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Abstract. This paper seeks conditions that ensure that the attractor of a graph directed iterated
function system (GD-IFS) cannot be realised as the attractor of a standard iterated function sys-
tem (IFS). For a strongly connected directed graph, it is known that, if all directed circuits go
through a vertex, then for any GD-IFS of similarities onR based on the graph and satisfying the
convex open set condition (COSC), its attractor associated with this vertex is also the attractor of
a (COSC) standard IFS. In this paper we show the following complementary result. If a directed
circuit does not go through a vertex, then there exists a GD-IFS based on the graph such that the
attractor associated with this vertex is not the attractor of any standard IFS of similarities. Indeed,
we give algebraic conditions for such GD-IFS attractors not to be attractors of standard IFSs, and
thus show that ‘almost-all’ COSC GD-IFSs based on the graph have attractors associated with
this vertex that are not the attractors of any COSC standard IFS.
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1. Introduction

An iterated function system(IFS) {Si}i is a finite set of distinct contracting maps on a com-
plete metric space which we will assume here to beRn [11]. The attractor of the IFS is the
unique nonempty compact setK ⊂ Rn such that

K =
m⋃

i=1
Si(K). (1.1)

If these maps are all contracting similarities, we say that this IFS is astandard IFS, and callK
a self-similar set. A contracting similarityS(x) on R can be written asS(x) = ρx + b where
ρ ∈ (−1,1) \ {0} is thecontraction ratio.

Separation conditions for IFSs are often required to ensure ‘not too much overlapping’ in the
union (1.1). A frequent condition is theopen set condition(OSC), meaning that there exists a
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nonempty open setU ⊆ Rn, such that
m⋃

i=1
Si(U) ⊆ U with this union disjoint. We say that the

IFS satisfies theconvex open set condition(COSC) ifU can be chosen to be convex, or we can
(equivalently) takeU = int(convK) where ‘conv ’ denotes the convex hull, ‘int’ denotes the
interior of a set. We say that the IFS satisfies theconvex strong separation condition(CSSC) if
we can takeU = int(convK) such thatSi(convK) ∩ Sj(convK) = ∅ for any i , j.

We also consider graph-directed IFSs [12] based on a given digraph. Adirected graph(or
a digraph for brevity), G := (V,E) , consists of a finite set of verticesV and a finite set of
directed edgesE (for brevity we often omit ‘directed’) with loops and multiple edges allowed.
Let Euv ⊂ E be the set of edges from theinitial vertexu to the terminal vertexv. A graph-
directed iterated function system(GD-IFS) onRn consists of a finite collection of contracting
similarities{Se : e ∈ Euv} from Rn

v to Rn
u for u, v ∈ V, whereRn

u is a copy ofRn associated with
vertexu. We writeρe ∈ (−1,1)\{0} for the contraction ratio of the similaritySe in R. We always
require the digraph satisfies thatdu ≥ 1 for everyu ∈ V ([12], [4, Section 4.3]), wheredu is the
out-degreeof u (the number of directed edges leavingu). For a GD-IFS(V,E, (Se)e∈E) based on
such a digraph, there exists a unique list of non-empty compact sets (Fu ⊂ Rn

u)u∈V such that, for
all u ∈ V,

Fu =
⋃

v∈V

⋃

e∈Euv

Se(Fv), (1.2)

see [12] or [4, Theorem 4.3.5 on p.128]. We call the above(Fu)u∈V the(list of) attractorsof the
GD-IFS, and eachFu is called aGD-attractor. A (finite) directed path e1e2∙ ∙ ∙ek is a consecutive
sequence of directed edgesei ∈ E (i = 1, ∙ ∙ ∙, k) for which the terminal vertex ofei is the initial
vertex ofei+1 (i = 1, ∙ ∙ ∙, k − 1). For a directed pathe = e1e2 ∙ ∙ ∙ ek with edgesei (1 ≤ i ≤ k),
the corresponding contractive mapping is given bySe = Se1 ◦Se2 ◦ ∙ ∙ ∙ ◦Sek, and its contraction
ratio alonge is ρe = ρe1

ρe2
∙ ∙ ∙ ρek

.
For a GD-IFS there are analogous separation conditions. Theopen set condition(OSC) is

satisfied if there exist non-empty bounded open sets
(
Uu ⊂ Rn

u

)
u∈V , with

⋃

v∈V

⋃

e∈Euv

Se (Uv) ⊂ Uu (1.3)

and the union is disjoint for eachu ∈ V. Theconvex open set condition(COSC) means that these
(Uu)u∈V can all be chosen to be convex. In one-dimensional case, one can take

(Uu)u∈V = (int(convFu))u∈V, (1.4)

since convFu ⊂ Uu for eachu ∈ V (see Proposition5.2in the Appendix). We say that a GD-IFS
satisfies the CSSC (convex strong separation condition), if the union

⋃

v∈V

⋃

e∈Euv

Se (convFv) (which belongs to convFu) (1.5)

is disjoint for eachu ∈ V.
GD-attractors and GD-IFSs appear naturally in dynamical systems and fractal geometry. For

example, certain complex dynamical systems can be regarded as conformal GD-IFSs using a
Markov partition, see [7, Section 5.5]. For another occurrence, the orthogonal projection of
certain self-similar sets may be GD-attractors [8, Theorem 1.1]. We will work with COSC
(including CSSC) GD-IFSs defined onR based on digraphs withdu ≥ 2 for every vertexu in V
throughout this paper.

We say that a digraph is strongly connected if, for all verticesu, v ∈ V, there is adirected path
from u to v (we allowu = v). For brevity, we will assume throughout that a strongly connected
digraph always satisfiesdu ≥ 2 for all u ∈ V. This is because, ifdv = 1 (v ∈ V) thenFv is
just a scaled copy of another GD-attractorFw (w ∈ V \ {v}). ThenFv is self-similar (with the
COSC) if and only ifFw is self-similar (with the COSC), since ifK is the attractor of the IFS
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{ρi x+ bi}i, thenηK + l is the attractor of the IFS{ρi x+ ηbi + (1− ρi)l}i (η, l ∈ R). We can do a
reduction as in [5, pp.607] on any strongly connected digraph and associated GD-IFS, to obtain
a subgraph and new GD-IFS withdu ≥ 2 for all u ∈ V such that each attractor is similar to one
of the original ones.

A natural question arises, “When does a GD-IFS of similarity mappings have attractors which
cannot be realised as attractors of any standard IFS?”. In particular we seek algebraic conditions
involving the parameters underlying the GD-IFS similarities that ensure this is so. Some cases
were examined in an earlier paper [3] which showed that, for a class of strongly connected
digraphs, it is possible to construct CSSC GD-IFSs onR with attractors that cannot be obtained
from a standard IFS, with or without the CSSC. Another paper [2] uses a different argument to
construct CSSC GD-IFSs onR with attractors that cannot be obtained from a standard IFS. This
paper further investigates this issue for allstrongly connecteddigraphs (or even wider classes
of digraphs).

For a strongly connected digraphG, it is known in [2, Lemma 5.1] (see also Theorem5.4
in the Appendix) that, if all directed circuits inG go through a vertexu ∈ V, then for any
(COSC) GD-IFS based onG, its attractorFu is also the attractor of a (COSC) standard IFS.
By way of contrast, we will show that if, for some vertexu ∈ V, not all directed circuits inG
go throughu, then it is possible to define GD-IFSs of similarities satisfying the COSC so that
the corresponding attractorFu is not the attractor of a standard IFS of similarities satisfying
the COSC (Lemma4.4). Moreover, this is true for ‘almost all’ choices of similarities in a
natural sense (Theorem4.8). The proof basically relies on identifying a characteristic of the
‘gap length set’, where we use a shorter systematical algebraic argument ‘ratio analysis’ rather
than the categorising method of [3, Section 6] which only works for certain classes of digraphs.
In fact we can relax the strong connectivity ofG in this construction (Lemma4.1) and the ‘ratio
analysis’ method may have further applications to other related problems. We finally apply [2,
Theorem 1.4] (see also Theorem5.6 in the Appendix) to show immediately that, there exists
GD-IFSs of similarities with the CSSC so that the corresponding attractorFu is not the attractor
of a standard IFS.

GD-IFSs considered in this paper areinhomogeneous, by which we mean GD-IFSs of con-
tracting similarities with not all contraction ratios equal. We will require the COSC condition,
which is easy to verify from the parameters of a GD-IFS by solving simultaneous linear inequal-
ities. There are difficulties in relaxing this condition to OSC (even inR) where many problems
still remain open even for standard IFSs, such as the affine-embedding problem [10, Conjecture
1.1] or the inverse fractal problem (determining thegeneratingIFSs of a standard IFS attractor)
[9]. The question considered here can be viewed as an inverse-type problem, where we show
certain GD-attractors have no generating standard IFS (with or without the COSC). Previous
results on inhomogeneous self-similar sets also require this condition [9, Section 4] or stronger
conditions such as SSC and restrictions on Hausdorff dimension [1, 6, 10]. Thus one might
expect similar difficulties for inhomogeneous GD-attractors.

This paper is organised as follows. In Section2, we first introduce and obtain an expression
for the gap length set of COSC GD-attractors, and we then introduce our algebraic method
‘ratio analysis’, and derive a key lemma (Lemma2.9) relating the ratio sets of GD-IFSs and
standard IFSs with the COSC. In Section3 we introduce natural vector sets and construct GD-
IFSs satisfying the COSC or the CSSC. In Section4 we use the GD-IFSs constructed in Section
3 to show that the corresponding GD-attractors are not the attractors of COSC standard IFSs
using both the ‘ratio analysis’ lemmas and the tool developed in [2]. We provide some examples
to illustrate our assertions.
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2. Gap length sets and ratio analysis

2.1. Gap length sets.For a compact setK ⊂ R with (convK) \ K , ∅, let

(convK) \ K =
⋃

i
Ui (2.1)

be the unique decomposition of the disjoint non-empty bounded complementary intervals{Ui =

(ai ,bi)}i (see for example [13, Chapter 2, Theorem 9]), which will be called thegapsof K
numbered by decreasing length (and left to right for equal length intervals).

Definition 2.1 (Gap length set). Define thegap length setof a compact setK ⊂ R to be

GL(K) := {bi − ai}i

that is, the set of lengths of all the gaps ofK. If (convK) \ K = ∅, that is, ifK is an interval (or
a singleton), we define GL(K) := ∅.

For each vertexu ∈ V, we arrange the edges leavingu, denoted bye(k)
u (k = 1, ∙ ∙ ∙,du) in the

following way. Denote byω(e) the terminal vertex of an edgee ∈ E, then the interiors of the
intervalsSe(convFω(e)) are disjoint due to the COSC. We rank these intervals in order from left
to right, and denote thekth interval by

S(k)
u

(
convFω(e(k)

u )

)
(1 ≤ k ≤ du) (2.2)

with the edges (and also the GD-IFS{Se}e∈E) arranged according to this order.

Definition 2.2 (Basic gaps). With the above notation, for eachu ∈ V and 1 ≤ k ≤ du − 1
(du ≥ 2), letλ(k)

u be the length of the complementary open interval betweenS(k)
u

(
convFω(e(k)

u )

)
and

S(k+1)
u

(
convFω(e(k+1)

u )

)
(possiblyλ(k)

u = 0). All such complementary intervals (possibly empty)

are called thebasic gapsof this ordered COSC GD-IFS{S(k)
u } sitting at vertexu. Let

Λu := {λ(k)
u : λ(k)

u > 0,1 ≤ k ≤ du − 1}, (2.3)

be the set of strictly positive lengths of the basic gaps associated with vertexu ∈ V, see Figure
1.

Figure 1. Basic gaps ofFu.

As standard IFSs are one-vertex GD-IFSs, this definition is also applicable to standard IFSs
when we will omit the single vertex.

The GD-attractors (Fu)u∈V of any GD-IFS can be determined in the following way, see [12,
Equation (15)]. For any list of compact sets (Iu)u∈V, we define

Im
u :=

⋃

e∈Em
u

Se
(
Iω(e)

)
for anym≥ 1, (2.4)

whereEm
u denotes the set of paths of lengthm leavingu andω(e) denotes the terminal vertex of

pathe. Note that if
I1
u ⊂ Iu for eachu ∈ V, (2.5)
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then the sequenceIm
u decreases inm in the sense thatIm+1

u ⊆ Im
u for everym≥ 1, since

Im+1
u =

⋃

ẽ∈Em+1
u

Sẽ
(
Iω(̃e)

)
=

⋃

e∈Em
u

⋃

e∈E1
ω(e)

Se ◦ Se
(
Iω(e)

)

=
⋃

e∈Em
u

Se




⋃

e∈E1
ω(e)

Se
(
Iω(e)

)

 =

⋃

e∈Em
u

Se

(
I1
ω(e)

)
(2.6)

⊆
⋃

e∈Em
u

Se
(
Iω(e)

)
= Im

u . (2.7)

From this, it is known that for eachu ∈ V,

Fu =
∞⋂

m=1
Im
u , (2.8)

provided that (2.5) is satisfied.
In particular, takingIu = convFu for eachu ∈ V, we see that (2.5) is satisfied, since by (1.2)

Fu ⊆
⋃

v∈V

⋃

e∈Euv

Se(convFv) = I1
u ⊆ conv

( ⋃

v∈V

⋃

e∈Euv

Se(Fv)
)
= convFu = Iu. (2.9)

In this case, the (2.8) is true. Moreover, by taking convex hulls in (2.9), we know that

convFu ⊆ convI1
u ⊆ conv convFu = convFu,

which gives that
convI1

u = convFu = Iu, (2.10)
meaning that the two endpoints of the interval convI1

u coincide with those of the interval
convFu = Iu. This fact will be used shortly.

Throughout this paper, the productAB of setsA, B ⊂ R is defined to beAB = {ab : a ∈
A, b ∈ B}, and when we encounter the product of a set inR and a constant, regard the constant
as a set inR. If A is an empty set thenAB is also empty.

The following proposition gives a characterization for the gap length set of an attractorFu of
any COSC GD-IFS, which slightly extends a result in [3, below equation (5.2) in Section 5] to
the case when a GD-IFS satisfies the COSC.

Proposition 2.3. Let (V,E) be a digraph with du ≥ 2 for all u ∈ V, and let Fu be a GD-attractor
of a GD-IFS inR with the COSC based on(V,E). With the above notation, the gap length set
GL(Fu) of the attractor Fu is given by

GL(Fu) = Λu
⋃( ∞⋃

m=1

⋃

v∈V
Λv

{
|ρe| : e is a directed path from u to v with length m

})
. (2.11)

When there is no directed path from u to v, the set{|ρe|} is understood to be empty.

Proof. When GL(Fu) = ∅, that is,Fu = convFu, we have for allm≥ 1

convFu ⊇
⋃

v∈V

⋃

e∈Em
uv

Se(convFv) ⊇
⋃

v∈V

⋃

e∈Em
uv

Se(Fv) = Fu = convFu,

whereEm
uv is a collection of paths from vertexu to vertexv with lengthm. From this and using

the COSC, we see that
Se(convFv) = Se(Fv)

for everyv ∈ V and every directed pathe of lengthm from u to v, showing thatΛv = ∅ for all
v ∈ V to which a directed path fromu exists. Thus (2.11) is trivial in this case.

In the sequel, we assume that GL(Fu) , ∅. Let u ∈ V be a vertex. SetIu := convFu for each
u ∈ V, and (2.8) holds true by virtue of (2.9). So the gaps ofFu will be given by

(convFu) \ Fu = Iu \

(
∞⋂

m=1
Im
u

)

=
(
Iu \ I1

u

)⋃
(
∞⋃

m=1
Im
u \ Im+1

u

)

, (2.12)
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which consists of the complementary open intervals inIu \ I1
u and Im

u \ Im+1
u (1 ≤ m < ∞). We

need to calculate the lengths of these open intervals.
Indeed, for the open setIu \ I1

u, we know by definition (2.4) that

Iu \ I1
u = convFu \

⋃

e∈E1
u

Se
(
Iω(e)

)
=

du−1⋃

i=1
G(r)

u , (2.13)

whereG(r)
u for 1 ≤ r ≤ du− 1 form the basic gaps ofFu, whose lengths form the setΛu by using

(2.10) with the property that two intervalsIu andI1
u have the same endpoints, see Figure1.

On the other hand, for anym ≥ 1, due to the COSC, the interiors of the level-m intervals{
Se

(
Iω(e)

)}
e∈Em

u
are disjoint for anym. We know by (2.6) that

Im
u \ Im+1

u =
⋃

e∈Em
u

Se

(
Iω(e) \ I1

ω(e)

)
=

⋃

e∈Em
u

Se

(
dω(e)−1⋃

r=1
G(r)
ω(e)

)

(using (2.13)). (2.14)

The above union consists of disjoint complementary open intervalsSe(G
(r)
ω(e)), whose lengths are

given by|ρe| ∙ λ
(r)
ω(e), which form the gap length sets at themth-level for anym≥ 1. Summing up

overm will give the double union in the right-hand side of (2.11), and so (2.11) follows from
(2.12) and the definition of GL(Fu). �

2.2. Ratio analysis. We will use “ratio analysis” to analyse setsΘ of positive real numbers in
(0,∞), in terms of strictly decreasing geometric sequences{θ′rk}∞k=0 that are contained inΘ.

Definition 2.4. LetΘ ⊂ (0,∞). Forθ ∈ Θ, let

RΘ(θ) = {r ∈ (0,1) : there exists someθ′ ∈ Θ such thatθ ∈ {θ′rk}∞k=0 ⊂ Θ}, (2.15)

the set of common ratios of strictly decreasing geometric sequences inΘ that containsθ (the set
RΘ(θ) may be empty).

This concept arises quite naturally as the characteristic set GL(Fu) contains many geometric
sequences. The following definition will be used in studyingRGL(Fu)(θ) later on.

Definition 2.5. For a finite setA = {ai}ni=1 ⊂ (0,∞), defineAZ
∗
+ (resp.AQ

∗
+ , AQ

∗
) to be the union

of all products
n∏

i=1
ami

i where (mi)n
i=1 are non-zero vectors whose entries are nonnegative integers

(resp. nonnegative rationals, rationals). LetAZ+ = {1} ∪ AZ
∗
+ , that is, the union of all products

n∏

i=1
ami

i where (mi)i are nonnegative integer vectors (including the zero vector). Similarly,AQ =

{1} ∪ AQ
∗

andAQ+ = {1} ∪ AQ
∗
+ .

We will analyse GL(Fu) given by (2.11) with the following Lemma.

Lemma 2.6. Let A= {ai}ni=1 ⊂ (0,1) for n ∈ Z∗+ := {1,2, ∙ ∙ ∙ }, andλ j ( j = 1, ∙ ∙ ∙ ,m) be positive

real numbers (not necessarily distinct). LetΘ =
m⋃

j=1
λ jAj where Aj ⊂ AZ+ for 1 ≤ j ≤ m.

(i) Then RΘ(θ) ⊂ AQ
∗
+ for all θ ∈ Θ.

(ii ) If λp/λq < AQ for all distinct p,q ∈ {1, ∙ ∙ ∙,m} when m≥ 2, then for every strictly
decreasing geometric sequence{θ′rk}∞k=0 ⊂ Θ, there exists a unique l∈ {1, ∙ ∙ ∙,m} such that
{θ′rk}∞k=0 ⊂ λlAl, and

θ′rk < λ jAj for all j , l and all k≥ 0. (2.16)

Condition (ii ) in Lemma2.6means that the sets{λ jAj}mj=1 are disjoint.
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Proof. (i) Let θ ∈ Θ. Assume thatRΘ(θ) , ∅. Let r ∈ RΘ(θ). By (2.15), there existsθ′ ∈ Θ

such thatθ ∈ {θ′rk}∞k=0 ⊂ Θ, so by the pigeonhole principle we can find someλl such that
{θ′rk}∞k=0

⋂
λlAl is infinite. Write this infinite subsequence as

θ′rkt = λl

n∏

i=1
ami,t

i (2.17)

where (mi,t)n
i=1 ∈ Z

n
+ and {kt} ⊂ Z+ := {0,1,2, ∙ ∙ ∙ } with kt < kt+1, for t ∈ Z+. Applying

Proposition5.1 in the Appendix withB = {(mi,t)n
i=1}t∈Z+ , there exist two distinct vectors (mi,p)n

i=1
and (mi,q)n

i=1 in Zn
+ for some two indicesp < q in Z+, such that

(mi,p)
n
i=1 ≤ (mi,q)

n
i=1 (2.18)

under the partial order defined by inequality of all coordinates. Therefore, we have by (2.17)

rkq−kp =
θ′rkq

θ′rkp
=

λl

n∏

i=1
a

mi,q

i

λl

n∏

i=1
a

mi,p

i

=
n∏

i=1
a

mi,q−mi,p

i

(
or r =

n∏

i=1
a

(mi,q−mi,p)/(kq−kp)
i

)
.

Since (
mi,q −mi,p

kq − kp

)n

i=1

∈ (Qn
+)∗

using (2.18), it follows thatr ∈ AQ
∗
+ by definition. Therefore,

RΘ(θ) ⊂ AQ
∗
+

for all θ ∈ Θ, thus proving our assertion (i).
(ii ) For m ≥ 2, suppose that there exist distinctp,q ∈ {1, ∙ ∙ ∙,m} such thatθ′rk ∈ λpAp and

θ′r j ∈ λqAq for somek, j ∈ Z+. Write

θ′rk = λp

n∏

i=1
api,k

i and θ′r j = λq

n∏

i=1
a

qi, j

i (pi,k,qi, j ∈ Z+). (2.19)

By (i), r ∈ RΘ(θ′) ⊂ AQ
∗
+ sinceθ′ ∈ Θ, and sork− j ∈ AQ. It follows that

λp

λq
= rk− j

n∏

i=1
a

qi, j−pi,k

i ∈ AQAQ = AQ,

leading to a contradiction to our assumption. Thus, there exists a unique integerl ∈ {1, ∙ ∙ ∙,m}
such that{θ′rk}∞k=0 ⊂ λlAl .

It remains to show (2.16). In fact, if (2.16) were not true, thenθ′rk ∈ λtAt for some integer
k ≥ 0 and somet , l. Takingp = l, j = k, q = t in (2.19), we would have

λl

λt
=

n∏

i=1
aqi,k−pi,k

i ∈ AQ,

leading to a contradiction. The assertion (2.16) follows. �

The following corollary will be used to describe a certain ‘homogeneity’ property of (the gap
length sets of) attractors of COSC standard IFSs.

Corollary 2.7. Let X⊂ (0,1) andΛ ⊂ (0,∞) be two finite sets. Then

XZ
∗
+ ⊂ RΛXZ+ (θ) ⊂ XQ

∗
+

for everyθ ∈ ΛXZ+ .
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Proof. Let θ ∈ ΛXZ+ . SinceXZ
∗
+ ⊂ XZ+ ,

θXZ
∗
+ ⊂ (ΛXZ+)XZ+ = Λ(XZ+XZ+) = ΛXZ+ .

For anyr ∈ XZ
∗
+ andk ∈ Z+, we haverk ∈ XZ+ and so

θrk ∈
(
ΛXZ+

)
XZ+ = ΛXZ+ ,

thus showing thatr ∈ RΛXZ+ (θ) by definition (2.15) with Θ = ΛXZ+ , so the first inclusion
follows.

The second inclusion also follows by takingA = X, λ j ∈ Λ and eachAj = XZ+ in Lemma
2.6(i) (so thatΘ = ΛXZ+). �

As an application of Lemma2.6and Corollary2.7, we derive a key lemma that will be used
to distinguish the attractor of a COSC GD-IFS from that of a COSC standard IFS.

Definition 2.8 (Absolute contraction ratio set). Theabsolute contraction ratio setof a GD-IFS
is defined to be the set of the absolute values of the contraction ratios of the similarities, that is
{|ρe| : e ∈ E}.

Lemma 2.9. Let (Fv)v∈V be the attractors of a COSC GD-IFS based on a digraph with dv ≥ 2
for all v ∈ V, with absolute contraction ratio set A. Assume that for some u, the set Fu is
not an interval (or a singleton) and is the attractor of some COSC standard IFS with absolute
contraction ratio set X.
(i) Then for allθ ∈ GL(Fu)

X ⊂ XZ
∗
+ ⊂ RGL(Fu)(θ) ⊂ AQ

∗
+ ∩ XQ

∗
+ . (2.20)

(ii ) If A1 ∪ A2 = A and AQ
∗

1 ∩ A
Q∗+

2 = ∅, then the following dichotomy is true:either

RGL(Fu)(θ) ∩ AQ
∗
+

1 , ∅ for all θ ∈ GL(Fu), (2.21)

or
RGL(Fu)(θ) ∩ AQ

∗
+

1 = ∅ for all θ ∈ GL(Fu). (2.22)

The assertion (ii ) of Lemma2.9gives a necessary condition that a COSC GD-attractorFu is
also the attractor of some COSC standard IFS in the following way: if there exists two elements
θ1, θ2 ∈ GL(Fu) such that (2.21) holds for θ1 whilst (2.22) holds for θ2, then Fu is not the
attractor of any COSC standard IFS. This assertion will be used in Lemma4.1below.

Proof. (i) Let Λ be the set of nonzero basic gap lengths of some COSC standard IFS with the
attractorFu, and letX be the absolute contraction ratio set. Regard this standard IFS as a GD-
IFS based on ({v}, {ej}mj=1) whereej are loops of the single vertexv, all directed paths of length
k ≥ 1 are nowei1ei2 ∙ ∙ ∙ eik wherei l = 1,2, ∙ ∙ ∙ ,m for all l = 1,2, ∙ ∙ ∙ , k. By (2.11),

GL(Fu) = Λ
⋃( ∞⋃

m=1
Λ
{
|ρe| : e is a directed path fromv to v with lengthm

})

= Λ ∪ ΛXZ
∗
+ = ΛXZ+ .

Note that GL(Fu) is non-empty by using our assumption thatFu is not an interval or a singleton.
On the other hand, Corollary2.7 implies that

XZ
∗
+ ⊂ RGL(Fu)(θ) = RΛXZ+ (θ) ⊂ XQ

∗
+ (2.23)

for all θ ∈ GL(Fu). Recall that a directed circuit containingu is a directed path fromu to u. We
write the union given by (2.11) as

Θ B GL(Fu) =
( ⋃

λ∈Λu

λ
(
{1}

⋃{
|ρe| : e is a directed circuit containingu

}) )
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⋃( ⋃

v∈V\{u}

⋃

λ∈Λv

λ
{
|ρe| : e is a directed path fromu to v

})
. (2.24)

Since the absolute contraction ratios are all inA (so that|ρe| ∈ AZ+), it follows from Lemma
2.6(i) thatRGL(Fu)(θ) ⊂ AQ

∗
+ for all θ ∈ GL(Fu), which combines with (2.23) to give that

RGL(Fu)(θ) ∈ AQ
∗
+ ∩ XQ

∗
+ ,

leading to the inclusions in (2.20), as desired.
(ii ) If X ∩ AQ

∗
+

1 , ∅, it follows from (2.20) that

X ∩ AQ
∗
+

1 ⊂ RGL(Fu)(θ) ∩ AQ
∗
+

1

for all θ ∈ GL(Fu), thus showing that (2.21) is true.
Now assume thatX ∩ AQ

∗
+

1 = ∅. We will show that (2.22) is true.
We first claim thatAQ

∗
+ is the union of two disjoint setsAQ

∗
+

1 and AQ+

1 AQ
∗
+

2 . To see this, as

AQ
∗

1 ∩ A
Q∗+

2 = ∅ by assumption, it follows that

AQ
∗
+

1 ∩ AQ+

1 AQ
∗
+

2 = ∅. (2.25)

In fact, if (2.25) were not true, there would exist three elements

a ∈ AQ
∗
+

1 , b ∈ AQ+

1 , c ∈ AQ
∗
+

2

with a = bc, from which a
b ∈ AQ1 and a

b = c ∈ AQ
∗
+

2 . As AQ1 = {1} ∪ AQ
∗

1 by definition and

{1} ∩ AQ
∗
+

2 = ∅ due toAQ
∗
+

2 ⊂ (0,1), we see that

a
b
∈ AQ1 ∩ AQ

∗
+

2 =
(
{1} ∪ AQ

∗

1

)
∩ AQ

∗
+

2 =
(
{1} ∩ AQ

∗
+

2

)
∪

(
AQ

∗

1 ∩ A
Q∗+

2

)
= ∅,

a contradiction.
We need to show

AQ
∗
+ = AQ

∗
+

1 ∪ AQ+

1 AQ
∗
+

2 . (2.26)

In fact, let
A1 = {bi}

m
i=1, A2 = {cj}

n
j=1.

As A1 ∩ A2 ⊂ AQ
∗

1 ∩ AQ
∗
+

2 = ∅, any elementa ∈ AQ
∗
+ = (A1 ∪ A2)Q

∗
+ can be written as

a =
m∏

i=1
bpi

i

n∏

j=1
c

qj

j for some (pi)
m
i=1 ∈ Q

m
+ and (qj)

n
j=1 ∈ Q

n
+,

where not allpi ,qj are zero. Thus, if allqj are zero, thena =
m∏

i=1
bpi

i ∈ AQ
∗
+

1 ; otherwisea ∈

AQ+

1 AQ
∗
+

2 . This proves (2.26) by using (2.25).
As X ∩ AQ

∗
+

1 = ∅ and

X ⊂ AQ
∗
+ = AQ

∗
+

1 ∪ AQ+

1 AQ
∗
+

2

by using (2.20) and (2.26), we have

X ⊂ AQ+

1 AQ
∗
+

2 . (2.27)

We will show the following inclusion

XQ
∗
+ ⊂ AQ+

1 AQ
∗
+

2 . (2.28)

SinceX is finite, let
X = {xl}

k
l=1, A1 = {bi}

m
i=1, A2 = {cj}

n
j=1.
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By (2.27), we write for eachl = 1,2, ∙ ∙ ∙ , k

xl =
m∏

i=1
bpi,l

i

n∏

j=1
c

qj,l

j for some (pi,l)
m
i=1 ∈ Q

m
+ and (qj,l)

n
j=1 ∈ (Qn

+)∗.

Then any elementx ∈ XQ
∗
+ can be written as

x =
k∏

l=1
xrl

l =
k∏

l=1

(
m∏

i=1
bpi,l

i

n∏

j=1
c

qj,l

j

)rl

=
m∏

i=1
b
∑k

l=1 pi,l rl

i

n∏

j=1
c
∑k

l=1 qj,l rl

j for some (rl)
k
l=1 ∈

(
Qk

+

)∗
.

Note that the numbers
∑k

l=1 pi,l rl and
∑k

l=1 qj,l rl all belong toQ+. Sincerl′ > 0 for somel′ while
qj′,l′ > 0 for this l′ and somej′, we have

∑k
l=1 qj′,l rl > 0 for this j′. Therefore, we obtain (2.28).

Finally, by (2.20) and (2.28), we have for allθ ∈ GL(Fu),

RGL(Fu)(θ) ⊂ XQ
∗
+ ⊂ AQ+

1 AQ
∗
+

2 ,

from which, we easily conclude that (2.22) holds by using (2.25). �

3. Construction of GD-IFSs

We will construct COSC (CSSC) GD-IFSs in terms of vector sets in Euclidean spaces, to
analyse the existence and extent ofnon-trivial GD-IFSs whose attractors are not attractors of
any (COSC) standard IFS.

For a digraphG = (V,E) with di ≥ 2 for i ∈ V = {1,2, ∙ ∙ ∙ ,N}, we set

n := 2#E − #V = 2(d1 + d2 + ∙ ∙ ∙ + dN) − N (3.1)

so thatn ≥ N (recall thatdi denotes the number of the edges leaving vertexi). Define the subset
P0 in the Euclidean spaceRn, with n given in (3.1), by

P0 B
{
x = (x(1)

1 , ∙ ∙ ∙, x
(d1)
1 , x

(1)
2 , ∙ ∙ ∙, x

(d2)
2 , ∙ ∙ ∙ , x

(1)
N , ∙ ∙ ∙, x

(dN)
N , ξ

(1)
1 , ∙ ∙ ∙, ξ

(d1−1)
1 , ∙ ∙ ∙ , ξ(1)

N , ∙ ∙ ∙, ξ
(dN−1)
N )

wherex(k)
i , x

(di )
i ∈ (−1,1) \ {0} andξ(k)

i ≥ 0 for each vertexi ∈ V, 1 ≤ k ≤ di − 1
}
. (3.2)

Each vectorx in P0 consists of two kinds of entries: the entries{x(k)
i }i∈V,1≤k≤di all lie in the set

(−1,1) \ {0}, and will specify the contraction ratios of GD-IFSs to be constructed, whilst the
other entries{ξ(k)

i }i∈V,1≤k≤di−1 are all non-negative, and will specify the basic gap lengths.
For vertexi ∈ V, let {ei(k) : 1 ≤ k ≤ di} be the set of edges leavingi, which are arranged

in some order which will henceforth remain fixed. For a pointx in P0, we look at its entries
{x(k)

i }i∈V,1≤k≤di and define anN × N matrix Mx(s) for anys> 0 by

Mx(s) =
(
Mi j (s)

)

1≤i, j≤N
, (3.3)

where
Mi j (s) =

∑

ei (k)∈Ei j

|x(k)
i |

s (3.4)

if Ei j , ∅, andMi j (s) = 0 if Ei j = ∅ (recall thatEi j is the set of (multiple) edges from vertexi to
vertex j).

Let b, ` be two vectors defined by

b B (b(1)
i )i∈V whereb(1)

i ∈ R, (3.5)

` B (l i)i∈V wherel i ≥ 0. (3.6)

For each edgeei(k) (1 ≤ k ≤ di) leaving vertexi ∈ V, we define the mappings associated with a
point x in P0 by

Sei (k)(t) = x(k)
i (t − b(1)

ω(ei (k))) + b(k)
i − x(k)

i lω(ei (k))1{x(k)
i <0} for a variablet ∈ R, (3.7)
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where1{x(k)
i <0} = 1 if x(k)

i < 0, and1{x(k)
i <0} = 0 otherwise, and

b(k+1)
i := b(k)

i + |x(k)
i |lω(ei (k)) + ξ

(k)
i for i ∈ V and 1≤ k ≤ di − 1, (3.8)

andω(ei(k)) denotes the terminal vertex of the edgeei(k) as before.
Note that for any pointx ∈ P0, the mappingSei (k) defined as in (3.7) has the contraction ratio

x(k)
i ∈ (−1,1) \ {0}, therefore it is a contracting similarity, and

z(x,b, `) := {Sei (k) : i ∈ V,1 ≤ k ≤ di} (3.9)

forms a GD-IFS on the digraph (V, {ei(k)}), thus having a unique list of GD-attractors{Fi}i∈V.
For any two vectorsb, ` as in (3.5), (3.6) and any pointx in P0, we define the closed intervals

(which may be singletons) for each vertexi ∈ V by

Ii = [b(1)
i ,b

(1)
i + l i], (3.10)

Ii(k) =
[
b(k)

i ,b
(k)
i + |x(k)

i |lω(ei (k))
]

for 1 ≤ k ≤ di , (3.11)

whereb(k+1)
i for 1 ≤ k ≤ di − 1 are given by (3.8).

We will work with a subsetP of P0 defined by

PB
{
x ∈ P0 : rσ(Mx(1)) < 1,

di−1∑

k=1

ξ(k)
i > 0 for all 1≤ i ≤ N

}
, (3.12)

where the matrixMx(1) is defined by (3.3) with s= 1, andrσ(M) denotes thespectral radiusof
a matrixM, which is the largest absolute value (complex modulus) of the eigenvalues ofM.

We show that any point inP will give arise to at least one COSC GD-IFS onG, in form of
(3.7), whose contraction ratios are{x(k)

i }i∈V,1≤k≤di and whose attractorFi at each vertexi has the
convex hullIi given by (3.10), having the basic gap lengths{ξ(k)

i }1≤k≤di−1, provided thatl i satisfies
(3.13) below.

Lemma 3.1(Construction of GD-IFSs). Let G= (V,E) be a digraph with di ≥ 2 for i ∈ V. With
the same notation above, let x be any point in P as in(3.12) andb be any vector as in(3.5). Let
(li)i∈V be a vector of real numbers given by

(l i)
T
i∈V := (id − Mx(1))−1




di−1∑

k=1

ξ(k)
i




T

i∈V

, (3.13)

where MT denotes the transpose of a matrix M. Then any GD-IFSz(x,b), given by(3.7), (3.9)
and(3.13) and having attractors{Fi}i∈V, satisfies the following properties.

(i). For each vertex i∈ V, we have li > 0 and

convFi = Ii = [b(1)
i , b(1)

i + l i]. (3.14)

(ii ). The GD-IFSz(x,b) satisfies the COSC. The basic gaps of attractor Fi for i ∈ V are
given by the following open intervals inR

{(
b(k)

i + |x(k)
i |lω(ei (k)),b

(k+1)
i

)}

1≤k≤di−1
, (3.15)

which are arranged in order from left to right. The corresponding basic gap lengths are
{
b(k+1)

i −
(
b(k)

i + |x(k)
i |lω(ei (k))

)
= ξ(k)

i

}

1≤k≤di−1
. (3.16)

If further all ξ(k)
i > 0 for i ∈ V and1 ≤ k ≤ di − 1, thenz(x,b) satisfies the CSSC.
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Proof. Note that

b(di )
i = b(1)

i +

di−1∑

k=1

(ξ(k)
i + |x(k)

i |lω(ei (k))), (3.17)

since, by repeatedly using definition (3.8) of b(k+1)
i ,

b(di )
i = b(di−1)

i + |x(di−1)
i |lω(ei (di−1)) + ξ

(di−1)
i

=
(
b(di−2)

i + |x(di−2)
i |lω(ei (di−2)) + ξ

(di−2)
i

)
+ |x(di−1)

i |lω(ei (di−1)) + ξ
(di−1)
i

= ∙ ∙ ∙

= b(1)
i +

di−1∑

k=1

(ξ(k)
i + |x(k)

i |lω(ei (k))).

Also note that
l i > 0 for eachi ∈ V, (3.18)

since, by using definition (3.12) of P, the matrix (id−Mx(1)) is invertible and can be written as

(id − Mx(1))−1 = id + Mx(1)+ M2
x(1)+ ∙ ∙ ∙ ,

(see for example [14, LemmaB.1, Appendix B]), from which it follows by definition (3.13) that

l i =
∑

j∈V

(
(id − Mx(1))−1

)

i j




dj−1∑

k=1

ξ(k)
j




=
∑

j∈V

(
id + Mx(1)+ M2

x(1)+ ∙ ∙ ∙
)

i j




dj−1∑

k=1

ξ(k)
j




≥
di−1∑

k=1

ξ(k)
i > 0 (3.19)

by using the fact thatMx(1) is a nonnegative matrix and that
∑di−1

k=1 ξ
(k)
i > 0 by (3.12).

We claim that
b(di )

i + |x(di )
i |lω(ei (di )) = b(1)

i + li for each vertexi ∈ V. (3.20)

Indeed, we know by definition (3.13) that

(id − Mx(1))(l i)
T
i∈V =




di−1∑

k=1

ξ(k)
i




T

i∈V

, (3.21)

from which, by definitions (3.3) and (3.4),
di−1∑

k=1

ξ(k)
i = li −

N∑

j=1

Mi j (1)l j = l i −
N∑

j=1




∑

ei (k)∈Ei j

|x(k)
i |


 l j = l i −

di∑

k=1

|x(k)
i |lω(ei (k)), (3.22)

so that

li =
di−1∑

k=1

ξ(k)
i +

di∑

k=1

|x(k)
i |lω(ei (k)) for each vertexi ∈ V. (3.23)

Combining this with (3.17),

li =

di−1∑

k=1

ξ(k)
i +

di∑

k=1

|x(k)
i |lω(ei (k)) =

di−1∑

k=1

(ξ(k)
i + |x(k)

i |lω(ei (k))) + |x
(di )
i |lω(ei (di ))

= b(di )
i − b(1)

i + |x(di )
i |lω(ei (di )),
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thus showing (3.20). This proves our claim.
We next show that the contracting similaritySei (k) associated with the edgeei(k) satisfies

Sei (k)(Iω(ei (k))) = [b(k)
i ,b

(k)
i + |x(k)

i |lω(ei (k))] = Ii(k) (3.24)

for each vertexi ∈ V and each 1≤ k ≤ di. This is easily seen by looking at the two endpoints of
interval Iω(ei (k)), depending on whetherx(k)

i > 0 or not. Indeed, by definition (3.10) with vertexi
being replaced by vertexω(ei(k)),

Iω(ei (k)) = [b(1)
ω(ei (k)),b

(1)
ω(ei (k)) + lω(ei (k))].

If x(k)
i > 0, we have by definition (3.7) thatSei (k)(b

(1)
ω(ei (k))) = b(k)

i and

Sei (k)(b
(1)
ω(ei (k)) + lω(ei (k))) = x(k)

i lω(ei (k)) + b(k)
i = b(k)

i + |x(k)
i |lω(ei (k)),

from which

Sei (k)(Iω(ei (k))) = [Sei (k)(b
(1)
ω(ei (k))),Sei (k)(b

(1)
ω(ei (k)) + lω(ei (k)))]

= [b(k)
i ,b

(k)
i + |x(k)

i |lω(ei (k))], (3.25)

thus showing (3.24). On the other hand, ifx(k)
i < 0, we similarly have thatSei (k)(b

(1)
ω(ei (k)) +

lω(ei (k))) = b(k)
i and

Sei (k)(b
(1)
ω(ei (k))) = b(k)

i − x(k)
i lω(ei (k)) = b(k)

i + |x(k)
i |lω(ei (k)),

so

Sei (k)(Iω(ei (k))) = [Sei (k)(b
(1)
ω(ei (k)) + lω(ei (k))),Sei (k)(b

(1)
ω(ei (k)))]

= [b(k)
i ,b

(k)
i + |x(k)

i |lω(ei (k))],

thus showing (3.24) again. Thus (3.24) is always true.
Since by definition (3.8)

b(k)
i + |x(k)

i |lω(ei (k)) = b(k+1)
i − ξ(k)

i ≤ b(k+1)
i ,

we know by (3.24) that the closed intervals{Ii(k) : 1 ≤ k ≤ di} are arranged in order from left to
right, which together with (3.20) implies that

di⋃

k=1
int(Ii(k)) =

di⋃

k=1

(
b(k)

i ,b
(k)
i + |x(k)

i |lω(ei (k))

)

⊂
(
b(1)

i ,b
(di )
i + |x(di )

i |lω(ei (di ))

)
=

(
b(1)

i ,b
(1)
i + l i

)
(3.26)

with the disjoint union.
We are now in a position to prove the assertions (i), (ii ).
(i). We will use (3.24) and definition (3.13) to derive (3.14). Indeed, recall that the intervals

Ii are defined in (3.10). Note thatli > 0 for eachi ∈ V by (3.18). As in (2.4), for each vertex
i ∈ V we let

Im
i B

⋃

e∈Em
i

Se
(
Iω(e)

)
for m= 1,2, ∙ ∙ ∙ , (3.27)

whereEm
i is the set of edges of lengthm leaving vertexi, andω(e) is the terminal of pathe as

before. We show that for each vertexi ∈ V

min Im
i = b(1)

i = min Ii , maxIm
i = b(1)

i + li = maxIi for m= 1,2, ∙ ∙ ∙ , (3.28)

so that the left and right endpoints, respectively, of all the intervalsIm
i are the same.
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Indeed, we know by definition (3.27) that for each vertexi ∈ V

I1
i =

⋃

e∈E1
i

Se
(
Iω(e)

)
=

di⋃

k=1
Sei (k)

(
Iω(ei (k))

)

=
di⋃

k=1
[b(k)

i ,b
(k)
i + |x(k)

i |lω(ei (k))] (using (3.24)),

from which, using the fact thatb(k)
i + |x(k)

i |lω(ei (k)) ≤ b(k+1)
i by (3.8), it follows that minI1

i = b(1)
i ,

and
maxI1

i = b(di )
i + |x(di )

i |lω(ei (di )) = b(1)
i + l i

by using (3.20). Hence, the (3.28) is true whenm= 1 by definition (3.10) of Ii.
Assume inductively that (3.28) holds for somem≥ 1. Since for each vertexi ∈ V

Im+1
i =

⋃

e′∈Em+1
i

Se′
(
Iω(e′)

)
=

⋃

e∈Em
i

Se

(
I1
ω(e)

)

by using (2.6), it follows that

min Im+1
i = min{Se(I

1
ω(e)) : e ∈ Em

i }

= min{Se(Iω(e)) : e ∈ Em
i }

= min Im
i = b(1)

i .

Similarly,
maxIm+1

i = maxIm
i = b(1)

i + l i .

Therefore, the (3.28) holds for allm≥ 1 by induction.
Since condition (2.5) holds using thatI1

i ⊂ Ii = [b(1)
i ,b

(1)
i + li], and we know by (2.8) that

Fi =
⋂∞

m=1 Im
i , (3.28) gives that,

convFi = conv
∞⋂

m=1
Im
i = [b(1)

i , b(1)
i + l i],

showing that (3.14) holds true.
(ii ). Applying (3.14) with i replaced by vertexω(ei(k)), the terminal of the edgeei(k),

convFω(ei (k)) = Iω(ei (k)) = [b(1)
ω(ei (k)), b(1)

ω(ei (k)) + lω(ei (k))], (3.29)

from which it follows by (3.24) that

Sei (k)(convFω(ei (k))) = Sei (k)(Iω(ei (k))) = [b(k)
i ,b

(k)
i + |x(k)

i |lω(ei (k))] = Ii(k) (3.30)

for 1 ≤ k ≤ di.
We show thatz(x,b) satisfies the COSC. TakingUi = int(convFi), from (3.14)

Ui = int(convFi) = (b(1)
i , b(1)

i + li) = int(Ii),

so that each open setUi is not empty asli > 0. It follows that

⋃

j∈V

⋃

e∈Ei j

Se

(
U j

)
=

di⋃

k=1
Sei (k)

(
Uω(ei (k))

)
=

di⋃

k=1
Sei (k)

(
int(Iω(ei (k))

)
)

=
di⋃

k=1
int

(
Sei (k)(Iω(ei (k)))

)
=

di⋃

k=1
int(Ii(k)) (using (3.24))

⊆ (b(1)
i , b(1)

i + l i) (using (3.26))

= Ui

with the union disjoint. Thusz(x,b) satisfies the COSC.
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For each vertexi ∈ V, the basic gaps of the attractorFi are the complementary open intervals
between the closed interval

Sei (k)(convFω(ei (k))) = [b(k)
i ,b

(k)
i + |x(k)

i |lω(ei (k))] = Ii(k) (using (3.30))

and its neighbour

Sei (k+1)(convFω(ei (k+1))) = [b(k+1)
i ,b(k+1)

i + |x(k+1)
i |lω(ei (k+1))] = Ii(k+ 1)

for 1 ≤ k ≤ di − 1. Specifically, they are the following open intervals
{(

b(k)
i + |x(k)

i |lω(ei (k)),b
(k+1)
i

)}

1≤k≤di−1
.

that are arranged in order from left to right, thus showing (3.15) for each vertexi ∈ V.
The basic gap lengths of the attractorFi are the lengths of the open intervals in (3.15), which

are equal to

b(k+1)
i −

(
b(k)

i + |x(k)
i |lω(ei (k))

)
= ξ(k)

i (1 ≤ k ≤ di − 1)

by using definition (3.8), thus showing (3.16).
Finally, if all ξ(k)

i > 0, thenz(x,b) satisfies the CSSC, since

⋃

v∈V

⋃

e∈Euv

Se (convFv) =
di⋃

k=1
Sei (k)

(
convFω(ei (k))

)
=

di⋃

k=1
Ii(k)

with the disjoint union, as the intervalsIi(k) andIi(k + 1) are separated by distanceξ(k)
i , which

are strictly positive. �

Remark 3.2. Note that any pointx belongs toP if

max
i∈V

{ di∑

k=1

|x(k)
i |

}

< 1. (3.31)

This is because

rσ(Mx(1)) ≤ max
i∈V

{ N∑

j=1

∑

ei (k)∈Ei j

|x(k)
i |

}

= max
i∈V

{ di∑

k=1

|x(k)
i |

}

< 1, (3.32)

using the elementary fact that the spectral radius of a nonnegative matrix is no greater than
any row sum, see for example [14, Equation (1.9)]. Therefore, everyx ∈ P0 satisfying (3.31)
belongs toP, and all the assertions (i), (ii ) in Lemma3.1 hold true, provided that (li)i∈V are
chosen as in (3.13).

We now look at subsetsP, depending on a numberδ > 0, which will give rise to a special
class of GD-IFSs, satisfying the CSSC, having attractors{Fi}i∈V with the property that convFi =

[0,1], and all the basic gaps ofFi have the same lengthδ.

Definition 3.3. Let δ be a small number such that

0 < δ < min
i∈V

{
1

di − 1

}

(3.33)

(recall our assumption that the out-degreedi at vertexi satisfiesdi ≥ 2 for all i). We define a set
A(δ) by

A(δ) B
{
(x(1)

1 , ∙ ∙ ∙ , x
(d1)
1 , x

(1)
2 , ∙ ∙ ∙ , x

(d2)
2 , ∙ ∙ ∙ , x

(1)
N , ∙ ∙ ∙ , x

(dN)
N , δ, ∙ ∙ ∙ , δ) ∈ R

n : |x(k)
i | > 0

and|x(1)
i | + ∙ ∙ ∙ + |x

(di )
i | = 1− (di − 1) δ for all i ∈ V,1 ≤ k ≤ di

}
.

(3.34)
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Let Mx(1) be anN×N matrix associated with pointx as in (3.3) for s= 1. For eachx ∈ A(δ),
the spectral radius of matrixMx(1) is less than 1, since

max
i∈V

{ di∑

k=1

|x(k)
i |

}

= max
i∈V
{1− (di − 1)δ} < 1 (using (3.33)) (3.35)

and hence,
A(δ) ⊂ P (3.36)

where the setP is as in (3.12). Moreover,

(id − Mx(1))




1

1
...

1




:=




(d1 − 1)δ

(d2 − 1)δ
...

(dN − 1)δ




(3.37)

so that (3.13) is satisfied with

l i = 1 and ξ(k)
i = δ for i ∈ V; 1 ≤ k ≤ di − 1, (3.38)

this is because for eachi ∈ V, by definitions (3.34) and (3.4),

(di − 1)δ = 1−
(
|x(1)

i | + ∙ ∙ ∙ + |x
(di )
i |

)
(3.39)

= 1−
N∑

j=1

( ∑

ei (k)∈Ei j

|x(k)
i |

)

=

N∑

j=1

(id − Mx(1))i j




1

1
...

1




.

Let {b(k)
i }i∈V,1≤k≤di be a family of real numbers given by

b(1)
i = 0 and b(k+1)

i = b(k)
i + |x(k)

i | + δ for i ∈ V,1 ≤ k ≤ di − 1, (3.40)

so that
b(k+1)

i = |x(1)
i | + |x

(2)
i | + ∙ ∙ ∙ + |x

(k)
i | + kδ (i ∈ V,1 ≤ k ≤ di − 1). (3.41)

Clearly, eachb(k+1)
i ∈ (0,1) for 1≤ k ≤ di − 1 by using (3.39).

Let b0, `1 be two vectors defined by

b0 B (b(1)
i ,b

(1)
2 , ∙ ∙ ∙ ,b

(1)
N ) = (0,0, ∙ ∙ ∙ ,0),

`1 B (l1, l2, ∙ ∙ ∙ , lN) = (1,1, ∙ ∙ ∙ ,1). (3.42)

In this situation, forx ∈ A(δ), the contracting similarities defined in (3.7) read

Sei (k)(t) = x(k)
i t + b(k)

i − x(k)
i 1{x(k)

i <0} for a variablet ∈ R (3.43)

for i ∈ V,1 ≤ k ≤ di, which will give arise to a GD-IFS satisfying the CSSC. This will be used
in Theorem4.10below.

Corollary 3.4. Let G= (V,E) be a digraph with di ≥ 2 for i ∈ V = {1,2, ∙ ∙ ∙ ,N}. Letδ satisfy
(3.33). For x ∈ A(δ), let

z(x) := {Sei (k) : i ∈ V,1 ≤ k ≤ di}

be a GD-IFS given as in(3.43), with attractors(Fi)i∈V. Then the following statements hold.

(i). For each vertex i∈ V, convFi = [0,1].



A DICHOTOMY ON THE SELF-SIMILARITY OF GRAPH-DIRECTED ATTRACTORS 17

(ii ). For each vertex i∈ V,
Sei (1)([0,1]) =

[
0, |x(1)

i |
]

(3.44)

so that|x(1)
i | ∈ Fi. The basic gaps of the attractor Fi are given by

(
|x(1)

i | + ∙ ∙ ∙ + |x
(k)
i | + (k− 1)δ, |x(1)

i | + ∙ ∙ ∙ + |x
(k)
i | + kδ

)
(3.45)

for every1 ≤ k ≤ di − 1, so that the basic gap lengths are all equal to the same number,
δ say. Moreover, the GD-IFSz(x) satisfies the CSSC.

Proof. Let x ∈ A(δ). Then x ∈ P by using (3.36), and condition (3.13) is also satisfied by
(3.37). Thus all the assumptions in Lemma3.1are satisfied. Applying Lemma3.1(i) and using
(3.10) with b(1)

i = 0 andl i = 1,

convFi = [b(1)
i ,b

(1)
i + li] = [0,1],

thus showing (i).
To show (ii ), noting thatIω(ei (k)) = [0,1] andlω(ei (k)) = 1,b(1)

i = 0, we know by (3.24) that

Sei (1)([0,1]) = Sei (1)(Iω(ei (k))) = [b(1)
i ,b

(1)
i + |x(1)

i |lω(ei (1))] = [0, |x(1)
i |]

thus showing (3.44).
By (3.15), (3.41), the basic gaps of the attractorFi are given by

(
b(k)

i + |x(k)
i |lω(ei (k)),b

(k+1)
i

)
=

(
b(k)

i + |x(k)
i |,b

(k+1)
i

)

=
(
|x(1)

i | + ∙ ∙ ∙ + |x
(k)
i | + (k− 1)δ, |x(1)

i | + ∙ ∙ ∙ + |x
(k)
i | + kδ

)

for every 1≤ k ≤ di − 1, thus showing (3.45). From this, it is clear that the basic gap lengths
all are equal to the same number which we callδ. Finally, z(x) satisfies the CSSC by Lemma
3.1(ii ) since allξ(k)

i = δ > 0. �

4. Criteria for graph directed attractors not to be self-similar sets

In this section we give some sufficient conditions under which GD-attractors cannot be re-
alised as attractors of any standard IFSs with or without the COSC.

For a directed pathL, let A(L) (resp.A(Lc)) be the set of the absolute values of the contraction
ratios of the similarities associated with the edges inL (resp. not inL). Recall the definition of
Λu from (2.3).

Lemma 4.1. Assume that(V,E) is a digraph with dw ≥ 2 for all w ∈ V and L is a directed
circuit that does not go through every vertex in V. Let u be a vertex outside L and v a vertex in
L, assume that there exists a directed path from u to v. Consider a COSC GD-IFS based on this
digraph. With the notation above, suppose that the following three conditions hold:

(i) (A(L))Q
∗
∩ (A(Lc))Q

∗
+ = ∅.

(ii ) Λu , ∅ andΛv , ∅.
(iii ) For all pairs (w, k) , (z,m) with λ(m)

z , 0 where w, z ∈ V and1 ≤ k ≤ dw − 1,1 ≤ m ≤
dz− 1,

λ(k)
w /λ

(m)
z < (A(L) ∪ A(Lc))Q.

Then the graph-directed IFS attractor Fu is not the attractor of any COSC standard IFS.

Basically, condition (i) means that linear combinations of numbers{log |ρe| : e ∈ A(L)} over
Q∗, that is, ∑

e∈A(L)

qe log |ρe| for (qe)e∈A(L) ∈ (Q#A(L))∗
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where (Q#A(L))∗ is the set of non-zero vectors inQ#A(L) as before, are different from those of
numbers{log |ρe| : e ∈ A(Lc)} over Q∗+, while condition (ii ) means that not all basic gaps
associated withu andv are empty, and condition (iii ) means that log(λ(k)

w /λ
(m)
z ) for all distinct

basic gaps of positive lengths are different from linear combinations of numbers{log |ρe| : e ∈ E}
overQ. Note that condition (i) requires a certain homogeneity, on the ratios of the gap length
set of a COSC self-similar GD-attractor, which does not necessarily hold when (ii ) and (iii ) are
satisfied. Note that among the three conditions (i), (ii ), (iii ), no two of them imply the third.

Proof. We show that the strict dichotomy required by Lemma2.9 (ii ) for a graph-directed at-
tractor fails forFu satisfying the conditions of this theorem.

Let u be a vertex outsideL andv a vertex inL. For anyw , u in V, let

R(uw) = {|ρe| : e is a directed path fromu to w},

and let
R(uu) = {1} ∪ {|ρe| : e is a directed circuit containingu}.

With the above notation, the union (2.24) becomes

Θ B GL(Fu) =
⋃

w∈V
ΛwR(uw) =

⋃

w∈V

⋃

λ∈Λw

λR(uw). (4.1)

By condition (ii ), we can choose two non-zero basic gap lengthsλu ∈ Λu, λv ∈ Λv. Since there
exists a directed pathe from u to v, we can choose a number

θ B λv|ρe| ∈ λvR(uv) ⊂ GL(Fu).

Recall thatρL denotes the product of the contraction ratios on the edges ofL. For each integer
k ≥ 0, we defineeLk by eL0 := eand

eLk := eL ∙ ∙ ∙ L︸ ︷︷ ︸
k times

for k ≥ 1,

all of which are directed paths fromu to v, so that|ρeLk | ∈ R(uv). Note that

|ρL| ∈ RGL(Fu)(θ), (4.2)

since for everyk ≥ 0,

θ|ρL|
k = λv|ρe||ρL|

k = λv|ρeLk | ∈ λvR(uv) ⊂ GL(Fu)

by using (4.1), which implies (4.2) by definition (2.15) with θ′ being replaced byθ ∈ GL(Fu).
SetA1 B A(L), A2 B A(Lc). Since|ρL| ∈ (A(L))Z

∗
+ = AZ

∗
+

1 ⊂ AQ
∗
+

1 , we obtain by (4.2)

RGL(Fu)(θ) ∩ AQ
∗
+

1 , ∅. (4.3)

Let
r ∈ RGL(Fu)(λu).

By definition (2.15), there exists a geometric sequence{θ′rk}∞k=0 ⊂ GL(Fu) containingλu with
θ′ ∈ GL(Fu). Note thatλu ∈ λuR(uu) ⊂ GL(Fu) by (4.1).

We claim that
θ′ = λu. (4.4)

To see this, taking the decomposition ofΘ = GL(Fu) given by (4.1), the requirements for
Lemma2.6 (ii ), with λ j varying in {λ ∈ Λw : w ∈ V}, Aj varying in {Ruw : w ∈ V} and with
A = A(L)

⋃
A(Lc), are satisfied by assumption (iii ). Thus, there is a uniquew ∈ V and a unique

λ ∈ Λw such that
{θ′rk}∞k=0 ⊂ λR(uw), (4.5)

and
θ′rk < λ′R(uz) for all (λ′, z) , (λ,w) and allk ≥ 0 (4.6)
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by (2.16). Thus,λu ∈ {θ′rk}∞k=0 ⊂ λR(uw). On the other hand, noting that 1∈ R(uu) so that

λu ∈ λuR(uu), (4.7)

we conclude thatλ = λu,w = u by (4.6).
Sincer < 1, we haveλu = θ

′rk ≤ θ′ for somek. As R(uu) ⊂ (0,1], we know by (4.5) that

θ′rk ∈ λR(uw) = λuR(uu) (4.8)

for everyk ≥ 0, which gives thatθ′ ≤ λu on takingk = 0, and soλu = θ
′, thus proving our claim

(4.4).
By (4.4) and (4.8) with k = 1,

λur = θ
′r ∈ λuR(uu),

from which we see thatr ∈ R(uu), thus showing that

RGL(Fu)(λu) ⊂ R(uu), (4.9)

sincer is any number inRGL(Fu)(λu).
On the other hand, sinceu is not in the circuitL, any directed circuitL′ containingu must

also visit some edge outsideL as well, implying that|ρL′ | ∈ (A(L))Z+(A(Lc))Z
∗
+ = AZ+1 AZ

∗
+

2 and

R(uu) = {1} ∪ {|ρL′ | : L′ is a directed circuit containingu}

⊂ {1} ∪ AZ+1 AZ
∗
+

2 ⊂ {1} ∪ AQ+

1 AQ
∗
+

2 . (4.10)

Noting that by assumption (i)

AQ
∗

1 ∩ AQ
∗
+

2 = (A(L))Q
∗
∩ (A(Lc))Q

∗
+ = ∅

so thatAQ+

1 AQ
∗
+

2 ∩ AQ
∗
+

1 = ∅ by (2.25), it follows that

RGL(Fu)(λu) ∩ AQ
∗
+

1 ⊂ R(uu) ∩ AQ
∗
+

1 (using (4.9))

⊂
(
{1} ∪ AQ+

1 AQ
∗
+

2

)
∩ AQ

∗
+

1 (using (4.10))

=
(
{1} ∩ AQ

∗
+

1

)
∪

(
AQ+

1 AQ
∗
+

2 ∩ AQ
∗
+

1

)
= ∅ (4.11)

using that{1} ∩ AQ
∗
+

1 = ∅, since all numbers inAQ
∗
+

1 are strictly less than 1.
Finally, since (4.3) and (4.11) hold simultaneously, Lemma2.9(ii ) implies thatFu cannot be

the attractor of any COSC standard IFS. �

Note that the assumption ‘there exists a directed path fromu to v’ in Lemma4.1is necessary.
The following example shows that without this assumption, the GD-attractor may be an attractor
of some standard IFS (with or without the COSC).

Example 4.2. Let G = (V,E) be the digraph (not strongly connected) in Figure2 with V =

{1,2,3} andE consisting of seven edges, three of which leave vertex 1 (including one loop).
Let {Se}e∈E be any COSC GD-IFS, having GD-attractorsF1, F2, F3 associated with vertices
1,2,3 respectively. By (1.2), the setF3 satisfies

F3 = Se(F3) ∪ Se′(F3),

which is an attractor of the standard IFS{Se,Se′ }. Note that there is no directed path from vertex
3 to other two vertices 1,2.

We give an example to illustrate Lemma4.1. Our example is a digraph that has three vertices
and is not strongly connected.
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Figure 2. F3 is an attractor of a standard IFS.

Figure 3. F3 is not an attractor of any standard COSC IFS.

Example 4.3(Three-vertex digraph). Let G = (V,E) be the (not strongly) connected digraph
in Fig. 3 with V = {1,2,3} andE consisting of seven edges. Note that the out-degrees of the
vertices are respectively

d1 = d2 = 2,d3 = 3.

Let L = e1(1) be a loop (circuit) so that vertexu = 3 is outsideL whilst vertexv = 1 is insideL.
A directed path fromu to v is labelled bye3(2).

Let x′ be a point given by

x′ = (p−1
1 , p

−1
2 , p

−1
3 , p

−1
4 , p

−1
2 , p

−1
3 , p

−1
4 , λ, p5λ, 0, πλ),

where{pj}1≤ j≤5 are five distinct positive prime numbers. The matrixMx′(1) defined by (3.3) is
given by

M := Mx′(1) =




p−1
1 p−1

2 0

p−1
3 p−1

4 0

p−1
3 0 p−1

2 + p−1
4



.
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The pointx′ belongs to the setP in (3.12) by using (3.31) as the sum of each row of matrixM
is bounded by 1, that is,

max{p−1
1 + p−1

2 + 0, p−1
3 + p−1

4 + 0, p−1
3 + 0+ p−1

2 + p−1
4 } < 1.

Let ` = (l1, l2, l3) be determined by (3.13), that is,

`T =




l1
l2
l3



= (id − M)−1




λ

p5λ

0+ πλ



. (4.12)

Let b = (0,0,0) and letz(x′) := z(x′,b) be a GD-IFS constructed as in Lemma3.1, which is
given by

Se1(1)(t) = p−1
1 t, Se1(2)(t) = p−1

2 t + b(2)
1 ,

Se2(1)(t) = p−1
3 t, Se2(2)(t) = p−1

4 t + b(2)
2 ,

Se3(1)(t) = p−1
2 t, Se3(2)(t) = p−1

3 t + b(2)
3 , Se3(3)(t) = p−1

4 t + b(3)
3 for t ∈ R,

where{b(2)
1 ,b

(2)
2 ,b

(2)
3 ,b

(3)
3 } are determined by (3.8), with ` = (l1, l2, l3) determined by (4.12).

By Lemma3.1, such a GD-IFS,z(x′), satisfies the COSC, and the basic gap length sets at
three vertices are respectively

λ(1)
1 = λ (at vertex 1),

λ(1)
2 = p5λ (at vertex 2),

λ(1)
3 = 0, λ(2)

3 = πλ (at vertex 3), (4.13)

so that the sets of positive gap lengths at the vertices are given by

Λ1 = {λ} (at vertex 1),

Λ2 = {p5λ} (at vertex 2),

Λ3 = {πλ} (at vertex 3). (4.14)

SinceL = e1(1) is a loop, we see that

A(L) = {p−1
1 } and A(Lc) = {p−1

2 , p
−1
3 , p

−1
4 }, (4.15)

so that the contraction ratio setA is given by

A = A(L) ∪ A(Lc) = {p−1
1 , p

−1
2 , p

−1
3 , p

−1
4 }. (4.16)

We show that conditions (i), (ii ), (iii ) in Lemma4.1 are all satisfied whenL = e1(1), u = 3
andv = 1. Thus the attractorF3 of the GD-IFS,z(x′) above, is not the attractor of any COSC
standard IFS.

To verify condition (i), we need to show that

(A(L))Q
∗
∩ (A(Lc))Q

∗
+ = ∅,

whereA(L), A(Lc) are given as in (4.15). Otherwise, there would exist some non-zero rational
numberq such that (

p−1
1

)q
∈ {p−1

2 , p
−1
3 , p

−1
4 }
Q∗+ ,

which would imply
1 ∈ {p−1

1 , p
−1
2 , p

−1
3 , p

−1
4 }
Q∗+

a contradiction by using Proposition5.5 in the Appendix.
Condition (ii ) holds by directly using (4.14).
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Finally, for condition (iii ), we know from (4.13) that all the ratiosλ(k)
w /λ

(m)
z of basic gap

lengths for (w, k) , (z,m) lie in the following set
{

1
p5
,
1
π
, p5,

p5

π
,0, π,

π

p5

}

,

each number in which does not belong toAQ = {p−1
1 , p

−1
2 , p

−1
3 , p

−1
4 }
Q by using Proposition5.5in

Appendix and the fact thatπ is transcendental. Thus, condition (iii ) is satisfied.

We mention in passing that one can also construct a GD-IFS with theCSSC, whose GD-
attractor is not attractor of any standard IFS. For example, letp6 be a prime different from other
pj (1 ≤ j ≤ 5), and let

x′′ = (p−1
1 , p

−1
2 , p

−1
3 , p

−1
4 , p

−1
2 , p

−1
3 , p

−1
4 , λ, p5λ, p6λ, πλ).

Such a pointx′′ also belongs to the setP, and the corresponding GD-IFS,z(x′′) associated with
x′′ in a way of Lemma3.1, satisfies the CSSC. WhenL = e1(1), u = 3 andv = 1, the attractor
F3 of thisz(x′′) is not an attractor of any standard IFS. We omit the details.

Lemma 4.4.For a strongly connected digraph G= (V,E) with dw ≥ 2 for all w ∈ V, let A be the
absolute contraction ratio set of a COSC GD-IFS based on G, having(Fu)u∈V as its attractors.
Suppose that the following conditions hold:

(i′) All the contraction ratios have different absolute values, and1 < AQ
∗
.

(ii ′) Λw , ∅ for all w ∈ V.
(iii ) For all pairs (w, k) , (z,m) with λ(m)

z , 0 where w, z ∈ V and1 ≤ k ≤ dw − 1,1 ≤ m ≤
dz− 1,

λ(k)
w /λ

(m)
z < (A(L) ∪ A(Lc))Q.

If G contains a directed circuit not passing through a vertex u, then Fu is not the attractor of
any COSC standard IFS.

Proof. Let L be a directed circuit that does not go throughu. By condition (ii ′) we know that
condition (ii ) in Lemma4.1holds upon taking any vertexv in L. Since the digraphG is strongly
connected, there exists a directed path fromu to v. Since condition (iii ) remains the same, we
only need to verify condition (i) in Lemma4.1 under the stronger condition (i′). For, suppose
that there exists someθ ∈ (A(L))Q ∩ (A(Lc))Q

∗
+ . Setting

A(L) = {bi}
m
i=1, A(Lc) = {cj}

n
j=1,

so thatA = A(L) ∪ A(Lc), we write

θ =
m∏

i=1
bpi

i =
n∏

j=1
c

qj

j

for some two vectors (pi)m
i=1 ∈ Q

m and (qj)n
j=1 ∈ (Qn

+)∗. Then

1 =
m∏

i=1
bpi

i

n∏

j=1
c
−qj

j ∈ AQ
∗
,

where we have used thatA(L)∩A(Lc) = ∅ since all the contraction ratios have different absolute
values by condition (i′). However, this contradicts our assumption 1< AQ

∗
. Therefore, all

conditions in Lemma4.1are satisfied, thus the conclusion of the lemma follows. �

Remark 4.5. Lemma4.4 is an extension of [3, Theorem 6.3]. The assertion of Lemma4.4 is
optimal in the sense that the restriction on the graph ‘there is a circuit not passing throughu’
cannot be relaxed (see Theorem5.4 in the Appendix).

The following example, with a digraph that has two vertices with two loops and is strongly
connected, illustrates Lemma4.4.
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Example 4.6 (Two-vertex digraph). Let G = (V,E) be a strongly connected digraph where
V = {1,2}, E = {e1(1),e1(2),e2(1),e2(2)}, so thatd1 = 2, d2 = 2 , see Figure4.

Figure 4. F1 andF2 are not the attractors of any standard COSC IFS.

Let {pj}1≤ j≤4 be four distinct primes arranged in ascending order so that 2≤ pj < pj+1, and
let p5 be a positive number such that logp5 is not a rational linear combination of{log pj}1≤ j≤4.
Let λ > 0 be any real number, and letx be a vector given by

x = (p−1
1 , p

−1
2 , p

−1
3 , p

−1
4 , λ, p5λ) C (x(1)

1 , x
(2)
1 , x

(1)
2 , x

(2)
2 , ξ

(1)
1 , ξ

(1)
2 ). (4.17)

The matrixMx(1) in (3.3), (3.4) associated with pointx is given by

M := Mx(1) =




x(1)
1 x(2)

1

x(1)
2 x(2)

2


 =




p−1
1 p−1

2

p−1
3 p−1

4


 . (4.18)

Note thatx ∈ P in (3.12) by using (3.31), since

max{p−1
1 + p−1

2 , p
−1
3 + p−1

4 } < 1.

Let ` = (l1, l2)T be given by (3.13), that is,

` =




l1
l2


 = (id − Mx(1))−1



ξ(1)

1

ξ(1)
2


 =




1− p−1
1 −p−1

2

−p−1
3 1− p−1

4




−1 

λ

p5λ


 . (4.19)

Let b B (b(1)
1 ,b

(1)
2 ) for b(1)

1 ,b
(1)
2 ∈ R, and let

b(2)
1 B b(1)

1 + p−1
1 l1 + λ,

b(2)
2 B b(1)

2 + p−1
3 l2 + λp5.

We define four similaritiesz(x,b) := {Se1(1),Se1(2),Se2(1),Se2(2)}, depending onx, b, by

Se1(1)(t) = p−1
1 t + b(1)

1 , Se1(2)(t) = p−1
2 t + b(2)

1 ,

Se2(1)(t) = p−1
3 t + b(1)

2 , Se2(2)(t) = p−1
4 t + b(2)

2 for t ∈ R. (4.20)

Clearly, such a GD-IFSz(x,b) has absolute contraction ratio set given byA := {p−1
i }

4
i=1. Apply-

ing Lemma3.1, z(x,b) satisfies the CSSC, whose basic gap lengths sets areΛ1 = {ξ(1)
1 } = {λ}

(at vertex 1) andΛ2 = {ξ(1)
2 } = {λp5} (at vertex 2). LetF1, F2 be the attractors ofz(x,b) at

vertices 1 and 2.
We will use Lemma4.4 to show thatF1 (or F2) is not the attractor of any COSC standard

IFS, noting that (V,E) contains a directed circuit (loop) not passing through vertex 1 (or through
vertex 2).

Condition (i′) is clear since the contraction ratiosA = {p−1
i }

4
i=1 are distinct, and 1< AQ

∗
by

using Proposition5.5 in the Appendix. Condition (ii ′) is trivial since the basic gap lengths are
λ, λp5 that are strictly positive.
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It remains to verify condition (iii ), or equivalently to check that

λ(1)
2

λ(1)
1

=
ξ(1)

2

ξ(1)
1

=
λp5

λ
= p5 < AQ,

λ(1)
1

λ(1)
2

=
1
p5
< AQ.

However, this is trivial by noting that

p5 ,
(
p−1

1

)s1
(
p−1

2

)s2
(
p−1

3

)s3
(
p−1

4

)s4
(the same is true forp−1

5 )

for any rationals (si)4
i=1, since logp5 is not a rational linear combination of{log pj}1≤ j≤4.

Therefore, all the assumptions (i′), (i′′), (iii ) in Lemma4.4 are satisfied, so the GD-attractor
F1 (or F2) is not the attractor of any standard IFS with the COSC.

We next show that forn-dimensional Lebesgue almost all vectors inP, all the conditions in
Lemma4.4hold for their corresponding GD-IFSs. LetP1 be a subset ofP given by

P1 := {x ∈ P0 : rσ(Mx(1)) < 1, ξ(k)
i > 0 for each vertexi ∈ V, 1 ≤ k ≤ di − 1}. (4.21)

Clearly,P1 ⊂ P since each
∑di−1

k=1 ξ
(k)
i > 0.

Definition 4.7 (Admissible set). With the notation as above, we say that a pointx = (x1, x2, ∙ ∙ ∙ , xn)
in the setP1 is admissible if

n∏

i=1
|xi |

pi ,
n∏

i=1
|xi |

qi (4.22)

for any two distinct vectors (pi)n
i=1 and (qi)n

i=1 of nonnegative rationals. The set of all admissible
points is denoted byA.

Note that the admissible setA depends only on the numbers of vertices and their out-degrees,
but is independent of any vertex itself and the order of edges. If (x1, x2, ∙ ∙ ∙ , xn) ∈ A, then for
any two distinct indicesi, j, takingpi = 1, pk = 0 for all k , i andqj = 1,qk = 0 for all k , j in
(4.22),

|xi | , |xj |, (4.23)

and so the entries of any vector inA all have distinct absolute values.
By Lemma3.1, we know that each admissible pointx gives arise to a COSC GD-IFS

z(x,b) (4.24)

in a way of (3.7), (3.13), for anyb in (3.5),
The following says that the size of the admissible setA is very large.

Theorem 4.8. Let G = (V,E) be a strongly connected digraph with dw ≥ 2 for all w ∈ V,
containing a vertex u∈ V outside a directed circuit. With the notation as above, if x∈ A then
the attractor Fu of the corresponding GD-IFS,z(x,b), defined as in(4.24) for anyb, is not the
attractor of any COSC standard IFS. Moreover, with n given as in(3.1),

Ln(P \A) = 0, (4.25)

that is, the complement of the setA in P has n-dimensional Lebesgue measure zero.

Proof. Let b = (b(1)
i )i∈V for b(1)

i ∈ R and letx = (x1, x2, ∙ ∙ ∙ , xn) be an admissible point. By
Lemma3.1, the corresponding GD-IFS,z(x,b) associated with the vectorsx,b, satisfies the
CSSC. We will show that such a GD-IFSz(x,b) also satisfies all three conditions (i′), (ii ′), (iii )
in Lemma4.4.
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Clearly, the GD-IFSz(x,b) satisfies condition (ii ′) by noting thatΛi , ∅ for each vertex
i ∈ V, since all the basic gap lengths sitting at vertexi areξ(1)

i , ξ
(2)
i , ∙ ∙ ∙ , ξ

(di−1)
i by Lemma3.1(ii ),

which are strictly positive since the vectorx belongs toP1.
We show condition (i′). Let

X := {|xi |}
n
i=1 ⊂ (0,∞).

We need to prove

1 < XQ
∗
. (4.26)

For, suppose that 1=
∏n

i=1 |xi |si for some (si)n
i=1 ∈ (Qn)∗, then

n∏

i=1
|xi |

s−i =
n∏

i=1
|xi |

s+i

wheres+i = max{si ,0}, s−i = max{−si ,0} so thatsi = s+i − s−i . As not allsi are zero, we see that
(s+i )n

i=1 , (s−i )n
i=1 are two distinct nonnegative rational vectors. This contradicts the admissibility

of x as defined in (4.22), thus (4.26) is true.
By using (3.7) and (4.23), all the contraction ratios of the COSC GD-IFSz(x,b) have differ-

ent absolute values. Since 1< AQ
∗

asAQ
∗
⊂ XQ

∗
, whereA is the absolute contraction ratio set

of z(x,b), condition (i′) is satisfied.
For condition (iii ), suppose that there exists somea ∈ AQ such thata = λ(k)

w /λ
(m)
z , where

λ(k)
w ∈ Λw, λ

(m)
z ∈ Λz. Then

1 = λ(k)
w

(
λ(m)

z

)−1
a−1 ∈ {|xi |}

Q∗ = XQ
∗

by noting thatλ(k)
w = xi > 0, λ(m)

z = xj > 0 for some two indicesi , j in virtue of definition
(3.2), contradicting (4.26). Thus condition (iii ) is also satisfied.

Therefore, by applying Lemma4.4, the attractorFu of the GD-IFSz(x,b) is not the attractor
of any COSC standard IFS.

We finally show thatLn(P \A) = 0. For this, note that

Ln(P \ P1) = 0 (4.27)

whereP1 is defined as in (4.21), sinceP \ P1 lies in the union of hyperplanesξ(k)
i = 0. We just

need to showLn(P1 \A) = 0. Let

x = (x1, x2, ∙ ∙ ∙ , xn) ∈ P1 \A,

that is, for some two distinct vectors (pi)n
i=1 and (qi)n

i=1 of nonnegative rationals,

n∏

i=1
|xi |

pi =
n∏

i=1
|xi |

qi .

As pi , qi for somei, say without loss of generality fori = 1, then

|x1| =
n∏

i=2
|xi |

(qi−pi )/(p1−q1),

from which, it follows that any vector inP1 \A lies in an at most (n−1)-dimensional manifold.
Since there are countably many such equations, the union of countably many such manifolds
hasn-dimensional Lebesgue measure zero inRn. �

There are a plenty of examples of admissible points so that the assertions of Theorem4.8
hold. However, there are also some other interesting examples such that the first assertion in
Theorem4.8still holds but points are not admissible.
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Example 4.9. The pointx given by (4.17) in Example4.6 is not admissible in the sense of
Definition 4.7for a certain class ofλ. To see this, we need to show that (4.22) fails for suitable
λ. In fact, if (4.22) fails, then by definition (4.17)

(
p−1

1

)s1
(
p−1

2

)s2
(
p−1

3

)s3
(
p−1

4

)s4
λs5 (p5λ)

s6 =
6∏

i=1
|xi |

si =
6∏

i=1
|xi |

ti

=
(
p−1

1

)t1 (
p−1

2

)t2 (
p−1

3

)t3 (
p−1

4

)t4
λt5 (p5λ)

t6

for some two distinct vectors (si)6
i=1 and (ti)6

i=1 of nonnegative rationals. From this, we know that

λ(s5−t5)+(s6−t6) = ps1−t1
1 ps2−t2

2 ps3−t3
3 ps4−t4

4 p−(s6−t6)
5 . (4.28)

Thus, condition (4.22) fails if λ is chosen as in (4.28). In particular, condition (4.22) fails if
λ = 1√

p5
on takingsi = ti for i = 1,2,3,4 whilst si = ti + 1 for i = 5,6,

However, the GD-attractorFu, associated with such a non-admissible pointx, is not the
attractor of any COSC standard IFS by Example4.6.

We further consider the situation by removing the ‘COSC’. We will apply Corollary3.4and
Theorem5.6 in the Appendix.

Theorem 4.10.Let G = (V,E) be a strongly connected digraph with dj ≥ 2 for every vertex
j ∈ V, containing a vertex i∈ V outside a directed circuit. Let x∈ A(δ) (see definition(3.34))
satisfying that, for every vertex j, i in V,

|x(1)
i | ∈

(
|x(1)

j | + ∙ ∙ ∙ + |x
(mj )
j | + (mj − 1)δ, |x(1)

j | + ∙ ∙ ∙ + |x
(mj )
j | + mjδ

)
, (4.29)

1− |x(1)
i | ∈

(
|x(1)

j | + ∙ ∙ ∙ + |x
(nj )
j | + (nj − 1)δ, |x(1)

j | + ∙ ∙ ∙ + |x
(nj )
j | + njδ

)
, (4.30)

where mj ,nj ∈ [1,dj − 1] are integers. Letz(x) be corresponding CSSC GD-IFS constructed as
in Corollary 3.4, with GD-attractors(F j) j∈V. Then Fi is not the attractor of any standard IFS.

Proof. Let x ∈ A(δ). Recall that the corresponding GD-IFS,z(x) = {Sei (k)}i∈V,1≤k≤di associated
with point x, is given by (3.43), where{b(k+1)

i }i∈V,1≤k≤di−1 are real numbers in (0,1) defined as in
(3.41) (b(1)

i = 0 for everyi ∈ V).
We apply Theorem5.6 in the Appendix to prove this theorem. Clearly, conditions (1), (2)

in Theorem5.6 are satisfied. In order to verify condition (3), we need to show that for every
vertex j , i,

Fi * F j (4.31)

and

1− Fi * F j . (4.32)

We first show (4.31). Indeed, note that the point|x(1)
i | belongs to the attractorFi by Corollary

3.4(ii ). However, this point does not belong to any attractorF j ( j , i), since it falls in some
basic gap (see formula (3.45)) of F j by using assumption (4.29).

Similarly, the point 1− |x(1)
i | belongs to the set 1− Fi but does not belong to any attractorF j

( j , i), since it also falls in some basic gap ofF j by using assumption (4.30), and thus (4.32) is
also true, as required. �

To illustrate Theorem4.10, we give an example. Leti be a fixed vertex inV = {1,2, ∙ ∙ ∙ ,N}.
Let x ∈ A(δ) satisfy

|x(1)
i | ∈

(
|x(1)

j |, |x
(1)
j | + δ

)
and 1− |x(1)

i | ∈
(
|x(1)

j |, |x
(1)
j | + δ

)
for any j , i, (4.33)
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so that both conditions (4.29), (4.30) are satisfied withmj = nj = 1. To secure (4.33), we let

0 < δ < min
j∈V

{
1

2(dj − 1)

}

.

By the definition ofA(δ), any vectorx ∈ A(δ) satisfies that for allj ∈ V,

|x(1)
j | + ∙ ∙ ∙ + |x

(dj )
j | = 1−

(
dj − 1

)
δ >

1
2

. (4.34)

Now we first choose{x(1)
j } j∈V by

|x(1)
i | =

1
2

and|x(1)
j | ∈

(
1
2
− δ,

1
2

)

for any j , i,

and then we choose{x(2)
j , x

(3)
j , ∙ ∙ ∙ , x

(dj )
j } j∈V to be any numbers such that (4.34) is satisfied. Such

a class of points satisfy condition (4.33), which implies that conditions (4.29), (4.30) are both
satisfied.

5. Appendix

In this appendix we derive some general properties and secondary results that are used in the
main part of the paper.

The following proposition on ordering integer lattice points is used in Lemma2.6. Recall
thatZ+ denotes the set of all nonnegative integers.

Proposition 5.1. Let B ⊂ Zn
+ be an infinite set. Then B contains two distinct vectors−→x ≤ −→y

under the partial order defined by inequality of all coordinates.

Proof. We write−→x := (xi)n
i=1 ∈ Z

n
+. Consider the set of integers:

S :=
{
min{xi}

n
i=1 : −→x ∈ B

}
.

If S is unbounded, then we are done by fixing some vector−→x and taking−→y = (yi)n
i=1 ∈ B ⊂ Zn

+

with min{yi}ni=1 > max{xi}ni=1 so that
−→x < −→y .

OtherwiseS is bounded by an integerN in which case we prove the proposition by induction
on n. Whenn = 1 it is trivial. Assume that the proposition holds forn− 1. For each 1≤ j ≤ n
and eachα ∈ {0,1, ∙ ∙ ∙ ,N}, define

B(α, j) := {−→x ∈ B : xj = min{xi}
n
i=1 = α},

a (possibly empty) collection of all vectors inB whose j-th entries equal to the same numberα
and take the smallest value. Since

n⋃

j=1

N⋃

α=0
B(α, j) = B,

we can assume that someB(α, j), say B(β,m), contains infinitely many elements. Deleting
the mth coordinatexm = β of all the vectors in such a setB(β,m), we obtain an infinite set

B′(β,m) ⊂ Zn−1
+ , and by induction assumption,B′(β,m) ⊂ Zn−1

+ has two distinct vectors
−→
x′ ≤
−→
y′ .

Inserting themth coordinatexm = β into
−→
x′,
−→
y′ to get−→x , −→y respectively, we obtain two distinct

vectors−→x ≤ −→y in B(β,m) ⊂ B, showing the assertion forZn
+. �

The next proposition generalises a well-known result for standard IFSs to GD-IFSs.
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Proposition 5.2. Let G = (V,E) be a digraph and(Fu)u∈V be the GD-attractors of a GD-IFS
z = (V,E, (Se)e∈E) based on it. If there exist non-empty sets(Uu)u∈V such that

⋃

v∈V

⋃

e∈Euv

Se (Uv) ⊂ Uu for each u∈ V (5.1)

then Fu ⊂ Uu, the closure of the set Uu, for each u∈ V.

Proof. Set Iu := Uu for eachu ∈ V. Let Im
u be defined by (2.4) for m ≥ 1. Then the inclusion

(2.5) is satisfied, since

I1
u =

⋃

e∈E1
u

Se
(
Iω(e)

)
=

⋃

e∈E1
u

Se

(
Uω(e)

)
=

⋃

e∈E1
u

Se
(
Uω(e)

)

⊂
⋃

e∈E1
u

Se
(
Uω(e)

)
⊂ Uu = Iu (using (5.1)),

thus showing thatFu ⊂ I1
u ⊂ Uu by virtue of (2.8). The proof is complete. �

The directed paths in GD-IFSs play the same role as the finite-length words in standard IFSs,
as the following proposition suggests. We will frequently use the following fact that, for any
u ∈ V andm≥ 1,

Fu =
⋃

e∈Em
u

Se(Fω(e)), (5.2)

by repeatedly using definition (1.2) (recall thatEm
u is the totality of all paths of lengthm leav-

ing u). The following proposition concerns the disjointness of images of components under
mappings corresponding to different words.

Proposition 5.3. Let G = (V,E) be a digraph and(Fu)u∈V be the GD-attractors of a GD-IFS
z = (V,E, (Se)e∈E) based on it. Assume that each Fu is not a singleton. Lete′, e′′ be two
directed paths withe′′ , e′e if |e′| ≤ |e′′| (wheree is a directed path which may be empty). Ifz
satisfies the COSC onR, then the interiors of Se′(convFω(e′)) and Se′′(convFω(e′′)) are disjoint.
Similarly, if z satisfies the CSSC then Se′(Fω(e′)) and Se′′(Fω(e′′)) are disjoint.

Proof. By (5.2), for any pathe, we haveSe(Fω(e)) ⊂ Fα(e), whereα(e) denotes the initial vertex
of pathe. As Se is a similarity onR, taking the convex hulls gives that

Se(convFω(e)) = convSe(Fω(e)) ⊂ convFα(e),

from which, we see that, for any pathe1e2 (meaning thatω(e1) = α(e2), the terminal ofe1 is the
initial of e2),

Se1e2(convFω(e2)) = Se1(Se2(convFω(e2))) ⊂ Se1(convFα(e2)) = Se1(convFω(e1)). (5.3)

Assume now thatz satisfies the COSC. By (1.4), one can take

Uu = int(convFu) for eachu ∈ V,

which is non-empty by our assumption thatFu is not a singleton.
For any two pathsee1, ee2 with common pathe and distinct edgese1,e2, the interiors of two

intervals
int(See1(convFω(e1))) ∩ int(See2(convFω(e2))) = ∅ (5.4)

by using the COSC, since

See1(convFω(e1)) = Se(Se1(convFω(e1))) and See2(convFω(e2)) = Se(Se2(convFω(e2)))

and the interiors ofSe1(convFω(e1)) andSe2(convFω(e2)) are disjoint as the edgese1,e2 have the
same initial vertex, namely the terminal of pathe.
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Let e be the longest common path ofe′′ ande′ (which may be empty). Writee′ = ee1p1 and
e′′ = ee2p2, wheree1 , e2 are two distinct edges andp1, p2 are some paths (possibly empty).
By (5.3),

Se′(convFω(e′)) = See1p1(convFω(p1)) ⊂ See1(convFω(e1)),

Se′′(convFω(e′′)) = See2p2(convFω(p2)) ⊂ See2(convFω(e2)),

thus the interiors ofSe′(convFω(e′)) andSe′′(convFω(e′′)) are disjoint by using (5.4).
The assertion for the CSSC is similar. The proof is complete. �

The following was essentially proved in [2, Lemma 5.1], except that we also consider the
COSC case.

Theorem 5.4. Let G = (V,E) be a strongly connected digraph with dv ≥ 2 for all v ∈ V. If
every directed circuit goes through a vertex u∈ V, then for any (resp. COSC) GD-IFS based
on G, its attractor Fu is also the attractor of a (resp. COSC) standard IFS.

Proof. SetN := #V, the number of vertices inV. Let L(u) be the set of all circuits havingu as
their initial and terminal, and which do not contain another shorter circuits, that is,

L(u) := {e= euv1v2∙∙∙vku : eachvi , u ∈ V, |e| ≤ N},

where the symboleuv1v2∙∙∙vku = euv1ev1v2 ∙ ∙ ∙ evku is understood to be a path consisting of consecutive
edges.

We claim that
Fu =

⋃

e′∈L(u)
Se′(Fu), (5.5)

by using the fact that every circuit goes through vertexu.
To see this, we have by (5.2) that

Fu =
⋃

e∈EN
u

Se(Fω(e)).

Since any directed pathe in EN
u can be written as

e= euv1v2∙∙∙vN ,

we see that at least one of verticesv1, v2, ∙ ∙ ∙ , vN must beu, otherwise, one of them would
appear twice, thus producing a circuit, contradicting the assumption that every directed circuit
goes through vertexu. There exists some indexk such thatvk = u and the path visitsu the
second time (besides the initial time), and

e= euv1v2∙∙∙vk−1uvk+1∙∙∙vN = euv1v2∙∙∙vk−1ueuvk+1∙∙∙vN = e′e′′,

wheree′ = euv1v2∙∙∙vk−1u ∈ L(u) ande′′ is a path with initialu if it exists (possiblye′′ is empty and
the following argument will become easier). From this, we know that

Se(Fω(e)) = Se′(Se′′(Fω(e′′))) ⊂ Se′(Fu),

sinceSe′′(Fω(e′′)) ⊂ Fu by (5.2). It follows that

Fu =
⋃

e∈EN
u

Se(Fω(e)) ⊂
⋃

e′∈L(u)
Se′(Fu).

The opposite inclusion is also clear since, by (5.2),

Se′(Fu) ⊂ Fu,

thus showing that our claim (5.5) holds true. Therefore,Fu is the attractor of the IFS

Φ := {Se′ : e′ ∈ L(u)}. (5.6)
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If the GD-IFSz further satisfies the COSC, we claim that the IFSΦ given by (5.6) also
satisfies the COSC. Indeed, by definition of the COSC and the fact thatΦ has attractorFu, we
need only to show that the interiors of two intervalsSe′(convFu) andSe′′(convFu) are disjoint,
wheree′,e′′ are inL(u). But this assertion immediately follows from Proposition5.3. �

The following easy property of powers of primes is used in the examples in Section4.

Proposition 5.5. Let {ai}ni=1 be distinct positive prime numbers. Then

1 < AQ
∗

for A = {a−1
i }

n
i=1.

Proof. Suppose to the contrary, that 1∈ AQ
∗
. Then 1=

∏n
i=1

(
a−1

i

)si
for some non-zero vector

(si)n
i=1 of rationals. Letq be the least common denominator of the rationalssi. Taking theqth

power, it follows that

m :=
n∏

i=1
a

qs−i
i =

n∏

i=1
a

qs+i
i

wheres+i = max{si ,0}, s−i = max{−si ,0} so thatsi = s+i − s−i . As thesi are not all zero, the
vectors of integers (qs+i )n

i=1 and (qs−i )n
i=1 are distinct. By the uniqueness of the prime factorisation

of the integerm, we see that (qs+i )n
i=1 = (qs−i )n

i=1, a contradiction. �

The following assertion was essentially obtained in [2, Theorem 1.4 and the end of Section
1]. Here we give a simpler proof under stronger assumptions with conditions (2), (3) in the next
theorem.

Theorem 5.6. Let G = (V,E) be a strongly connected digraph with dw ≥ 2 for each w∈ V.
Suppose that a given GD-IFS of similarities based on G satisfies the CSSC, andconvFw = [0,1]
for each w∈ V. For some vertex u∈ V, suppose the following conditions hold.

(1) There is a directed circuit that does not pass through u.
(2) All basic gaps have the same lengthδ > 0.
(3) For each vertex v, u, we have Fu * Fv and1− Fu * Fv.

Then Fu is not the attractor of any standard IFS defined onR.

Proof. The proof is divided into two steps.
Step 1.We claim that, for anyv ∈ V and any contracting similarityf with f (Fu) ⊂ Fv, there

exists some pathe leavingv with terminalω(e) = u such that

f (Fu) ⊂ Se(Fu). (5.7)

Indeed, asFv consists of the level-1 cellsSe(Fω(e)) for edgese leavingv by using (1.2), the
f (Fu) must belong to only one of those cells, say

f (Fu) ⊂ Se(Fω(e)) for some edgee leavingv. (5.8)

Otherwise, there are two points inf (Fu) lying in two distinct level-1 cells, and asf (Fu) ⊂ Fv,
we know thatf (Fu) spans a basic gap ofFv, implying that f (Fu) has a gap, containing a basic
gap of Fv, whose length is clearly greater than or equal toδ. However, this is impossible,
because all gap lengths ofFu do not exceedδ by assumption (2) and (2.11), so that all the gap
lengths off (Fu) are strictly smaller thanδ by using the contractivity off .

By (5.2), it follows that

f (Fu) ⊂ Fv =
⋃

e′∈Em
v

Se′(Fω(e′)) for anym≥ 1,

whereEm
v is the set of all paths leavingv with the same lengthm as before. Asf (Fu) has fixed

diameter and cellsSe′(Fω(e′)) have arbitrarily small diameters by takingm large, we can choose
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a longest directed pathe1 leavingv, which exists by using (5.8) and the fact that distinct cells
of the same length are disjoint (see Proposition5.3), such that

f (Fu) ⊂ Se1(Fω(e1)). (5.9)

We show that the contraction ratioρ of the mappingS−1
e1
◦ f satisfiesρ = ±1.

The diameter of eachFw equals 1, since convFw = [0,1] for eachw ∈ V by our assumption.
By (5.9)

S−1
e1
◦ f (Fu) ⊂ Fω(e1), (5.10)

implying that |ρ| ≤ 1 by comparing the diameters ofFu andFω(e1) and noting thatS−1
e1
◦ f is a

similarity.
If |ρ| < 1, we will derive a contradiction. Indeed, by (5.10), we can apply (5.8), with f being

replaced byS−1
e1
◦ f andv replaced byω(e1), and obtain

S−1
e1
◦ f (Fu) ⊂ Se(Fω(e))

for some edgee leavingω(e1). From this and thatω(e) = ω(e1e),

f (Fu) ⊂ Se1(Se(Fω(e))) = Se1e(Fω(e1e)),

which contradicts the fact thate1 is the longest path by virtue of (5.9). Thus|ρ| = 1.
Therefore, ifρ = 1, thenFu + c ⊂ Fω(e1) for some translationc ∈ R using (5.10), which

implies that

[0,1] + c = (convFu) + c = conv(Fu + c) ⊂ convFω(e1) = [0,1]

using our assumption that convFw = [0,1] for eachw ∈ V. Thenc = 0, and so

Fu ⊂ Fω(e1),

showing thatω(e1) = u by assumption (3) thatFu * Fv if v , u.
Similarly, if ρ = −1, then−Fu+c ⊂ Fω(e1) for some translationc ∈ R by (5.10), which implies

that
[−1,0] + c = conv(−Fu) + c = conv(−Fu + c) ⊂ conv (Fω(e1)) = [0,1]

using our assumption that convFw = [0,1] for eachw ∈ V. We must havec = 1, and so

1− Fu ⊂ Fω(e1),

showing thatω(e1) = u again by assumption (3) that 1− Fu * Fv if v , u.
Therefore, noting thatω(e1) = u in (5.9), we obtain (5.7) with e= e1, proving our claim.
Step 2.We show thatFu is not the attractor of any standard IFS.
Assume to the contrary that there exists a standard IFS{ fi} such that

Fu =
⋃

i
fi(Fu).

As fi(Fu) ⊂ Fu, using (5.7) with v = u, we know thatfi(Fu) ⊂ Sei (Fu), and so

Fu =
⋃

i
fi(Fu) ⊂

⋃

i
Sei (Fu), (5.11)

where eachei is a directed circuit from initialu to terminalu. By condition (1), there is a vertex
w , u contained in a circuitL that does not pass throughu. By the strong connectivity, we can
find a simple pathL1 (i.e. a path visits any vertex at most for once) fromu to w.

Note that the pathL1Lm from u to w visitsu only once. We can pick an integermso large that
the path length is greater than max{|ei |}i. By (5.2) and (5.11),

SL1Lm(Fw) ⊂ Fu ⊂
⋃

i
Sei (Fu). (5.12)

Note that{Se} satisfies the CSSC by assumption (2), and soSL1Lm(Fw) is disjoint with any
setSei (Fu) in (5.12) using Proposition5.3, since the pathL1Lm does not start with any of these
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pathsei, otherwiseL1Lm would visit u twice. This contradicts (5.12), thus showing thatFu is
not self-similar. �
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