MEAN VALUE INEQUALITY AND GENERALIZED CAPACITY ON DOUBLING SPACES

ALEXANDER GRIGOR’YAN, ERYAN HU, AND JIAXIN HU

AsstracT. We prove a mean value inequality for subharmonic functions of a regular Dirichlet form in a dou-
bling metric measure space, assuming that the Dirichlet form satisfies the Faber-Krahn inequality, the tail
estimate of jump measure outside balls, as well as the generalized capacity condition. We also prove the equiv-
alence between flerent forms of the generalized capacity condition.
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1. INTRODUCTION

The classical mean value theorem for harmonic functions says the followiags & harmonic function
in an open domaif c R" then, for any balB(xo,r) € Q,

u(xo) = udx
B(xo.r)
(Here and in the sequel, the notatidre U meanghatA is compacandA c U). This theorem implies all
other essential properties of harmonic functions including convergence theorems and the Harnack inequality.
J. Moser proved in41] the Harnack inequality for solutions of the equatiam= 0 where

Lu= )" 9y (aij()dx ) (1.1)

ij=1
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is a uniformly elliptic operator with measurable ¢oeients. One of the main ingredients of Moser’s proof

was themean value inequality
1/2
esup |u < C(f uzdx)
B(xo0,3r) B(Xo.r)

that he proved by means of an ingenious iteration argument that is nowadays referred to as Moser’s iteration.

The mean value and Harnack inequalities play also an important role in Analysis on metric measure
spaces where the operatois replaced by the generator of a Dirichlet form. For example, for the operator
(1.1) the corresponding Dirichlet form is

n
&(f, f):fRnZa‘jaXiuaXJde (1.2)
ij=1

This Dirichlet form islocal as it is determined by ffierential operators. However, of high interest are also
non-local Dirichlet forms whose generators are integral operators. For example, the following Dirichlet

form of jump type
£(x) — F(y))?
&(f, f) = c(n, ﬁ)ffRn Rn( () |“9/?) dxdy

has the generata¥®/2 provided 0< 8 < 2 whereA is the positive definite Laplace operator abgh, 8) is a
positive constant depending only arandp.

Our purpose is to develop Analysis on a general metric measure siladgu with a Dirichlet form
(&, F) that is defined axiomatically in the spirit of§] and can contain a local paff" as well as a jump
part

g1, ) = f fM (100~ )Pt 1.3)

whered is a jump kernel. A major motivation is to include fractal spaces where the existence of self-similar
local regular Dirichlet forms and associatedfasions was proved in3[, [9], [18], [31], [32], [33], etc.
There has been a number of works devoted to the mean value and Harnack inequalities as well as to heat
kernel bounds. Various results in the case of local Dirichlet forms were obtainéd i, [5], [7], [8],
[29], [26], [28], [29], etc, while the jump type Dirichlet forms were consideredah [10], [12], [13], [14],
[15], [21], [22], [23)], [27], etc.

All the works in this area have encountered one majtitadilty that was not present in similar research
in R" or on manifolds: a priori absence of suitable dtifanctions. Given a pair of concentric balB§x, R)
andB(x,R+ r) in R", abump functiony of this pair is equal to 1 on the interior ball, vanishes outside the
exterior ball and is linear in radius in the annulus between the balls so that

1
Vel < <. (1.4)

It follows that, for any measurable functian

fu2|v¢s|2dxsi2f u? dx, (1.5)
RN r RN

and this simple inequality is frequently used (in particular, in Moser’s argument). Perhaps, in Analysis in
R" nobody would give a significance td.6) but when working on general metric measure spaces, one
quickly realizes helplessness without such a funcioMore precisely, although a bump function can be
still defined as above by using the distance function, but an analoguepidpes not have to be true as
the gradient is determined by the Dirichlet form, and the latter does not have to be related in any way to the
distance function.

For applications one needs an analogueldf)( and the existence of such functignvas obtained in
a tricky way in [1] and 4] assuming that the heat kernel &, () satisfies a certain sub-Gaussian upper
bounds. This analogue ol.6) was referred to inJ] and [4] as acutgf Sobolev inequality Different
versions of this condition were used 22 and [28] under the namegeneralized capacity estimate
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In the present paper we consider two versions of the generalized capacity estimate: a weak version shortly
denoted by Gcap which claims the existence of a test functipspecific tou, and a strong version denoted
by (GU) which claims the existence of a universal test functidhat serves all functions (like in R").

One of the main results of this paper is the equivale@e() < (GU) that we prove under some other
hypotheses about space and energy (The@4g).

Another main result is thenean value inequalitfor subharmonic functions in the general setting, as-
suming Gcap and some other hypotheses (Theor2rg). It is worth mentioning that the proof of the
implication (Gcap = (GU) in Theorem2.10is done by using the mean value inequality of Theogn

The “other hypotheses” mentioned above include the Faber-Krahn inequidiya6d a tail estimate of
the jump kernell denoted by TJ). They are explained in details below. Here we only mention thE) (
refers to the spectral properties of the generatd, afhile (TJ) is an upper bound in terms &fandr of the

integral
sy
M\Bxr)

that is called the tail of the jump kernel. As far as we know, these hypotheses are weakest possible among
all considered in the literature as they do not require pointwise estima¥g,@}.

The results of this paper will be used in subsequent research for obtaining heat kernel estimates under
weakest possible hypotheses about the jump kernel, and we plan to address these problems in forthcoming
papers.

In conclusion of this introduction, let us mention that creation of tools for a direct derivaticaaaiy
remains one of the most important open problems in this area.

Structure of the papen Section?2 we give all necessary definitions and state the main results. In Se8tions
and4 we give examples of the Faber-Krahn inequality and the generalized capacity condition, respectively.

In Section5, we recall some properties of energy measures. In Sedfi@msl 7 we discuss one more
condition ABB) that serves as a bridge betwe@&@tép and theenergy producproperty that is proved in
Section8.

In Section9 we prove some elementary properties of subharmonic functions. The mean value inequality
for subharmonic functions (Theore2®) is proved in Sectiol0as TheoreniO.1

In Section11 we prove a so called Lemma of Growth that is used then in Sett2da obtain estimates
of the mean exit time from balls, which in turn impliesarvival estimaten Sectionl3; the latter yields
then GU). Finally, Theoren®.10is proved in Sectiori4 as Theoremi4.1that contains all the results of
this paper.

In Appendix we prove some auxiliary results.

Notarion. Lettersc,C,C’,Cy,C», etc. are used to denote universal positive numbers, whose values
may change at any occurrence but depend only on the constants in the hypotheses. In the double integral
fquv F(x, y)dj(x,y), the variablex is taken inU andy in V. Moreover, we may WritquXv F(x, y)dj(x.y)

shortly asfoXv F(x,y)dj. For a measurable functianon M, the notation suppij means the support of
that is, the complement of the maximal open set whete0 a.e..

2. MAIN RESULTS

Metric measure space with energyet (M, d) be a locally compact separable metric space and et a
Radon measure ol with full support. The triple i, d, .0) is referred to as aetric measure spacd et

(&, F) be a regular symmetric Dirichlet form i? := L?(M, x). In this paper we always assume that the
Dirichlet form (&, ) has no killing part, which means that

&(u,v) = B, v) + X(u,v) (2.1)

where&W® is thelocal part (or diffusion par) and&WY is the jump partassociated with a unique Radon
measurg defined onM x M \ diag:

gO0(u.v) = f fM 10,000 = U0 = VN3, (2.2)
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For simplicity, we sef = 0 on diag and will drop diag in expressidhx M\ diag in .2) when no confusion
arises.

Denote by dianM the diameter of the metric spach(d) and fix throughout the paper aleR e
(0, diamM]. NotethatR can be finite or infinite wheM is unbounded.

In order to state our main results, let us introduce some notations and hypotheses. Denote metric balls in
(M, d) by

B(x,r):={ye M:d(y,x) <r}
and set
V(X r) = u(B(xr)).

We say that a measuresatisfies thevolume doublingondition /D) (or i is adoubling measupef there
exists a constar@ > 1 such that, for alk € M and allr > 0,

V(X 2r) < CV(xr). (2.3)

Condition D) implies that 0< V(x,r) < oo forallr > 0. We setV(x,0) = Oforallx e M. If uis a
doubling measure, then the spabé ¢, ) is called adoubling space

It is known that ¥D) implies (and hence, is equivalent to) the following condition: there exists a positive
numbera such that, for alk,y e M and all 0<r < R< o,

V(X R) <C dix,y) +R ,
V(y.r) r
where constant can be taken the same as VY).

Scaling function and generalized capacligt us fix another functiolV(x, r) also defined for alk € M and

r > 0. We refer toW as ascaling functionas it will be used for describing connection of the enafgyp

the metric measure structure and, consequently, the gimaeescaling for the Hunt process associated to
(&, F). For example, iM = R" with the Euclidean distance and Lebesgue measure &@his ithe classical
Dirichlet integral

Eu,v) = | |VuPdx
Rn

thenW(x, r) = r2. On typical fractal spaces with appropriate local Dirichlet form we have
W(x,r) =r? (2.4)
whereg > 2 is thewalk dimensionOn the other hand, & is the following jump type Dirichlet form ifR"

(u(x) — u(y))” u(Y))2
el u)_ffRann X — y|*A dxdy

thenW has also the form2(4) although this time & 8 < 2.
In general, let us impose the following restriction on functidn
(1) foranyx e M, the functionr — W(Xx, r) is strictly increasingWW(x, 0) = 0 andW(x, o0) =
(2) there exist positive numbef3 8 such that, for all 0< r < R < o and for allx,y € M with

dix,y) <R,
W(x, R) R\?
Won < C(—) . (2.5)
For convenience, for any metric b&l:= B(x,r), we write
W(B) := W(x,r).

Note that in some metric spaces a ball as a subskt ofay have dferent centers and radii, that is, it may
be possible thaB(x1, r1) = B(xg, r2) whereas; # X2 orry # rp. To avoid ambiguities in the notatioiv(B)
and other similar notations, we always identify a ball as a pair of center and radius rather than as a subset of
M.
Let us define the notion afcutdf function wherec > 1 is a fixed real. LeU c M be an open set and
be a Borel subset df. A k-cutgf functionof the pair @, U) is any functionp € ¥ such that

e 0< ¢ <ku-a.e.inM;
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e ¢ > 1lu-a.e.inA
e ¢ =0u-a.e. inUC.

We denote byk-cutof(A, U) the collection of allk-cutof functions of the pair &, U). Any 1-cutdf
function fork = 1 will be simply referred to as eutgffunction Clearly,¢ € F is a cutdf function of (A, U)
ifand only if 0< ¢ < 1, ¢|a = 1 andg|yc = 0. Set also

cutoff (A, U) := 1- cutdf(A, U).
Note that for every > 1,
cutaf(A, U) c «- cutof (A, U),
and that
¢ € k- cutdf(A,U) = 1 A ¢ € cutdf(A, U). (2.6)
It is known that, for a regular Dirichlet forn€( ¥), the class cutd(A, U) is not empty for any nonempty

precompact se e U (recall thatA € U meanghatA is compactindA c U).
Let ¥’ be a linear spaced defined by

F' :={u+a:ueF, acR},

that is, 7’ is obtained frony by adding all constants. Sinc&,() has no killing part, the bilinear forr&
can be extended to functions frofif as follows:

Eu+a,v+b)=8E,v)

forallu,ve # anda,b € R.

For anyu € ¥/ n L* and for any > 1, define thegeneralized capacitgf a pair A, U) as follows:

carf) (A U) := inf {6, ¢) : ¢ € k- cutaff(A, U)}
(the functionu?¢ belongs taF by Propositionl5.1(ii)). If u = 1 then replacing by 1 A ¢, we obtain the
usual capacity
carfll)(A, U) = cap@, U) :=inf {E(, @) : ¢ € cutdf(A,U)}. (2.7)

The following definition plays a central role in this paper.

Definition 2.1. We say that&, F) satisfies theyeneralized capacity conditiofGcap) is satisfied if there

exist numbers > 1, C > 0 such that, for alu € ¥” N L™ and any pair of concentric bali := B(xo, R),
B:=B(Xp,R+r)withxpe MandO<R<R+r <R,

) C f 2
ca ,B) <su u-du. 2.8
(Bo-B) < bWy J ¥ @8)

In other words, Gcap is satisfied if for allBg, B as above and for any € ¥ n L, there exists some
¢ € k-cutdf(Bg, B) (as on Fig.1l) such that

2 C 2
E(U g, @) < igEI;OW(x, ) fBu du. (2.9)

Let us emphasize that the functignn (2.9) may depend on, By, B but the constantg, C are independent
of u, Bg, B.

Ficure 1. A functiong € k-cutdf(Bo, B)
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If the scaling functionW(x,r) is independent of the space variabdesay, W(x,r) = W(r), then the
inequality .9) becomes simpler

U2
E(Up, ¢) < —— W(r) u-du.

Setting in .8) u = 1 and usingZ.6), we obtain
cap@Bo, B) < su 2.10
PEo.B) < SUp (B (2.10)

In particular, it follows from 2.10 and @.5) that

C
il

cap;B, B) < W(B)“(B)' (2.11)

Definition 2.2. We say that&, 7) satisfied the capacity conditio€p.) if there exists a constait > 0
such that2.11) for all balls B of radiusR < R.

The above argument shows that
(Gecap = (Cap). (2.12)
Unlike (Gcap, the condition Cap.) can be &ectively verified in many examples. We conjecture that in
most (or even all) results about heat kernel estimaes) can be replaced byCap.).
Now let us introduce a stronger conditioBlJ) that has a full title thegeneralized capacity condition
with universal cutg function

Definition 2.3. We say thatg, ) satisfies the conditior{U) if there exist two numbers > 1,C > 0 such
that, for any pair two concentric balBy := B(xo, R), B := B(Xg, R+ r) with xp e Mand 0< R< R+r < R,
there exists some € k-cutaf(Bo, B) such that2.9) is satisfied for alu € ¥/ N L.

Hence, in contrast ta3cap, the test functiorw in (2.9 is now independent af, that is, universal (but,
of course g depends on the balls). Clearl () = (Gceap.

One of the results of this paper is that, under some mild assumptions, the opposite impli@atgn=5
(GU) is also true (see Theorel0below).

Faber-Krahn inequalityFor a non-empty open sét ¢ M, denote byCy(U) the space of all continuous
functions with compact supports . Let ¥ (U) be a vector space defined by

F(U) = the closure off N Cy(U) with respect to the norm/&E1(:, -),

where&,(u,Vv) := &(u,V) + (u,Vv), 2 for u,v € ¥ anda > 0. By the theory of Dirichlet form,&, ¥ (U)) is a
regular Dirichlet form orL2(U, u) (see, for example1[7, Theorem 4.4.3]).

Let £Y be the (positive definite) generator of the Dirichlet foif ¢ (U)). Denote byl;(U) the bottom
of the spectrum oY in L?(U, x). It is known that

| &(u, u)
ue (U\O} [[ull3

A11(U) = (2.13)
Definition 2.4. We say that&, ¥) satisfies thé-aber-Krahn inequality shortly denoted byHRK), if there
existso € (0,1] andC, v > 0 such that, for any baB = B(x, R) with R < o'R and for any non-empty open
setU c B,

u(B)
“m‘W®(w) 14

Sometimes we use notatioRK,) for (FK) in order to emphasize the exponentNote that the value of
y can always be reduced without violating @f14).

Remark 2.5. Itis easy to see thafK) and (/D) imply the followinglower bound of capacity for any ball
BorradiuskR < oR

capgB,B) > C~ 1\’7\/((2) (2.15)
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Indeed, for any € cutaf(U, B) we have by2.13 and .14 with U = B
C—l
2 1
&(.9) = MBIl > (3B,

whence 2.15 follows. This observation shows that, in some sense, the hypothekg¢sid Gceap are
complementary to each other. Nevertheless, they both are related to upper bounds of the heat kernel (see
Sections3 and4).

Further results about deep relationship between eigenvalues and capacities can be fadhd3s][

[36], [37], [38], [39].

Tail estimateWe introduce here the conditiofJ) that provides dail estimateof the jump measure in the
exterior of balls.
Let B8(M) be the sigma-algebra of Borel setsMf Recall that dransition kernel J. M x B8(M) — R, is
a map satisfying the following two properties:
o for every fixedx in M, the mapE — J(x, E) is a measure of3(M);
e for every fixedE in B(M), the mapx — J(x, E) is a non-negative measurable functionMn

Definition 2.6. We say that conditionT{J) is satisfied if there exists a transition kerdék, E) on M x 8(M)
such that

dj(xy) = I(x, dy)du(x) in M x M,
and, for any poink in M and anyR > 0,

J(x, B(x, R)°) = f

B(x,

(2.16)

c
J(x,dy) < ,
e S < WocRy

whereC € [0, =) is a constant independent xfR.

If B(x, R)¢ is empty, the inequalityX.16) is automatically true. IW(x, R) = R for anyxin M andR > 0
then the inequalityZ.16) becomes

J(x, B(x,R)°) < % for all xin M andR > 0.
The latter condition was introduced and studiedli@] in the setting of ultra-metric spaces.

Andres-Barlow-Bass conditioithe local par&® of the Dirichlet form €, ¥) determines for any € 7~
anenergy measure(Y)(u) that, in particular, satisfies the identity

EV(u,u) = f dr(u)
M
(see Sectio® for details). For example, for the Dirichlet forn.@), we have
n
dr®uy(x) = Z aij (X)d Uy u dx

ij=1
The jump par&®) also gives rise to an energy measure as follows. For any op€nsédl and anyu € 7,
define a measu@g)(u) by

a0 = [ (o9 - u)’dicx )

ye

which means that, for any non-negative measurable funegtion

(J) _ _ 24
fM var®(u) = f N fy U909 - Ui

EN(u,u) = f drid (.
M

In particular, we have

Define a measurgq(u) by
dlo(u) = dr®(u) + dri(u). (2.17)
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Definition 2.7. We say that conditionABB) is satisfied if there exiS€; > 0, C, > 0 such that, for any
ue ¥’ N L* and for any three concentric baly := B(xo, R), B := B(xo, R+ r) andQ := B(Xo, R’) with
0<R<R+r <R <R, there exists somg € cutaf(Bo, B) such that

C
u?dl’ scf 2drg(u) + su 2 fuzd.
fg al0) =1 [ () + supges | uPd

In section6 we will give a refined version ofABB) tracing the value o€;. The condition ABB) is
named after Andres, Barlow and Bass, who first introduced it]iM ] for local Dirichlet forms under the
namecut-gf Sobolev inequality For jump type Dirichlet forms it was introduced and usedlifi[[13],
[15], [14], [22].

As (Gcap, the condition ABB) is also meant to be a replacementbf in Analysis on metric measure
spaces. Although the definition oABB) is more complicated than that o5¢ap, condition ABB) is
easier in applications. In fact, we prove in this paper that, under standing hypoti&e$¢RK) and (TJ),
the following equivalence holds:

(Gcap < (ABB) + (Cap.) (2.18)
(see Theorer2.10below).

Subharmonic functions.

Definition 2.8. Let Q be an open subset M. We say that a function € ¥ is subharmonidén Q if, for any
0<peF(Q),
E(u,¢) < 0.

For any ballB = B(x,r) and a positive numbet, denotelB := B(x, Ar). Here is out first main result: the
mean value inequalitfor subharmonic functions.

Theorem 2.9. Let (&, F) be a regular Dirichlet form in B without killing part and with jump measure |
Assume that condition¥/D), (Gcap, (FK) and(TJ) hold. Let a function & # N L™ be non-negative and
subharmonic in a ball B= B(Xp, R) with 0 < R < ¢R. Then, for anyg > 0,

1/2
1 1
esuszC(1+s‘2_v)(—fu2d,u) + eK|UL]l} wfr2myceys (2.19)
1B 1(B) Jg LEE
where the constant C depends only on the constants in the hypotheses (but does not def)etigeon
constanty ando come fromFK), and

1 if the measure § 0,
~ | 0 ifthe measure E O.

Inthe case when the Dirichlet forr&(¥) is strongly local (that is, wheK = 0) the mean value inequality
((2.19 with & = 1) for subharmonic functions was proved RB[ Theorem 6.3] although in the case when
the scaling functiolV is independent ok andR = . The mean value inequality was one of the main
ingredients for the proof of the Harnack inequality for harmonic function@& Theorem 1.1].

Our contribution in Theorer.9is therefore threefold:

(1) the mean value inequality is proved for the first time for general Dirichlet forms containing jump
part;

(2) the scaling functioWV(x, r) is of general form allowing dependence xin

(3) the result is localized in space: K) holds for balls with restricted radii then the mean value
inequality is also satisfied for balls with restricted radii.

Moreover, we prove here the following theorem clarifying the relationships between aforementioned
conditions.
Theorem 2.10. Let (&, F) be a regular Dirichlet form without killing part. Assume th®D), (FK) and
(TJ) hold true. Then we have the following equivalences:
(Gcap < (ABB) + (Cap.)
& mean value inequality2(19 + (Cap.)
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< (GU).
Of course, Theorer.9is contained in Theorer®.1Q but it is interesting to observe that the proof of the
implication
(Gcap = (GU)
goes through the mean value inequality! In Secfidiwe state and prove even more general Thedtéri
containing Theorerd.10

3. ExampLes oF (FK)

Example 3.1. Let (M, d,u) be a complete Riemannian manifold of dimensioand & be the Dirichlet
integral

&(u,u) = f IVul?dy,
M

whereu € ¥ = W-2(M). The generator o, ¥) is the Laplace-Beltrami operatar and, for a precompact
open setJ, 11(U) is the bottom eigenvalue @ in U with the Dirichlet boundary condition.
If M = R" then, by a theorem of Faber and Krahn,
41(U) = 21(U7)
whereU* is a ball of the same volume &k Letp be the radius oJ*. Since
* C,
47 =—
P

and
u(U) = p(U7) = c”p",
wherec’, ¢’ are positive constants dependingrgrit follows that
A1(U) > cu(U)=2",
If U c B = B(x,r) then it follows that

2/n
ﬂ(B)) ’ (3.1)

u(V)

that is, FK) is satisfied with the scaling functionN(x, r) = r2 andy = 2/n.
It is known that ifM has non-negative Ricci curvature then it also satisfiel,(that is, €K) holds with

W(x,r) = r?, too (see 19)).

(V) > r%(

Example 3.2. Let (M, d, u) bea-regular, that is, for allx € M andr > 0,
V(X r) ~r®

for somea > 0. (Here and in the sequel the notatisrmeans that the ratio of the functions on its both
sides is bounded from above and below by two positive constants respectively). If the jump keghé pf (
satisfies the lower bound

c
R

with somec, 8 > 0, then EK) holds with the scaling functiow/(x, r) = r? (see R2, Lemma 3.5]).

Example 3.3. Let (M, d, i) satisfy not only ¥D) but also theeverse volume doublindgor all R >r > 0
andx e M,

VR C‘l(B) ,
V(X,r) r
for some constantS, o’ > 0. Assume also that the scaling functdhsatisfies a similar condition: for all
R>r>0andx,ye Mwithd(x,y) <R,
ﬁ/
WOR) | (R
W(y,r) r
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for some constant§, 5’. Let the jump kernel of&, 7) satisfy the following lower bound: for all distinct
XyeM,

c
JXY) > ————.
i V(X yY)W(X.y)
whereV(x,y) = V(x,r) with r = d(x,y) and similarlyW(x,y) = W(x,r). Then it was proved inZ4] that
(&, F) satisfies EK) with the scaling functioWV(x, r).

Let £ be the (positive definite) generator &, ). Denote by(P;} the associated semigrouplif, that
is, Py = £, and byp(x, y) the integral kernel of the operatB¥ should it exists. The functiop(x, y) is
called theheat kernebf (&, ).

Example 3.4. Let now (M, d, u) satisfy D). Assume that the heat kernglx, y) of (&, F) satisfies for all
t > 0 and for almost alk,y € M the following inequality:

C
WOCTRNV(y, t7B)
for somes > 0. For example, iM is a-regular then§.2) becomes

pr(x.y) < (3.2)

C
pr(x.y) < B’

and this estimate is known to be satisfied for self-similar local Dirichlet forms on many fractal spaces. It
was proved in25, Proof of Theorem 2.1] thaB(2) implies FK) with the scaling functioWV(x, r) = r?.

4. ExampLes oF (Gcap anp (ABB)
Here we give some examples of spaces and Dirichlet forms satisf@icgy) and ABB).

Example 4.1. Let (M, d) be anultra-metricspace, that igj satisfies the ultra-metric triangle inequality
d(x,y) < max@d(x, 2), d(y, 2)).

For example, for a prime, a fieldQ, of p-adic numbers withp-adic distance is an ultra-metric space. An
ultra-metric space has remarkable metric properties. For example, for anyxpogitle a ballB(xo, o) is
also its center, that i8(x, p) = B(Xo, p) (see [L1] for details).

Let (&, ) be a regular Dirichlet form of jump type (in fact, an ultra-metric space cannot carry a local
Dirichlet form). We claim that in this case

(TJ) = (Gcap.

Indeed, given two concentriByg = B(Xp, R) andB = B(xg, R + r), it suffices to find a functio € ¥ such
that

0<¢<1 ¢lg,=1, ¢lgc =0
and

2 c 2
E(Uce, ¢) < igEI;OW(x, 9 fBu du 4.1)

for anyu € ¥/ NL*. A key observation is that, on ultra-metric space, the indicator functions of balls belong
to ¥ so that we take

¢ =1p.
(see [LQ] for details). With thisp we have

E(¢.9) = f fM " (UP(x) — Pe(y)) (9(X) — ¢(¥)) I(x. dy)du(x)
=2 f 5 fy . (UPe(x) — Pe(y)) (£(X) — ¢(¥)) I(x, dy)du(x)

2 f f U2(X)J(x, dy)du(X)
xeB JyeB(xg,R+r)°¢

_ 2
=2 jl;, - (X) (L(X,Rﬂ‘)c J(X’ dy)) dﬂ(X)
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u*(x)

=€ JeWoern
U*(x)

<C | Wocn HO

which implies @.1).
Since {J) is assumed as hypothesis in most of our results, in the case of ultra-metric space, in these
results, the conditionGcap can be dropped from the list of hypotheses.

Example 4.2. Let a metric measure space satisfy the following hypothesis: for all Batls),
u(B(x,r)) < Cr®

forsomeC,a > 0. Let (€, F) be of pure jump type and be given k. with a jump kernel(x, y). Assume

also that, for somg > 0, the jump kernel satisfies the upper bound

J(xy) < 4.2)

_C

d(x, y)o+8”

Then it is easy to verify thafl()) is satisfied with the scale functiof(x, r) = r5.
We claim that if3 < 2 then ABB) and (Gcap also hold with the same scaling function. Indeedglbe

a bump function of the pair of balBy = B(Xp, R) andB = B(xo, R+ r) (see Fig.2) so that

609 - 9ty < T @3)

Ficure 2. A bump functionp € cutof(By, B)

Using @.3) andgB < 2, a computation ingd2, Corollary 2.12] yields that, for any € M,

| 00— 603030ty < 5. (4.4)
M

which implies that, for any open s@t> B,
[ vPara@ = [ [ #6600 - 66)20x Y9k
Q QJIQ
<5 [ @090,

whence ABB) follows with W(x,r) = r? andC; = 0.
Let us verify Cap.). We have clearly

Sw@=jkmwm—ﬂm%mwwm
3ffww—am%meM+frfwm—ﬂm%mwwm
BJM BC UM

and

_ 2 — _ 2
[ [ @09 - 060230x 300 = [ [ (003 - o230 3)ckty)
_ 2
< [ [ 009600 30x )y



12 GRIGOR'YAN, E. HU, AND J. HU

Hence, by the symmetry and.4),

&(0.0) <2 [ [ (009 - 6PI0cy)chty) < (e

which proves Cap.) with W(x, r) = r?. By (2.18 we conclude thatGcap also holds with the same scaling
function.

Note that on most fractal spaces there exist regular jump type Dirichlet forms with jump kernels

1
0= Gy
whereg > 2. For this jump kernel there is no obvious difinction¢ to ensure evendap.). Besides, in
our main resultsl(x, y) does not have to satisfy the upper bousd), and the Dirichlet form may have also
a local part.
Therefore, for the time beingGcap andor (ABB) should be accepted as hypotheses, leaving to the
future the development of methods for proving them.

Example 4.3. Let (M, d, u) be a-regular and &, ) be a jump type conservative Dirichlet form. Assume
that its heat kernel satisfies the followistable-likeupper estimate for sonmge> 0:

C d(x,y)\ @
pt(x,y)sw—/ﬁ(1+—tl/ﬁ ) .

Then Gcap is satisfied with the scaling functio(x,r) = r? by a result of 7, Theorem 2.3]. A more
general result of this type in the setting of doubling spaces was prové@,iRfoposition 3.5].

Example 4.4. Let (M, d, u) satisfy /D). Assume that&, ¥) is strongly local and conservative. Assume
also that the heat kerngl(x,y) of (&, ) exists and satisfies for al> 0 and for almost alk,y € M the
following sub-Gaussian upper bounds:

it y))ﬁ_'l}, @5)

pi(%y) < _C exp| -c
V(x, t1/B) t

with somegs > 1. Then Gcay) is satisfied with the scaling functiow(x, r) = r? by results of |, Theorem
1.12] and P8, Theorem 1.3]. Note tha#(5) holds on many fractal spaces wggh> 2 (cf. [2]).
5. ENERGY MEASURE

In this section we collect some elementary properties on energy measures, which will be used later on.
Everywhere here and below,(F) is any regular Dirichlet form irk? without killing part, that is, of the
form (2.1). Set

Floc :={u: ¥ U € M, there existy € ¥ so thatv = u y-a.e. onU}.
Since €, ¥) is regular, the constant function 1 belong$Ag:, so that
F' C Floc.

It is known that, for anyu € Fioc N L, there exists a unique Radon measitte(u) := I'Y)(u, u) such that,
for any test functiorf € ¥ N Co(M),

f far®(u) = O uf,u) - %S(L)(uz, f).
M
Moreover, for anyu € Fioc N L=, we have
EL(u,u) = f dr®®(u, u)
M

(see, for example 17, Eq. (3.2.20), Lemma 3.2.3, and the first two paragraphs on p.130]).
The energy measures satisfy the following properties, fan,allw € Fipc N L™:
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e theproduct rule([17, Lemma 3.2.5, and the second paragraph on p.130]):
dr® v, w) = udr® (v, w) + vdr® (u, w); (5.1)

e thechain rule([17, Theorem 3.2.2, and the second paragraph on p.130]):
dr(@(u), v) = @’ (u)dr® (v, w (5.2)

for any® € CY(R) (one does not need to assub@®) = 0);
e thestrong locality if u; € Fioc is constant in an open subgeif M andu, € Fioc is arbitrary, then

1drV(ug, up) = 0 onM (5.3)
(cf. [17, Corollary 3.2.1 on p.128], o#D, Eqg. (3.8) on p.387]), and
dr®(uy, v) = 110l (u, v) on M, (5.4)

whereu, = uV 0 (cf. [40, formula (3.14) on p.390]);
e theCauchy-Schwarz inequalitjor any f € L2(M, TV (u)), g € L2(M, TO(v))

1/2

1/2
f |fg|dF(L)(u,v)s( f f2dr<L>(u)) ( f gzdr(L)(v)) (5.5)

(cf. [40, on p. 390]).
Moreover, for anyu € Fioc N L, we have
dr®(u)) = aru), (5.6)
sincedlV(u,, u_) = 0 by using 6.4), (5.3), which gives that
dr®qu) = dr®w, +u,up +u)

=dr®u,) + 2dru,, u.) + dr.)
= dr9uy) + dr&)
=dr@u, —u_,u, —u.)
= dri(u).

Recall that for an open subgetof M andu € ¥7, the measur&q(u) is defined in 2.17), that is,

dla(u)(x) := drOu)(x) + fM Lo(y)(u(¥) — u(y)’dj(x.y).

Here the measurgvanishes orix = y} as a convention stated at the beginning of Sedid@learly, for any
three open setd, B, Q with A c B, for anyu € ¥’ and for any measurable functidn> 0, the following
inequalities hold:

fQ FALAQU) < fQ fdla(u). (5.7)
and

f fdlg(UA 1) < f fdls(u). (5.8)
Q Q

Proposition 5.1. For any open sef2 ¢ M and for any two functions &€ ' N L*, ¢ € ¥ N L* with
suppp) c Q, we have

f wdlo(s) < 4 f #2dl o (U) + 28(U%¢, ¢). (5.9)
Q Q

A similar result was obtained ir80] but foru € ¥ N L™ (instead ofu € ¥’ N L* as here). We sketch the
proof for the reader’s convenience.
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Proof. Sinceu € ¥" N L™ and¢ € ¥ N L™, we have by Propositioh5.1
wWeF NnL® and u’p e F NL™.
We first show that
f wdr(g) < 260 (u?g, ¢) + 4 f ¢2dr(u). (5.10)
Q Q

Indeed, without loss of generality, we may assume thatstand for their quasi continuous version (see
Definition 15.2 and [L7, Thorem 2.1.3, p. 71]). SincE(")(¢) charges no set of zero capacity (7]
Lemma 3.2.4, p. 127]), by Propositid®.3in Appendix, we have

f u?dr®(g) < JlullZ, f dr(g) = uZEM(g) < IUlIZE@) < oo,
M M

which implies thati € L2(M, dI'(V)(¢)). In a similar way, we have e L2(M, dI'")(u)). Thus, using the chain
rule (5.1) and the product rule5(2) of dI'")(-) and using the Cauchy-Schwarz inequaly5j, we have

f u?dr®(g) = f dr e, ¢) — 2 f updr' O (u, ¢)
M M M

< EL(2g, ¢) + % f u?dr(g) + 2 f #2dri(u),
M M
which yields that, foranye ¥ NL®, ¢ € F N L™
f w2drV(g) < 28B4, ¢) + 4 f $2drO(u). (5.11)
M M

Since¢ is supported i, we see by§.3) thatdl'")(¢) = 0 outsideQ, and the two integrals ir6(11) are
actually taken ovef, thus proving $.10.
We next show that

f f PG — 60))°d] < 269(P6.6) + 4 f f POUK —uy)2dl  (5.12)
QxQ QxQ
Indeed, note that

S0P00 + PG00 ~ 90N < 260 ~ SOFXIO0) ~ F4))

+ 2(¢%(x) + $*M)(U(x) - u(y))>?,
see for exampleZ2, the inequality on lines 3-4 on p. 447] with= u, andg = ¢. Integrating ovet) x Q
againsd j and using the symmetry gf we have

f f X)) - )d] < 2 f f 600 — SOPHFH) — P ]
QxQ QxQ
2 B 24
‘4 f fQ #0000 - e (5.13)
On the other hand, using the fact that suppt Q, we have
f fg (000 = G0N0 ~ F oK

o Mo Mo [~

= 0P, 6) - f fg O - f fg L FO)
< (P, ¢).

Plugging this into $.13), we obtain 5.12).
Finally, combining 6.10, (5.12), we conclude by definition®2(1) and @.17) that

2 _ 2 (L) 2 3 204
fg PdTo(6) = fQ PO (g) + f fg (000 - )
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< 260 W2¢, ¢) + 4 f f ¢%dr®(u)
Q
O (2 2 —u(y))?dj
+289(u%g, ¢) + 4 f fQ XQqﬁ ()(u(x) — u(y))=dj
= 28(U%¢, ¢) + 4 f fg; ¢?dlq(u),

thus proving $.9). The proof is complete. O
Next, we need the following inequality.

Proposition 5.2. For any open sulf2 ¢ M and for any two functions &€ ¥’ N L*, ¢ € F N L™ with
supp@) c Q, we have

f ¢2dl o (u) < 28(u, up?) + 4 f w2dlo(¢) + 4 f f u(x)u(y)>(x)dj. (5.14)
Q Q QxQ°¢
Proof. By definition 2.1), we have

&(u, up?) = EL(u, up?) + EV(u, ug?). (5.15)

For the local par&( (u, ug?), interchangingi ande in (5.11) (at this stage the assumption supp¢ Q has
not yet been used) and then usiig3] and suppf) c Q, we obtain

f #2drOu) = f #2dru) < 261, ug?) + 4 f u?dr®(g). (5.16)
Q M Q
For the jump par&¥)(u, ug?), we have by 2.2) and the fact that supp) c Q

£9(u, ug?) = f fM (U6~ U9 ~ U

([l [y S, o) 9
_ f fg R - f fg 09 - uy)uy)e)a]

_ 2 .
T fngQC(UW u(y)u(x)¢=(x)d ,

> ([ Foondi- [[ wouetondi- [[ uuoeodi (67

whereF is defined by
FO0Y) = (U9 - u)(U(x)¢*(x) — u(y)¢*(y)).

[ vouersnei = [ uoguoneoa)

=[] ueouperoon
QxQ°
by using the symmetry of. It follows from (5.17) that

f f F(x,y)dj < ED(u, ugp?) + 2 f f u(u(y)p?(x)dj. (5.18)
QxQ QxQC

On the other hand, by using a general resultZ® Lemma 2.2] withE = Q, f = ¢, g = u and noting that
dlac = 0, we obtain

2,2 R : 2 2:
f fg (U9~ U000 < 2 f fg ROy +4 f fg U000 - )] (5.19)

Sinceg is supported irf2,
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(see also22, Eqg. (3.22) on p.473]). Combinin® (18 and £.19, we obtain
[ o0 - w9 < 269 ug?y + 4 [ u0oue?a
QxQ QxQc

4 f fg 000 - 607l (5.20)
Finally, it follows from (6.15), (5.16), (5.20 that

L Fdra(U) = fg FdrO() + f fg (00 =~ U090
< 260U, ug?) + 4 f u2drd(g)
Q

+269(u, ug?) + 4 f fQ . W2(X)(@(x) — ¢(y))>dj + 4 f fg " u(x)uy)¢*(d

- 26(0.u6?) + 4 [ Fara@) 4[| uoguied
thus proving 5.14). m|

Proposition 5.3. For any ue ¥’ N L* and anyg € ¥ N L*, we have
E(Us) = E(U, U + fM 2drO(g) + f fM U600 ~ 07l (5.21)

Proof. Sinceu e ¥/ N L* and¢ € ¥ N L=, we see by Propositiob5.1thatu? € ¥’ n L, and
up, ug® € F N L.
By the product and chain rules(Q) and 6.2)), we have

&Vw) = [ )
M
- f ¢?dr(u) + 2 f updl O (u, ¢) + f u?dr®(g),
M M M

while
EB(u, ug?) = f dr®®(u, ug?)
M
= f 2drOu) + 2 f updr O (u, ¢).
M M
Thus,
EL(ug) = EM(u, up?) + f u?dr®(g). (5.22)
M
On the other hand, for the jump part we claim that
&) =0 + [[ uguoiee) - s0)dl (5.23)

Indeed, by a direct computation, we have for any poinise M,

(U(YB(x) — uY)(¥))? = (U(X) = u(y)) (LB (X) = u(y)¢>(¥)) + UGIUY)(B(X) — B(¥))>.
Integrating this against measujever M x M and using definition4.2), we obtain 5.23.
Therefore, it follows from%.22), (5.23 that

E(ug) = EV(ug) + DV (ug)
_ o) 2 2A471(L) (J) 2 _ 24
- V(U ug?) + fM PArO(g) + (U, ug) + f fM  UUO)) - S0

- 5(u,ug?) + fM WPdrO(g) + f fM UOUE09 ~ 4
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thus proving $.21). The proof is complete. m|

Proposition 5.4. Let Q) be a measurable subset of M. Then, for any &’ N L* and for anyg € ¥ N L®
with suppg) c Q, we have

E(ug) = E(u, ug?) + fg uwdlo(4) + 2 f fg - u(yu(y)¢?(x)d j. (5.24)

Proof. We will use 6.21) to derive 6.24). To do this, note that vanishes outsid®. Then by the symmetry

of dj,
ffMXM“(X)u(y>(¢<x>—¢<y))2dj= { f fQ K f fg = f e f Q}

- | fg UG ~ )]
w2 [[ uoguie9a
From this and using the fact that

f PdrO(g) = f PdrO(g),
Q

we conclude from&g.21) that

E(us) = E(u, us?) + fM PdrO(g) + f fM UYUO)O0) - )]
= &(u,ug?) + fg PdrO(g) + f fg )OO ~ )]

w2 [ fQ RIOTOEEL)
- &)+ [ Fdra@+2 [ uoueidi
thus proving $.24). |

6. ReLarions BETWEEN (Gcap anp (ABB)

In this section we do not use conditiowd). Let us repeat the definition oABB) by paying more
attention to constant cé&ients.

Definition 6.1. Given{ > 0, we say that conditiomABB,) is satisfied if there exisE > 0 such that, for any
ue ¥’ N L and for any three concentric baly := B(xo, R), B := B(xo, R+ r) andQ := B(Xo, R’) with
0<R<R+r <R <R, there exists somg € cutaf(By, B) such that

2 2 C 2
fg PdCo(6) < fB #dTa() + SUpr=— fg ey,

wheredI'q is defined by 2.17).
Note that condition£BB) holds if and only if condition ABB,) holds for some > 0.

Lemma 6.2. We have
(Gceap + (TJ) = (ABB4,e),
wherex is the constant from conditiofGcap.
Proof. Fix a functionu € #’ N L. Let By := B(Xp, R), B := B(Xp, R+ r) andQ := B(xo, R’) be any three

concentric balls with & R < R+ r < R < R We will show that there exists songec cutaf(Bo, B) such
that

2 2 2 ; C 2
fgu dl'o() < 4k jn;¢ dr'g(u) + )I(QE) W) Lu du (6.1)

for a constanC > 0 independent afi, By, B, ©, which will exactly mean thatABB,) holds with{ = 442,
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SetB := B(xo, R+ r/2). By (Gcay), there exists a functiog in «- cutof(Bo, B) such that

27 2 C 2
0.9) < Sy e ) /2)f < fé‘ng(x,r/an“d“'

xeB

Applying (5.9), we obtain
f (2dre(@) <4 f F2dra(u) + 26056, 9)
B

2C
Zdra(u) + su fuzd .
o e+ subye oy o v

¢ = 1A ¢ € cutaf(By, B).
Note thatp < ¢ in M. Using 6.8) and the previous inequality, we obtain

, , _ 2C f 2
fBu dl'g(¢) < j;u dr'g(¢) < 4 ¢ dFB(u)+supW( 72) Qu du

XeQ

Define the functio by

< 4? f ¢2dFB(u)+§€quW( 72) f udp. (6.2)

On the other hand, asis supported irB c B c Q, we have

[ w00r609 - atya - { I+ o [ f@\B)XJ [ f(g\B)x(Q\B)}.--
- fB R0 - s + [ f.B_X(Q\B) P(¢?(9d

2 2 H
4 f f( T CTEL 6.3)

Let us estimate the last two integrals #3). Indeed, observe that di&(Q \ B) > r/2 so thatQ \ B c
B(x, r/2)¢ for any x € B. Hence, we havely) and by @.5) that

7 ’

esu J(x,dy) < esu J(x,dy) < su <su .
Xegp Q\B (x.dy) XE‘B'p B(xr/2)° O ) Xegp (x,r/2) erpW(XJ/Z)

From this and using & ¢ < 1 and thaB c Q, we obtain

2 2 - 5 5
fﬁEX(Q\B) u(x)97(x)d ] = fﬁc‘x(g\a) u“(x)¢*(x) I(x, dy)du(X)

f P(X)6%(x) {sup e dy)) du(x)

xeB

2
< iggPW(x—r/Z)fg;u () du(x). (6.4)

IA

Similarly, we have

2 2 2
f f(Q\B)XB ()62(y)d] = f f 2(x)6%(y) I(x, dy)du(x)
f f u2(x)(esup J(x,dy)]du(x)
Q\B XeQ\B J B(xr/2)°¢

(o f 2
< sup——— | ur(X)du(x). 6.5
AWK 1/2) Jo I 65
Therefore, substitutings(4), (6.5) into (6.3), we obtain

2 24 2 2 2
[ oo - snrai= [[ 99 - 6017+ supge = [ i

IA
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From this and using5(3) and the fact that supp) c B c B, we obtain

fg Pdlo(g) = fg PO (g) + f fg P(X)(6(x) - H())2d
2 (L) w2 2 u?
< [[warO)+ [[ 20000 - s+ supgt s [ i

2C’
= | u?dr'g(¢) +su —fuzd . 6.6
fs (%) O WCT72) Jo o 66
Finally, substituting6.2) into (6.6), we conclude that,

fu2drg(¢)s fuzdFB(¢)+Sup 2 f zdlu
o B XeQ ( /2)
2C’
g42f 2drg(u) + su —fuzd +su —IUZd
K B¢ B( ) erpW(X’r/z) Q H XGQpW(X,I'/Z) Q :

C//
S4K2f 2dr'g(u) + su —fuzd .
B¢ e (t) erpW(X,r/Z) Q a

On the other hand, by2(5), we have that
W(x,r)
W(x,r/2) ~
Finally, combining the above two inequalities, we obtdri). |

xe M.

7. SELF-IMPROVEMENT OF (ABB)

In the next lemma we show howABB) self-improves. The self-improvement property &BB) was
first observed and proved id][for local Dirichlet forms, while for jump type Dirichlet form it was done in
[13] and [22].

Lemma 7.1. Assume that every metric ball of any radiusRR has finite measure. Then
(ABB) + (TJ) = (ABB1/s).
Proof. Letu e #/ N L* and letBy, B, Q be any three concentric balls given by
Bo := B(X0,R), B:= B(xo,R+7r), Q := B(X,R)
with 0 < R< R+ r < R < R. We will show that there exists songes cutof(Bo, B) such that

fuzdl“g(q))s }f¢2dFB(u)+sup
Q 8 s

C
xeQ W(X, I’) (7.1)

for a universal constar@ > 0 independent oBg, B, Q, u.

The idea of constructing such a cfittunction¢ is as follows (which was motivated by,[the proof of
Lemma 5.1]): first dividing the baBB into infinitely many concentric ball&B,};” ,, then choosing), to be
a cutdf function for the triple By, Bn.1, Q) by using condition ABB), and finally letting

¢ = i an¢n’ (7-2)
n=1

which is the desired cufbfunction by choosing suitablg,} ¢ R.. The proof here is motivated by that
in [22, Lemma 2.9, pages 452-460] for the pure jump-type (hon-local) Dirichlet form. The proof is quite
technical.

If u = 0inQ, then (.1) holds for any¢ € cutdf(Bp, B). Fixu € ¥’ n L™ with [[ull 2 > 0. Set

=|u| + &, where
1/2
&= (f de) > 0. (7.3)
Q

Clearly,u; € ¥/ n L*.
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Letq > 1 be a number to be chosen later. Define the sequénggy, and{s\},” ; by
=(1- q—n) o Sh=rn—rn-1=(q-1)g"r.
SetB, ;= B(xg, R+ rp) andUy := Bpy1 \ Bn. Obviously,r, Tr, B, T Basn — +oo, andug"zlun =B\ Bs.

Applying (ABB) to the functionu, and to each triple &, Bn.1, 2), we obtain that there exist some
constantg, C > 0 and some,, € cutof(B,, By.1) such that

C
[ vdran < ¢ [ dRdre, )+ supge=— [ o (7.4)

Bni1 XeQ
Note thatp,, may depend on, but if it does not, the proof would be simpler, as we will see below. Since

U = (Jul + &) < 21 + &2),

and since by definition2.17) and equality %.6)
Fre, @)= [ FarOw [ B -uord)
Bn+1 Bn+1><Bn+1

= 241(L) 2 _ 5

J oo s [J oo )= wion?es
24r(0) 2 L

= Bni1 ¢ndr (U) * an+len+l ¢n(X)(u(X) U(y)) d]

Bn+ 1

= ¢%dFBn+1 (U),

Bn+1

it follows from (7.4), (7.3) and the fact that & ¢,, < 1 in M, that

C
Zdrn_fﬁolr1 —f222d
[ ara0 <¢ [ didre, 0+ sup=—s [ 207+ Ao

n+1 XeQ

4C 2
< { dFBm_l(U) + Supm L u d,u (75)

Bni1 XeQ
Let{an};”; and{bn};’ , be two sequences of positive numbers given by

b =g, ay=bn1—by=(cf -1)q”",
whereg is the constant in4.5). Clearly,
Dan=by=1
n=1

Let ¢ be defined by7.2) with this choice ofa,}. We will prove the following two properties:
(i) ¢ € F (this will imply that¢ € cutof(Bo, B));
(i) if gis close enough to 1, themsatisfies 7.1) (this will prove condition ABB1/sg)).
To verify (i), consider the partial sums of the serié<):

N
Oy = ) Ay, N>0.
n=1

Clearly, o\ T ¢ pointwise asN — co. We will also show that the sequenfn}y_, converges ta in
&1-norm. For this, it sffices to show thaPy} is a Cauchy inF:

[Nk — ONIIE, = E(@nsk — D) + [Pk — DnIIZ — O

asN,k — oo.
Indeed, note that every metric ball of radius smattemnR has finite measure, and observe that

Ignlicz < p(B)Y/2 < co. (7.6)
Sinces? < u2in M and

drs, () = [ drO@)+ f fB () - U

Bn+1 Bn+1
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(L) — 29i =
sfMdF (u) + ffM XM(U(X) u(y))<dj = &(u),
we have by 7.5 and @.5),

f o) <ce? [ dre. () + sup2F f u2d
o Y= By xe0 W(X, Shi1) Jo H

n+1
C’llull?, o
-2 L2(Q) r n
< e “E(U) +su <C
{ ( ) erp W(X I’) (Sn+1) qﬁ
for some positive consta independent of. From this and using the fact that is supported irB c Q,
we see that

8(¢n’ ¢n) = S(L) ((bn’ ¢n) + S(J) (¢n’ ¢n)

= [arO+ [ @00 an?d]
- fg dla(s,) + 2 f fB quﬁ(x)d j<Co+2 f Bxgcrzsﬁ(x)dj. (7.7)

Sinced(B,Q°) > R — (R+r) :=rg > 0 so thatQ® c B(x, rp)° for anyxin B and since &< ¢,, < 1in M, we
have by conditionTJ), (2.5 and (7.6) that

[IL doadi= [ szo9cun [ txan

< [ ¢%(x)(esup J(X,dY))d,U(X)

xeB JB(x,ro)¢

“[emmarg) fooo s i (] <= o9

uniformly in n. It follows from (7.7), (7.8) that
Ens ¢n) < CA™, (7.9)

where the constar@ depends on all variables in question excephoSincea, = (¢f — 1)g?", we obtain
from (7.6), (7.9 that for anyk > 1

N+k N+k
10wk = DnllEZ = 1 D andnller < D anllgnllg
n=N+1 n=N+1
N+k
1/2
= Z an (”‘ﬁn”iz + 8(¢n’¢n))
n=N+1

N-+k

> an(u(®) + Co")

n=N+1

_1) i q—ﬁn/27

n=N+1

IA

thus showing that property)(is true.
To verify (i), let us prove the following inequality

2 1 2
fg Pdra(en) < ¢ f 6 drB<u)+§ngW( —

In this case, inequality7(1) will follow from (7.10 by lettingN — oo and by using the fact thai; (On —
¢) — 0 that was already proved above.

(7.10)
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To this end, note that by the bilinearity df

N N
dlo(®n) = dlg [Z andn, Z am¢m]
m=1

n=1
N N-1 N-2 N
= aﬁdrﬂ(qﬁn) +2 Z anan+1dFQ(¢n, ¢n+1) +2 Z Z anamdFQ(‘pn’ ¢m)a
n=1 n=1 m=1n=m+2

and, hence

Sn(u) = f w?dlo(Pn)
Q
N N-1
= Z ar2‘| f Uzdr9(¢n) +2 Z anan+1~f Uzdrg((ﬁn, ¢n+1)
n=1 Q n=1 Q

N-2 N
2y > anamfguzdfg(cbn,rﬁm)- (7.11)

m=1n=m+2

We will estimate the second term on the right-hand side’ df}.
Indeed, notice thadl'")(¢,, ¢,,) = O for anyn > m by using 6.3), sinceg, = 1 in suppf,,). Thus by
definition 2.17)

Al ) = AFO (G i) + f fQ (010 = 0nl9) (000 = )0

- | fg (@n() = nl9) 4009 ~ 404} foranyn>m (7.12)
From this, we have by using the elementary inequalitly 2 a* + b?
N-1
2 + Zdr n> Pn+
nZ:;ananlLu (®n> dni1)
N-1
=23 vt [[ 00009 = 6000 @na 0~ dna )
n=1 X
N-1

" Z a%Jrl f»fﬂxg UZ(X)(¢n+1(X) - ¢n+1(y))2dj

N N
<2)a [[ @009 -su0)Pdi< 2 4t [ Fdra(). (7.13)
n=1 X n=1
Therefore, pluggingd.13 into (7.11), we obtain that, using/(12),

N N-2 N
Sn(u) sBZaﬁfQuzdFQ(%HZZ Z anamLUZdFQ(¢na¢m)
n=1

m=1n=m+2
N
-3) & fg WdCa(6,)

n=1

I

N-2 N
#2) 3 e [[ R~ 60)) @) ~ 80 ]

m=1 n=m+2

I2
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=313+ 21y, (7.14)

We will estimate each terr, I,. To estimate the terrhy, we will use condition ABB), whilst to the term
I, we will use condition TJ).
To do this, for the ternhy, we have by 7.5),

N
a3 ., u?dCo(¢,)

I

[0e]

2

2 i 2
dI“n+u+4CEsu fud

anj;n”_ B 1( ) n=1 XGQpW(X’ S’\+1) Q #

@ [ dra@eyd [ dre.
B ~ s

n+1\B1

IA

>y
n=1

(o)

{

1
S

n=1

l11 l12

S ag f 2
+4C)» sup——— | ud
2 SUPGeTy S

n=1 XeQ

l13

={l1+ {112+ 4Cls. (7.15)

We will estimate each termiq, 112, 113.
Indeed, since = 1 onB; and

%

-1
+1’

-

(o)
n=1

%

we obtain by §.7) that

Ill = Z af%f dan+l(u) = Z af%f ¢2dan+l(u)
=1 B1 n=1 By

L2 2 -1 2
< nZ:;anfqus drg(u) = qB—Hfo dg(u). (7.16)

For l1,, using the facts thady, < (9 — 1)¢ in Uy = Byt \ B (cf. [22, formula (2.17) on p.458]) and
an = g "MEa,, we have that

|12=iaﬁf;

dre,,(u) < )" a2 f drs(u)
n=1 n+1\Bl n=1 Bn+1\Bl

- i a2 n; fu i dlg(u) = i > qraeme fu i aZdlg(u)

n=1 n=1m=1

D2 [ (f - 1Pt
m=1 Unm

IA

_ i S gr2te-me f

(of — 1)%¢°dI'g(u)

m=1n=m u
(ef - 1) 2
L) (7.47)

Forl43, since by 2.5),

W(X, 1) ( r )ﬁ
<C , XeM,
W(X, sni1) Sni1
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we have that, using = (¢f - 1) " andsy,1 = (q - 1)g~™r,

S aj f 2
l13 = sup——— | u<d
1= ), PWix soen) Jo -

n=1 XeQ

C oot ﬁf 2
su ud
et WX 1) nZ:; % ( Sn+1) o

C < (f-1yg2n f 2
= su u-d
et WX, 1) nZ:; (- LPqr0eD) Jo o

3 P(f - 1) 2
- ngpW(X, N (q-1° Jo 7 (7.18)

Therefore, pluggingd.16), (7.17), and (.18 into (7.15, we conclude

IA

{L+d*)(-1) [ C(a) 2
l1 <Zl11+ 2112+ 4Cl3 < 1 quﬁ dFB(u)+§€quW Qu du. (7.19)

For the termi;, we repeat the same argument22[formula (2.20), p.459]. The only fierence is to use
condition (TJ) here rather than the pointwise upper bound of the deriv%% therein. In fact, for any
m>1,n>m+2

(@m(¥) = ¢mN)(@n(X) = ¢n()) = Im(X)(L = Bn(¥)) + dm(¥)(1 = Bn(X))
sinced,dm = ¢, I M by usingg,, = 1 in suppp,,). Thus,

N-2 N
=) > aan f fQ , 0@ = 4n()(@n() ~ én(y))d]

m=1n=m+2
<3, 3 2o ]| 000090~ 000
I21
. 2 -
DL | R O (7.20

122

To estimatds, noting thatd(Bm, 1, BS) > sm2 for anyn > m+ 2, we have by conditionTJ) and @.5) that

esupff J(x,dy) < esup J(x, dy)
Q\Bp

X€Bmy1 X€Bmi1 JB(X,Sm2)®

B
r
< su <su ,
XeBrrEl W(X, Sm+2) erpW(X: r (S”THZ)

ff u?(x)dj < esupff J(x, dy)f u?(X)d(X)
Brmne1X(2\Br) xeBme1 JJO\B, Brme1
C

< sup ( ' )ﬁf u?d
B XeQ W(X, I‘) Sm2 Q H
Therefore, using the fact that, is supported irBm,1 and 1- ¢, supported irB, we have

=) > ane [[ PR~ o)l

m=1n=nx2

> e [[ e

m=1n=n+2 m+1X(Q\ Bn)

and hence
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C < r 2
<su am anf d
XEQPW(X’ r) rr; (%2) n=m+2 g

_ C(q) 2

Forl,2, we run the same argument as above and obtain

2= ana, [ #0002 44000

m=1 n=n+2

< aman ff u?(x)d
Z Z (Q\Bn)xBm+1 () :

m=1n=nx2

P(x) C(a)
Z Z aman supW(X — )d (x)ssupW(X, r)fguzd,u. (7.22)

=1 n=m+-2 Q XeQ XeQ

Therefore, pluggingd.21) and (/.22 into (7.20), we obtain that

o <lo1+ 1o < SUD% f Uzdﬂ. (7.23)
3 Q

XeQ)

Finally, substituting 7.23 and (7.19 into (7.14), and choosing > 1 close enough to 1, we obtain
SN(U) <3l +2I»

HA+9P)NP-1) [ C(q) 2 C(q)
<SR [ s sty | e supgrds
1 2 C(q) 2
<5 J,Parew +supelds [ o
thus showing 7.10. m|

8. ENERGY OF PRODUCT
Let us introduce a conditiorEQ), that is called thenergy of product

Definition 8.1 (Condition (EP)) We say that the conditioref) is satisfied if there exists a const&ht- 0
such that, for any three concentric bafls := B(xo, R), B := B(xo, R+ 1) andQ := B(xo, R) with 0 < R <
R+r <R <R, and for anyu € 7—" N L*, there exist® € cutdT(By, B) such that

. , c [, .
£(us) 1= E(ub, ) < SE(u. ) + sup— fg WPy + 3 f fg _uud (6D)

We remark that the cdigcients ‘% and “3” appearing in 8.1) are unimportant. ConditiorEP) will play
an important role in deriving the mean value inequality, as we will see in Setfibelow.

Lemma 8.2. We have
(ABB1;8) = (EP). (8.2)
Consequently, if every metric ball of radius smalflean R has finite measure, then we have the following
implications:
(Geap + (TJ) = (ABB) + (TJ) = (ABBy8) = (EP). (8.3)
Proof. Let By := B(Xo, R), B := B(xo, R+ r) andQ := B(Xp, R) be any three concentric balls with 9

R < R+r < R < Ras before. Fou € ¥/ n L, we have by conditionABB1,g) that there exists some
¢ € cutat(Bp, B) such that

, 1 f ) C
fg Pdoe) < g [ #2dre() + supes

1( ., C
<= dl'o(u) + su
8fg¢ o)+ U
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From this and usingd(14), we obtain

L uzdFQ(¢)s%(28(u, ug?) + 4 L uw’dlo(g) + 4 f L u(x)u(y)¢?(x)d J)+§€quW(C 3 f u’du
:%8(u, u¢>2)+%fguzdl“g(¢)+%ffQ>< u(x)u(y)¢2(x)dj+supw( )fuzd,u.

Rearranging the above inequality, we have

[ ara) < 608 + [ uoue?9ai + suppe=s

From this and usings(.24), we conclude that
&) = &) + [ Fara@+2 | uu)aod
< 8. + 560 + [ f WU

+§€ugpw( . f WPy + 2 f f UYU()F2(0d

_2 2 2 200d i
- 8(u W+ ngpW(X, r L e+ 3[[9%26 MU

thus proving conditionEP). This proves the implicatiorB(2).
Finally, the implications in&.3) follow directly from Lemmas.2and7.1 The proof is complete. 0O

9. SUBHARMONIC FUNCTIONS

In this section we will prove a simple property of subharmonic functions stated in Leh@halow. We
start with the following observation.

Proposition 9.1. Assume that a function E C?(R) satisfies
sup|F’| < oo, F” >0, supF” < .
R R

Then, forallye € F’ N L=, both functions Fu) and F (u)¢ belong to the spacg&”’ N L*. Moreover, if in
additiony > 0on M, then

E(F(u), ¢) < E(U, F'(u)p). (9.1)

Proof. SinceF is Lipschitz inR, we see by Propositioh5.1(i) thatF(u) € . Sinceu € L*, we have also
F(u) € L* and, hence,
F(uye ¥/ nL™.
Similarly, we obtain
F'(uyeF nL™.
Sincep € ¥/ N L=, it follows from Propositiornl5.1(ii) that
F'(upeF nL™.

Let us verify ©.1) assuming thap > 0. Indeed, by the chain and product rules. g and 6.1)), and by the
fact thatF” > 0, we obtain

EV(F(U). ¢) = fM drOF (). ¢) = fM F/(U)drOu, )
= f dr®®(u, F’(u)g) - f F” (u)edr ) (u)
M M

< [ darOuF e - 89U F W) (9.2)
M
On the other hand, the conditiéii’ > O implies that, for allX,Y,a,b € R,
(F(X) = F(Y))(a-b) < (X=Y)(F'(X)a- F'(Y)b)
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(see for exampleZ2, Eq. (3.3), p. 464]). Substituting hebe = u(x), Y = u(y), a = ¢(x), b = ¢(y), we
obtain

d%ﬂmwriﬂ;Jme—memam—amm

Slmwﬁ“@—mwxpw@»ﬂ@—Fwawwmﬂ

= &U(u, F'(u)g),
that is,
EDNF(U), ¢) < EV(u, F'(U)y).
Therefore, it follows from 9.2) and the above inequality that
E(F(U), ¢) = ED(F(U), ) + EN(F (), ¢)

< 8V, F'(y) + EV(U, F'(u)e)

= &(u, F'(u)),
thus proving 9.1). m|

Let us extend Definitior2.8 of subharmonic functions to the spagé.

Definition 9.2. Let Q be an open subset &fl. We say that a functiom € ¥’ is subharmonic(resp.
superharmonikin Q if, for any 0 < ¢ € F(Q),

E(U,¢) <0 (resp.&E(u, @) > 0).
A functionu € ¥” is calledharmonicin Q if it is both subharmonic and superharmonicin

Lemma 9.3. If u € ¥/ N L* is subharmonic in a non-empty open et M, then u belongs toF’ N L*®
and is also subharmonic i€d.

Proof. Clearly,u, € F’. Fix a function 0< ¢ € F(Q) and prove tha&(u,, ¢) < 0. Since each function
in & can be approximated by a sequence of functiong in L* in the norm ofF (see for examplel]7,
Thoerem 1.4.2(iii)]), we may assume in addition that L>. Let {F¢},”, be a sequence @?-functions on
R satisfying for alln > 1 the conditions

Falco0 =0, 0<F <1 FJ >0, supF) <oo,
R
and

Fn(t) 2 t; uniformly inR asn — co. (9.3)
Such a sequence can be constructed as follows: first fix any functioh & Cg[0, 1] with

1
f f(t)dt = O,
0

fo(t) = nf(nt) € Co[O,r—l1 ,
and determiné-, from the equatior; = f,, that is,

t t
Fat) = f fndt and Fp(t) = f F,dt
0 0
(see Fig.3). ThenF,(t) = O for allt < 0 andF/(t) —» 1 asn — oo for anyt > 0 whence 9.3) follows.
By Proposition9.1, the functiong=,(u) andF/(u)¢ belong toF” N L* and
E(Fn(u), ¢) < &(u, Fp(u)g).
Moreover, by Propositiot5.1(i), (iii) we have also
Faug € F(Q) N L™
Sinceu is subharmonic if2 andF/ (u)¢ > 0, we have,
&(u, Fp(u)¢) <0,

then set for any > 1
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1/n t
Ficure 3. Functiond~;, andF}/

which implies
E(Fn(u), ¢) < 0.
Hence, it sifices to verify that
&(ur,¢) = im E(Fn(u), ¢). (94)
Sinceu € ¥, there existsv € ¥ anda € R such thau = w + a. Consider the functions
Wn = Fn(u) - Fn ()
and observe that byo(3) there is a pointwise convergence
Wh, — U — @, asn — oo.
Denote
L := supsupF;, < co.
n R
Since
Wnl = [Fn(u) = Fn(@)l < Liu—al = Liwl € L?,
we conclude by the dominated convergence theorem that

2
wni>u+—a+ as N — oo. (9.5)

On the other hand, since
lw _ Fn(w+a) - Fy(a)

L L
is a normal contraction of, we obtain that, for any,
E(Wn, Wn) < L2E(w, w). (9.6)

By (9.5), (9.6) and Propositiori5.5 we conclude that
lim E(Fn(u),¢) = lim E(wn, ¢) = E(Us — ax, ¢) = E(Us, 9),
which is exactly 9.4). m|

10. MEAN VALUE INEQUALITY
In this section, we prove the mean value inequality for subharmonic functions.

Theorem 10.1. Assume that conditior(&P), (VD), (FK), and(TJ) hold. Let ue ¥’ N L™ be non-negative,
subharmonic in a ball B= B(Xp, R) with 0 < R < o/R. Then the mean value inequalf19 holds, that is,
foranye > 0,

1/2
1 1
esuszC(1+s‘2‘v)(—fu2d,u) + eK|UL]l} ofr2 )y (10.1)
e u(B) Je LD
where the constant C depends only on the constants in the hypotheses (but does not def)etigeon
constants ando come from(FK), and

~ { 1 ifthe measure § 0, (10.2)

0 ifthe measure g 0.
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Consequently, we have the following implication:
(VD) + (Gcap + (FK) + (TJ) = (2.19).
To prove Theoreni0.1, we need the following lemma. Fix a poirR§ € M, some numbers & rp < rg

and consider two ball8; := B(Xo,ri), i = 1,2, so thatB, c B;. Fix also some numbers @ b; < by, a
measurable function and set

a ::f(u—bi)fd,u, i=12 (10.3)
Bi

(see Fig.4). Clearly, we havex, < a;. In the next lemma we show that can be controlled byﬁ*v for
somey > 0 whenu is a subharmonic function.

Lemma 10.2. Let the jump measure j be given by

dj(x.y) = J(x, dy)du(x),
where ., ) is a kernel on Mx B(M). Assume that conditior(§K,) and (EP) hold.
Letue ¥/ n L™ be subharmonic in &p, r1) with r1 < R, whereos- comes fron{FK,), and let a, a, be
defined by(10.3 for 0 < rp < r1. Then

@ < CW(B,) ( up N A
®~ (b2~ b)?u(By)” \er, WX T1—12) ~ bz — by
where the constant & 0 depends only on the constants in hypotheses, and A is given by
A= esup f u, (y)J(x, dy).
B

x€B(X0, 3 (r1+r2))

art, (10.4)

Proof. In this proof, for any function i, we always use itquasi-continuousersion (cf. Definitionl5.2
or[17, Theorem 2.1.3 on p.71)).
Denote
U :=B(X0, 3(r1+r2) and E:={u>by}nu.
By the outer regularity ofi, for anye > 0, there is an open sgtsuch that
EcVcB;

and

u(V) <u(E)+e (10.5)
(see Fig4).

Ficure 4. SetsE andV

Consider the function
V= (U-by),.
It follows from Lemma9.3thatv € ¥’ n L* and thatv is subharmonic iB;. By Propositionl5. (i),
¢oveF NL™ foranyg e F N L™,

Fix a functiong € cutaof(By, U). Then
a= | (u-by)?du= f ¢VPdu < f ¢>VPdu. (10.6)
B2 B, M
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Note that, for anyw € F and any open subsg& of M, we havew € ¥(Q) if and only if W = 0 g.e. inQF,
wherew is a quasi-continuous version wfand g.e. meanguasi-everywherécf. [17, Corollary 2.3.1 on
p.98]). Sincev = 0 on{u < by} andg = 0 g.e. onUC, we see that

#v=0 g.e. onE® = {u < by} U UC.
Sincegv € F andg¢v = 0 g.e. inV® c E®, we conclude that
ov e F (V). (10.7)
By the definition 2.13 of 11(V) and by (0.6, we have
E@V. V) _ Ev.0v)

(V) < <
=g, a
and, hence,
_ Elgv. V)
> < .
A1(V)
On the other hand, byK,) and (0.7),
1 1(v)
) =We 153

Using also 10.5, we obtain

u(V)
(B1)

< CW(B; )(“( ()B )‘9) E(V, pv). (10.8)

Now let us estimaté&(sv, ¢v) from above. By Propositioh5.1(iii ) and using 10.7), we see that
0< Vg =Vg- ¢ e F(V)CF(By).
Sincev is subharmonic iB;, we have

2 < cwiey) 1452 ) E(pv, )

&(v, v¢?) < 0. (10.9)
Applying (EP) to the tripleB,, U, B; and to the functiomw, we conclude that there existse cutof(B,, U)
such that

Blov.00) < S8+ supi— [ e3[R ay,
xeB, W(X.T) Jg, ByxBS
wherer = (r, — r1)/2. Using (0. 9 and the fact thap = 0 outsideU, we obtain that

E(vep, Vo) < supW( fB dy+3fv(x)dy(x) esup cv(y)J(x,dy). (10.10)

xeBy

Note that ifu > b, then
(U= b1)? > (u—by)(bz — by) > (u-bp)(bz - by),
which implies that, for all values af,

u—by)?
v=(u-hy); < (bz—;));'
Hence, we obtain from10.10
Ch2
E(6.6) < SUp w-b2de+3 [ S, esup [ u.()acx dy)
xeB, W(X.T) Jg, B b2—Db1 xeU Jeg
C 3A

as. 10.11
(XEBE)W(X N bx- bl) ' ( )

Next, let us estimatg(E) from above as follows:

W(E) = f du
Un{u>by}
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(u-hy)?
< —d
»[L.Jn{u>b2} (bp — b1)? #

1
<——— | (u-byid
a

" (- by’
Substituting the last inequality an@id.1]) into (10.8 and lettinge — 0, we obtain

u(E) \”
a, <CW(By) (m) E(ov, ¢v)

< CW(By)

T e
(b2 — b1)2u(B1) ) \seB, WOGT) by =y )
which together withZ.5) implies (L0.4). m|
Proof of Theorem 0.1 Let a ball B(Xy, R) and a subharmonic functiambe as in the statement. Fix also
somep > 0 to be determined later. LéRd} . (o}, be two sequences of positive numbers defined for
anyk > 0 by

Rc= (21 + 2 DR and p, = (1 - 27X)p.
Then{R} is decreasing witlR = R, R¢ | 3R, and

Rei-Rc=2"1R<R, (10.12)
while {p,} is increasing wittpy = 0, p, T p, and
Pr— P = 2. (10.13)

Set also foralk > 0
Bk = B(Xo,Rd) and ax = ) (u _Pk)idﬂ’
k
so that
B(X()’ R) = BO D Bk_]_ D) Bk D B00 = B(X07 %R)
(see Fig.5).

{u>pi1}

{u>piy

Ficure 5. Sequence of ballBy}

Applying the inequality {0.4) of Lemmal0.2for the pair of ballsByx c Bx-1 and for

b1 = py_1, b2 = py,
we obtain, for alk > 1,

CWI(B-1) ( 1 A ) 1
< su + -, 10.14
(ox = Pr1)?u(Br-1)” xerl W Re-1 - R ok — Prea He ( )
where

A = esup f u, (Y)J(x, dy).
xeB(x0, 3 (Re+Re-1)) VB
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Let us estimate every term on the right hand sideldf.14. Note thatB; , c B, and, for allx €
B(Xo, 3(R« + Re-1)), we have

B(x,27?R) = B(x, 3(Rc-1 — R)) € B(x0, Re-1) = Bi1.
Using this, J) and @.5), we obtain

A < JJuglle(ae) sup f J(x,dy)
XeB(X0, 1 (Re+Re_1) ¥ B(X2*2R)°

CK

= ||Ug][Lo(BS su ———

XeB(X0. 3 (Re+Ri-1
< CK2Bkllu Il
= W(BO) +11L>(BS,)»

where the constarif is defined in 10.2.
By (VD) we have

H(Bk-1) 2 p(Bx) = cu(Bo).
Hence, substituting intdlQ.14 the above two inequalities as well as usid§.(.3 and @.5), we obtain
CW(Bo) R YV 1 K& uwlieee)) 1
~ (27%)?"u(Bo)” [( Re-1 - Rk) W(Bo) * W(B)) 2% ) -
_ CZZka(BO) 2(k+1)/3 K2(ﬁ+1)k ||U+||L°°(B§Q)
" P u(Boy (W(BO) W) )
< C (1+ K”u+”|-°°(B§o))2(2v+,B+l)k Lty
" p?u(Bo)” -

1+v
-1

Setting
_c (1 N M) and 1= @),
p?u(Bo)” p
we obtain, for alk > 1,
a < DAkalY.
Then Propositioi5.4from Appendix yields, for alk > 1,

l+v (1+V)k
a <D} (D A ao) .

Hence, if
1 Liv
D¥A2 a < 3, (10.15)
thenay — 0 ask — oo and, hence,
f (u-p)2du = lim a =0, (10.16)
Boo — 00
The inequality £0.15 is equivalent to
D< (34 -7 agh) =: cay”
wherec = ( A el )", that is, to
C Kl [ Leo(se
. (1+ Ul ‘B“)) < cay”. (10.17)
p=u(Bo)”
Givene > 0, (10.17 can be achieved jf satisfies the following conditions:
Cl+e?t _
p > eKllugllL~ge) and ¥ <cgy.

p?u(Bo)” ~
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Clearly, the both inequalities here are satisfied for

1
C1+&)\* [ a |2 <
p= c (/l(Bo)) + eK]luy|lL=(Be,)-

Choosinge as here we obtain byl (.19 that

esupu < p,

oo

which is equivalent t0X0.1). m|
The next statement provides a multiplicative form of the mean value inequlitg)

Corollary 10.3. Under the hypotheses of Theorét1, we have also
esupu < CS? maxs, T}, (10.18)

1
?B
2y

15, and

wheref =

1 1/2
S:= —fuzd,u) and  T:= KUyl corr1 ey
(M(B) : eEe
In particular, we have
(VD) + (FK,) + (Gcap + (TJ) = (10.18).
Proof. Applying (2.19, we have
esupu < C(1+ g‘Z‘lv)S +eT.
iB
2
Let us choose to satisfy the equation
Ce S = £T,
that is,
CS\u5 (CSY’
=5 ()
Then we obtain

esupu < CS+ 2T =CS+2
iB
2

thus proving £0.18. m|

csy’
(?) T < C’S? maxst?, T4,

11. Lemma or GRowTH

Definition 11.1. We say that conditiorl(G) (Lemma of Growthholds if there exist some numbeis o, 7 €
(0,1) such that, for any baB := B(Xp, R) with 0 < R < oR and for any functioru € ¥’ n L* that is
superharmonic ifB and is non-negative iM, the following is true: if, for soma > 0,

u(Bn{u<aj)

< &0, 11.1
Wy —_—
then
einfu > na. (11.2)
iB
(see Fig.6).

We mention that all constantg, o, 7 in (LG) must be independent af B, u. The following statement is
the main result of this section.

Lemma 11.2(Lemma of growth) If the mean value inequalif£0.18 holds, then alsqdLG) is also satisfied.
Consequently, we have
(VD) + (Gcap + (FK) + (TJ) = (LG).
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\
{u<na}

Ficure 6. lllustration to Definitionl1.1

Proof. The idea is to use the fact that the functiﬁg is subharmonic foe > 0 and to apply the mean value
inequality 0.18 to this function.
Let us fix a constant > 0 to be specified later on and choose a funciioa C?(R) such that

1 £
Fit) = — forallt> —=
® t+¢ -2

and

sup|F’| < oo, infF” >0, supF” < .
R R R

(see Fig.7).

Ficure 7. FunctionF(t)

Let us prove thaF (u) is subharmonic iB. By Propositior®.1, F(u) € ¥’ n L*. We need to verify that,
forany 0< ¢ € F(B) N L™,

E(F(u),¢) < 0. (11.3)
By Proposition9.1we have also thad’(u)¢ € ¥/ N L* and
E(F(u), ¢) < E(u, F'(u)g). (11.4)

By Propositionl5.1(i), (iii) we haveF’(u) € ¥’ n L* and
F'(u)¢ € £(B).
Sinceu is superharmonic iB andF’(u) < 0 (because > 0), we obtain
&E(u, F'(u)g) <0,

which together with11.4) yields (11.3.
Applying the mean value inequaliti (.18 to subharmonic functiof (u), we obtain

esupF(u) = esugu + &)™t < CSY max(S,, T,)* ™,
ip ip
2 2

1/2 1/2
s, = (f F(U)Zdu) _ (f (u+s)—2du) ,
B B

Te = ||F(U)|||_m((%|3)c) =l(u+ 3)_1||L°°((%B)C)‘

where
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Hence, it follows that

-1
einfu > c & (11.5)
ig S max(S,, T.)F
SinceS, < ¢ 1 andT, < £71, we have
max(S,, Te)'? < &9, (11.6)
On the other hand, by the hypothesid (1), we have
S2 = f (u+ &)~°du
B
51 o @79
= — + (u+ &) “du
u(B) ( Bru<a) JBn{uxal
1u(Bn{u<a) 2
< 55—+ (a+
2 um e
< 8—2 +(a+e) 2
&
Now let us choose so that
&0 _ _2
; = (a+ 8) y
that is, a
£ = 17 > 0. (117)
g7 -1
With this choice ofs, we have o
Sy (11.8)
&
Therefore, pluggingl(1.8, (11.6 into (11.5 and using {1.7), we obtain
C—l
einfu > o2 £
B () e
C—l
= 1
((280)"/2 )
(. ct )2 .
e o
wheren is defined by
ct 1
= ( oz~ 1) 7,0
(220) & - 1
assuming thatp > 0 is suficiently small. O

12. MEAN EXIT TIME

In this section we will obtain upper and lower estimategradan exit timerom a metric ball. Our
approach is as follows: the upper estimate of the mean exit time follows directly from the Faber-Krahn
inequality, while the lower bound follows from the Lemma of Growth, which is the mdBtudit part of
this argument.

For any open se©@ c M, let {P{} be the heat semigroup of the Dirichlet fori@, F (). For any
f € L2(Q), the functiont — P{f is continuous as a mapping from, ®) to L2(Q), which allows to
integrateP{ f in t as anL?-valued function. Define th&reen operator & by

GQf:=f P2 f dt
0

for any 0< f € L?(Q). The functionG®f takes values in [O]. The monotonicity ofG*f in f allows us

to extend this operator to any non-negatfve L%C(Q), in particular, tof = 1.
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For any non-empty subsgtof M, denote
E®:=G%l = f PP 1gdt. (12.1)
0

The functionE® is called themean exit timérom the sef. The valueE®(x) has the following probabilistic
meaning: it is the expectation of the exit time franof the Hunt proces¥;, associated with&, ), that
starts aix (see Fig.8).

Ficure 8. The probabilistic meanind=?(x) = Extq Whererq = inf{t > 0 : X; ¢ Q}

Next, we introduce condition€&(), (E>) and ).

Definition 12.1. We say that conditionH.) holds, if there exist constanés C > 0 such that, for all balls
B c M of radius< ¢R,
esupE® < CW(B). (12.2)
B

We say that conditionE;) holds, if there exists a consta@t> 0 such that, for all ball8 c M of radius
<R
einf EB > Cclw(B)). (12.3)
ig
4
We say that conditionH) holds if both conditionsE.) and E;) are satisfied.
The following gives upper bound &® on any ballB by using the Faber-Krahn inequality only.

Lemma 12.2. We have
(FK) = (E.).

Proof. Let B := B(Xo, R) with R < cRwhereo € (0, 1) is the constant form conditioffK). We are to prove
that
esupE® < CW(B) (12.4)
B

for constant som€ > 0. This inequality was proved ir2, Theorem 9.4, p.1542] assumitf_tyatﬁ = 00
andW(xo, R) = W(R). However, the same argument not only works for a genafab, R) whenR = oo, but
also allows to obtainl(2.4) for balls of radiuR < cRwhenR < . Hence, E.) holds true withs := 0. O

In order to obtain a lower bound of the mean exit time, we use the following statement.

Proposition 12.3. Let a function ue ¥’ N L* be non-negative in an open setdBM and¢ € ¥ N L™ be
2
such thatp = 0in B®. Fixanyd > 0and sety := u+ A. Then% e ¥ NnL* and

2
& %) < 38(6.9). (12.5)

Proof. Let us first show thaﬁé € ¥ N L*. Indeed, asl is non-negative iB and¢ = 0 in B, the function
ﬁ—f is well defined anc&2 = F(u)¢? on M, whereF is a function orR given by
1
F(t) := .
® [t|+ A
Since this function is Lipschitz (with Lipschitz constati?) andu € ¥/ N L, we obtain by Proposition

15.1(j)

F(u) e .
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Sinceg € ¥ N L™, we have
P> e F L™,
(see L7, Theorem 1.4.2(ii), p.28]). Since al$qu) € L™, it follows by PropositioriL5.1(ii) that
F(u)¢? € F N L™,
Let us now proveX2.5. Indeed, it follows from 22, Lemma 3.7, p. 469] that

2
Wmfﬁs%@m@, (12.6)
i

On the other hand, by using the product and chain rued)(énd 6.2)) as well as the Cauchy-Schwarz
inequality, we obtain

2 2
sV, & =de(L) Ea
(u u/1) y (u uﬂ)
20 ¢ L
- [Zar.e)- [ Larbwu)
Uy u3

R L L
< —f—zdﬁ )(u,u)+2de( >(¢)—f—2dr< )(u, U)
2J) U

2
-5 [ Garw + 26V.0)
2 ue

< 28V(p,9).
From this and12.6), we conclude that

LA Yt Y
S(U, u/l) =& (U, u/l) +& (U, u/l)
< 280(p, ¢) + 38Y)(9, ¢) < 38(¢. 9),
thus proving £2.5. =

Let us recall the capacity conditio@ép.) from Definition 2.2 it is satisfied if there exists a constant
C > 0 such that for all ball® of radiusR < R

cap$B, B) < c%, (12.7)

where the capacity cap(U) is defined by 2.7). By (2.12), the condition Cap.) follows from (Gcap.

Lemma 12.4. We have
(VD) + (LG) + (Cap.) = (E).

Proof. Let B := B(xo, R) with 0 < R < R. Denote
u:=EB.

Note thatu is harmonic inB and is non-negative iivl. We need to show that exists a constant 0 such
that

einfu > clw(B). (12.8)
iB
4
Let us first assume that® R < o'R, where constant comes from conditionl(G). For anya > 0 we have
1 1 1 1
— < — = — —
uzBN{u<a) < af%B s aﬂ(zB)f%B s

where we use the fact that> 0 in M. Choose a numbexrsuch that

1
at —du =&,
ﬁBuﬂ 20]

2
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wheregg > 0 is the constant from Lemma of Growth@®). It follows that

u(3BN{u<ay) 1
— < af —du = &o
/J(QB)

ig u
so that (1.1) is satisfied, withB being replaced bg B. Applying Lemmall.2 we obtain

-1
einfu>na= nag(f }du) . (12.9)
ie o U
By (Cap.) there is a cutfi function¢ of the pair %B, B) such that
1(B)
E(g.¢) <2 capé B,B) < CW(B) (12.10)
For anya > 0 set
U i=u+A.

We have by {2.5 and (12.10 that

¢ 1(B)
&E(u, )< 38(¢, @) < 6CW(B) (12.11)
On the other hand, sinc‘{é e F(B)nL™ and¢ =1in lB we see that
8(u )_(1 f—d,u>f —du.
g Uy
From this and usingl2.1J), it follows that
1(B)
<6C——
is w W(B)’
which yields ast — 0 that
1 u(B)
f o 0 = Cwey
Therefore, combiningl2.9 and the above inequality, we obtain
-1
einfu > 7780(][ 1du) > nsoW(B) =: coW(B). (12.12)
1p g U 6C

Now we extend the inequalityl .12 that was proved for ballB of radius< oR to all ballsB of radius
R < R. Indeed, assumihatR < « andR € [cR R). Then there exists an at most countable sequence of
balls {B;} that coversB and such that each bd¥ = B(x,r) has a centex; € 3 B and the radius = 80-R

Applying (12.12 to balls 4B; of radius 4 < oRand then using2.5), we obtaln
elnf E*® > coW(4B)) > cOC’( ) W(B) > CW(B).
Observing that
d(xo, %) + 4r < %R+ :—2L<f§< R,
we obtain that 8; ¢ B whence it follows that
einf E° > einf E** > C™'W(B).
Since:B is covered byB;}, we obtain {2.9). O

Combining Lemmad2.2and12.4 we obtain the following.

Corollary 12.5. We have
(VD) + (FK) + (LG) + (Cap.) = (B).
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13. SurvIvAL ESTIMATE AND (GU)
We introduce conditionS), called thesurvival estimate

Definition 13.1. We say that conditionS) holds if there exist two small constarntss € (0, 1) such that, for
all balls B of radius< R,
einf PB1g > ¢ forall 0 <t < sW(B) (13.1)
iB
4

The valuePE1g(x) has the following probabilistic meaning: it is equal to the probability that the process
X; started aik stays insideB until time t; equivalently, assuming the killing conditions &, this means the
probability of survival up to time.

Let us define also the following modification @)(

Definition 13.2. We say that conditionS,) holds if there exist two small constantsc in (0, 1) such that
for all balls B of radius< Rand for allt > 0,
ct

eligf PB1g > & - W forallt > 0. (13.2)

Let us emphasize that in the conditid® | there is no restriction on the range of timeanlike that in §).

i

Remark 13.3. By a standard covering arguments (see, for example, the second part in the proof of Lemma
12.4) and @.5), one can extendl@.1) to all balls of radiusc CoR with anyCgp > 1 by adjusting the value of
6 accordingly. The same observation is valid also fr)(

Proposition 13.4. We have
B =(S)=(9.
Proof. Let B be a ball with radiuR < 6R, wheres € (0,1] is the constant from conditiorE¢). Note that
the following inequality is true in general: for dll> 0 andu-almost allx € B,
(EB(Q) — 1)
1=

where the functiorE® is defined by {2.1) (see for examplel], formula (10.3)]). From this and=) we
have

PP1g(x) >

(EB(X) — 1), . cw@e-t_ ., Cht

CWB) -~ CwWB CW(B)’
thus showing that1(3.2) holds withe = C™2 € (0,1) andc = C1 € (0,1). Moreover, using a standard
covering arguments (see, for example, the second part in the proof of Laidfjaand @.5), one can

extend (3.2 to all balls of radius< R. Hence, we have proved the implicatidf) & (S,).
Finally, the implication §,) = () is trivial. m|

einf PE1g(x) > einf
iB iB

The following result is an analogue &%, Lemma 2.8, p. 451], which in turn was motivated by the argu-
mentin [L, Lemma 5.4]. However, the present proof has required some modifications due to the dependence
of W(x,r) on space variablg.

Lemma 13.5. If every metric ball of radius smalléhan R has finite measure then
(S = (GU).

Proof. We will prove that there exists a number> 1 such that, for any pair of ballBy := B(xo, R),
B := B(Xo, R+ r) with xg € M and 0O< R< R+ r < R, there exists a functios € x-cutaf(By, B) such that,
forallue ¥’/ nL*,

2
2 K 2
S(ue, @) < Mo, WK 1) fB U pdu, (13.3)

which will settle GU) sinceBy c B. Fix 2 > 0 to be determined later, and consider the function

GB1g:= f e 'PE1gdt.
0
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Note thatGP1g € #(B) by [17, Theorem 4.4.1]. For any @ f € L2(B), we have

(GB1g, f) = f et (PB1g, f)dt
0

< f et || fllx
0

= 7 Hfll,
which implies that
GP1lg <17, u-ae. omB.
Let us establish a lower bound 6f1g in Bo. Fix a pointx € By and consider a baB := B(x,r) c B. By
condition ), we have, for any & f € L?(1B),

(GB1g, f) = f e (PP1s, f)dt
0

SW(X,r) —
> f e (PP1g, 1)
0
SW(X,r)
> f e tdt- g|f||1
0

= 71— e D) ) flly
> A_l (l _ e—/léinfxego W(X,I’)) 8” f ||1,

where the constants 6 are those fromg). Moreover, sinceBy can be covered by a family of countable
balls Iike%B andf is arbitrary, we obtain that

GB1g >t (1 — g Winfiegy W(X’r)) e p-a.e. onBy.
Setting = (infyeg, W(x, 1))~ andk := (1 - e%) 171, we see that
B < infyeg, W(X, 1), u-a.e. onB,
> k" infyeg, W(X, 1), p-a.e. onBo.

Define the function
. KGE’].B

4= infyes, W(X,T)

and observe that it satisfigss 7 (B), 0 < ¢ < «, ¢lg, > 1 andg|g: = 0. Thatis$ € k-cutdi(Bo, B).
Let us prove thap satisfied 13.3. By Propositionl5.1(iii ), we haveu?s € 7 (B) for anyu e 7' n L*.
Using the notation
Ea(w, V) 1= E(W, V) + A(w, V)

for w,v e F and applying the identity

E1(w, GBv) = (w,v)
for w e 7(B) andv € L?(B) (see L7, Theorem 4.4.1]), we obtain that

E(U2p, ¢) < EA(UP0, ¢)

K
~infyegy W(X, 1)

K

_ 2
= o Woxn) U4 18)

K 2
=—— | ueod
inf xeg, W(X, r)L ¢ Cu

e
T infeg, W) Jg
which finishes the proof. m]

Ea(UP¢, GB1g)
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14. AFULL CIRCLE OF EQUIVALENCES

Finally, we can prove Theore@10that, in fact, is contained in the next Theordsh 1that combines
together all the results of this paper.

Theorem 14.1. Let (&, F) be a regular Dirichlet form without killing part. Assume th@tD), (FK) and
(TJ) are satisfied. Then we have the following equivalences:
(Geap < (ABB) + (Cap.)
& (ABBy/g) + (Cap.)
< (EP) + (Cap)
& mean value inequality?(19 + (Cap.)
& (LG) + (Cap)
< (B)
e (S)e (9
< (GU).
Proof. To prove the implications in the direction o£”, we use the following implications:
(Gecap + (TJ) = (ABB) (Lemma6.2)
(Gecap = (Cap.) (cf. (2.12)
(ABB) + (TJ) = (ABBy;8) (Lemma7.l)
(ABB1/g) = (EP) (Lemma8.2)
(EP) + (VD) + (FK) + (TJ) = mean value inequality?2(19 (Theoreml0.1)
mean value inequality2(19 = (LG) (Corollary10.3and Lemmaéll.2
(LG) + (Cap.) + (VD) + (FK) = (E) (Corollary12.5
(BE) = (S:) = (9 (Propositionl3.4)
(S5 + (VD) = (GU) (Lemmal3.5.
Finally, the reverse implication
(Gecap < (GU)
is trivial. Combining all the above implications, we complete the circle and the proof. o
Corollary 14.2. Let(&, ) be a regular Dirichlet form without killing part. Assume th&D), (Gcap, (FK)

and (TJ) are satisfied. Then, the cyfdunction in the conditiong§ABB), (ABB;), (EP) can be universal,
that is, the cutg function can be independent of the function u in the above conditions.

Proof. Under the conditionsD), (FK) and (TJ), we have Gcap < (GU) by Theorenil4.1 Note that the
cutdf function¢ in (GU) is universal. UsingGU) instead of Gcap in the proofs of ABB), (ABB,), and
(EP), we obtain universap also in these conditions. o

15. APPENDIX
In this appendix, we collect some facts that have used in this paper.

Proposition 15.1. Let (&, ¥) be a regular Dirichlet form in B. Then the following statements are true.
(i) fue ¥ and F: R +— R is a Lipschitz function, then(g) € F”.
(i) fue ¥’ NnL*andve £ NL* thenuve ¥ N L*
(iii) LetQ be an open subset of M. IfaF”’ N L™ and ve F(Q) N L, then uve 7 (Q).

Proof. We repeat the arguments d@7, PropositionA.2 in Appendix] with minor modifications. Since
ue ¥’,we haveu=w+ae ¥’, wherew € ¥ anda € R.
(i) Denote byL the Lipschitz constant df and consider the function
Fit)-F
- FU_F@
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Since f(w) is a normal contraction of, we obtain by L7, formula €.4)”, p. 5] thatf(w) € #. It follows
that
F(uy=Lf(u)+F(a) eF’.
(ii) Clearly, we havev € ¥ n L* which implies by L7, Theorem 1.4.2, p. 28] thatw € ¥ N L*.
Consequently,
uv=vw+ave ¥ NL".

(iii ) Letvandw be quasi-continuous modificationswaindw, respectively. Thexw is a quasi-continuous
modification ofvw. Sincev € ¥ (), we obtain
VW=0 g.e.inQ°.
It follows thatvw € F(2) and
uv=vw+ave ¥ (Q).
i

Recall the notion of a regula-nest(cf. [17, Section2.1, p. 66-69]). For an open &ktc M, define
1-capacity oflU by

Cap(U) := inf {&(u) + |lull} : u € ¥ andu > 1 y-almost everywhere od} (15.1)

(noting that Cap(U) = wifthe setfu € ¥ : u> 1u-a.e. onJ} is empty). Anincreasing sequence of closed
subsetgFy},”, of M is called ar&-nestof M if

l!im Cap(M\ Fy) =0.
An &-nest{Fy} is said to beegular with respect tqu if for eachk,
u(U(X) N Fy) > 0 for anyx € Fx and any open neighborhoda{x) of x.
For an&-nest{Fy},” ,, let
C({Fk}) := {uis a function oM : ulg, is continuous for eacky .

Definition 15.2. A functionu : M — R U {oo} is said to beguasi-continuou# and only if u € C({F}) for
some&-nest{Fy} ;.
Proposition 15.3. Let {Fy} be au-regular &-nest and ue C({Fx}). Then for any opensetd M

supu = esupu

UnF u
where F:= | F.

k=1
Proof. Note thatu(F°) = 0 since Cap(F°®) = 0 where the 1-capacity Caps defined in {5.1). Hence,
Mp := esupu = esupu < Supu.

u UnF UnF
Let us prove that syp,r u < Mo. Indeed, by definition oMy, there is a measurable g&tc U N F with
u(E) = 0 such that

Mo =esupu= sup u
UnF (UNF)\E

It suffices to show that
u(x) < Mg foranyxeE,
since if so, then

supu=( sup_v) v (supu) < Mo

To do this, suppose that there were a pairt E ¢ U N F such thatu(x) > Mg. Then there would exist an
integerk > 1 such that
xeUnFyg

Sinceul|r, is continuous, one can find an open neighborhidgx) of x such that
u(y) > Mo for everyy e U(X) N Fy.
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Without loss of generality, we assume thiix) c U. Since{Fy} is u-regular, we have

p(U(x) N Fi) >0,
which implies, together with the fact that(x) N Fx c U N F, that

esupu > Mg = esupu,
UnF UnF

leading to a contradiction. The proof is complete. m|
The following iteration is elementary.
Proposition 15.4. Let{a},” , be a sequence of non-negative numbers such that
a < DA*atY fork=1,2,--- (15.2)
for some constants,D > 0andA > 1. Then for any k= 0,

1 14y )(1+V)k

a <D’ (DMT’fao (15.3)
Proof. Settingq := 1 + v, we obtain by iterating1(5.2)
a < DAa | < (D) (DA %ad ,) < -+
< (Dl+q+---+qk*1)(/1k+(k—1)q+---+qk*1)agk
ko dlgerbgrk
=DaoT ] (@17 ag
K k+1
< D%A&_nfag
where we have used the elementary fact that
k+1 _ k+1 k k+1
Kt (ke 1)q+ - +qet= T (KE 2)q+ < d
(q-1) (q-1)
Therefore,
_ k
a < qull(qull,lﬁao)q R
thus proving 15.3. The proof is complete. m|

The following was proved in34, Lemma 2.12].

Proposition 15.5. Let (&, ) be a Dirichlet form in 2. If

2
fr > f and  sups(fy) < oo,
n
then fe . Besides, there exists a subsequence, still denotéflh pysuch that £ & f weakly, that is,
E(fn, ) = E(f,¢) asn— oo

for anyy € ¥. Moreover, there exists a subsequefifg} such that its Cesaro meeﬁnzﬂzl fn, converges
to f in &;-norm. Finally, we have

&(f, 1) < liminf &(fo, fo).



44 GRIGOR'YAN, E. HU, AND J. HU

REFERENCES

[1] S. Andres and M. T. Barlow. Energy inequalities for diifoinctions and some applicationk.Reine Angew. Math699:183—
215, 2015.
[2] M. T. Barlow. Diffusions on fractals. Ihectures on probability theory and statistics (Saint-Flour, 199&)Jume 1690 of
Lecture Notes in Mathpages 1-121. Springer, Berlin, 1998.
[3] M. T. Barlow and R. F. Bass. Brownian motion and harmonic analysis on S&kipiarpetsCanad. J. Math.51(4):673-744,
1999.
[4] M. T. Barlow and R. F. Bass. Stability of parabolic Harnack inequalifileans. Amer. Math. Soc356(4):1501-1533, 2004.
[5] M. T. Barlow, R. F. Bass, T. Kumagai, and A. Teplyaev. Uniqueness of Brownian motion onf&ikirparpetsJ. Eur. Math.
Soc. (JEMS)12(3):655-701, 2010.
[6] M. T. Barlow, A. Grigor'yan, and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit fiteme
Angew. Math.626:135-157, 2009.
[7] M. T. Barlow, A. Grigor'yan, and T. Kumagai. On the equivalence of parabolic Harnack inequalities and heat kernel estimates.
J. Math. Soc. Japar64(4):1091-1146, 2012.
[8] M. T. Barlow and M. Murugan. Stability of elliptic Harnack inequalignn. of Math. (2)187(3):777-823, 2018.
[9] M. T. Barlow and E. A. Perkins. Brownian motion on the Siéigki gasketProbab. Theory Related Fieldg9(4):543—623,
1988.
[10] A. Bendikov, A. Grigor'yan, E. Hu, and J. Hu. Heat kernels and non-local Dirichlet forms on ultrametric spacesSc.
Norm. Super. Pisa Cl. Sci. (532(1):399-461, 2021.
[11] A. Bendikov, A. Grigor'yan, C. Pittet, and W. Woess. Isotropic Markov semigroups on ultra-metric sparesan Math.
Surveys69(4):589-680, 2014.
[12] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like procesdesetsmStochastic Process. Appl08(1):27-62,
2003.
[13] Z.-Q. Chen, T. Kumagai, and J. Wang. Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet
forms.Adv. Math, 374:107269, 71, 2020.
[14] Z.-Q. Chen, T. Kumagai, and J. Wang. Stability of parabolic Harnack inequalities for symmetric non-local Dirichletorms.
Eur. Math. Soc. (JEMS$P2(11):3747-3803, 2020.
[15] Z.-Q. Chen, T. Kumagai, and J. Wang. Stability of heat kernel estimates for symmetric non-local DirichletMi@msAmer.
Math. Soc.271(1330), 2021.
[16] M. Fukushima. Dirichlet forms, dliusion processes and spectral dimensions for nested fractdldeds and methods in
mathematical analysis, stochastics, and applications (Oslo, 19p88)es 151-161. Cambridge Univ. Press, Cambridge, 1992.
[17] M. Fukushima, Y. Oshima, and M. Takedairichlet forms and symmetric Markov processeslume 19 ofDe Gruyter
Studies in Mathematic¥Valter de Gruyter & Co., Berlin, 2011.
[18] S. Goldstein. Random walks andfdision on fractals. In H. Kesten, editétercolation theory and ergodic theory of infinite
particle systemsrsolume IMA Math. Appl. 8, pages 121-129. Springer, New York, 1987.
[19] A. Grigor'yan. The heat equation on non-compact Riemannian manifidldem. Sbornik182:55-87, 1991.
[20] A. Grigor'yan. Isoperimetric inequalities and capacities on Riemannian manifol@ibdiMaz’ya anniversary collection, Vol.
1 (Rostock, 1998)olume 109 ofOper. Theory Adv. Applpages 139-153. Birltuser, Basel, 1999.
[21] A. Grigor'yan, E. Hu, and J. Hu. Lower estimates of heat kernels for non-local Dirichlet forms on metric measureJ paces.
Funct. Anal, 272(8):3311-3346, 2017.
[22] A. Grigor'yan, E. Hu, and J. Hu. Two-sided estimates of heat kernels of jump type Dirichlet fadwsMath, 330:433-515,
2018.
[23] A. Grigor'yan, E. Hu, and J. Hu. The pointwise existence and properties of heat k&dvelnces in Analysis and Geometry
3:27-70, 2021.
[24] A. Grigor'yan, E. Hu, and J. Hu. fbdiagonal lower estimates andlder regularity of the heat kernd?reprint, 2022.
[25] A. Grigor'yan and J. Hu. Upper bounds of heat kernels on doubling spisioes. Math. J.14(3):505-563, 2014.
[26] A. Grigor'yan, J. Hu, and K.-S. Lau. Heat kernels on metric measure spaces and an application to semilinear elliptic equations.
Trans. Amer. Math. Soc355(5):2065-2095, 2003.
[27] A. Grigor'yan, J. Hu, and K.-S. Lau. Estimates of heat kernels for non-local regular Dirichlet forams. Amer. Math. Sac.
366(12):6397-6441, 2014.
[28] A. Grigor'yan, J. Hu, and K.-S. Lau. Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric
measure spaced. Math. Soc. Japar67(4):1485-1549, 2015.
[29] A. Grigor'yan and A. Telcs. Two-sided estimates of heat kernels on metric measure ghateBrobah. 40(3):1212-1284,
2012.
[30] J. Hu and X. Li. The Davies method revisited for heat kernel upper bounds of regular Dirichlet forms on metric measure
spacesForum Math, 30(5):1129-1155, 2018.
[31] J. Kigami.Analysis on fractalsvolume 143 ofCambridge Tracts in Mathematic€ambridge University Press, Cambridge,
2001.
[32] S. Kusuoka. A dtusion process on a fractal. Rrobabilistic methods in mathematical physics (Katdymto, 1985) pages
251-274. Academic Press, Boston, MA, 1987.



MEAN VALUE INEQUALITY 45

[33] S. Kusuoka and X. Y. Zhou. Dirichlet forms on fractals: Poigceonstant and resistand@robab. Theory Related Fields
93(2):169-196, 1992.

[34] z. M. Ma and M. Rickner.Introduction to the theory of (honsymmetric) Dirichlet forrasiversitext. Springer-Verlag, Berlin,
1992.

[35] V. G. Maz'ya. p-conductivity and theorems on imbedding certain functional spaces iGtsgace Dokl. Akad. Nauk SSSR
140:299-302, 1961.

[36] V. G. Maz'ya. On the theory of the-dimensional Sclidinger operatorizv. Akad. Nauk SSSR, Ser. M&83:1145-1172,
1964.

[37] V. G. Maz'ya. On certain intergal inequalities for functions of many variabReblemy Matematicheskogo Analiza,
Leningrad. Univer.3:33-68, 1972.

[38] V. G. Maz'ya. Sobolev spacesSpringer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. Translated from the
Russian by T. O. Shaposhnikova.

[39] V. G. Maz'ya. Classes of domains, measures and capacities in the theoffecdiliable functions. 1Analysis, Il volume 26
of Encyclopaedia Math. Scipages 141-211. Springer, Berlin, 1991.

[40] U. Mosco. Composite media and asymptotic Dirichlet forthgzunct. Anal. 123(2):368—421, 1994.

[41] J. Moser. On Harnack’s theorem for elliptidigirential equations<Comm. Pure Appl. Math14:577-591, 1961.

FAKULTAT FUR M ATHEMATIK, UNIVERSITAT BIELEFELD, BIELEFELD, GERMANY.
E-mail addressgrigor@math.uni-bielefeld.de

CENTER FOR APPLIED M ATHEMATICS, TIANJIN UNIVERSITY, TIANJIN, CHINA.
E-mail addresseryan.hu@tju.edu.cn

DEPARTMENT OF M ATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIING, CHINA.
E-mail addresshujiaxin@tsinghua.edu.cn



	1. Introduction
	2. Main results
	3. Examples of ([eq:FK]FK)
	4. Examples of ([eq:Gcap]Gcap) and ([def:ABB]ABB)
	5. Energy measure
	6. Relations between ([eq:Gcap]Gcap) and ( [def:ABB]ABB)
	7. Self-improvement of ([def:ABB]ABB)
	8. Energy of product
	9. Subharmonic functions
	10. Mean value inequality
	11. Lemma of Growth
	12. Mean exit time
	13. Survival estimate and ([def:GU]GU)
	14. A full circle of equivalences
	15. Appendix
	References

