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AsstrAcT. This paper seeks conditions that ensure that the attractor of a graph directed iterated
function system (GD-IFS) cannot be realised as the attractor of a standard iterated function sys-
tem (IFS). For a strongly connected directed graph, it is known that, if all directed circuits go
through a vertex, then for any GD-IFS of similaritiesRiased on the graph and satisfying the
convex open set condition (COSC), its attractor associated with this vertex is also the attractor of
a (COSC) standard IFS. In this paper we show the following complementary result. If a directed
circuit does not go through a vertex, then there exists a GD-IFS based on the graph such that the
attractor associated with this vertex is not the attractor of any standard IFS of similarities. Indeed,
we give algebraic conditions for such GD-IFS attractors not to be attractors of standard IFSs, and
thus show that ‘almost-all’ COSC GD-IFSs based on the graph have attractors associated with
this vertex that are not the attractors of any COSC standard IFS.
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1. INTRODUCTION

An iterated function systerfiFS) {S;}; is a finite set of distinct contracting maps on a com-
plete metric space which we will assume here taRBg11]. The attractor of the IFS is the
unigue nonempty compact détc R" such that

K = .C]l S(K). (1.1)

If these maps are all contracting similarities, we say that this IFStarsdard IFSand callK
a self-similar set A contracting similarityS(x) on R can be written a$(x) = px + b where
p € (=1,1)\ {0} is thecontraction ratia
Separation conditions for IFSs are often required to ensure ‘not too much overlapping’ in the
union (L.1). A frequent condition is thepen set conditiofOSC), meaning that there exists a
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nonempty open séff C R", such thalU Si(U) ¢ U with this union disjoint. We say that the

IFS satisfies theonvex open set condltlc(ﬁ:OSC) ifU can be chosen to be convex, or we can
(equivalently) takeJ = int(convK) where ‘conv’ denotes the convex hull, ‘int’ denotes the
interior of a set. We say that the IFS satisfies¢bavex strong separation conditig€ SSC) if
we can takéJ = int(convK) such that;(convK) N Sj(convK) = 0 for anyi # |.

We also consider graph-directed IFS2][based on a given digraph. directed graph(or
a digraphfor brevity), G := (V,E), consists of a finite set of verticds and a finite set of
directed edgek (for brevity we often omit ‘directed’) with loops and multiple edges allowed.
Let E,, C E be the set of edges from theitial vertexu to theterminal vertexv. A graph-
directed iterated function syste(@D-IFS) onR" consists of a finite collection of contracting
similarities{Se : e € E,,,} from R{ to R} for u, v € V, whereR] is a copy ofR" associated with
vertexu. We writep,, € (—1, 1)\ {0} for the contraction ratio of the similaritg. in R. We always
require the digraph satisfies thdt> 1 for everyu € V ([12], [4, Section 4.3]), wherd, is the
out-degreeof u (the number of directed edges leavimg For a GD-IFSV, E, (Se)g) based on
such a digraph, there exists a unique list of non-empty compact{etsR}).ev such that, for
alluey,

Fu=U U Se(Fy). (1.2)

veV ecEyy
see [L2] or [4, Theorem 4.3.5 on p.128]. We call the abdig) ., the (list of) attractorsof the
GD-IFS, and eack is called aGD-attractor. A (finite) directed path ge,- - - is a consecutive
sequence of directed edges E (i = 1, - - -, K) for which the terminal vertex o is the initial
vertex ofe ., (i = 1,---,k — 1). For a directed path = e;&, - - - g with edgese (1 < i < k),
the corresponding contractive mapping is giverfy= Sg, 0 S, 0 - - - 0 S, and its contraction
ratio alongeis p, = pe, e, ** * P, -
For a GD-IFS there are analogous separation conditions.opka set conditiofOSC) is

satisfied if there exist non-empty bounded open @¢{sc R}),., , with

U U Se(Uy) cUy (1.3)

VeV ecEyy
and the union is disjoint for eache V. Theconvex open set conditig@OSC) means that these
(Uy),ev can all be chosen to be convex. In one-dimensional case, one can take

(Uwwev = (int(convF,))uev, (1.4)
since conF, c U, for eachu € V (see PropositioB.2in the Appendix). We say that a GD-IFS
satisfies the CSS@@nvex strong separation conditipnf the union

U U Se(convF,) (which belongs to conk,) (1.5)

veV ecEyy

is disjoint for eachu € V.

GD-attractors and GD-IFSs appear naturally in dynamical systems and fractal geometry. For
example, certain complex dynamical systems can be regarded as conformal GD-IFSs using a
Markov partition, see?, Section 5.5]. For another occurrence, the orthogonal projection of
certain self-similar sets may be GD-attracto8s Theorem 1.1]. We will work with COSC
(including CSSC) GD-IFSs defined @based on digraphs wiith, > 2 for every vertexu in V
throughout this paper.

We say that a digraph is strongly connected if, for all vertigese V, there is alirected path
from u to v (we allowu = v). For brevity, we will assume throughout that a strongly connected
digraph always satisfied, > 2 for all u € V. This is because, ifl, = 1 (v € V) thenF, is
just a scaled copy of another GD-attrackqy (w € V \ {v}). ThenF, is self-similar (with the
COSQ) if and only ifF,, is self-similar (with the COSC), since K is the attractor of the IFS
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{piX + bi}i, thenyK + | is the attractor of the IF§;x + by + (1 — pj)l}i (7,1 € R). We can do a
reduction as in%, pp.607] on any strongly connected digraph and associated GD-IFS, to obtain
a subgraph and new GD-IFS with > 2 for all u € V such that each attractor is similar to one

of the original ones.

A natural question arises, “When does a GD-IFS of similarity mappings have attractors which
cannot be realised as attractors of any standard IFS?”. In particular we seek algebraic conditions
involving the parameters underlying the GD-IFS similarities that ensure this is so. Some cases
were examined in an earlier papé& Wwhich showed that, for a class of strongly connected
digraphs, it is possible to construct CSSC GD-IFS®awith attractors that cannot be obtained
from a standard IFS, with or without the CSSC. Another pappuges a dierent argument to
construct CSSC GD-IFSs dawith attractors that cannot be obtained from a standard IFS. This
paper further investigates this issue forsthongly connectedigraphs (or even wider classes
of digraphs).

For a strongly connected digra@ it is known in 2, Lemma 5.1] (see also Theoresm
in the Appendix) that, if all directed circuits i go through a vertexi € V, then for any
(COSC) GD-IFS based 08, its attractorF, is also the attractor of a (COSC) standard IFS.

By way of contrast, we will show that if, for some vertaxe V, not all directed circuits i1

go throughu, then it is possible to define GD-IFSs of similarities satisfying the COSC so that
the corresponding attractéi, is not the attractor of a standard IFS of similarities satisfying
the COSC (Lemma.4). Moreover, this is true for ‘almost all’ choices of similarities in a
natural sense (Theoret8). The proof basically relies on identifying a characteristic of the
‘gap length set’, where we use a shorter systematical algebraic argument ‘ratio analysis’ rather
than the categorising method & [Section 6] which only works for certain classes of digraphs.
In fact we can relax the strong connectivity@in this construction (Lemmad.1) and the ‘ratio
analysis’ method may have further applications to other related problems. We finally apply [
Theorem 1.4] (see also Theorén® in the Appendix) to show immediately that, there exists
GD-IFSs of similarities with the CSSC so that the corresponding attr&gtisrnot the attractor

of a standard IFS.

GD-IFSs considered in this paper anhomogeneoysy which we mean GD-IFSs of con-
tracting similarities with not all contraction ratios equal. We will require the COSC condition,
which is easy to verify from the parameters of a GD-IFS by solving simultaneous linear inequal-
ities. There are diiculties in relaxing this condition to OSC (evenk) where many problems
still remain open even for standard IFSs, such as fifilgeaembedding probleni, Conjecture
1.1] or the inverse fractal problem (determining generatingFSs of a standard IFS attractor)

[9]. The question considered here can be viewed as an inverse-type problem, where we show
certain GD-attractors have no generating standard IFS (with or without the COSC). Previous
results on inhomogeneous self-similar sets also require this condi@e{tion 4] or stronger
conditions such as SSC and restrictions on HauBdiomension [, 6, 10]. Thus one might
expect similar dficulties for inhomogeneous GD-attractors.

This paper is organised as follows. In Sectiymwe first introduce and obtain an expression
for the gap length set of COSC GD-attractors, and we then introduce our algebraic method
‘ratio analysis’, and derive a key lemma (Lemr2®) relating the ratio sets of GD-IFSs and
standard IFSs with the COSC. In Secti®we introduce natural vector sets and construct GD-
IFSs satisfying the COSC or the CSSC. In Sectlove use the GD-IFSs constructed in Section
3 to show that the corresponding GD-attractors are not the attractors of COSC standard IFSs
using both the ‘ratio analysis’ lemmas and the tool develope®)inye provide some examples
to illustrate our assertions.
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2. GAP LENGTH SETS AND RATIO ANALYSIS
2.1. Gap length sets.For a compact séK c R with (convK) \ K # 0, let
(convK) \ K = J U; (2.1)
i
be the unique decomposition of the disjoint non-empty bounded complementary intekvals

(a, b))} (see for examplel3, Chapter 2, Theorem 9]), which will be called tgapsof K
numbered by decreasing length (and left to right for equal length intervals).

Definition 2.1 (Gap length set)Define thegap length sebf a compact sek c R to be
GL(K) := {bi — a};

that is, the set of lengths of all the gapskafIf (convK) \ K = 0, that is, ifK is an interval (or
a singleton), we define GK() := 0.

For each vertexi € V, we arrange the edges leavingdenoted by (k = 1,---,d,) in the
following way. Denote byw(e) the terminal vertex of an edgee E, then the interiors of the
intervalsSe(convF ) are disjoint due to the COSC. We rank these intervals in order from left
to right, and denote thigh interval by

S (convo(q(Jk))) (L<k<dy) (2.2)
with the edges (and also the GD-IFS:}«) arranged according to this order.

Definition 2.2 (Basic gaps) With the above notation, for eaahe Vand 1< k < d, -1
(dy > 2), leta® be the length of the complementary open interval betvﬁﬁ&(uconvo(e&m)) and
S§ (convF,geny) (possiblyad = 0). All such complementary intervals (possibly empty)
are called théasic gapf this ordered COSC GD-IF&SY} sitting at vertexu. Let

Ap={A¥: a9 >0 1<k<d, -1}, (2.3)

be the set of strictly positive lengths of the basic gaps associated with veet&k see Figure
1.

1 2 (3)
Si ) (COI‘]V Fw((,:’n)) S ) (COI‘IV Fw(ff])) S (COI'lV F(u(eff‘))
A Pl
u

conv F, I(d“ =3)
Ficure 1. Basic gaps oF,.

As standard IFSs are one-vertex GD-IFSs, this definition is also applicable to standard IFSs
when we will omit the single vertex.

The GD-attractorsK,).v of any GD-IFS can be determined in the following way, SE2 [
Equation (15)]. For any list of compact setg){.v, we define

11" := U Se(lue) foranym=> 1, (2.4)
ecE]!

whereE] denotes the set of paths of lengttieavingu andw(€) denotes the terminal vertex of
pathe. Note that if

I} c 1, foreachu eV, (2.5)
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then the sequend@ decreases imin the sense thdf™! c I for everym > 1, since

M = U Ssllu@)= U U SeoSe(lu)
BeEM ecBl ecEl
= U Se{ U Se(lw(e))]: U Se(li’(e)) (2.6)
ecED eeEi(e) ecEy
C U Se(lue) =17 &7
ecE]

From this, it is known that for eaalne V,
Fa= (1M, (2.8)
m=1

provided that2.5) is satisfied.
In particular, taking, = convF, for eachu € V, we see thatd.5) is satisfied, since byl(2)
Fuc U U SeconvF,) = I cconf U U Se(Fy)) = convF, = I, (2.9)

VeV ecEyy veV ecEyy

In this case, theZ.8) is true. Moreover, by taking convex hulls iB.9), we know that
convF, C convl} C convconvF, = convF,,

which gives that
convl! = convF, = I, (2.10)

meaning that the two endpoints of the interval cgheoincide with those of the interval
convF, = I,. This fact will be used shortly.

Throughout this paper, the produkB of setsA, B c R is defined to beAB = {ab: a e
A, b € B}, and when we encounter the product of a se&k iand a constant, regard the constant
as a setim. If Ais an empty set theAB s also empty.

The following proposition gives a characterization for the gap length set of an attFaaddr
any COSC GD-IFS, which slightly extends a result3nlpelow equation (5.2) in Section 5] to
the case when a GD-IFS satisfies the COSC.

Proposition 2.3. Let(V, E) be a digraph with d > 2for allu € V, and let F, be a GD-attractor
of a GD-IFS inR with the COSC based diV, E). With the above notation, the gap length set
GL(F,) of the attractor K is given by

GL(FU) =AU (
When there is no directed path from u to v, the{gef} is understood to be empty.

Proof. When GL{E,) = 0, that is,F, = convF,, we have for alm> 1
convF, 2 |J U Se(convF) 2 U U Se(Fy) = Fy = convF,

veV ecEM, VeV ecEfy

(59

U A{lpel : eis a directed path from u to v with Iength})n (2.11)

m=1veV

whereE]}, is a collection of paths from vertaxto vertexv with lengthm. From this and using
the COSC, we see that
Se(convFy) = Se(Fy)
for everyv € V and every directed pathof lengthm from u to v, showing thatA, = 0 for all
v € V to which a directed path from exists. ThusZ.1]) is trivial in this case.
In the sequel, we assume that GL) # 0. Letu € V be a vertex. Sel, := convF, for each

u eV, and @.8) holds true by virtue 0fZ.9). So the gaps of, will be given by
(convFy) \ Fy = lu\(m Iﬂ“):(lu\lﬁ)u(u 1\ IH“), (2.12)
m=1 m=1
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which consists of the complementary open intervalkinll andI\ 1™ (1 < m < o). We
need to calculate the lengths of these open intervals.
Indeed, for the open sét\ I}, we know by definition2.4) that

I, \ 1L = convF, \ U Se(lue) = U G(” (2.13)

whereG{ for 1 < r < d, — 1 form the basic gaps d,, whose lengths form the sat, by using
(2.10 with the property that two intervalg andl! have the same endpoints, see Figlre

On the other hand, for any > 1, due to the COSC, the interiors of the lewelntervals
{Se (lue)}ecem are disjoint for anym. We know by @.6) that

= Y s, (log \ 12) = s (” 1Ggge)) (using @.13).  (2.14)

The above union consists of disjoint complementary open mte&g@s‘ (e)) whose lengths are
given bylp.| - 2"),, which form the gap length sets at timth-level for anym > 1. Summing up

w(e)’

over m will give the double union in the right-hand side &.11), and so 2.11]) follows from
(2.12 and the definition of GLE,). ]

2.2. Ratio analysis. We will use “ratio analysis” to analyse sé®sof positive real numbers in
(0, o), in terms of strictly decreasing geometric sequeriées}>> o that are contained i®.

Definition 2.4. Let® c (0, «). Forg € 0, let
Ro(f) = {r € (0,1) : there exists som# € © such thab € {1}, c O}, (2.15)

the set of common ratios of strictly decreasing geometric sequeneethat containg (the set
Ro(6) may be empty).

This concept arises quite naturally as the characteristic setLontains many geometric
sequences. The following definition will be used in studyiRag ) (0) later on.

Definition 2.5. For a finite sefA = {g}", c (0, ), defineA% (resp.A%, A?) to be the union
of all products_rn[ a" where ()", are non-zero vectors whose entries are nonnegative integers
(resp. nonneg;iltive rationals, rationals). Bét = {1} U A%, that is, the union of all products
_ﬁ a" where (m); are nonnegative integer vectors (including the zero vector). Similafly:
I{:11} U AY andA% = {1} u A%,
We will analyse GLE,) given by @.11) with the following Lemma.
Lemma 2.6.Let A= {a}!, c (0,1)forne Z; :={1,2,---}, and; (j = 1,--- ,m) be positive
real numbers (not necessarily distinct). l@t [nj AjAjwhere A c A% forl< j<m,
(i) Then R(#) c A% for all 6 € . -
(i) If Ap/Aq ¢ A2 for all distinct pg € {1,---,m} when m> 2, then for every strictly

decreasing geometric sequen{(éér"};‘;o C 0, there exists a unique ¢ {1,---, m} such that
{2, c A4A, and

grk¢ ;A forall j #landallk> 0. (2.16)

Condition (i) in Lemma2.6 means that the sets;A}’., are disjoint.
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Proof. (i) Let 8 € ®. Assume thaRp(0) # 0. Letr € Ry(6). By (2.19, there exist®’ € ©

such thaty € {e’r"}‘lj’:o C 0, so by the pigeonhole principle we can find somesuch that

{e’r"};":0 N A A is infinite. Write this infinite subsequence as
n
grie=41a™ (2.17)
i=1

where M), € Z} and{k} c Z, = {0,1,2,---} with k. < ke, fort € Z,.. Applying
Propositiors.1in the Appendix withB = {(m;), }ez, , there exist two distinct vectors(,,)! |
and o), in Z for some two indicep < qin Z,, such that

(Mp)ly < (Mg)ily (2.18)
under the partial order defined by inequality of all coordinates. Therefore, we hagel@y (

n
i AT
i = grf = L = [a™™ (orr = [[ g,
I*p /1| I—[ a]m p i=1 i=1
i=1
Since
Mg — m,p)n Ny
— | €(@Q)
o) =@
using @.18), it follows thatr € A% by definition. Therefore,
Ro(6) c A%

for all 6 € ®, thus proving our assertion)(
(i) Form > 2, suppose that there exist distingtg € {1,---,m} such thaw'rk € A,A, and
0'r) € A4A, for somek, j € Z,. Write

no_ i no
gr¢=2,[1a™ and 6'r’ = 3, T1a" (pix. G €Z,). (2.19)
i=1 i=1
By (i), r € Ro(8") ¢ A% sinced’ € O, and sak-i e A2, It follows that
ﬁ — k=i lE[ a19i~i‘pi~k e ACAQ — AQ,
/lq i=1

leading to a contradiction to our assumption. Thus, there exists a unique ihteggr- - -, m}
such thato'r)> , c AA.

It remains to showZ.16). In fact, if (2.16 were not true, thed'rk € A,A for some integer
k> 0and some # |. Takingp =1, j =k, q=tin (2.19, we would have

ﬁ — ID[ aii_k—Pi,k c AQ,
At =1
leading to a contradiction. The asserti@l© follows. O

The following corollary will be used to describe a certain ‘homogeneity’ property of (the gap
length sets of) attractors of COSC standard IFSs.

Corollary 2.7. Let Xc (0,1) and A c (0, o) be two finite sets. Then
X% € Ry (0) € X%

for everyg € AX%+,
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Proof. Letd € AX?+. SinceX® c X%+,
OXZ  (AXE)XE = A(XEXE) = AXE.
For anyr € X% andk € Z,, we haverk e X%+ and so
or¢ e (AXH) X% = AX*,
thus showing that € Ryxz.(0) by definition @.15 with ® = AX*+, so the first inclusion
follows.

The second inclusion also follows by takidg= X, 1; € A and eachA; = X* in Lemma
2.6(i) (so that® = AX?%). |

As an application of Lemma.6 and Corollary2.7, we derive a key lemma that will be used
to distinguish the attractor of a COSC GD-IFS from that of a COSC standard IFS.

Definition 2.8 (Absolute contraction ratio setlheabsolute contraction ratio setf a GD-IFS
is defined to be the set of the absolute values of the contraction ratios of the similarities, that is
{lodl 1 e € E.

Lemma 2.9. Let (F,).v be the attractors of a COSC GD-IFS based on a digraph wjth @

for all v € V, with absolute contraction ratio set A. Assume that for some u, the set F
not an interval (or a singleton) and is the attractor of some COSC standard IFS with absolute
contraction ratio set X.

(i) Then for alld € GL(F)

X c X% ¢ Rgry)(0) ¢ A% N X%, (2.20)
(i) IfA;UA, = Aand @ N AE = (), then the following dichotomy is trueither
RoL(ry(6) N A" # 0 for all 6 € GL(F,), (2.21)
or )
ReLry (@) N A" =0 forall 6 € GL(F,). (2.22)

The assertionii() of Lemmaz2.9 gives a necessary condition that a COSC GD-attra€fas
also the attractor of some COSC standard IFS in the following way: if there exists two elements
01,0, € GL(F,) such that 2.21) holds for#; whilst (2.22 holds for8,, thenF, is not the
attractor of any COSC standard IFS. This assertion will be used in Lefrbieelow.

Proof. (i) Let A be the set of nonzero basic gap lengths of some COSC standard IFS with the
attractorF,, and letX be the absolute contraction ratio set. Regard this standard IFS as a GD-
IFS based on{y}, {ej};“:l) wheree; are loops of the single vertax all directed paths of length
k>1arenowe,e,: -6 whereij=1,2--- ,mforalll =1,2,--- ,k. By (2.11),

GL(F) = AU( U Aflod : eis a directed path fronato v with lengthm})

m=1
= AUAX% = AXZ,

Note that GLE,) is non-empty by using our assumption tRgtis not an interval or a singleton.
On the other hand, Corollag.7 implies that

X% € Roi(r,)(0) = Raxe: (6) € X% (2.23)

for all 6 € GL(F,). Recall that a directed circuit containings a directed path from to u. We
write the union given by4.11) as

® =GL(F,) = (}LIJ\ A(11}U {lod : eis a directed circuit containing}) )
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U( U U Alpe : eis a directed path from to v}). (2.24)

veV\{u} 1eAy

Since the absolute contraction ratios are alkiigso thatjp,| € A%), it follows from Lemma
2.6(i) thatRs s, (0) ¢ A% for all 6 € GL(F,), which combines withZ.23 to give that

RoL(ry(0) € A% N X%,
leading to the inclusions ir2(20, as desired.
(i) If X " A> # 0, it follows from (2.20) that
XN AF C Roury(6) N A
for all 6 € GL(F,), thus showing thatA.2]) is true.
Now assume thaX n A% = 0. We will show that 2.22) is true.
We first claim thatA%: is the union of two disjoint setd;* and A>*AS*. To see this, as
AY N A" = 0 by assumption, it follows that
AY nAY AT = 0. (2.25)
In fact, if (2.25 were not true, there would exist three elements
Q: Q.+ -
aeAr,beA™, cehA
with a = bc, from which 2 e A and@ = ¢ € AY*. As AY = {1} U AY by definition and
{1} n AY* = 0 due toAS* c (0, 1), we see that

EEA?QASi:({l}UA%*)mASi:({1}mA§i)U(A§?*mA¢§i):®’

a contradiction.
We need to show

A% = AT U AT AT (2.26)
In fact, let
A = (b}, A = (cjly
As A N A, c AY 0 AF = 0, any elemena e A% = (A; U Ay)% can be written as

m n
a= 1‘[1b|p 1‘[10?’ for some p); € QT and @)}, € Q7
i= i=

m *
where not allp;, g; are zero. Thus, if alty; are zero, them = []b” € A?*; otherwisea €
i=1
AT A This proves 2.26 by using @.25.
As XN A" =0 and
" Q; + AQL
Xc A% = AXUATA
by using .20 and @.26), we have
X c AFAT (2.27)
We will show the following inclusion
X% c ABAT (2.28)

SinceX is finite, let
X =X}y A= (BT, Az = ().
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By (2.27), we write foreach = 1,2,--- ,k
m n )
x = []bM [T c" for some i), € QT and @)}, € (@1)".
i1 =1

Then any element € X% can be written as

n k . *
_chjz':lq”'” for some ), € (Q'j) .
J:

k kK {m n \" m ,
X = H X|r| — 1—[ (H bipu 1—[ C(j:lj,l) — H biZ'k:l P
1=1 I=1\i=1 j=1 i=1
Note that the numbe@,k:1 Pl andzl‘zlq“n all belong toQ, . Sincer;, > 0 for somd’ while
gj» > O for thisl” and somg’, we havez,k:1 gjr > O for this j’. Therefore, we obtair2(28).
Finally, by 2.20 and @.28, we have for alb € GL(F,),

Rovry(6) € X% c ATAT,
from which, we easily conclude th&.@2 holds by usingZ.25. O

3. ConstrucTION OF GD-IFS

We will construct COSC (CSSC) GD-IFSs in terms of vector sets in Euclidean spaces, to
analyse the existence and extenthoh-trivial GD-IFSs whose attractors are not attractors of
any (COSC) standard IFS.

For a digraplG = (V,E) withd, > 2fori e V ={1,2,--- , N}, we set

N:=2# —-#V =2(d;+d +---+dy)— N (3.1)
so thatn > N (recall thatd; denotes the number of the edges leaving vaijteRefine the subset
Po in the Euclidean spadk”, with n given in 3.1), by

Po = {x: (Y, ... x(ldl) x(zl) x(2d2) xﬁ) X(SM (11) g(ldl—l) c L ED gﬁw—l))
wherex, X% e (-1,1)\ {0} and&" > 0 for each vertexe V, 1< k < di - 1. (3.2)

Each vectorx in Py consists of two kinds of entries: the entrib&)}ie\ﬁlskgdi all lie in the set
(-1,1) \ {0}, and will specify the contraction ratios of GD-IFSs to be constructed, whilst the
other entriegc®}i.y1<<q_1 are all non-negative, and will specify the basic gap lengths.

For vertexi € V, let{e(k) : 1 < k < di} be the set of edges leavimgwhich are arranged
in some order which will henceforth remain fixed. For a poinbh Py, we look at its entries
xM)icva<keq and define alN x N matrix My(s) for any s > 0 by

My(s) = (Mij(s))lsi’jsN, (3.3)
where
Mi(s) = > X9 (34)
& (KeEj;

if Ejj # 0, andM;;(s) = 0if E;; = 0 (recall thatE;; is the set of (multiple) edges from verteto

vertexj).

Let #, ¢ be two vectors defined by

6 = (b)ev whereb® e R, (3.5)
¢ = (l))iev Wherel; > 0. (3.6)

For each edge (k) (1 < k < d)) leaving vertex € V, we define the mappings associated with a
pointx in Py by

Saw(® = XVt = b5 ) + b = Xl e L0 for avariablet € R, (3.7)



A DICHOTOMY ON THE SELF-SIMILARITY OF GRAPH-DIRECTED ATTRACTORS 11
—1if x® - i
wherel,w o = 1if 5" <0, andlw_q = 0 otherwise, and

b* D = bY 4 1}l + €Y forieVandi<k<d -1, (3.8)

andw(e(k)) denotes the terminal vertex of the edgk) as before.
Note that for any poink € Py, the mappindse ) defined as ing.7) has the contraction ratio
x¥ € (~1,1)\ {0}, therefore it is a contracting similarity, and
F(x,&,¢€) = {Sei(k) ieV,l<k<d} (3.9)

forms a GD-IFS on the digrapiV{e (K)}), thus having a unique list of GD-attractdfs };cy.
For any two vector#, £ as in 8.5), (3.6) and any poink in Py, we define the closed intervals
(which may be singletons) for each veriex V by
I [6®, b + 1], (3.10)
(k) = [BY,6Y + xMl@u] for 1<k <d, (3.11)
whereb®*? for 1 < k < d; - 1 are given by3.9).
We will work with a subseP of Py defined by

di-1
P:={xePo:r,(M(1)) <1 ) &9 >0 forall 1<i <N}, (3.12)
k=1

where the matriM(1) is defined by 3.3) with s = 1, andr,(M) denotes thepectral radiusof

a matrixM, which is the largest absolute value (complex modulus) of the eigenvaliMds of
We show that any point if? will give arise to at least one COSC GD-IFS @Gnin form of

(3.7), whose contraction ratios af&"}.y1<<q and whose attractd¥; at each vertek has the

convex hulll; given by @.10, having the basic gap length§}1.q_1, provided that; satisfies
(3.13 below.

Lemma 3.1(Construction of GD-IFSs)Let G = (V, E) be a digraph with d> 2 fori € V. With
the same notation above, let x be any point in P a8ih2) and# be any vector as i(3.5). Let
(I)iev be a vector of real numbers given by

di-1 T
() = (id = Mx(2))™ [Z ffk)J : (3.13)
eV

k=1

where M denotes the transpose of a matrix M. Then any GDABS4), given by(3.7), (3.9)
and(3.13) and having attractors$F;}icy, satisfies the following properties.

(). For each vertex E V, we havejl> 0 and
convF; = I; = [b6®, b® +1]. (3.14)

(ii). The GD-IFSF(x, #) satisfies the COSC. The basic gaps of attractpfdfi € V are
given by the following open intervals i

(6% + 1 lqq 0y, D)
which are arranged in order from left to right. The corresponding basic gap lengths are
{bi(k”) - (bi(k) + |X|'(k)||w(ei(k))) = é:i(k)} (3.16)

I further all ¢¥ > 0fori € V and1 < k < d; — 1, thenF(x, #) satisfies the CSSC.

(3.15)

1<k<di-1"’

1<k<di-1"
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Proof. Note that
di-1
bi(di) — bi(l) n Z(égl(k) + |X|'(k)||w(a(k)))’ (3.17)
k=1

since, by repeatedly using definitio®.§) of b**?,
di di— di— di—
b® = b+ x4Vl -y + €47
di-2 di-2 di-2 di-1 di-1
= (0972 + XYl a2y + £97?) + XV Py + £4

di-1
1 K K
= b7+ 3" (€% + 1Xllua ).
k=1

Also note that
li >0 foreach €V, (3.18)

since, by using definitior3(12 of P, the matrix (id— My(1)) is invertible and can be written as
(id — My(1)) ™ = id + My(1) + M3(1) + - -+,
(see for exampleld, LemmaB.1, Appendix B]), from which it follows by definitiord. 13 that

dj-1
2, ((d = My, (Z fﬁk)]

jev k=1
dj-1
= ) (id+ Me(1) + M2(D) +---). [Z ggk))
jev =
di-1
> Y950 (3.19)
k=1

by using the fact thaW,(1) is a nonnegative matrix and thaf ' ¢ > 0 by (3.12.
We claim that

b + XVl @@y = b™M + I; for each vertex € V. (3.20)
Indeed, we know by definitiorB(13) that
-1 \'
(id = My(1)(i)y = [Z f?k)) : (3.21)
k=1 iev

from which, by definitions3.3) and (.4),

di-1 N N di
Zfi(k) =li- Z M (Ll =i = Z[ Z |>9'(k)|]'i =li- Z 1% Le ), (3.22)
k=1 j=1 k=1

i=1 \&(KeE;
so that
41 4
li = Z M 4 Z X9l e) fOr €ach vertex e V. (3.23)
k=1 k=1
Combining this with 8.17),
d-1 di di-1
o= D 0 e = D EF + 1X0uew) + XV ey
k=1 k=1 k=1

di di
b - b + XVl e -
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thus showing 3.20). This proves our claim.
We next show that the contracting similarBy, associated with the edggk) satisfies
Sew(lu@w)) = 6, 0% + 1x¥@w] = 1i(K) (3.24)

for each vertex € V and each Xk k < di. This is easily seen by looking at the two endpoints of
intervall ), depending on whethed > 0 or not. Indeed, by definitior8(10) with vertexi
being replaced by vertex(g (k)),

— rp® (1)
Iw(a(k)) - [bw(a(k))’ bw(a(k)) + Iw(a(k))]~

If x¥ > 0, we have by definitiond7) thatSq (b5}, ) = b and

1 K K K K
Se®Bi0n 10y + lue®)) = Xlu@ag + 0% = b + X

w(&(K)>

from which

1 1
[Se (k)(bfu()a(k)))’ Sa(k)(bfu()ei(k)) + o)l
= [0%. 6% + XFla00)]- (3.25)

(|

Sew(lu@®))

thus showing §.24. On the other hand, i < 0, we similarly have thaBq (bl 4 +
loea) = b® and
w(&i(K) |

(K

(1) _ p® K)
Sat@ga) = b7 — % I

NI
lo@ay =B + 1% @),

SO

_ (1) (1)
Sem(lu@m) = [Sar(Bewn) * o)) Saw (O]
K K K
= [bY, b + XVl ],

(|

thus showing .24 again. Thus3.24) is always true.
Since by definition 3.8

K K k+1 K k+1
b + 1% llugegy = b — £ < b,

we know by @.24) that the closed interval$;(k) : 1 < k < d;} are arranged in order from left to
right, which together with3.20 implies that

di X di
Uint() = U (6%, + lleqo)
c (6™, b + XVl ap) = (67,6 +1;) (3.26)

with the disjoint union.

We are now in a position to prove the assertiangi().

(). We will use @.24) and definition 8.13 to derive 8.14). Indeed, recall that the intervals
l; are defined in3.10. Note thatl; > O for eachi € V by (3.18. As in (2.4), for each vertex
i eV welet

IM:= U Se(lug) form=1,2,---, (3.27)
ecE"
whereE" is the set of edges of length leaving vertex, andw(€) is the terminal of patle as
before. We show that for each vertex V
minl™ = b™ = minl;, maxI™=b® +1; = maxl; form=1,2,---, (3.28)

so that the left and right endpoints, respectively, of all the intetydkre the same.
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Indeed, we know by definitiorB(27) that for each verteke V

di
I = Ulse(lw(e)):L_Jlsa(k)(lw(a(k)))

= U[b(k) b + XYl eyl (using @.29),

from which, using the fact thdf® + [x¥l@a < b*? by (3.8), it follows that mini? = b®,
and
maxii = B + XVl = b + |

by using 8.20. Hence, the.28 is true wherm = 1 by definition 8.10 of I;.
Assume inductively that3(28 holds for somem > 1. Since for each vertaxe V

Iirml— U Se(lue) = U Se(w(e))

e’eE””
by using @.6), it follows that
min|™ = min{S(l}g) : e€ EM

= min{Se(lue) : €€ B

= minI™ = b®.
Similarly,

max|™* = maxI™ = b + I;.

Therefore, the3.28 holds for allm > 1 by induction.

Since condition 2.5) holds using that! c I; = [b™,b® + I;], and we know by 2.8) that
Fi=Nm ™ (3.28 gives that,

convF; = conv 1™ = [6%, b + 1],

m=1
showing that 8.14) holds true.
(ii). Applying (3.14) with i replaced by vertexw(g (K)), the terminal of the edge(k),
CONVFue) = luta®) = [Ba gy Diacey + lota]: (3.29)
from which it follows by @3.24) that

Se9(CONVF e )) = Sew(luar) = [BX. b + 1X¥lu@wy] = 1i(K) (3.30)

forl<k<d.
We show thaf(x, #) satisfies the COSC. Taking; = int(convF;), from (3.14)

= int(convF;) = (b™, b™ +1;) = int(l;),

so that each open séf is not empty a$ > 0. It follows that

di di
U U Se(Uj) = U Sat Uuewy) = U Saw (int(lue)
JeV eckEj; k=1 k=1
di di
= kL:Jlint (Sew(lu@m)) = kLleint(h(k)) (using @8.24)
c (B, b +1;) (using B.26)

= U,
with the union disjoint. Thus(x, #) satisfies the COSC.
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For each vertex € V, the basic gaps of the attractérare the complementary open intervals
between the closed interval

Sk (CONVF @) = [B%, 6% + Xl 00] = () (using B.30)
and its neighbour

k k:
Sa(k+1)(C0nVFw(a(k+1))) = [bl( +1), bl( +1) + |X|( w(a(k+l))] = Il(k + 1)

for 1 <k < d - 1. Specifically, they are the following open intervals
(6% + Xl gy, )}

that are arranged in order from left to right, thus showidd.p for each vertex € V.
The basic gap lengths of the attracEgrare the lengths of the open intervals 8115, which
are equal to

1<k<di-1"

b — (b + X o) = & @ <k<d-1)

by using definition 8.8), thus showing3.16).
Finally, if all €9 > 0, thenF(x, #) satisfies the CSSC, since

di di
U U Se(convi) = U Se (COMVFua) = U 1K

veV ecEyy

with the disjoint union, as the intervalgk) andl;(k + 1) are separated by distarﬁ‘@, which
are strictly positive. O

Remark 3.2. Note that any poink belongs taP if

di
”il"é‘x{z |>g.(")|} <1 (3.31)
k=1

This is because

N di

() _ (k)
Fo(My(1)) < rpegX{Z > |} = rpegx{z X |} <1, (3.32)

i=1 e(K)eEj k=1
using the elementary fact that the spectral radius of a nonnegative matrix is no greater than
any row sum, see for exampl&4, Equation (1.9)]. Therefore, everye P, satisfying 8.31)
belongs toP, and all the assertions){ (i) in Lemma3.1 hold true, provided thatlji.y are
chosen as in3.13.

We now look at subsetB, depending on a numbér> 0, which will give rise to a special
class of GD-IFSs, satisfying the CSSC, having attradteyis.y with the property that conV; =
[0, 1], and all the basic gaps & have the same length

Definition 3.3. Let § be a small number such that

O0<od< min{
ieV

T 1} (3.33)

(recall our assumption that the out-degdeat vertexi satisfiesd; > 2 for alli). We define a set
o (6) by
A(6) = {(X(l), e X(ldl)’ Xgl), e X(2d2)’ . XI(\Il)’ e Xf\(le)’ 5,---,0) €R": |X|(k)| >0

3.34
and X[+ + XY =1-(d - sforallieV,1<k< di}. (3-34)
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Let M,(1) be anN x N matrix associated with pointas in 3.3) for s= 1. For eaclx € (9),
the spectral radius of matriM(1) is less than 1, since

di
mex{ Z |xl.(")|} = max{1 - (d; - 15} < 1 (using 8.33) (3.35)
k=1
and hence,
d©6)c P (3.36)
where the seP is as in 8.12. Moreover,
1 (dy — 1)
: 1 (d2— 1)
(id - My(1))] . |:= : (3.37)
1 (dn — 1)6
so that 8.13 is satisfied with
i=1ande¥ =6 forieV;1<k<d -1, (3.38)
this is because for eacle V, by definitions 8.34 and (3.4),
@-10 = 1—(xY+-+ XV (3.39)
1
N N 1
= 1- Z( > |>q-‘k’|) = > (id = Mx(@)); |
i=1 ‘e (KeE;; i=1 :
1
Let {b®}icv1<kea be a family of real numbers given by
b™ =0 and bV = b® + XN+ 6 forieV,1<k<d -1, (3.40)
so that
b* D = XD X+ M+ ks (eVl<k<d-1). (3.41)
Clearly, eactb®™") € (0,1) for 1 < k < d; — 1 by using 8.39.
Let &y, {1 be two vectors defined by
o = (bi(l)’ b(zl)’ . bf\ll)) =(0,0,---,0),
6= (lnlpe Iy = (L1, 1), (3.42)
In this situation, forx € &/(6), the contracting similarities defined i8.7) read
Seto(t) = %t + b = X910 _o foravariablet € R (3.43)

fori € V,1 < k < d, which will give arise to a GD-IFS satisfying the CSSC. This will be used
in Theorem4.10below.

Corollary 3.4. Let G = (V, E) be a digraph with d> 2fori e V ={1,2,--- ,N}. Let¢ satisfy
(3.33). For x e (9), let
F(X) :={Sew 1€V, 1<k<dj}
be a GD-IFS given as i(B.43), with attractors(F)icy. Then the following statements hold.
(i). For each vertex & V, convF; = [0, 1].
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(ii). For each vertex e V,

Se([0,1]) = [0,1x] (3.44)
so that)x™] € F;. The basic gaps of the attractor, Bre given by
(X4 -+ 1+ (k= 20, XKD+ -+ X9+ ko) (3.45)

for everyl < k < d; — 1, so that the basic gap lengths are all equal to the same number,
6 say. Moreover, the GD-IF5(x) satisfies the CSSC.

Proof. Let x € o/(6). Thenx € P by using @¢.36), and condition 8.13 is also satisfied by
(3.37). Thus all the assumptions in Lemr8dl are satisfied. Applying Lemn& 1(i) and using
(3.10 with b™® = 0 andl; = 1,
convF; = [b™, b® +1;] = [0, 1],
thus showingi|.
To show (i), noting thatl ey = [0, 1] andl,ew) = 1, b = 0, we know by 8.24) that
Se([0:1]) = Se@)(lua) = [BP. bY + [XDllu@ay] = [0, 1x]

thus showing .44).
By (3.15), (3.4)), the basic gaps of the attracterare given by

K K k+1 K K k+1
(bl( ) + |Xl( )“w(ei(k))’ bl( * )) = (bl( ) + |Xl( )|, b|( " ))
(X4 -+ X+ (k= 20, XX+ -+ X0+ ko)

for every 1< k < d; — 1, thus showing3.45. From this, it is clear that the basic gap lengths
all are equal to the same number which we éalFinally, F(X) satisfies the CSSC by Lemma
3.4(ii) since allé® = 5 > 0. O

4. CRITERIA FOR GRAPH DIRECTED ATTRACTORS NOT TO BE SELF-SIMILAR SETS

In this section we give some fficient conditions under which GD-attractors cannot be re-
alised as attractors of any standard IFSs with or without the COSC.

For a directed path, let A(L) (resp.A(L°) be the set of the absolute values of the contraction
ratios of the similarities associated with the edgek {(nesp. not inL). Recall the definition of
Ay from (2.3).

Lemma 4.1. Assume thafV, E) is a digraph with ¢, > 2 for all w € V and L is a directed
circuit that does not go through every vertex in V. Let u be a vertex outside L and v a vertex in
L, assume that there exists a directed path from u to v. Consider a COSC GD-IFS based on this
digraph. With the notation above, suppose that the following three conditions hold:
(i) (ALY N (ALNE = 0.
(i) Ay #0andA, # 0.
(iii) For all pairs (w, k) # (z m) with A £ Owherewze Vandl<k<dy,-1,1<m<
d, -1,
AQ /A ¢ (AL) U A(LY)S.

Then the graph-directed IFS attractoy, ks not the attractor of any COSC standard IFS.

Basically, conditioni) means that linear combinations of numbgesg) |o,| : € € A(L)} over

Qr, that is,
#A(L))*

D" Geloglpd for (de)eca) € (@

ecA(L)
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where Q") is the set of non-zero vectors L) as before, are ferent from those of
numbers{loglo : e € A(L®)} over Q;, while condition {i) means that not all basic gaps
associated witlu andv are empty, and conditioriii) means that log? /(™) for all distinct
basic gaps of positive lengths aréfdrent from linear combinations of numbéieg o,/ : e € E}
over Q. Note that conditionif requires a certain homogeneity, on the ratios of the gap length
set of a COSC self-similar GD-attractor, which does not necessarily hold whand (i) are
satisfied. Note that among the three conditiaing(i), (iii ), no two of them imply the third.

Proof. We show that the strict dichotomy required by Lemgn (ii) for a graph-directed at-
tractor fails forF, satisfying the conditions of this theorem.
Let u be a vertex outside andv a vertex inL. For anyw # uin V, let

R(uw) = {|p¢| : eis a directed path from to wj},
and let
R(uu) = {1} U {|p¢| : eis a directed circuit containing.
With the above notation, the unioB.24) becomes
0 = GL(F,) = UV AwRUW) = |J U AR(Uw). (4.1)

weV AeAy
By condition (i), we can choose two non-zero basic gap lengths Ay, A, € A,. Since there
exists a directed pathfrom u to v, we can choose a number
0 := Aol € A/RUV) € GL(Fy).
Recall thajp, denotes the product of the contraction ratios on the edgesfdr each integer
k > 0, we defineeL¥ by eL° := eand
el*:=eL.--L fork>1,
N——
k times
all of which are directed paths fromto v, so thatp, «| € R(uv). Note that

lovl € Ro(r,)(6) (4.2)
since for everk > 0,
OloL| = AdpelloL* = Aulpe] € AR(WUY) € GL(Fy)
by using @.1), which implies @.2) by definition .15 with " being replaced by € GL(F,).
SetA; = A(L), A, == A(L%). Sincelp, | € (A(L))% = A" ¢ A%, we obtain by 4.2)

Rou(ra(6) N AT # 0. (4.3)

Let
I € RoL(ry(w)-
By definition .15, there exists a geometric sequenéeX};> , ¢ GL(F,) containingd, with
0" € GL(F,). Note thatl, € 1,R(uu) c GL(F,) by (4.2).
We claim that
0 = A (4.4)
To see this, taking the decomposition ® = GL(F,) given by @.1), the requirements for
Lemma2.6 (i), with 2; varying in{1 € Ay, : W € V}, A; varying in{R,, : w € V} and with
A = A(L) U A(L®), are satisfied by assumptiain . Thus, there is a unique € V and a unique
A € Ay such that
', € AR(UW), (4.5)
and
0'r* ¢ ’R(u2) forall (1,2) # (1, w)and allk > 0 (4.6)
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by (2.16). Thus,1, € {6"r"}§°:0 c AR(uw). On the other hand, noting thatlR(uu) so that
Ay € L,R(uU), (4.7)

we conclude that = A,,w = u by (4.6).
Sincer < 1, we havel, = ¢'rk < ¢ for somek. As R(uu) c (0, 1], we know by @.5) that

0'r* € AR(uUW) = A R(uu) (4.8)

for everyk > 0, which gives tha#’ < A, on takingk = 0, and sol, = &', thus proving our claim
(4.9).
By (4.4) and @.8) with k = 1,
Al = 60'r € 4R(uu),
from which we see that € R(uu), thus showing that
RoL(r,)(4u) € R(uu), (4.9)

sincer is any number irRg(r,)(4u)-
On the other hand, sinagis not in the circuitL, any directed circuit” containingu must
also visit some edge outsideas well, implying thato, .| € (A(L))% (A(L®))* = A?*Af* and

Ruuy) = {1}U{|p.|: L is adirected circuit containing}
C (JUAFAT c{ljuAFAT, (4.10)
Noting that by assumption)(
AT NAT = (ALY N (AL =0
so thatA%* A" n A¥ = 0 by (2.29), it follows that
RoLry(lu) NAY ¢ Ruu) n A¥ (using @.9)
(U AFAT) N AL (using ¢.10)
= ((WNAF)U(AFAT NAF) =0 (4.11)

N

using thatf1) n A> = 0, since all numbers i are strictly less than 1.
Finally, since 4.3) and @.11) hold simultaneously, Lemma i) implies thatF, cannot be
the attractor of any COSC standard IFS. m]

Note that the assumption ‘there exists a directed path troonv' in Lemmad4.1is necessary.
The following example shows that without this assumption, the GD-attractor may be an attractor
of some standard IFS (with or without the COSC).

Example 4.2.Let G = (V, E) be the digraph (not strongly connected) in Fig@reith V =

{1, 2,3} and E consisting of seven edges, three of which leave vertex 1 (including one loop).
Let {Selece be any COSC GD-IFS, having GD-attractdfg, F,, F3; associated with vertices
1,2, 3 respectively. By1.2), the setF; satisfies

Fz = Se(F3) U Se(F3),

which is an attractor of the standard IE, S¢'}. Note that there is no directed path from vertex
3 to other two vertices,P.

We give an example to illustrate Lemmdl. Our example is a digraph that has three vertices
and is not strongly connected.



20 FALCONER, HU, AND ZHANG

Ficure 2. F3is an attractor of a standard IFS.

Ficure 3. F3is not an attractor of any standard COSC IFS.

Example 4.3(Three-vertex digraph)Let G = (V, E) be the (not strongly) connected digraph
in Fig. 3with V = {1, 2, 3} andE consisting of seven edges. Note that the out-degrees of the

vertices are respectively
d1:d2:2,d3:3.
LetL = e;(1) be a loop (circuit) so that vertex= 3 is outsidel whilst vertexv = 1 is insideL.
A directed path fronu to vis labelled byes(2).
Let X' be a point given by
X = (prh Pyt pat. pats ot Pt Pyt A, Psa, 0,7d),

where{pj}i<j<s are five distinct positive prime numbers. The matx (1) defined by 8.3) is
given by

o0

M:=M1)=]| p;' p;? 0
p:;l 0 p£1 + le
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The pointx’ belongs to the s in (3.12 by using @3.31) as the sum of each row of matriv
is bounded by 1, that is,

maxp;t+ Pyt +0,p3t + Pt + 0, pt + 0+ Pt + Pt < L
Let¢ = (I, 15, 13) be determined by3(13), that is,

Iy A
M= 1, [=@d-M)7 psa | (4.12)
|3 0+nmA

Let# = (0,0,0) and letF(X’) := F(X, #) be a GD-IFS constructed as in Lem®4, which is
given by

Se® = P’ Sep(t) = py't+ b,
Sew® = Pt Sep(t) = pi't+ Dby,
Se® = P3't, Se@(t) = p5't+ by, Se(t) = piit+ by forteRr,

where{b®, b2, b?, b} are determined by3(8), with ¢ = (I, 12, 13) determined by4.12).
By Lemma3.l, such a GD-IFSF(X'), satisfies the COSC, and the basic gap length sets at
three vertices are respectively

AD =2 (atvertex 1),
AP = psa (atvertex 2),
AP = 0,49 =z (atvertex 3), (4.13)

so that the sets of positive gap lengths at the vertices are given by

A1 = {4} (atvertex 1),
Ay = {psd} (atvertex 2),
Az = {nA} (atvertex 3). (4.14)
Sincel = e;(1) is a loop, we see that
AL) = {pi"} and A(L%) = {p;", p5", i), (4.15)
so that the contraction ratio satis given by
A=AL)UALY) = (prh p;" P3Pl (4.16)

We show that conditiong) (i), (iii) in Lemma4.1 are all satisfied wheh = (1), u =3
andv = 1. Thus the attractdf; of the GD-IFSF(X’) above, is not the attractor of any COSC
standard IFS.

To verify condition (), we need to show that

(ALY N (ALD® =0,

whereA(L), A(L®) are given as in4.15. Otherwise, there would exist some non-zero rational
numberq such that
_1)\d 1110

(pll) e (Pt st e,
which would imply

le{p pot pst et
a contradiction by using Propositidn5in the Appendix.

Condition (i) holds by directly using4.14).
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Finally, for condition {ii), we know from @.13 that all the ratiosi®? /2™ of basic gap
lengths for (v, k) # (z m) lie in the following set

11 Ps 7T}
_’ _’ ’_’0’7.(,_ b
{ps y Pe s Ps

each number in which does not belong®® = {p;*, p;*, p3*, p,*}< by using Propositio.5in
Appendix and the fact thatis transcendental. Thus, conditian)is satisfied.

We mention in passing that one can also construct a GD-IFS witliC8@®C whose GD-
attractor is not attractor of any standard IFS. For examplgylbe a prime dierent from other
pj (1< j<5) andlet

X" = (P P2 3L P Pz B3 P2 A, Psd, Ped, ).
Such a poink” also belongs to the s& and the corresponding GD-IFSx”) associated with
X" in a way of LemmaB.1, satisfies the CSSC. Whén= e;(1), u = 3 andv = 1, the attractor
F3 of thisF(x”) is not an attractor of any standard IFS. We omit the details.

Lemma 4.4. For a strongly connected digraph & (V, E) withd, > 2for allw € V, let A be the
absolute contraction ratio set of a COSC GD-IFS based on G, ha\lpy., as its attractors
Suppose that the following conditions hold:

(i") All the contraction ratios have gferent absolute values, aridg A2,
(ii") Aw#0forallweV.
(iii) For all pairs (w, k) # (z m) with A £ Owherewze Vandl<k<dy,-1,1<m<
d, -1,
AQ /A ¢ (A(L) U A(LY)°.
If G contains a directed circuit not passing through a vertex u, thgmsot the attractor of
any COSC standard IFS.

Proof. Let L be a directed circuit that does not go throughBy condition {i’) we know that
condition {i) in Lemma4.1holds upon taking any vertexin L. Since the digrap® is strongly
connected, there exists a directed path foto v. Since conditioni{i) remains the same, we
only need to verify conditioni) in Lemma4.1 under the stronger conditiomn’), For, suppose
that there exists sontee (A(L))2 N (A(LS))<. Setting

A(L) = {bi}Z;, A(LY) = (i},
so thatA = A(L) U A(L®), we write
0=T1] bP = 1 c/
i=1 j=1
for some two vectors)Z; € Q™ and @))}_; € (Q})". Then

j
where we have used thafL) N A(L®) = 0 since all the contraction ratios havefdrent absolute
values by conditioni{). However, this contradicts our assumptiong1AY. Therefore, all
conditions in Lemmal.1are satisfied, thus the conclusion of the lemma follows. O

m "
1=]]bP
L1

n —q "
c e A,
i =1

Remark 4.5. Lemma4.4is an extension of3, Theorem 6.3]. The assertion of Lemmhal is
optimal in the sense that the restriction on the graph ‘there is a circuit not passing thrfough
cannot be relaxed (see Theorém in the Appendix).

The following example, with a digraph that has two vertices with two loops and is strongly
connected, illustrates Lemrda4.
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Example 4.6 (Two-vertex digraph) Let G = (V, E) be a strongly connected digraph where
V =1{1,2}, E = {ei(1), e1(2), ex(1). &(2)}, so thatdy = 2,d, = 2, see Figuréd.

Ficure 4. F, andF; are not the attractors of any standard COSC IFS.

Let {p;}1<j<4 be four distinct primes arranged in ascending order so that? < pj,1, and
let ps be a positive number such that Ipgis not a rational linear combination dbg p;}1<j<a.
Let 2 > 0 be any real number, and bebe a vector given by

x = (prt ot s Pt A, psd) = (X7, X, 5D, XD, &Y, ). (4.17)
The matrixM(1) in (3.3), (3.4) associated with point is given by
(1) @ -1 -1
M = My(1) = ( b ] - ( ) ] (4.18)
50K Ps™ Py

Note thatx € P in (3.12 by using 8.31), since
max(py’ + P3Pt + Pt < 1

Let £ = (I1,1,)" be given by 8.13, that is,
-1

| _ o €D 1-pt -pt bl
=)= ommor(@)-(5 T Lm0

Letz := (b7, bY) for biY, b € R, and let
b® = b + prtly + 2,
b := b + p3tl, + Aps.
We define four similarities (X, &) = {Se, 1), Sei2), Se,(1): Sex2)}, depending orx, &, by

Se,1)(1)
Seg(l)(t)

Clearly, such a GD-IF5(x, #) has absolute contraction ratio set givenfy= {p;!}* . Apply-
ing Lemma3.1, F(x, #) satisfies the CSSC, whose basic gap lengths setzslaﬁe{.f(ll)} = {1}
(at vertex 1) and\, = {£5Y) = {Aps) (at vertex 2). LetFy, F, be the attractors df(x, ) at
vertices 1 and 2.

We will use Lemmad.4 to show thatF; (or F,) is not the attractor of any COSC standard
IFS, noting that¥, E) contains a directed circuit (loop) not passing through vertex 1 (or through
vertex 2).

Condition {’) is clear since the contraction ratids= {p;}* , are distinct, and & A% by
using Propositiors.5in the Appendix. Conditionii’) is trivial since the basic gap lengths are

A, Aps that are strictly positive.

_ 1 _ 2
prit+ b, Sep®) = prtt+ b,

palt+ b, Sep(t) = prlt+ b forteR. (4.20)
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It remains to verify conditioniij), or equivalently to check that

(1) (1)
A3 > APs

_ — Q
o E‘T‘p““"
1 1
1
AP
A3 Ps

However, this is trivial by noting that

Ps # (IOIl)51 (F)El)s2 (|0§1)53 (p;l)s“ (the same is true fop;")

for any rationals §);' ,, since logps is not a rational linear combination @bg pj}1<j<a.
Therefore, all the assumptioni$)((i”), (iii) in Lemmad4.4 are satisfied, so the GD-attractor
F1 (or F,) is not the attractor of any standard IFS with the COSC.

We next show that fon-dimensional Lebesgue almost all vectordinall the conditions in
Lemmad4.4 hold for their corresponding GD-IFSs. LBt be a subset dP given by

P; = {x€ Py : 1 (My(1)) < 1,¢% > 0 for each vertexe V, 1< k < d - 1}. (4.21)
Clearly,P; c P since eacly ¥ ¢ > 0.

Definition 4.7 (Admissible set) With the notation as above, we say that a paiat (X1, X, - - + , Xn)
in the setP; is admissible if

n n
i7111|>q|"‘ * i[Il|>q|qi (4.22)

for any two distinct vectorsyt), and ()L, of nonnegative rationals. The set of all admissible
points is denoted by .

Note that the admissible set depends only on the numbers of vertices and their out-degrees,
but is independent of any vertex itself and the order of edgesq,Ik4, - - - , X,) € &, then for
any two distinct indices, j, takingp; = 1, py = O for allk # i andq; = 1, = O forallk # j in
(4.22,
Xl # [xl, (4.23)
and so the entries of any vectordf all have distinct absolute values.
By Lemma3.1, we know that each admissible pomgives arise to a COSC GD-IFS

F(x, &) (4.24)
in away of 3.7), (3.13, for any# in (3.5),
The following says that the size of the admissiblegds very large.

Theorem 4.8.Let G = (V,E) be a strongly connected digraph with, & 2 for all w € V,
containing a vertex « V outside a directed circuit. With the notation as above, & ¥ then
the attractor F, of the corresponding GD-IF$&(x, #), defined as ir{4.24) for any#, is not the
attractor of any COSC standard IFS. Moreover, with n given a8ih),

Z"(P\ ) =0, (4.25)
that is, the complement of the sétin P has n-dimensional Lebesgue measure zero.
Proof. Let # = (b™)iy for b € R and letx = (xq, Xz, - - , X,) be an admissible point. By
Lemmaa3.], the corresponding GD-IF$(x, #) associated with the vectoss#, satisfies the

CSSC. We will show that such a GD-IF$x, #) also satisfies all three condition$)( (ii’), (iii)
in Lemma4.4.
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Clearly, the GD-IFS-(x, #) satisfies conditionii() by noting thatA; # 0 for each vertex
i € V, since all the basic gap lengths sitting at veitakes!, &2, ... &4 by  emma3.1(ii),
which are strictly positive since the vectobelongs toP;.

We show conditioni(). Let

X = {Ixl}iL; € (0, 00).
We need to prove
1¢ XY, (4.26)
For, suppose that £ [T, [/ for some )", € (Q")*, then

n _ n .
[TIxI% = TTIx[
i=1 i=1

wheres" = maxs,0}, s = max-s,0} so thats = 5" — 5. As not alls are zero, we see that
(s, # (s), are two distinct nonnegative rational vectors. This contradicts the admissibility
of x as defined in4.22), thus @.26) is true.

By using @.7) and @.23, all the contraction ratios of the COSC GD-IF§&, #) have difer-
ent absolute values. SinceglAY asAY c XY, whereA is the absolute contraction ratio set
of F(x, #), condition {’) is satisfied.

For condition {ii), suppose that there exists some A? such thata = A/ where
AW e Ay, M e A,. Then

-1 o <
1= 20 (A") “at e xlY = X2

by noting thatl®® = x > 0, A = x; > 0 for some two indices # j in virtue of definition
(3.2, contradicting 4.26). Thus conditioni(i) is also satisfied.

Therefore, by applying Lemmé&4, the attractor, of the GD-IFSF(X, #) is not the attractor
of any COSC standard IFS.

We finally show that#"(P \ &) = 0. For this, note that

Z"(P\Py)=0 (4.27)

whereP; is defined as in4.21), sinceP \ P, lies in the union of hyperplanes? = 0. We just
need to show"(P; \ /) = 0. Let

X= (X1, X0, ++ , %) € PL\ A,

that is, for some two distinct vectorgf, and @), of nonnegative rationals,

n n

[T1xi[™ = TT1x[%.

i=1

i=1

As p; # g for somel, say without loss of generality far= 1, then

%] = ﬁ |Xi|(Qi—pi)/(p1—Q1),
i=
from which, it follows that any vector iR, \ &/ lies in an at mostr{— 1)-dimensional manifold.
Since there are countably many such equations, the union of countably many such manifolds
hasn-dimensional Lebesgue measure zer&'n O

There are a plenty of examples of admissible points so that the assertions of The8rem
hold. However, there are also some other interesting examples such that the first assertion in
Theorem4.8still holds but points are not admissible.
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Example 4.9. The pointx given by @.17) in Example4.6 is not admissible in the sense of
Definition 4.7 for a certain class of. To see this, we need to show thatZ? fails for suitable
A. In fact, if (4.22 fails, then by definition4.17)

(o)™ (2%)” (p3) " (PaY)™ A% (ps)*

6 6
[TIx1% = ITIx[
i=1 i=1

()" (P2")" (PY)" (Pa?)" A (po)®

for some two distinct vectors)? , and ¢)2 ; of nonnegative rationals. From this, we know that

(ssts)+(se~te) _ pil—tl pgz—tz pgs—ts pi“_t“ pg(Se—te)_ (4.28)

Thus, condition 4.22) fails if 2 is chosen as in4(28. In particular, condition4.22) fails if
A= ﬁ on takings =t fori =1,2,3,4 whilsts =t; + 1 fori = 5,6,

However, the GD-attractoF,, associated with such a non-admissible poinis not the
attractor of any COSC standard IFS by Exampl@

We further consider the situation by removing the ‘COSC’. We will apply Coroltadyand
Theoremb.6in the Appendix.

Theorem 4.10.Let G = (V, E) be a strongly connected digraph with & 2 for every vertex
j € V, containing a vertex € V outside a directed circuit. Let & &/(6) (see definitior(3.34))
satisfying that, for every vertex#iinV,

XY e (|x§1)| +oo 4 |x§m‘)| +(my = 1), XD+ -+ |x§mj)| +ms), (4.29)
1= XD e (K94 + 1+ (g = 26, XD+ XY+ mgo), (4.30)
where m, n; € [1,d; — 1] are integers. Lek(x) be corresponding CSSC GD-IFS constructed as
in Corollary 3.4, with GD-attractors(F;);cv. Then F is not the attractor of any standard IFS.

Proof. Let x € &/(6). Recall that the corresponding GD-IHEX) = {Sqk}icv1<k<s, associated
with pointx, is given by 8.43, where{b**"}icy1<q_1 are real numbers in (@) defined as in
(3.42) (b = 0 for everyi € V).

We apply Theorend.6in the Appendix to prove this theorem. Clearly, conditions (1), (2)
in Theoremb.6 are satisfied. In order to verify condition (3), we need to show that for every
vertexj # i,

Fi ¢ F; (4.31)
and
1-Fi ¢F;. (4.32)

We first show ¢.31). Indeed, note that the poim‘1>| belongs to the attractd¥; by Corollary
3.4(ii). However, this point does not belong to any attradtp(|j # i), since it falls in some
basic gap (see formul@{49) of F; by using assumptior#(29).

Similarly, the point 1- |xi(l)| belongs to the set 1 F; but does not belong to any attractéy
(] #1), since it also falls in some basic gapfefby using assumptior#(30, and thus4.32) is
also true, as required. O

To illustrate Theorer.10 we give an example. Letbe a fixed vertex iV = {1,2,--- , N}.
Let x € o (0) satisfy

XD e (IXOLIXE +6) and 1- XP] € (XD IXP] + 6) forany j # i, (4.33)
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so that both conditions}(29), (4.30 are satisfied witm; = n; = 1. To secure4.33, we let

. 1
0<o< rJT‘;IVn {m} .
By the definition of¢/(6), any vectorx € o/ (6) satisfies that for al| € V,

| 1
X+ X = 1 (dj - 1)6 > > (4.34)

Now we first choose{axgl)} jev by

1 1
|Xi(1)| =5 andlx}”l € (—

1 o
2—6,5) foranyj #1i,

and then we choos{e(ﬁz), x§3), - ,xﬁd")}jev to be any numbers such thdt 84 is satisfied. Such
a class of points satisfy conditiod.@3, which implies that conditions4(29), (4.30 are both
satisfied.

5. APPENDIX

In this appendix we derive some general properties and secondary results that are used in the
main part of the paper.

The following proposition on ordering integer lattice points is used in LerarBa Recall
thatZ, denotes the set of all nonnegative integers.

Proposition 5.1. Let B ¢ Z" be an infinite set. Then B contains two distinct vectrs y
under the partial order defined by inequality of all coordinates.

Proof. We write X := (%), € Z. Consider the set of integers:
S := {min{x}", : X € B}.
If S is unbounded, then we are done by fixing some végtand takingy = (y), € B c 2!
with min{y;}7; > max{x}., so that
X <Yy.
OtherwiseS is bounded by an integét in which case we prove the proposition by induction
onn. Whenn = 1itis trivial. Assume that the proposition holds for- 1. Foreach X j <n
and eaclr € {0,1,---, N}, define
B(a, j) := {X € B: x; = min{x}; = a},

a (possibly empty) collection of all vectors Biwhosej-th entries equal to the same numhber
and take the smallest value. Since

n N .

U U B(a, j) =B,

j=1a=0
we can assume that sonB«, j), say B(B, m), contains infinitely many elements. Deleting
the mth coordinatex,, = B of all the vectors in such a s&(3, m), we obtain an infinite set
B'(8,m) c 71, and by induction assumptioB; (5, m) c ZT has two distinct vectors’ < y'.
Inserting themth coordinatex,, = 8 into?, 7 to gefX, y respectively, we obtain two distinct
vectorsX <Y in B(8, m) c B, showing the assertion f@?. O

The next proposition generalises a well-known result for standard IFSs to GD-IFSs.
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Proposition 5.2. Let G = (V, E) be a digraph andF,).v be the GD-attractors of a GD-IFS
F = (V,E, (Se)ece) based on it. If there exist non-empty sgtg), ., such that

U U Se(Uy) c U, for each ue V (5.1)

veV ecEy

then F, c Uy, the closure of the set|Jfor each ue V.

Proof. Setl, := U, for eachu € V. Let I be defined byZ.4) for m > 1. Then the inclusion
(2.9 is satisfied, since

1
Iu

U Se(lw(e)) = U Se(Uw(e)) = U Se(Uw(e))
ecEl ecE} ecE]
C U Se(Uug) cUy =1y (using 6.1)),

ecEl

thus showing thal, c 11 ¢ U, by virtue of 2.8). The proof is complete. ]

The directed paths in GD-IFSs play the same role as the finite-length words in standard IFSs,
as the following proposition suggests. We will frequently use the following fact that, for any
ueVandm>1,

Fu= U Se(Fw(e)), (5.2)
ecE]

by repeatedly using definitiorL(2) (recall thatE]}' is the totality of all paths of lengtm leav-
ing u). The following proposition concerns the disjointness of images of components under
mappings corresponding toftérent words.

Proposition 5.3. Let G = (V, E) be a digraph andF,).v be the GD-attractors of a GD-IFS
F = (V,E, (Se)ece) based on it. Assume that eaclh) 5 not a singleton. Le¥, €’ be two
directed paths witle’ # €eif |€| < |€’| (whereeis a directed path which may be empty)FIf
satisfies the COSC di, then the interiors of g(convF ,e)) and S»(convF ) are disjoint.
Similarly, if F satisfies the CSSC thep & ,)) and S (F ) are disjoint.

Proof. By (5.2), for any pathe, we haveSe(F ) C Fu, Wherea(e) denotes the initial vertex
of pathe. As S; is a similarity onR, taking the convex hulls gives that

Se(convF ) = convSe(F ) C CONVF ),

from which, we see that, for any paghe, (meaning thatv(e;) = a(e;), the terminal o, is the
initial of &),

Se.e,(CONVF 4(ey) = Se, (Se,(CONVF (e,))) C Se,(CONVF () = Se, (CONVF ey)). (5.3)
Assume now thaf satisfies the COSC. ByL(4), one can take
U, = int(convF,) for eachueV,

which is non-empty by our assumption th&tis not a singleton.
For any two pathee;, ee, with common patte and distinct edges,, &, the interiors of two
intervals

INt(Seg, (CONVF ep))) N INY(See, (CONVF ) = O (5.4)
by using the COSC, since
See, (CONVF (e)) = Se(Se, (CONVF e))) and See,(CONVF ) = Se(Se,(CONVF e,)))

and the interiors 08¢, (convF,e,)) andSe,(convF,e,) are disjoint as the edges, e; have the
same initial vertex, namely the terminal of path
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Let e be the longest common path &f ande’ (which may be empty). Write/ = ee;p; and
€’ = eep,, Wheree; # &, are two distinct edges ami, p, are some paths (possibly empty).
By (5.3,

Se(CONVF ) = Seeyp,(CONVF(p;)) C See, (CONVFey)),
Ser(CONVF ) = See,p,(CONVF ,p,)) C See,(CONVF e,)),

thus the interiors 08¢ (convF ,¢)) andSe (convF ) are disjoint by usingg.4).
The assertion for the CSSC is similar. The proof is complete. ]

The following was essentially proved i2,[Lemma 5.1] except that we also consider the
COSC case.

Theorem 5.4. Let G = (V, E) be a strongly connected digraph with & 2 forallv € V. If
every directed circuit goes through a vertexxw, then for any (resp. COSC) GD-IFS based
on G, its attractor F is also the attractor of a (resp. COSC) standard IFS.

Proof. SetN := #V, the number of vertices . Let L(u) be the set of all circuits havingas
their initial and terminal, and which do not contain another shorter circuits, that is,

L(u) :={e=eyv,vu : €achvi #ueV,|g < N},

where the symbdd,,,v,..v.u = €, €, * - - €y IS UNderstood to be a path consisting of consecutive
edges.
We claim that

Fu= U Se(Fu), (5.5)

eel(u)
by using the fact that every circuit goes through vetex
To see this, we have b (2) that

Fu= U Se(Fue)-

ecEN
Since any directed pathin E can be written as

€ = €uvvovyo
we see that at least one of verticasvs, - -- , vy must beu, otherwise, one of them would
appear twice, thus producing a circuit, contradicting the assumption that every directed circuit
goes through vertey. There exists some indéksuch thaty, = u and the path visitsl the
second time (besides the initial time), and
€= Euvvo- Vs = Cuvva-vi 1€y = €€,

where€ = e,,v,..v_,u € L(U) ande” is a path with initialu if it exists (possiblye” is empty and
the following argument will become easier). From this, we know that

Se(Fu@) = Se(Ser(Fuen)) € Se(Fu),
sinceSg (F ) € Fy by (5.2). It follows that

Fu= U Se(Fw(e))C U Se'(Fu)~
eel(u)

ecEN
The opposite inclusion is also clear since, by?),
Se(Fu) C Fy,
thus showing that our clain®(5) holds true. Therefords, is the attractor of the IFS
®:={Sy : € e L(u)}. (5.6)
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If the GD-IFSF further satisfies the COSC, we claim that the BS)iven by 6.6) also
satisfies the COSC. Indeed, by definition of the COSC and the facbthas attractoF,, we
need only to show that the interiors of two interv8lg(convF,) andSe.(convF,) are disjoint,
where¢, €’ are inL(u). But this assertion immediately follows from Propositi3. O

The following easy property of powers of primes is used in the examples in Sdction
Proposition 5.5. Let{a;};_; be distinct positive prime numbers. Then
1¢ AY for A={a ),

Proof. Suppose to the contrary, thatelA%". Then 1= [], (ai‘l)S for some non-zero vector
(s)i, of rationals. Letg be the least common denominator of the ratiorsalsTaking theqth
power, it follows that

mi=[1a" = I1a"

wheres" = maxs,0}, ST = max-s,0} so thats = 5" — 5. As thes are not all zero, the
vectors of integersys’)L, and Q5)L, are distinct. By the uniqueness of the prime factorisation
of the integem, we see thats"), = (95)i.,, a contradiction. m]

The following assertion was essentially obtaineddnTheorem 1.4 and the end of Section
1]. Here we give a simpler proof under stronger assumptions with conditions (2), (3) in the next
theorem.

Theorem 5.6. Let G = (V, E) be a strongly connected digraph with, & 2 for each we V.
Suppose that a given GD-IFS of similarities based on G satisfies the CSS€yrartg, = [0, 1]
for each we V. For some vertex a V, suppose the following conditions hold.

(1) There is a directed circuit that does not pass through u.
(2) All basic gaps have the same lengtk O.
(3) For each vertex w u, we have ¢ Fyandl1-F, ¢ F,.

Then F, is not the attractor of any standard IFS definedin

Proof. The proof is divided into two steps.
Step 1.We claim that, for anyw € V and any contracting similarity with f(F,) c F,, there
exists some pathleavingv with terminalw(e) = u such that

f(Fu) C Se(Fu). (5.7)

Indeed, ag~, consists of the level-1 cellS¢(F ) for edgese leavingv by using (.2), the
f(Fy) must belong to only one of those cells, say

f(Fu) € Se(F.@e) for some edge leavingv. (5.8)

Otherwise, there are two points fifF,) lying in two distinct level-1 cells, and ajF,) c F,,
we know thatf(F,) spans a basic gap &%, implying thatf(F,) has a gap, containing a basic
gap of F,, whose length is clearly greater than or equabtoHowever, this is impossible,
because all gap lengths Bf, do not exceed by assumption (2) an®(11), so that all the gap
lengths off (F,) are strictly smaller thas by using the contractivity of.
By (5.2), it follows that
f(Fu) cFv= U Se(Fue)) foranym>1,
ecE
whereE is the set of all paths leavingwith the same lengtm as before. Ad (F,) has fixed
diameter and cellS¢ (F,«)) have arbitrarily small diameters by takinglarge, we can choose
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a longest directed path leavingv, which exists by usingd.8) and the fact that distinct cells
of the same length are disjoint (see Propositds), such that

f(Fu) € Se (Fue))- (5.9
We show that the contraction rafoof the mappingS;ll o f satisfiepp = 1.
The diameter of each,, equals 1, since corfy,, = [0, 1] for eachw € V by our assumption.
By (5.9
Sgll o f(Fu) C Fw(el)a (510)
implying that|p] < 1 by comparing the diameters Bf, andF ;) and noting thafs\,;l1 ofisa
similarity.
If |ol <yl, we will derive a contradiction. Indeed, by.L0), we can apply§.8), with f being
replaced bys;ll o f andv replaced byw(e;), and obtain

S;ll o f(Fu) € Se(Fue)
for some edge leavingw(e;). From this and thab(e) = w(ee),

f(Fu) C Se,(Se(Fue)) = Seie(Fuere)
which contradicts the fact that is the longest path by virtue 05(9). Thus|p| = 1.
Therefore, ifp = 1, thenF, + ¢ c F,,) for some translatiom € R using 6.10, which
implies that
[0,1] + ¢ = (convF,) + ¢ = conv(F, + ¢) c convF e, = [0,1]
using our assumption that coRy, = [0, 1] for eachw € V. Thenc = 0, and so
Fu (- Fu)(el),

showing thatvu(e;) = u by assumption (3) thd, ¢ F, if v # u.
Similarly, if p = -1, then-F,+c c F,) for some translation € R by (5.10, which implies
that
[-1,0] + ¢ = conv(—F,) + ¢ = conv(-F, + ) c conv (F ) = [0, 1]
using our assumption that coRy, = [0, 1] for eachw € V. We must have = 1, and so
1- Fu C Fw(el)’

showing thatv(e;) = u again by assumption (3) thatlF, ¢ F, if v # u.
Therefore, noting thab(e;) = uin (5.9), we obtain 5.7) with e = e, proving our claim.
Step 2.We show thaf is not the attractor of any standard IFS.
Assume to the contrary that there exists a standard ffSuch that

Fo=U fi(Fu).
|
As fi(Fy) c Fy, using 6.7) with v = u, we know thatf;(F,) c Se(F,), and so
Fu=U fi(Fu) € USe(Fu), (5.11)

I |
where eacle is a directed circuit from initiall to terminalu. By condition (1), there is a vertex
w # u contained in a circuiL that does not pass through By the strong connectivity, we can
find a simple pati.; (i.e. a path visits any vertex at most for once) frarto w.

Note that the path;L™ from uto w visitsu only once. We can pick an integerso large that
the path length is greater than nfigt};. By (5.2) and 6.11),

Sum(Fw) € Fu € U Se(Fu). (5.12)

Note that{Se} satisfies the CSSC by assumption (2), andgen(Fy) is disjoint with any
setSe (Fu) in (5.12 using Propositiord.3, since the path,;L™ does not start with any of these
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pathse, otherwiselL,L™ would visit u twice. This contradictsY.12), thus showing thaF, is
not self-similar. O
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