ≤
Mk−1 −mk−1

2
2θ(k−1)β

K
=

Kθ−(k−1)β

2
2θ(k−1)β

K
= 1 (6.5)

for almost allx ∈ Brθ−(k−1).
Note that for any pointy ∈ B(x0, rθ−(k−1))c, there is some integerj ≥ 1 such that

rθ−k+ j ≤ d (y, x0) < rθ−k+ j+1.

For simplicity, setM−n = M0 andm−n = m0 for anyn ≥ 1. By (6.2), for anyy ∈ B(x0, rθ−(k− j−1)) \
B(x0, rθ−(k− j)) ( j ≥ 1),

K

2θ(k−1)β
v(y) = u(y) −

Mk−1 + mk−1

2
≤ Mk− j−1 −

Mk−1 + mk−1

2

= Mk− j−1 −mk− j−1 + mk− j−1 −
Mk−1 + mk−1

2
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≤ Mk− j−1 −mk− j−1 −
Mk−1 −mk−1

2

≤ Kθ−(k− j−1)β −
K
2
θ−(k−1)β,

from which, it follows that

v(y) ≤ 2θ jβ − 1 ≤ 2

(
d (y, x0)

rθ−k

)β
− 1 for anyy ∈ B(x0, rθ

−(k−1))c. (6.6)

On the other hand, we similarly have that, for anyy ∈ B(x0, rθ−(k− j−1)) \ B(x0, rθ−(k− j)) ( j ≥ 1),

K

2θ(k−1)β
v(y) = u(y) −

Mk−1 + mk−1

2
≥ mk− j−1 −

Mk−1 + mk−1

2

= mk− j−1 − Mk− j−1 + Mk− j−1 −
Mk−1 + mk−1

2

≥ −
(
Mk− j−1 −mk− j−1

)
+

Mk−1 −mk−1

2

≥ −Kθ−(k− j−1)β +
K
2
θ−(k−1)β,

which gives that

v(y) ≥ 1− 2θ jβ ≥ 1− 2

(
d (y, x0)

rθ−k

)β
for anyy ∈ B(x0, rθ

−(k−1))c. (6.7)

We distinguish two cases: either

μ(Brθ−k ∩ {v ≤ 0}) ≥ μ(Brθ−k)/2, (6.8)

or
μ(Brθ−k ∩ {v > 0}) ≥ μ(Brθ−k)/2. (6.9)

If (6.8) holds, we will show that for almost everyz ∈ Brθ−k

v(z) ≤ 1− λ. (6.10)

Temporally assume that (6.10) holds true. Then by (6.4), we see that for any pointz ∈ Brθ−k,

u(z) =
K

2θ(k−1)β
v(z) +

Mk−1 + mk−1

2
≤

K(1− λ)

2θ(k−1)β
+

Mk−1 + mk−1

2

=
K(1− λ)

2
θ−(k−1)β +

Mk−1 −mk−1

2
+ mk−1

=
K(1− λ)

2
θ−(k−1)β +

K
2
θ−(k−1)β + mk−1 (using (6.2))

=
(2− λ)θβ

2
Kθ−kβ + mk−1 ≤ Kθ−kβ + mk−1,

where in the last inequality we have used the fact that2−λ
2 θ
β ≤ 1 in (6.3). Therefore, setting

mk = mk−1 and Mk = mk + Kθ−kβ ≤ Mk−1,

we obtain thatmk ≤ u(z) ≤ Mk for a.ez ∈ Brθ−k, thus showing that (6.2) holds whenn = k, which
finishes the induction step fromn ≤ k− 1 ton = k in the case when (6.8) holds.

We turn to show (6.10). Indeed, considerh := 1 − v. Clearly, the functionh is harmonic in
Brθ−(k−1) and also is non-negative inBrθ−(k−1) by using (6.5). Applying (wEH) to the functionh in
Brθ−(k−1) and f = 0, we find that




?

Brθ−k

hpdu




1/p

≤ CH

(

einf
Brθ−k

h+ w
(
x0, rθ

−k
)
T 3

4 Brθ−(k−1) ,Brθ−(k−1)
(h−)

)

, (6.11)
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where we have used the fact thatθ−1 ≤ δ so thatrθ−k ≤ δ ∙ rθ−(k−1). Note that by (6.8),



?

Brθ−k

hpdu




1/p

≥




1

μ
(
Brθ−k

)
∫

Brθ−k∩{v≤0}
(1− v)pdu




1/p

≥



μ(Brθ−k ∩ {v ≤ 0})

μ
(
Brθ−k

)




1/p

≥ 2−1/p. (6.12)

Also note that by (6.6),

h−(y) = (1− v(y))− = (v(y) − 1)+ ≤ 2




(
d (y, x0)

rθ−k

)β
− 1




for anyy ∈ B(x0, rθ−(k−1))c = Bc
rθ−(k−1). From this, we have by condition (TJ)

T 3
4 Brθ−(k−1) ,Brθ−(k−1)

(h−) = sup
x∈ 3

4 Brθ−(k−1)

∫

Bc
rθ−(k−1)

h−(y)J(x,dy)

≤ 2 sup
x∈ 3

4 Brθ−(k−1)

∫

Bc
rθ−(k−1)




(
d (y, x0)

rθ−k

)β
− 1


 J(x,dy)

= 2 sup
x∈ 3

4 Brθ−(k−1)

∞∑

j=1

∫

Brθ−k+ j+1\Brθ−k+ j




(
d (y, x0)

rθ−k

)β
− 1


 J(x,dy)

≤ 2
∞∑

j=1

sup
x∈ 3

4 Brθ−(k−1)

∫

Brθ−k+ j+1\Brθ−k+ j

(
θ( j+1)β − 1

)
J(x,dy)

≤ 2
∞∑

j=1

(
θ( j+1)β − 1

)
sup

x∈ 3
4 Brθ−(k−1)

∫

Bc
rθ−k+ j

J(x,dy)

≤ 2
∞∑

j=1

(
θ( j+1)β − 1

)
sup

x∈ 3
4 Brθ−(k−1)

∫

B(x,rθ−k+ j/4)c
J(x,dy)

≤ 2C
∞∑

j=1

(
θ( j+1)β − 1

)
sup

x∈ 3
4 Brθ−(k−1)

1

w(x, rθ−k+ j/4)
, (6.13)

whereC > 0 is the same constant as in (1.13). Since

w(x, rθ−k+ j/4)

w(x0, rθ−k)
≥

w(x, rθ−k+ j)

C24β2w(x0, rθ−k)
≥

C1θ
jβ1

C24β2

for anyx ∈ 3
4Brθ−(k−1) by using (1.5), it follows from (6.13) that

w
(
x0, rθ

−k
)
T 3

4 Brθ−(k−1) ,Brθ−(k−1)
(h−) ≤

2CC24β2

C1

∞∑

j=1

θ( j+1)β − 1

θ jβ1
. (6.14)

Therefore, substituting (6.12), (6.14) into (6.11), we obtain

einf
Brθ−k

h ≥
(
CH21/p

)−1
− w

(
x0, rθ

−k
)
T 3

4 Brθ−(k−1) ,Brθ−(k−1)
(h−)

≥
(
CH21/p

)−1
−

2CC24β2

C1

∞∑

j=1

θ( j+1)β − 1

θ jβ1
. (6.15)
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Sinceθ−1 ≤ δ, we see that for anyβ ∈
(
0, β1/2

)

∞∑

j=l+1

θ− jβ1
(
θ( j+1)β − 1

)
≤

∞∑

j=l+1

θ− jβ1θ( j+1)β1/2 =
θ−lβ1/2

1− θ−β1/2
≤
δlβ1/2

1− δβ1/2
≤

(
8CC24β2

C1
CH21/p

)−1

,

provided that the numberl is sufficiently large, which depends only onδ but is independent ofβ, θ.
For such a numberl, we now chooseβ ∈

(
0, β1/2

)
to be so small that

l∑

j=1

θ− jβ1
(
θ( j+1)β − 1

)
≤ θ−β1

l∑

j=1

(
θ( j+1)β − 1

)
≤ lθ−β1

(
θ(l+1)β − 1

)

≤ lδβ1
(
θ(l+1)β − 1

)
≤

(
8CC24β2

C1
CH21/p

)−1

.

It follows that
∞∑

j=1

θ( j+1)β − 1

θ jβ1
=

l∑

j=1

θ− jβ1
(
θ( j+1)β − 1

)
+

∞∑

j=l+1

θ− jβ1
(
θ( j+1)β − 1

)
≤ 2

(
8CC24β2

C1
CH21/p

)−1

,

from which, we see by (6.15) that

einf
Brθ−k

h ≥
(
CH21/p

)−1
−

2CC24β2

C1
∙ 2

(
8CC24β2

C1
CH21/p

)−1

=
(
2CH21/p

)−1
= λ.

Therefore,v ≤ 1− λ in Brθ−k, thus showing (6.10) when (6.8) is satisfied, as desired.
It remains to consider the case when (6.9) is satisfied. We need to show

v ≥ −1+ λ in Brθ−k. (6.16)

Indeed, consider the functionh = 1 + v. Similar to the argument above, settingMk = Mk−1 and
mk = Mk − Kθ−kβ, one can obtain (6.16). The proof is complete. �

From the above, we immediately get the Hölder continuity of harmonic functions.

Lemma 6.2. Let (E,F ) be a regular Dirichlet form in L2 without killing part. If conditions(wEH)
and (TJ) hold, then there exist three constants C> 0, θ ∈ (0,1] andε ∈ (0,1) such that, for any
ball B (x0, r) with r < σR and for any globally bounded function u, which is harmonic in B(x0, r),

|u(x) − u(y)| ≤ C

(
d(x, y)

r

)θ
‖u‖L∞ . (6.17)

for almost every points x, y ∈ B (x0, εr).

Proof. Let the functionu ∈ L∞ be harmonic inB (x0, r) with r < σR. By Lemma6.1,

eosc
B(x0,ρ)

u ≤ C||u||L∞
(
ρ

r

)β
, 0 < ρ ≤ r. (6.18)

We show that (6.17) holds forθ = β, ε = 1/4.
Indeed, letx be any pointx in B(x0, r/4), the functionu is harmonic inB(x, 3

4r) ⊆ B(x0, r). Let
y be a point inB(x0, r/4). Applying (6.18) with x0 replaced byx, r by 3

4r and withρ = 3
2d(x, y),

we obtain

|u(x) − u(y)| ≤ eosc
B(x, 32d(x,y))

u ≤ C||u||L∞
(
3d(x, y)/2

3r/4

)β
= C2β

(
d(x, y)

r

)β
||u||L∞ ,

thus showing (6.17). The proof is complete. �
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Another consequence of the weak elliptic Harnack inequality is that it implies a lower bound of
the mean exit time on a ball, as we will see below.

Recall that the operatorLΩ is the generator of the Dirichlet form (E,F (Ω)) for any non-empty
open subsetΩ of M. For a ballB ⊂ M, let the functionEB be a weak solution of the Poisson-type
equation−LBu = 1 in B, that is

E(EB, ϕ) = (1, ϕ) for any 0≤ ϕ ∈ F (B). (6.19)

We say thatcondition(E≥) holds if there exist three constantsC > 0 andσ, δ in (0,1) such that,
for all ballsB ⊂ M with radius less thanσR,

einf
x∈δB

EB(x) ≥ Cw(B). (6.20)

We say thatcondition(E≤) holds if there exist two constantsC > 0 andσ in (0,1) such that, for
all ballsB ⊂ M with radius less thanσR,

||EB||L∞ ≤ Cw(B). (6.21)

Lemma 6.3. Let (E,F ) be a regular Dirichlet form in L2. Then

(VD) + (Cap≤) + (FK) + (wEH)⇒ (E≥) + (E≤). (6.22)

Proof. Note that by [24, Theorem 9.4 p.1542]

(FK)⇒ (E≤), (6.23)

(observing that we only use condition (FK) at this stage).
It remains to show the implication

(VD) + (Cap≤) + (FK) + (wEH)⇒ (E≥). (6.24)

Let δ be the same constant as in condition (wEH). Without loss of generality, assume thatδ < 2
3.

Let B := B(x0,R) be a ball inM with R< σR. Let u be the unique weak solution such that

E(u, ϕ) = (1δB, ϕ) for any 0≤ ϕ ∈ F (B). (6.25)

It is known thatu ∈ F (B), u ≥ 0 in M, andu is superharmonic inB, see for example [22, Lemma
5.1]. Applying (1.16) in condition (wEH) on the functionu and the ballB, and with f = 0, r = δR,
and noting thatu− = 0 in M, we obtain

(?

δB
updμ

)1/p

≤ CH einf
δB

u. (6.26)

On the other hand, we have by condition (Cap≤)

E(φ, φ) ≤ C
μ(B)
w(B)

(6.27)

for someφ ∈ cutoff ((2/3)B, B).
Takingϕ = φ in (6.25) and using condition (VD), we see that

E(u, φ) = (1δB, φ) =
∫

δB
φdμ = μ(δB) ≥ C−1

μ δ
d2μ(B). (6.28)

Takingϕ = u in (6.25) and using the Cauchy-Schwarz inequality and (6.27), it follows that

E(u, φ) ≤
√
E(u,u)E(φ, φ) =

√
(1δB,u)

√
E(φ, φ) ≤ C

√∫

δB
udμ

√
μ(B)
w(B)

. (6.29)

Therefore, combining (6.28) and (6.29), we obtain
∫

δB
udμ ≥ Cμ(B)w(B). (6.30)
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Since by (6.23)
||u||L∞ ≤ ||E

B||L∞ ≤ Cw(B),

we conclude by (6.26) that
∫

δB
udμ =

∫

δB
up ∙ u1−pdμ ≤ (Cw(B))1−p

∫

δB
updμ = (Cw(B))1−p μ(δB)

?

δB
updμ

≤ C′w(B)1−pμ(B)(einf
δB

u)p ≤ C′′w(B)1−pμ(B)(einf
δB

EB)p,

thus showing (6.20) by (6.30). The proof is complete. �

Finally, we show that the weak elliptic Harnack inequality also implies a Lemma of growth,
termedcondition(LG0), for anyglobal non-negative superharmonicfunction.

We say thatcondition(LG0) holds if there exist four constantsσ, ε0, η, δ ∈ (0,1) such that, for
any ballB := B(x0,R) with radiusR ∈ (0, σR) and for anyu ∈ F ′ ∩ L∞ that is superharmonic in
B and non-negative globally inM, if

μ(δB∩ {u < a})
μ(δB)

≤ ε0 (6.31)

for somea > 0, then

einf
δB

u ≥ ηa. (6.32)

We remark that the superharmonic functionu in condition (LG0) is required to be non-negative
globally in M, instead of being non-negativelocally in condition (LG) given in Definition3.2.

Lemma 6.4. Let (E,F ) be a regular Dirichlet form in L2. Then

(wEH)⇒ (LG0). (6.33)

Proof. Let u ∈ F ′ ∩ L∞ be superharmonic inB and non-negative globally inM. Assume that
(6.31) holds, namely,

μ(δB∩ {u ≥ a})
μ(δB)

= 1−
μ(δB∩ {u < a})
μ(δB)

≥ 1− ε0.

Sinceu− = 0 in M, we see that
T 3

4 BR,BR
(u−) ≡ 0.

Applying (1.16) with r = δRand f ≡ 0, it follows that

einf
δB

u ≥ C−1
H

(?

δB
updμ

)1/p

≥ C−1
H a

(
μ(δB∩ {u ≥ a})
μ(δB)

)1/p

≥ C−1
H (1− ε0)1/pa,

thus showing that (6.32) is true withη = C−1
H (1− ε0)1/p. The proof is complete. �

Lemma6.3above gives a direct, simpler proof of obtaining a lower bound of the mean exit time
from the weak elliptic Harnack inequality. We remark that this conclusion can also be obtained in
a more indirect way, without recourse to condition (FK). Indeed, the implication

(VD) + (Cap≤) + (LG0)⇒ (E≥)

has been proved in a forthcoming paper [21] for any regular Dirichlet form inL2. Combining this
with (6.33), we have

(VD) + (Cap≤) + (wEH)⇒ (VD) + (Cap≤) + (LG0)⇒ (E≥),

from which, we also obtain condition (E≥) from the weak elliptic Harnack inequality but without
using (FK). We do need condition (FK) in Lemma6.3, not only in deriving condition (E≤) but
also in deriving condition (E≥).
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7. An example

In this section we give an example to illustrate Theorem1.8. We show that the assumptions
(VD), (RVD), (Gcap), (TJ), (PI) are all satisfied so that the weak Harnack inequality holds, but the
jump kernel does not exist. This example is essentially taken from [6, Section 15], see also [21].

Example 7.1 (Ultra-metric space). Let β, α1, α2 be three positive numbers. Let
(
Mi ,di , μi

)
for

i = 1,2 be two ultrametric spaces, where di is an ultra-metric:

di(x, y) ≤ max{di(x, z),di(z, y)} for all x, y, z ∈ Mi ,

and the measureμi is Ahlfors-regular:

C−1rαi ≤ μi (B (xi , r)) ≤ Crαi for all xi ∈ Mi and all r > 0 (7.1)

for some constant C≥ 1. Let Ji be a function on Mi × Mi for i = 1,2 such that forμi -almost all
xi , yi ∈ Mi,

Ji (xi , yi) = di (xi , yi)
−(αi+β) . (7.2)

Consider the product space M:= M1 × M2 equipped with product measureμ := μ1 × μ2 and
the metric

d(x, y) := max{d1 (x1, y1) ,d2 (x2, y2)} for x = (x1, x2) , y = (y1, y2) in M.

Clearly, (M,d, μ) is an ultrametric space and for any point x= (x1, x2) in M, the metric ball
B(x, r) in M can be written as

B(x, r) = B(x1, r) × B(x2, r) for any r> 0. (7.3)

From this, we see that for any point x= (x1, x2) in M and any r> 0,

V(x, r) = μ(B(x, r)) = μ1 (B (x1, r)) μ2 (B (x2, r)) � rα1+α2 = rα, (7.4)

whereα := α1 + α2. For simplicity, let the scaling function w(x, r) be defined by

w(x, r) = a(x)rβ for any point x∈ M and any r> 0,

where a(x) is a measurable function on M with C−1 ≤ a(x) ≤ C for all x ∈ M (C ≥ 1). Clearly,
such a function w satisfies (1.5) and

C−1rβ ≤ w(x, r) ≤ Crβ. (7.5)

Define the measure J onB(M × M) by J(dx,dy) = J(x,dy)μ(dx), where J(x,dy) is a transition
function on M× B(M) given by

J(x,dy) = J1(x1, y1)μ1(dy1)δx2(dy2) + J2(x2, y2)μ2(dy2)δx1(dy1) (7.6)

for any points x= (x1, x2) , y = (y1, y2) in M, whereδb(dx) is the Dirac measure concentrated at
point b. By (7.4) and (7.6), we have for any r> 0 and any point x= (x1, x2) ∈ M,

∫

B(x,r)c
J(x,dy) =

∫

B(x,r)c

(
J1(x1, y1)μ1(dy1)δx2(dy2) + J2(x2, y2)μ2(dy2)δx1(dy1)

)

=

∫

B(x1,r)c
J1(x1, y1)μ1(dy1) +

∫

B(x2,r)c
J2(x2, y2)μ2(dy2)

≤
C

rβ
+

C

rβ
=

2C

rβ
≤

C′

w(x, r)
(using (7.1), (7.2) and (7.5)), (7.7)

which is exactly condition(TJ).
Let (E,F ) be a Dirichlet form in L2 (M, μ) defined by

E(u, v) =
"

M×M
(u (x) − u (y)) (v (x) − v (y)) J (x,dy) μ(dx), u, v ∈ F ,
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where the spaceF is the closure of the set




n∑

i=0

ci1Bi : n ∈ N, ci ∈ R, Bi is a compact ball





under the inner product √
E(∙, ∙) + (∙, ∙)L2(M,μ).

By [6, Theorem 2.2], the form(E,F ) is regular and non-local. By (7.4), the measureμ satisfies
conditions(VD) and(RVD), whilst condition(Gcap)automatically holds since it follows directly
from condition(TJ)and the ultrametric property. Hence, conditions(VD), (RVD), (Gcap), (TJ) in
Theorem1.8are satisfied.

It remains to verify condition(PI). Indeed, let B:= B(x′, r) be a metric ball in M. Writing up
x′ = (x0, y0) with x0 ∈ M1, y0 ∈ M2, we see B= B(x0, r) × B(y0, r) by using (7.3). By (7.6), (7.2)

∫

B

∫

B
(u(x) − u(y))2J(x,dy)μ(dx) =

∫

B

{∫

B(x0,r)

(u(x1, x2) − u(y1, x2))2

d1(x1, y1)α1+β
μ1(dy1)

+

∫

B(y0,r)

(u(x1, x2) − u(x1, y2))2

d2(x2, y2)α2+β
μ2(dy2)

}

μ(dx).

The first integral on the right-hand side is estimated as follows: for any(x1, x2) ∈ B(x0, r)×B(y0, r),
∫

B(x0,r)

(u(x1, x2) − u(y1, x2))2

d1(x1, y1)α1+β
μ1(dy1)

≥
∫

B(x0,r)

(u(x1, x2) − u(y1, x2))2

rα1+β
μ1(dy1)

≥ C−1
∫

B(y0,r)

∫

B(x0,r)

(u(x1, x2) − u(y1, x2))2

rα1+α2+β
μ1(dy1)μ2(dy2) (using (7.1))

= C−1
∫

B

(u(x1, x2) − u(y1, x2))2

rα+β
μ(dy)

by using the fact thatα1 + α2 = α, from which, we have
∫

B

∫

B(x0,r)

(u(x1, x2) − u(y1, x2))2

d1(x1, y1)α1+β
μ1(dy1)μ(dx) ≥ C−1

∫

B

∫

B

(u(x1, x2) − u(y1, x2))2

rα+β
μ(dy)μ(dx).

Similarly, the second integral is estimated by
∫

B

∫

B(y0,r)

(u(x1, x2) − u(x1, y2))2

d2(x2, y2)α2+β
μ2(dy2)μ(dx)

≥ C−1
∫

B

∫

B

(u(x1, x2) − u(x1, y2))2

rα+β
μ(dy)μ(dx)

= C−1
∫

B

∫

B

(u(y1, y2) − u(y1, x2))2

rα+β
μ(dx)μ(dy) (swapping(x1, x2) with (y1, y2)).

Therefore, we conclude from above that, using the elementary inequality a2 + b2 ≥ (a+ b)2/2,
∫

B

∫

B
(u(x) − u(y))2J(x,dy)μ(dx) ≥ C−1

{∫

B

∫

B

(u(x1, x2) − u(y1, x2))2

rα+β
μ(dy)μ(dx)

+

∫

B

∫

B

(u(y1, y2) − u(y1, x2))2

rα+β
μ(dx)μ(dy)

}

≥ C−1
∫

B

∫

B

(u(x1, x2) − u(y1, y2))2

2rα+β
μ(dx)μ(dy)
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≥
C′r−β

μ(B)

∫

B

∫

B
(u(x) − u(y))2μ(dx)μ(dy) (using (7.4))

= 2C′r−β
∫

B
(u− uB)2dμ

≥
C

w(B)

∫

B
(u− uB)2dμ (using (7.5)),

thus showing that condition(PI) with κ = 1 is satisfied.
Therefore, all the hypotheses in Theorem1.8 are satisfied, and the weak elliptic Harnack in-

equality follows. We mention that the jump kernel does not exist by (7.6) in this case.

8. Appendix

In this appendix, we collect some known results that have been cited in this paper. Recall the
John-Nirenberg inequality for BMO functions on a doubling space.

Definition 8.1 (BMO function). For a locally integrable function u on an open setΩ, the seminorm
||u||BMO(Ω) is defined by

||u||BMO(Ω) := sup
B⊂Ω

?

B
|u− uB|dμ,

where the supremum is taken over all the balls contained inΩ. The spaceBMO(Ω) consists of all
locally integrable functions u onΩ such that||u||BMO(Ω) < ∞.

The following was addressed in [1, Theorem 5.2].

Lemma 8.2(John-Nirenberg inequality). Let (M,d, μ) be a metric measure space satisfying con-
dition (VD). If u ∈ BMO(Ω) for a non-empty open subsetΩ of M, then

μ({x ∈ B : |u− uB| > λ}) ≥ c1μ(B) exp

(

−
c2λ

||u||BMO(Ω)

)

for any ball with12B ⊆ Ω and anyλ > 0, where constants c1, c2 are independent of u, λ,Ω and
ball B.

The following is a folklore, see for example [7, Corollary 5.6].

Lemma 8.3. Let(M,d, μ) be a metric measure space satisfying condition(VD). Let B0 := B(x0,R)
be a ball in M. Then for any u∈ BMO(B0)

{?

B
exp

( c2

2b
u
)
dμ

}{?

B
exp

(
−

c2

2b
u
)
dμ

}

≤ (1+ c1)2 (8.1)

for any ball B with12B ⊆ B0 and any b≥ ||u||BMO(B0), where the constants c1, c2 are the same as
in Lemma8.2.

The following has been proved in a forthcoming paper [21].

Proposition 8.4. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Assume that a
function F∈ C2(R) satisfies

F′′ ≥ 0, sup
R
|F′| < ∞, sup

R
F′′ < ∞.

Then for any u, ϕ ∈ F ′ ∩ L∞, both functions F(u), F′(u)ϕ belong to the spaceF ′ ∩ L∞. Moreover,
if further ϕ ≥ 0 in M, then

E(F(u), ϕ) ≤ E(u, F′(u)ϕ). (8.2)

The following is taken from in [32, Lemma 2.12].



WEAK ELLIPTIC HARNACK EQUALITY 47

Lemma 8.5. Let (E,F ) be a Dirichlet form in L2. If each fn ∈ F and

fn
L2

→ f , sup
n
E( fn) < ∞,

then f ∈ F , and there exists a subsequence, still denoted by{ fn}, such that fn
E
⇀ f weakly, that is,

E( fn, ϕ)→ E( f , ϕ)

as n→ ∞ for anyϕ ∈ F . Moreover, we have

E( f ) ≤ lim inf
n→∞

E( fn).
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[40] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana

Univ. Math. J., 55 (2006), pp. 1155–1174.
[41] K.-T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9),

75 (1996), pp. 273–297.

The Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.
E-mail address: hujiaxin@tsinghua.edu.cn

The Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China.
E-mail address: yuzy18@mails.tsinghua.cn


	1. Introduction and main results
	2. Faber-Krahn inequality and Dirichlet heat kernel
	3. A refinement of lemma of growth
	4. Proof of weak elliptic Harnack inequality
	5. Other equivalent characterizations
	6. Consequences of weak Harnack inequality
	7. An example
	8. Appendix
	References

