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Abstract. We prove a mean value inequality for subharmonic functions of a regular Dirichlet form in a dou-
bling metric measure space, assuming that the Dirichlet form satisfies the Faber-Krahn inequality, the tail
estimate of jump measure outside balls, as well as the generalized capacity condition. We also prove the equiv-
alence between different forms of the generalized capacity condition.
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1. Introduction

The classical mean value theorem for harmonic functions says the following: ifu is a harmonic function
in an open domainΩ ⊂ Rn then, for any ballB(x0, r) b Ω,

u(x0) = −
∫

B(x0,r)
u dx.

(Here and in the sequel, the notationA b U meansthatA is compactandA ⊂ U). This theorem implies all
other essential properties of harmonic functions including convergence theorems and the Harnack inequality.
J. Moser proved in [41] the Harnack inequality for solutions of the equationLu = 0 where

Lu =

n∑

i, j=1

∂xi

(
ai j (x)∂xj u

)
(1.1)
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is a uniformly elliptic operator with measurable coefficients. One of the main ingredients of Moser’s proof
was themean value inequality:

esup
B(x0,

1
2 r)

|u| ≤ C

(

−
∫

B(x0,r)
u2dx

)1/2

that he proved by means of an ingenious iteration argument that is nowadays referred to as Moser’s iteration.
The mean value and Harnack inequalities play also an important role in Analysis on metric measure

spaces where the operatorL is replaced by the generator of a Dirichlet form. For example, for the operator
(1.1) the corresponding Dirichlet form is

E( f , f ) =
∫

Rn

n∑

i, j=1

ai j∂xi u∂xj u dx. (1.2)

This Dirichlet form islocal as it is determined by differential operators. However, of high interest are also
non-local Dirichlet forms whose generators are integral operators. For example, the following Dirichlet
form of jump type

E( f , f ) = C(n, β)
"

Rn×Rn

( f (x) − f (y))2

|x− y|n+β
dxdy

has the generatorΔβ/2 provided 0< β < 2 whereΔ is the positive definite Laplace operator andC(n, β) is a
positive constant depending only onn andβ.

Our purpose is to develop Analysis on a general metric measure space (M,d, μ) with a Dirichlet form
(E,F ) that is defined axiomatically in the spirit of [16] and can contain a local partE(L) as well as a jump
part

E(J)( f , f ) =
"

M×M
( f (x) − f (y))2J(x, y)dμ(x)dμ(y), (1.3)

whereJ is a jump kernel. A major motivation is to include fractal spaces where the existence of self-similar
local regular Dirichlet forms and associated diffusions was proved in [3], [9], [18], [31], [32], [33], etc.
There has been a number of works devoted to the mean value and Harnack inequalities as well as to heat
kernel bounds. Various results in the case of local Dirichlet forms were obtained in [1], [4], [5], [7], [8],
[25], [26], [28], [29], etc, while the jump type Dirichlet forms were considered in [6], [10], [12], [13], [14],
[15], [21], [22], [23], [27], etc.

All the works in this area have encountered one major difficulty that was not present in similar research
in Rn or on manifolds: a priori absence of suitable cutoff functions. Given a pair of concentric ballsB(x,R)
andB(x,R+ r) in Rn, a bump functionφ of this pair is equal to 1 on the interior ball, vanishes outside the
exterior ball and is linear in radius in the annulus between the balls so that

|∇φ| ≤
1
r
. (1.4)

It follows that, for any measurable functionu,
∫

Rn
u2|∇φ|2 dx≤

1
r2

∫

Rn
u2 dx, (1.5)

and this simple inequality is frequently used (in particular, in Moser’s argument). Perhaps, in Analysis in
Rn nobody would give a significance to (1.5) but when working on general metric measure spaces, one
quickly realizes helplessness without such a functionφ. More precisely, although a bump function can be
still defined as above by using the distance function, but an analogue of (1.4) does not have to be true as
the gradient is determined by the Dirichlet form, and the latter does not have to be related in any way to the
distance function.

For applications one needs an analogue of (1.5), and the existence of such functionφ was obtained in
a tricky way in [1] and [4] assuming that the heat kernel of (E,F ) satisfies a certain sub-Gaussian upper
bounds. This analogue of (1.5) was referred to in [1] and [4] as acutoff Sobolev inequality. Different
versions of this condition were used in [22] and [28] under the namegeneralized capacity estimate.
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In the present paper we consider two versions of the generalized capacity estimate: a weak version shortly
denoted by (Gcap) which claims the existence of a test functionφ specific tou, and a strong version denoted
by (GU) which claims the existence of a universal test functionφ that serves all functionsu (like in Rn).

One of the main results of this paper is the equivalence (Gcap) ⇔ (GU) that we prove under some other
hypotheses about space and energy (Theorem2.10).

Another main result is themean value inequalityfor subharmonic functions in the general setting, as-
suming (Gcap) and some other hypotheses (Theorem2.9). It is worth mentioning that the proof of the
implication (Gcap)⇒ (GU) in Theorem2.10is done by using the mean value inequality of Theorem2.9.

The “other hypotheses” mentioned above include the Faber-Krahn inequality (FK) and a tail estimate of
the jump kernelJ denoted by (TJ). They are explained in details below. Here we only mention that (FK)
refers to the spectral properties of the generator ofE, while (TJ) is an upper bound in terms ofx andr of the
integral ∫

M\Bx,r)
J(x, y)dμ(y),

that is called the tail of the jump kernel. As far as we know, these hypotheses are weakest possible among
all considered in the literature as they do not require pointwise estimates ofJ(x, y).

The results of this paper will be used in subsequent research for obtaining heat kernel estimates under
weakest possible hypotheses about the jump kernel, and we plan to address these problems in forthcoming
papers.

In conclusion of this introduction, let us mention that creation of tools for a direct derivation of (Gcap)
remains one of the most important open problems in this area.

Structure of the paper.In Section2 we give all necessary definitions and state the main results. In Sections3
and4 we give examples of the Faber-Krahn inequality and the generalized capacity condition, respectively.

In Section5, we recall some properties of energy measures. In Sections6 and7 we discuss one more
condition (ABB) that serves as a bridge between (Gcap) and theenergy productproperty that is proved in
Section8.

In Section9 we prove some elementary properties of subharmonic functions. The mean value inequality
for subharmonic functions (Theorem2.9) is proved in Section10as Theorem10.1.

In Section11 we prove a so called Lemma of Growth that is used then in Section12 to obtain estimates
of the mean exit time from balls, which in turn implies asurvival estimatein Section13; the latter yields
then (GU). Finally, Theorem2.10is proved in Section14 as Theorem14.1that contains all the results of
this paper.

In Appendix we prove some auxiliary results.

Notation. Lettersc,C,C′,C1,C2, etc. are used to denote universal positive numbers, whose values
may change at any occurrence but depend only on the constants in the hypotheses. In the double integral!

U×V
F(x, y)d j(x, y), the variablex is taken inU andy in V. Moreover, we may write

!
U×V

F(x, y)d j(x, y)

shortly as
!

U×V
F(x, y)d j. For a measurable functionu on M, the notation supp(u) means the support ofu,

that is, the complement of the maximal open set whereu = 0 a.e..

2. Main results

Metric measure space with energy.Let (M,d) be a locally compact separable metric space and letμ be a
Radon measure onM with full support. The triple (M,d, μ) is referred to as ametric measure space. Let
(E,F ) be a regular symmetric Dirichlet form inL2 := L2(M, μ). In this paper we always assume that the
Dirichlet form (E,F ) has no killing part, which means that

E(u, v) = E(L)(u, v) + E(J)(u, v) (2.1)

whereE(L) is the local part (or diffusion part) andE(J) is the jump partassociated with a unique Radon
measurej defined onM × M \ diag:

E(J)(u, v) =
"

M×M\diag
(u(x) − u(y))(v(x) − v(y))d j(x, y), (2.2)
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For simplicity, we setj = 0 on diag and will drop diag in expressionM×M\diag in (2.2) when no confusion
arises.

Denote by diamM the diameter of the metric space (M,d) and fix throughout the paper a value R ∈
(0,diamM]. NotethatRcan be finite or infinite whenM is unbounded.

In order to state our main results, let us introduce some notations and hypotheses. Denote metric balls in
(M,d) by

B(x, r) := {y ∈ M : d(y, x) < r}

and set
V(x, r) := μ(B(x, r)).

We say that a measureμ satisfies thevolume doublingcondition (VD) (or μ is adoubling measure) if there
exists a constantC ≥ 1 such that, for allx ∈ M and allr > 0,

V(x,2r) ≤ CV(x, r). (2.3)

Condition (VD) implies that 0< V(x, r) < ∞ for all r > 0. We setV(x,0) = 0 for all x ∈ M. If μ is a
doubling measure, then the space (M,d, μ) is called adoubling space.

It is known that (VD) implies (and hence, is equivalent to) the following condition: there exists a positive
numberα such that, for allx, y ∈ M and all 0< r ≤ R< ∞,

V(x,R)
V(y, r)

≤ C

(
d(x, y) + R

r

)α
,

where constantC can be taken the same as in (VD).

Scaling function and generalized capacity.Let us fix another functionW(x, r) also defined for allx ∈ M and
r > 0. We refer toW as ascaling functionas it will be used for describing connection of the energyE to
the metric measure structure and, consequently, the space/time scaling for the Hunt process associated to
(E,F ). For example, ifM = Rn with the Euclidean distance and Lebesgue measure and ifE is the classical
Dirichlet integral

E(u, v) =
∫

Rn
|∇u|2dx

thenW(x, r) = r2. On typical fractal spaces with appropriate local Dirichlet form we have

W(x, r) = rβ (2.4)

whereβ > 2 is thewalk dimension. On the other hand, ifE is the following jump type Dirichlet form inRn

E(u,u) =
"

Rn×Rn

(u(x) − u(y))2

|x− y|n+β
dxdy

thenW has also the form (2.4) although this time 0< β < 2.
In general, let us impose the following restriction on functionW:

(1) for anyx ∈ M, the functionr 7→W(x, r) is strictly increasing,W(x,0) = 0 andW(x,∞) = ∞;
(2) there exist positive numbersC, β such that, for all 0< r ≤ R < ∞ and for all x, y ∈ M with

d(x, y) ≤ R,
W(x,R)
W(y, r)

≤ C
(R

r

)β
. (2.5)

For convenience, for any metric ballB := B(x, r), we write

W(B) := W(x, r).

Note that in some metric spaces a ball as a subset ofM may have different centers and radii, that is, it may
be possible thatB(x1, r1) = B(x2, r2) whereasx1 , x2 or r1 , r2. To avoid ambiguities in the notationW(B)
and other similar notations, we always identify a ball as a pair of center and radius rather than as a subset of
M.

Let us define the notion ofκ-cutoff function whereκ ≥ 1 is a fixed real. LetU ⊂ M be an open set andA
be a Borel subset ofU. A κ-cutoff functionof the pair (A,U) is any functionφ ∈ F such that

• 0 ≤ φ ≤ κ μ-a.e. inM;
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• φ ≥ 1 μ-a.e. inA;
• φ = 0 μ-a.e. inUc.

We denote byκ-cutoff(A,U) the collection of allκ-cutoff functions of the pair (A,U). Any 1-cutoff
function forκ = 1 will be simply referred to as acutoff function. Clearly,φ ∈ F is a cutoff function of (A,U)
if and only if 0≤ φ ≤ 1, φ|A = 1 andφ|Uc = 0. Set also

cutoff(A,U) := 1- cutoff(A,U).

Note that for everyκ ≥ 1,
cutoff(A,U) ⊂ κ- cutoff(A,U),

and that
φ ∈ κ- cutoff(A,U)⇒ 1∧ φ ∈ cutoff(A,U). (2.6)

It is known that, for a regular Dirichlet form (E,F ), the class cutoff(A,U) is not empty for any nonempty
precompact setA b U (recall thatA b U meansthatA is compactandA ⊂ U).

LetF ′ be a linear spaced defined by

F ′ := {u+ a : u ∈ F , a ∈ R},

that is,F ′ is obtained fromF by adding all constants. Since (E,F ) has no killing part, the bilinear formE
can be extended to functions fromF ′ as follows:

E(u+ a, v+ b) = E(u, v)

for all u, v ∈ F anda,b ∈ R.
For anyu ∈ F ′ ∩ L∞ and for anyκ ≥ 1, define thegeneralized capacityof a pair (A,U) as follows:

cap(κ)
u (A,U) := inf

{
E(u2φ, φ) : φ ∈ κ- cutoff(A,U)

}

(the functionu2φ belongs toF by Proposition15.1(ii )). If u ≡ 1 then replacingφ by 1∧ φ, we obtain the
usual capacity

cap(1)
1 (A,U) = cap(A,U) := inf {E(φ, φ) : φ ∈ cutoff(A,U)} . (2.7)

The following definition plays a central role in this paper.

Definition 2.1. We say that (E,F ) satisfies thegeneralized capacity condition(Gcap) is satisfied if there
exist numbersκ ≥ 1, C > 0 such that, for allu ∈ F ′ ∩ L∞ and any pair of concentric ballsB0 := B(x0,R),
B := B(x0,R+ r) with x0 ∈ M and 0< R< R+ r < R,

cap(κ)
u (B0, B) ≤ sup

x∈B

C
W(x, r)

∫

B
u2dμ. (2.8)

In other words, (Gcap) is satisfied if for allB0, B as above and for anyu ∈ F ′ ∩ L∞, there exists some
φ ∈ κ-cutoff(B0, B) (as on Fig.1) such that

E(u2φ, φ) ≤ sup
x∈B

C
W(x, r)

∫

B
u2dμ. (2.9)

Let us emphasize that the functionφ in (2.9) may depend onu, B0, B but the constantsκ, C are independent
of u, B0, B.

Figure 1. A functionφ ∈ κ-cutoff(B0, B)
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If the scaling functionW(x, r) is independent of the space variablex, say,W(x, r) = W(r), then the
inequality (2.9) becomes simpler

E(u2φ, φ) ≤
C

W(r)

∫

B
u2dμ.

Setting in (2.8) u ≡ 1 and using (2.6), we obtain

cap(B0, B) ≤ sup
x∈B

C
W(x, r)

μ(B). (2.10)

In particular, it follows from (2.10) and (2.5) that

cap(12B, B) ≤
C

W(B)
μ(B). (2.11)

Definition 2.2. We say that (E,F ) satisfied the capacity condition (Cap≤) if there exists a constantC > 0
such that (2.11) for all ballsB of radiusR< R.

The above argument shows that
(Gcap)⇒ (Cap≤). (2.12)

Unlike (Gcap), the condition (Cap≤) can be effectively verified in many examples. We conjecture that in
most (or even all) results about heat kernel estimates (Gcap) can be replaced by (Cap≤).

Now let us introduce a stronger condition (GU) that has a full title thegeneralized capacity condition
with universal cutoff function.

Definition 2.3. We say that (E,F ) satisfies the condition (GU) if there exist two numbersκ ≥ 1,C > 0 such
that, for any pair two concentric ballsB0 := B(x0,R), B := B(x0,R+ r) with x0 ∈ M and 0< R< R+ r < R,
there exists someφ ∈ κ-cutoff(B0, B) such that (2.9) is satisfied for allu ∈ F ′ ∩ L∞.

Hence, in contrast to (Gcap), the test functionφ in (2.9) is now independent ofu, that is, universal (but,
of course,φ depends on the balls). Clearly, (GU)⇒ (Gcap).

One of the results of this paper is that, under some mild assumptions, the opposite implication (Gcap)⇒
(GU) is also true (see Theorem2.10below).

Faber-Krahn inequality.For a non-empty open setU ⊂ M, denote byC0(U) the space of all continuous
functions with compact supports inU. LetF (U) be a vector space defined by

F (U) = the closure ofF ∩C0(U) with respect to the norm
√
E1(∙, ∙),

whereEλ(u, v) := E(u, v) + (u, v)L2 for u, v ∈ F andλ > 0. By the theory of Dirichlet form, (E,F (U)) is a
regular Dirichlet form onL2(U, μ) (see, for example, [17, Theorem 4.4.3]).

LetLU be the (positive definite) generator of the Dirichlet form (E,F (U)). Denote byλ1(U) thebottom
of the spectrum ofLU in L2(U, μ). It is known that

λ1(U) = inf
u∈F (U)\{0}

E(u,u)

‖u‖22
. (2.13)

Definition 2.4. We say that (E,F ) satisfies theFaber-Krahn inequality, shortly denoted by (FK), if there
existsσ ∈ (0,1] andC, ν > 0 such that, for any ballB = B(x,R) with R < σR and for any non-empty open
setU ⊂ B,

λ1(U) ≥
C−1

W(B)

(
μ(B)
μ(U)

)ν
. (2.14)

Sometimes we use notation (FKν) for (FK) in order to emphasize the exponentν. Note that the value of
ν can always be reduced without violating of (2.14).

Remark 2.5. It is easy to see that (FK) and (VD) imply the following lower bound of capacity for any ball
B or radiusR< σR

cap(12B, B) ≥ C−1 μ(B)
W(B)

. (2.15)
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Indeed, for anyφ ∈ cutoff(U, B) we have by (2.13) and (2.14) with U = B

E(φ, φ) ≥ λ1(B)‖φ‖22 ≥
C−1

W(B)
μ(1

2B),

whence (2.15) follows. This observation shows that, in some sense, the hypotheses (FK) and (Gcap) are
complementary to each other. Nevertheless, they both are related to upper bounds of the heat kernel (see
Sections3 and4).

Further results about deep relationship between eigenvalues and capacities can be found in [20], [35],
[36], [37], [38], [39].

Tail estimate.We introduce here the condition (TJ) that provides atail estimateof the jump measure in the
exterior of balls.

LetB(M) be the sigma-algebra of Borel sets ofM. Recall that atransition kernel J: M ×B(M) 7→ R+ is
a map satisfying the following two properties:

• for every fixedx in M, the mapE 7→ J(x,E) is a measure onB(M);
• for every fixedE in B(M), the mapx 7→ J(x,E) is a non-negative measurable function onM.

Definition 2.6. We say that condition (TJ) is satisfied if there exists a transition kernelJ(x,E) on M×B(M)
such that

d j(x, y) = J(x,dy)dμ(x) in M × M,

and, for any pointx in M and anyR> 0,

J(x, B(x,R)c) =
∫

B(x,R)c
J(x,dy) ≤

C
W(x,R)

, (2.16)

whereC ∈ [0,∞) is a constant independent ofx,R.

If B(x,R)c is empty, the inequality (2.16) is automatically true. IfW(x,R) = Rβ for anyx in M andR> 0
then the inequality (2.16) becomes

J(x, B(x,R)c) ≤
C

Rβ
for all x in M andR> 0.

The latter condition was introduced and studied in [10] in the setting of ultra-metric spaces.

Andres-Barlow-Bass condition.The local partE(L) of the Dirichlet form (E,F ) determines for anyu ∈ F ′

anenergy measureΓ(L)(u) that, in particular, satisfies the identity

E(L)(u,u) =
∫

M
dΓ(L)(u)

(see Section5 for details). For example, for the Dirichlet form (1.2), we have

dΓ(L)(u)(x) =
n∑

i, j=1

ai j (x)∂xi u∂xj u dx.

The jump partE(J) also gives rise to an energy measure as follows. For any open setΩ ⊂ M and anyu ∈ F ′,
define a measureΓ(J)

Ω
(u) by

dΓ(J)
Ω

(u)(x) =
∫

y∈Ω
(u(x) − u(y))2d j(x, y),

which means that, for any non-negative measurable functionv,
∫

M
vdΓ(J)

Ω
(u) =

∫

x∈M

∫

y∈Ω
v(x)(u(x) − u(y))2d j(x, y).

In particular, we have

E(J)(u,u) =
∫

M
dΓ(J)

M (u).

Define a measureΓΩ(u) by
dΓΩ(u) = dΓ(L)(u) + dΓ(J)

Ω
(u). (2.17)
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Definition 2.7. We say that condition (ABB) is satisfied if there existC1 ≥ 0, C2 > 0 such that, for any
u ∈ F ′ ∩ L∞ and for any three concentric ballsB0 := B(x0,R), B := B(x0,R+ r) andΩ := B(x0,R′) with
0 < R< R+ r < R′ < R, there exists someφ ∈ cutoff(B0, B) such that

∫

Ω

u2dΓΩ(φ) ≤ C1

∫

B
φ2dΓB(u) + sup

x∈Ω

C2

W(x, r)

∫

Ω

u2dμ.

In section6 we will give a refined version of (ABB) tracing the value ofC1. The condition (ABB) is
named after Andres, Barlow and Bass, who first introduced it in [1], [4] for local Dirichlet forms under the
namecut-off Sobolev inequality. For jump type Dirichlet forms it was introduced and used in [10], [13],
[15], [14], [22].

As (Gcap), the condition (ABB) is also meant to be a replacement of (1.5) in Analysis on metric measure
spaces. Although the definition of (ABB) is more complicated than that of (Gcap), condition (ABB) is
easier in applications. In fact, we prove in this paper that, under standing hypotheses (VD), (FK) and (TJ),
the following equivalence holds:

(Gcap)⇔ (ABB) + (Cap≤) (2.18)

(see Theorem2.10below).

Subharmonic functions.

Definition 2.8. LetΩ be an open subset ofM. We say that a functionu ∈ F is subharmonicin Ω if, for any
0 ≤ ϕ ∈ F (Ω),

E(u, ϕ) ≤ 0.

For any ballB = B(x, r) and a positive numberλ, denoteλB := B(x, λr). Here is out first main result: the
mean value inequalityfor subharmonic functions.

Theorem 2.9. Let (E,F ) be a regular Dirichlet form in L2 without killing part and with jump measure j.
Assume that conditions(VD), (Gcap), (FK) and(TJ) hold. Let a function u∈ F ∩ L∞ be non-negative and
subharmonic in a ball B:= B(x0,R) with 0 < R< σR. Then, for anyε > 0,

esup
1
2 B

u ≤ C(1+ ε−
1
2ν )

(
1
μ(B)

∫

B
u2dμ

)1/2

+ εK‖u+‖L∞(( 1
2 B)c), (2.19)

where the constant C depends only on the constants in the hypotheses (but does not depend onε), the
constantsν andσ come from(FK), and

K =

{
1 if the measure j. 0,

0 if the measure j≡ 0.

In the case when the Dirichlet form (E,F ) is strongly local (that is, whenK = 0) the mean value inequality
((2.19) with ε = 1) for subharmonic functions was proved in [28, Theorem 6.3] although in the case when
the scaling functionW is independent ofx andR = ∞. The mean value inequality was one of the main
ingredients for the proof of the Harnack inequality for harmonic functions in [28, Theorem 1.1].

Our contribution in Theorem2.9 is therefore threefold:

(1) the mean value inequality is proved for the first time for general Dirichlet forms containing jump
part;

(2) the scaling functionW(x, r) is of general form allowing dependence onx;
(3) the result is localized in space: if (FK) holds for balls with restricted radii then the mean value

inequality is also satisfied for balls with restricted radii.

Moreover, we prove here the following theorem clarifying the relationships between aforementioned
conditions.

Theorem 2.10. Let (E,F ) be a regular Dirichlet form without killing part. Assume that(VD), (FK) and
(TJ) hold true. Then we have the following equivalences:

(Gcap)⇔ (ABB) + (Cap≤)

⇔ mean value inequality (2.19) + (Cap≤)
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⇔ (GU).

Of course, Theorem2.9is contained in Theorem2.10, but it is interesting to observe that the proof of the
implication

(Gcap)⇒ (GU)

goes through the mean value inequality! In Section14 we state and prove even more general Theorem14.1
containing Theorem2.10.

3. Examples of (FK)

Example 3.1. Let (M,d, μ) be a complete Riemannian manifold of dimensionn andE be the Dirichlet
integral

E(u,u) =
∫

M
|∇u|2dμ,

whereu ∈ F = W1,2(M). The generator of (E,F ) is the Laplace-Beltrami operatorΔ, and, for a precompact
open setU, λ1(U) is the bottom eigenvalue ofΔ in U with the Dirichlet boundary condition.

If M = Rn then, by a theorem of Faber and Krahn,

λ1(U) ≥ λ1(U∗)

whereU∗ is a ball of the same volume asU. Let ρ be the radius ofU∗. Since

λ1(U∗) =
c′

ρ2

and
μ(U) = μ(U∗) = c′′ρn,

wherec′, c′′ are positive constants depending onn, it follows that

λ1(U) ≥ cμ(U)−2/n.

If U ⊂ B = B(x, r) then it follows that

λ1(U) ≥
c

r2

(
μ(B)
μ(U)

)2/n

, (3.1)

that is, (FK) is satisfied with the scaling functionW(x, r) = r2 andν = 2/n.
It is known that ifM has non-negative Ricci curvature then it also satisfies (3.1), that is, (FK) holds with

W(x, r) = r2, too (see [19]).

Example 3.2. Let (M,d, μ) beα-regular, that is, for allx ∈ M andr > 0,

V(x, r) ' rα

for someα > 0. (Here and in the sequel the notation' means that the ratio of the functions on its both
sides is bounded from above and below by two positive constants respectively). If the jump kernel of (E,F )
satisfies the lower bound

J(x, y) ≥
c

d(x, y)α+β

with somec, β > 0, then (FK) holds with the scaling functionW(x, r) = rβ (see [22, Lemma 3.5]).

Example 3.3. Let (M,d, μ) satisfy not only (VD) but also thereverse volume doubling: for all R ≥ r > 0
andx ∈ M,

V(x,R)
V(x, r)

≥ C−1
(R

r

)α′
,

for some constantsC, α′ > 0. Assume also that the scaling functionW satisfies a similar condition: for all
R≥ r > 0 andx, y ∈ M with d(x, y) ≤ R,

W(x,R)
W(y, r)

≥ C−1
(R

r

)β′
,
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for some constantsC, β′. Let the jump kernel of (E,F ) satisfy the following lower bound: for all distinct
x, y ∈ M,

J(x, y) ≥
c

V(x, y)W(x, y)
,

whereV(x, y) = V(x, r) with r = d(x, y) and similarlyW(x, y) = W(x, r). Then it was proved in [24] that
(E,F ) satisfies (FK) with the scaling functionW(x, r).

LetL be the (positive definite) generator of (E,F ). Denote by{Pt} the associated semigroup inL2, that
is, Pt = e−tL, and bypt(x, y) the integral kernel of the operatorPt should it exists. The functionpt(x, y) is
called theheat kernelof (E,F ).

Example 3.4. Let now (M,d, μ) satisfy (VD). Assume that the heat kernelpt(x, y) of (E,F ) satisfies for all
t > 0 and for almost allx, y ∈ M the following inequality:

pt(x, y) ≤
C

√
V(x, t1/β)V(y, t1/β)

, (3.2)

for someβ > 0. For example, ifM is α-regular then (3.2) becomes

pt(x, y) ≤
C

tα/β
,

and this estimate is known to be satisfied for self-similar local Dirichlet forms on many fractal spaces. It
was proved in [25, Proof of Theorem 2.1] that (3.2) implies (FK) with the scaling functionW(x, r) = rβ.

4. Examples of (Gcap) and (ABB)

Here we give some examples of spaces and Dirichlet forms satisfying (Gcap) and (ABB).

Example 4.1. Let (M,d) be anultra-metricspace, that is,d satisfies the ultra-metric triangle inequality

d(x, y) ≤ max(d(x, z),d(y, z)).

For example, for a primep, a fieldQp of p-adic numbers withp-adic distance is an ultra-metric space. An
ultra-metric space has remarkable metric properties. For example, for any pointx inside a ballB(x0, ρ) is
also its center, that is,B(x, ρ) = B(x0, ρ) (see [11] for details).

Let (E,F ) be a regular Dirichlet form of jump type (in fact, an ultra-metric space cannot carry a local
Dirichlet form). We claim that in this case

(TJ)⇒ (Gcap).

Indeed, given two concentricB0 = B(x0,R) andB = B(x0,R+ r), it suffices to find a functionφ ∈ F such
that

0 ≤ φ ≤ 1, φ|B0 = 1, φ|Bc = 0

and

E(u2φ, φ) ≤ sup
x∈B

C
W(x, r)

∫

B
u2dμ (4.1)

for anyu ∈ F ′ ∩ L∞. A key observation is that, on ultra-metric space, the indicator functions of balls belong
toF so that we take

φ = 1B.

(see [10] for details). With thisφ we have

E(u2φ, φ) =
"

M×M

(
u2ϕ(x) − u2ϕ(y)

)
(ϕ(x) − ϕ(y)) J(x,dy)dμ(x)

= 2
∫

x∈B

∫

y∈Bc

(
u2ϕ(x) − u2ϕ(y)

)
(ϕ(x) − ϕ(y)) J(x,dy)dμ(x)

= 2
∫

x∈B

∫

y∈B(x0,R+r)c
u2(x)J(x,dy)dμ(x)

= 2
∫

B
u2(x)

(∫

B(x,R+r)c
J(x,dy)

)

dμ(x)
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≤ C
∫

B

u2(x)
W(x,R+ r)

dμ(x)

≤ C
∫

B

u2(x)
W(x, r)

dμ(x),

which implies (4.1).
Since (TJ) is assumed as hypothesis in most of our results, in the case of ultra-metric space, in these

results, the condition (Gcap) can be dropped from the list of hypotheses.

Example 4.2. Let a metric measure space satisfy the following hypothesis: for all ballsB(x, r),

μ(B(x, r)) ≤ Crα

for someC, α > 0. Let (E,F ) be of pure jump type and be given by (1.3) with a jump kernelJ(x, y). Assume
also that, for someβ > 0, the jump kernel satisfies the upper bound

J(x, y) ≤
C

d(x, y)α+β
. (4.2)

Then it is easy to verify that (TJ) is satisfied with the scale functionW(x, r) = rβ.
We claim that ifβ < 2 then (ABB) and (Gcap) also hold with the same scaling function. Indeed, letφ be

a bump function of the pair of ballsB0 = B(x0,R) andB = B(x0,R+ r) (see Fig.2) so that

|φ(x) − φ(y)| ≤
d(x, y)

r
. (4.3)

Figure 2. A bump functionφ ∈ cutoff(B0, B)

Using (4.3) andβ < 2, a computation in [22, Corollary 2.12] yields that, for anyx ∈ M,
∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) ≤

C

rβ
, (4.4)

which implies that, for any open setΩ ⊃ B,
∫

Ω

u2dΓΩ(φ) =
∫

Ω

∫

Ω

u2(x)(φ(x) − φ(y))2J(x, y)dμ(x)dμ(y)

≤
C

rβ

∫

Ω

u2(x)dμ(x),

whence (ABB) follows with W(x, r) = rβ andC1 = 0.
Let us verify (Cap≤). We have clearly

E(φ, φ) =
∫

M

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y)

=

∫

B

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) +

∫

Bc

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y)

and
∫

Bc

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) =

∫

Bc

∫

B
(φ(x) − φ(y))2J(x, y)dμ(y)

≤
∫

M

∫

B
(φ(x) − φ(y))2J(x, y)dμ(y).
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Hence, by the symmetry and (4.4),

E(φ, φ) ≤ 2
∫

B

∫

M
(φ(x) − φ(y))2J(x, y)dμ(y) ≤

C

rβ
μ(B),

which proves (Cap≤) with W(x, r) = rβ. By (2.18) we conclude that (Gcap) also holds with the same scaling
function.

Note that on most fractal spaces there exist regular jump type Dirichlet forms with jump kernels

J(x, y) '
1

d(x, y)α+β

whereβ ≥ 2. For this jump kernel there is no obvious cutoff functionφ to ensure even (Cap≤). Besides, in
our main resultsJ(x, y) does not have to satisfy the upper bound (4.2), and the Dirichlet form may have also
a local part.

Therefore, for the time being, (Gcap) and/or (ABB) should be accepted as hypotheses, leaving to the
future the development of methods for proving them.

Example 4.3. Let (M,d, μ) beα-regular and (E,F ) be a jump type conservative Dirichlet form. Assume
that its heat kernel satisfies the followingstable-likeupper estimate for someβ > 0:

pt(x, y) ≤
C

tα/β

(

1+
d(x, y)

t1/β

)−(α+β)

.

Then (Gcap) is satisfied with the scaling functionW(x, r) = rβ by a result of [27, Theorem 2.3]. A more
general result of this type in the setting of doubling spaces was proved in [13, Proposition 3.5].

Example 4.4. Let (M,d, μ) satisfy (VD). Assume that (E,F ) is strongly local and conservative. Assume
also that the heat kernelpt(x, y) of (E,F ) exists and satisfies for allt > 0 and for almost allx, y ∈ M the
following sub-Gaussian upper bounds:

pt(x, y) ≤
C

V(x, t1/β)
exp


−c

(
dβ(x, y)

t

) 1
β−1


 , (4.5)

with someβ > 1. Then (Gcap) is satisfied with the scaling functionW(x, r) = rβ by results of [1, Theorem
1.12] and [28, Theorem 1.3]. Note that (4.5) holds on many fractal spaces withβ > 2 (cf. [2]).

5. Energy measure

In this section we collect some elementary properties on energy measures, which will be used later on.
Everywhere here and below, (E,F ) is any regular Dirichlet form inL2 without killing part, that is, of the
form (2.1). Set

Floc := {u : ∀ U b M, there existsv ∈ F so thatv = u μ-a.e. onU} .

Since (E,F ) is regular, the constant function 1 belongs toFloc, so that

F ′ ⊂ Floc.

It is known that, for anyu ∈ Floc ∩ L∞, there exists a unique Radon measureΓ(L)(u) := Γ(L)(u,u) such that,
for any test functionf ∈ F ∩C0(M),

∫

M
f dΓ(L)(u) = E(L)(u f,u) −

1
2
E(L)(u2, f ).

Moreover, for anyu ∈ Floc ∩ L∞, we have

E(L)(u,u) =
∫

M
dΓ(L)(u,u)

(see, for example, [17, Eq. (3.2.20), Lemma 3.2.3, and the first two paragraphs on p.130]).
The energy measures satisfy the following properties, for allu, v,w ∈ Floc ∩ L∞:
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• theproduct rule([17, Lemma 3.2.5, and the second paragraph on p.130]):

dΓ(L)(uv,w) = udΓ(L)(v,w) + vdΓ(L)(u,w); (5.1)

• thechain rule([17, Theorem 3.2.2, and the second paragraph on p.130]):

dΓ(L)(Φ(u), v) = Φ′(u)dΓ(L)(v,w) (5.2)

for anyΦ ∈ C1(R) (one does not need to assumeΦ(0) = 0);
• thestrong locality: if u1 ∈ Floc is constant in an open subsetΩ of M andu2 ∈ Floc is arbitrary, then

1ΩdΓ(L)(u1,u2) = 0 onM (5.3)

(cf. [17, Corollary 3.2.1 on p.128], or [40, Eq. (3.8) on p.387]), and

dΓ(L)(u+, v) = 1{u>0}dΓ
(L)(u, v) on M, (5.4)

whereu+ = u∨ 0 (cf. [40, formula (3.14) on p.390]);
• theCauchy-Schwarz inequality: for any f ∈ L2(M, Γ(L)(u)), g ∈ L2(M, Γ(L)(v))

∫
| f g|dΓ(L)(u, v) ≤

(∫
f 2dΓ(L)(u)

)1/2 (∫
g2dΓ(L)(v)

)1/2

(5.5)

(cf. [40, on p. 390]).

Moreover, for anyu ∈ Floc ∩ L∞, we have

dΓ(L)(|u|) = dΓ(L)(u), (5.6)

sincedΓ(L)(u+,u−) = 0 by using (5.4), (5.3), which gives that

dΓ(L)(|u|) = dΓ(L)(u+ + u−,u+ + u−)

= dΓ(L)(u+) + 2dΓ(L)(u+,u−) + dΓ(L)(u−)

= dΓ(L)(u+) + dΓ(L)(u−)

= dΓ(L)(u+ − u−,u+ − u−)

= dΓ(L)(u).

Recall that for an open subsetΩ of M andu ∈ F ′, the measureΓΩ(u) is defined in (2.17), that is,

dΓΩ(u)(x) := dΓ(L)(u)(x) +
∫

M
1Ω(y)(u(x) − u(y))2d j(x, y).

Here the measurej vanishes on{x = y} as a convention stated at the beginning of Section2. Clearly, for any
three open setsA, B,Ω with A ⊂ B, for anyu ∈ F ′ and for any measurable functionf ≥ 0, the following
inequalities hold:

∫

Ω

f dΓA(u) ≤
∫

Ω

f dΓB(u), (5.7)

and ∫

Ω

f dΓB(u∧ 1) ≤
∫

Ω

f dΓB(u). (5.8)

Proposition 5.1. For any open setΩ ⊂ M and for any two functions u∈ F ′ ∩ L∞, φ ∈ F ∩ L∞ with
supp(φ) ⊂ Ω, we have

∫

Ω

u2dΓΩ(φ) ≤ 4
∫

Ω

φ2dΓΩ(u) + 2E(u2φ, φ). (5.9)

A similar result was obtained in [30] but for u ∈ F ∩ L∞ (instead ofu ∈ F ′ ∩ L∞ as here). We sketch the
proof for the reader’s convenience.
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Proof. Sinceu ∈ F ′ ∩ L∞ andφ ∈ F ∩ L∞, we have by Proposition15.1

u2 ∈ F ′ ∩ L∞ and u2φ ∈ F ∩ L∞.

We first show that ∫

Ω

u2dΓ(L)(φ) ≤ 2E(L)(u2φ, φ) + 4
∫

Ω

φ2dΓ(L)(u). (5.10)

Indeed, without loss of generality, we may assume thatu, φ stand for their quasi continuous version (see
Definition 15.2 and [17, Thorem 2.1.3, p. 71]). SinceΓ(L)(φ) charges no set of zero capacity (by [17,
Lemma 3.2.4, p. 127]), by Proposition15.3in Appendix, we have

∫

M
u2dΓ(L)(φ) ≤ ‖u‖2∞

∫

M
dΓ(L)(φ) = ‖u‖2∞E

(L)(φ) ≤ ‖u‖2∞E(φ) < ∞,

which implies thatu ∈ L2(M,dΓ(L)(φ)). In a similar way, we haveφ ∈ L2(M,dΓ(L)(u)). Thus, using the chain
rule (5.1) and the product rule (5.2) of dΓ(L)(∙) and using the Cauchy-Schwarz inequality (5.5), we have

∫

M
u2dΓ(L)(φ) =

∫

M
dΓ(L)(u2φ, φ) − 2

∫

M
uφdΓ(L)(u, φ)

≤ E(L)(u2φ, φ) +
1
2

∫

M
u2dΓ(L)(φ) + 2

∫

M
φ2dΓ(L)(u),

which yields that, for anyu ∈ F ′ ∩ L∞, φ ∈ F ∩ L∞
∫

M
u2dΓ(L)(φ) ≤ 2E(L)(u2φ, φ) + 4

∫

M
φ2dΓ(L)(u). (5.11)

Sinceφ is supported inΩ, we see by (5.3) thatdΓ(L)(φ) = 0 outsideΩ, and the two integrals in (5.11) are
actually taken overΩ, thus proving (5.10).

We next show that
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j ≤ 2E(J)(u2φ, φ) + 4

"

Ω×Ω
φ2(x)(u(x) − u(y))2d j. (5.12)

Indeed, note that
1
2

(u2(x) + u2(y))(φ(x) − φ(y))2 ≤ 2(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))

+ 2(φ2(x) + φ2(y))(u(x) − u(y))2,

see for example [22, the inequality on lines 3-4 on p. 447] withf = u, andg = φ. Integrating overΩ × Ω

againstd j and using the symmetry ofj, we have
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j ≤ 2

"

Ω×Ω
(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))d j

+ 4
"

Ω×Ω
φ2(x)(u(x) − u(y))2d j. (5.13)

On the other hand, using the fact that supp(φ) ⊂ Ω, we have
"

Ω×Ω
(φ(x) − φ(y))(u2(x)φ(x) − u2(y)φ(y))d j

=

("

M×M
−

"

Ω×Ωc
−

"

Ωc×Ω
−

"

Ωc×Ωc

)

∙ ∙ ∙

= E(J)(u2φ, φ) −
"

Ω×Ωc
φ2(x)u2(x)d j −

"

Ωc×Ω
φ2(y)u2(y)d j

≤ E(J)(u2φ, φ).

Plugging this into (5.13), we obtain (5.12).
Finally, combining (5.10), (5.12), we conclude by definitions (2.1) and (2.17) that

∫

Ω

u2dΓΩ(φ) =
∫

Ω

u2dΓ(L)(φ) +
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j
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≤ 2E(L)(u2φ, φ) + 4
"

Ω

φ2dΓ(L)(u)

+ 2E(J)(u2φ, φ) + 4
"

Ω×Ω
φ2(x)(u(x) − u(y))2d j

= 2E(u2φ, φ) + 4
"

Ω

φ2dΓΩ(u),

thus proving (5.9). The proof is complete. �

Next, we need the following inequality.

Proposition 5.2. For any open subΩ ⊂ M and for any two functions u∈ F ′ ∩ L∞, φ ∈ F ∩ L∞ with
supp(φ) ⊂ Ω, we have

∫

Ω

φ2dΓΩ(u) ≤ 2E(u,uφ2) + 4
∫

Ω

u2dΓΩ(φ) + 4
"

Ω×Ωc
u(x)u(y)φ2(x)d j. (5.14)

Proof. By definition (2.1), we have

E(u,uφ2) = E(L)(u,uφ2) + E(J)(u,uφ2). (5.15)

For the local partE(L)(u,uφ2), interchangingu andφ in (5.11) (at this stage the assumption supp(φ) ⊂ Ω has
not yet been used) and then using (5.3) and supp(φ) ⊂ Ω, we obtain

∫

Ω

φ2dΓ(L)(u) =
∫

M
φ2dΓ(L)(u) ≤ 2E(L)(u,uφ2) + 4

∫

Ω

u2dΓ(L)(φ). (5.16)

For the jump partE(J)(u,uφ2), we have by (2.2) and the fact that supp(φ) ⊂ Ω

E(J)(u,uφ2) =
"

M×M
(u(x) − u(y))(u(x)φ2(x) − u(y)φ2(y))d j

=

("

Ω×Ω
+

"

Ωc×M
+

"

Ω×Ωc

)

F(x, y)d j

=

"

Ω×Ω
F(x, y)d j −

"

Ωc×M
(u(x) − u(y))u(y)φ2(y)d j

+

"

Ω×Ωc
(u(x) − u(y))u(x)φ2(x)d j,

≥
"

Ω×Ω
F(x, y)d j −

"

Ωc×M
u(x)u(y)φ2(y)d j −

"

Ω×Ωc
u(x)u(y)φ2(x)d j, (5.17)

whereF is defined by

F(x, y) := (u(x) − u(y))(u(x)φ2(x) − u(y)φ2(y)).

Sinceφ is supported inΩ,
"

Ωc×M
u(x)u(y)φ2(y)d j =

"

Ωc×Ω
u(x)u(y)φ2(y)d j

=

"

Ω×Ωc
u(x)u(y)φ2(x)d j

by using the symmetry ofj. It follows from (5.17) that
"

Ω×Ω
F(x, y)d j ≤ E(J)(u,uφ2) + 2

"

Ω×Ωc
u(x)u(y)φ2(x)d j. (5.18)

On the other hand, by using a general result in [22, Lemma 2.2] withE = Ω, f = φ, g = u and noting that
φ|Ωc = 0, we obtain

"

Ω×Ω
(u(x) − u(y))2φ2(x)d j ≤ 2

"

Ω×Ω
F(x, y)d j + 4

"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j (5.19)
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(see also [22, Eq. (3.22) on p.473]). Combining (5.18) and (5.19), we obtain
"

Ω×Ω
(u(x) − u(y))2φ2(x)d j ≤ 2E(J)(u,uφ2) + 4

"

Ω×Ωc
u(x)u(y)φ2(x)d j

+ 4
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j. (5.20)

Finally, it follows from (5.15), (5.16), (5.20) that
∫

Ω

φ2dΓΩ(u) =
∫

Ω

φ2dΓ(L)(u) +
"

Ω×Ω
(u(x) − u(y))2φ2(x)d j

≤ 2E(L)(u,uφ2) + 4
∫

Ω

u2dΓ(L)(φ)

+ 2E(J)(u,uφ2) + 4
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j + 4

"

Ω×Ωc
u(x)u(y)φ2(x)d j

= 2E(u,uφ2) + 4
∫

Ω

u2dΓΩ(φ) + 4
"

Ω×Ωc
u(x)u(y)φ2(x)d j,

thus proving (5.14). �

Proposition 5.3. For any u∈ F ′ ∩ L∞ and anyφ ∈ F ∩ L∞, we have

E(uφ) = E(u,uφ2) +
∫

M
u2dΓ(L)(φ) +

"

M×M
u(x)u(y)(φ(x) − φ(y))2d j. (5.21)

Proof. Sinceu ∈ F ′ ∩ L∞ andφ ∈ F ∩ L∞, we see by Proposition15.1thatu2 ∈ F ′ ∩ L∞, and

uφ, uφ2 ∈ F ∩ L∞.

By the product and chain rules ((5.1) and (5.2)), we have

E(L)(uφ) =
∫

M
dΓ(L)(uφ)

=

∫

M
φ2dΓ(L)(u) + 2

∫

M
uφdΓ(L)(u, φ) +

∫

M
u2dΓ(L)(φ),

while

E(L)(u,uφ2) =
∫

M
dΓ(L)(u,uφ2)

=

∫

M
φ2dΓ(L)(u) + 2

∫

M
uφdΓ(L)(u, φ).

Thus,

E(L)(uφ) = E(L)(u,uφ2) +
∫

M
u2dΓ(L)(φ). (5.22)

On the other hand, for the jump part we claim that

E(J)(uφ) = E(J)(u,uφ2) +
"

M×M
u(x)u(y)(φ(x) − φ(y))2d j. (5.23)

Indeed, by a direct computation, we have for any pointsx, y ∈ M,

(u(x)φ(x) − u(y)φ(y))2 = (u(x) − u(y))
(
u(x)φ2(x) − u(y)φ2(y)

)
+ u(x)u(y)(φ(x) − φ(y))2.

Integrating this against measurej overM × M and using definition (2.2), we obtain (5.23).
Therefore, it follows from (5.22), (5.23) that

E(uφ) = E(L)(uφ) + E(J)(uφ)

= E(L)(u,uφ2) +
∫

M
u2dΓ(L)(φ) + E(J)(u,uφ2) +

"

M×M
u(x)u(y)(φ(x) − φ(y))2d j

= E(u,uφ2) +
∫

M
u2dΓ(L)(φ) +

"

M×M
u(x)u(y)(φ(x) − φ(y))2d j,
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thus proving (5.21). The proof is complete. �

Proposition 5.4. LetΩ be a measurable subset of M. Then, for any u∈ F ′ ∩ L∞ and for anyφ ∈ F ∩ L∞

with supp(φ) ⊂ Ω, we have

E(uφ) = E(u,uφ2) +
∫

Ω

u2dΓΩ(φ) + 2
"

Ω×Ωc
u(x)u(y)φ2(x)d j. (5.24)

Proof. We will use (5.21) to derive (5.24). To do this, note thatφ vanishes outsideΩ. Then by the symmetry
of d j,

"

M×M
u(x)u(y)(φ(x) − φ(y))2d j =

{"

Ω×Ω
+

"

Ω×Ωc
+

∫

Ωc×Ω
+

∫

Ωc×Ωc

}

∙ ∙ ∙

=

"

Ω×Ω
u(x)u(y)(φ(x) − φ(y))2d j

+ 2
"

Ω×Ωc
u(x)u(y)φ2(x)d j.

From this and using the fact that ∫
u2dΓ(L)(φ) =

∫

Ω

u2dΓ(L)(φ),

we conclude from (5.21) that

E(uφ) = E(u,uφ2) +
∫

M
u2dΓ(L)(φ) +

"

M×M
u(x)u(y)(φ(x) − φ(y))2d j

= E(u,uφ2) +
∫

Ω

u2dΓ(L)(φ) +
"

Ω×Ω
u(x)u(y)(φ(x) − φ(y))2d j

+ 2
"

Ω×Ωc
u(x)u(y)φ2(x)d j

= E(u,uφ2) +
∫

Ω

u2dΓΩ(φ) + 2
"

Ω×Ωc
u(x)u(y)φ2(x)d j,

thus proving (5.24). �

6. Relations between (Gcap) and (ABB)

In this section we do not use condition (VD). Let us repeat the definition of (ABB) by paying more
attention to constant coefficients.

Definition 6.1. Givenζ ≥ 0, we say that condition (ABBζ) is satisfied if there existC > 0 such that, for any
u ∈ F ′ ∩ L∞ and for any three concentric ballsB0 := B(x0,R), B := B(x0,R+ r) andΩ := B(x0,R′) with
0 < R< R+ r < R′ < R, there exists someφ ∈ cutoff(B0, B) such that

∫

Ω

u2dΓΩ(φ) ≤ ζ
∫

B
φ2dΓB(u) + sup

x∈Ω

C
W(x, r)

∫

Ω

u2dμ,

wheredΓΩ is defined by (2.17).

Note that condition (ABB) holds if and only if condition (ABBζ) holds for someζ ≥ 0.

Lemma 6.2. We have
(Gcap) + (TJ)⇒ (ABB4κ2),

whereκ is the constant from condition(Gcap).

Proof. Fix a functionu ∈ F ′ ∩ L∞. Let B0 := B(x0,R), B := B(x0,R+ r) andΩ := B(x0,R′) be any three
concentric balls with 0< R < R+ r < R′ < R. We will show that there exists someφ ∈ cutoff(B0, B) such
that ∫

Ω

u2dΓΩ(φ) ≤ 4κ2
∫

B
φ2dΓB(u) + inf

x∈Ω

C
W(x, r)

∫

Ω

u2dμ (6.1)

for a constantC > 0 independent ofu, B0, B,Ω, which will exactly mean that (ABBζ) holds withζ = 4κ2.
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SetB̃ := B(x0,R+ r/2). By (Gcap), there exists a functioñφ in κ- cutoff(B0, B̃) such that

E(u2φ̃, φ̃) ≤ sup
x∈B̃

C
W(x, r/2)

∫

B̃
u2dμ ≤ sup

x∈Ω

C
W(x, r/2)

∫

Ω

u2dμ.

Applying (5.9), we obtain
∫

B
u2dΓB(̃φ) ≤4

∫

B
φ̃

2
dΓB(u) + 2E(u2φ̃, φ̃)

≤4
∫

B
φ̃

2
dΓB(u) + sup

x∈Ω

2C
W(x, r/2)

∫

Ω

u2dμ.

Define the functionφ by
φ := 1∧ φ̃ ∈ cutoff(B0, B̃).

Note that̃φ ≤ κφ in M. Using (5.8) and the previous inequality, we obtain
∫

B
u2dΓB(φ) ≤

∫

B
u2dΓB(̃φ) ≤ 4

∫

B
φ̃

2
dΓB(u) + sup

x∈Ω

2C
W(x, r/2)

∫

Ω

u2dμ

≤ 4κ2
∫

B
φ2dΓB(u) + sup

x∈Ω

2C
W(x, r/2)

∫

Ω

u2dμ. (6.2)

On the other hand, asφ is supported iñB ⊂ B ⊂ Ω, we have
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j =

{"

B×B
+

"

B×(Ω\B)
+

"

(Ω\B)×B
+

"

(Ω\B)×(Ω\B)

}

∙ ∙ ∙

=

"

B×B
u2(x)(φ(x) − φ(y))2d j +

"

B̃×(Ω\B)
u2(x)φ2(x)d j

+

"

(Ω\B)×B̃
u2(x)φ2(y)d j. (6.3)

Let us estimate the last two integrals in (6.3). Indeed, observe that dist(B̃,Ω \ B) ≥ r/2 so thatΩ \ B ⊂
B(x, r/2)c for anyx ∈ B̃. Hence, we have (TJ) and by (2.5) that

esup
x∈B̃

∫

Ω\B
J(x,dy) ≤ esup

x∈B̃

∫

B(x,r/2)c
J(x,dy) ≤ sup

x∈B̃

C′

W(x, r/2)
≤ sup

x∈Ω

C′

W(x, r/2)
.

From this and using 0≤ φ ≤ 1 and that̃B ⊂ Ω, we obtain
"

B̃×(Ω\B)
u2(x)φ2(x)d j =

"

B̃×(Ω\B)
u2(x)φ2(x)J(x,dy)dμ(x)

≤
∫

B̃
u2(x)φ2(x)


sup

x∈B̃

∫

Ω\B
J(x,dy)


 dμ(x)

≤ sup
x∈Ω

C′

W(x, r/2)

∫

Ω

u2(x)dμ(x). (6.4)

Similarly, we have
"

(Ω\B)×B̃
u2(x)φ2(y)d j =

"

(Ω\B)×B̃
u2(x)φ2(y)J(x,dy)dμ(x)

≤
"

Ω\B
u2(x)


esup

x∈Ω\B

∫

B(x,r/2)c
J(x,dy)


 dμ(x)

≤ sup
x∈Ω

C′

W(x, r/2)

∫

Ω

u2(x)dμ(x). (6.5)

Therefore, substituting (6.4), (6.5) into (6.3), we obtain
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j ≤

"

B×B
u2(x)(φ(x) − φ(y))2d j + sup

x∈Ω

2C′

W(x, r/2)

∫

Ω

u2dμ.
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From this and using (5.3) and the fact that supp(φ) ⊂ B̃ ⊂ B, we obtain
∫

Ω

u2dΓΩ(φ) =
∫

Ω

u2dΓ(L)(φ) +
"

Ω×Ω
u2(x)(φ(x) − φ(y))2d j

≤
∫

B
u2dΓ(L)(φ) +

"

B×B
u2(x)(φ(x) − φ(y))2d j + sup

x∈Ω

2C′

W(x, r/2)

∫

Ω

u2dμ

=

∫

B
u2dΓB(φ) + sup

x∈Ω

2C′

W(x, r/2)

∫

Ω

u2dμ. (6.6)

Finally, substituting (6.2) into (6.6), we conclude that,
∫

Ω

u2dΓΩ(φ) ≤
∫

B
u2dΓB(φ) + sup

x∈Ω

2C′

W(x, r/2)

∫

Ω

u2dμ

≤ 4κ2
∫

B
φ2dΓB(u) + sup

x∈Ω

2C
W(x, r/2)

∫

Ω

u2dμ + sup
x∈Ω

2C′

W(x, r/2)

∫

Ω

u2dμ

≤ 4κ2
∫

B
φ2dΓB(u) + sup

x∈Ω

C′′

W(x, r/2)

∫

Ω

u2dμ.

On the other hand, by (2.5), we have that

W(x, r)
W(x, r/2)

≤ C, x ∈ M.

Finally, combining the above two inequalities, we obtain (6.1). �

7. Self-improvement of (ABB)

In the next lemma we show how (ABB) self-improves. The self-improvement property of (ABB) was
first observed and proved in [1] for local Dirichlet forms, while for jump type Dirichlet form it was done in
[13] and [22].

Lemma 7.1. Assume that every metric ball of any radius R< R has finite measure. Then

(ABB) + (TJ)⇒ (ABB1/8).

Proof. Let u ∈ F ′ ∩ L∞ and letB0, B,Ω be any three concentric balls given by

B0 := B(x0,R), B := B(x0,R+ r), Ω := B(x0,R
′)

with 0 < R< R+ r < R′ < R. We will show that there exists someφ ∈ cutoff(B0, B) such that
∫

Ω

u2dΓΩ(φ) ≤
1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C
W(x, r)

∫

Ω

u2dμ (7.1)

for a universal constantC > 0 independent ofB0, B,Ω,u.
The idea of constructing such a cutoff functionφ is as follows (which was motivated by [1, the proof of

Lemma 5.1]): first dividing the ballB into infinitely many concentric balls{Bn}∞n=0, then choosingφn to be
a cutoff function for the triple (Bn, Bn+1,Ω) by using condition (ABB), and finally letting

φ :=
∞∑

n=1

anφn, (7.2)

which is the desired cutoff function by choosing suitable{an} ⊂ R+. The proof here is motivated by that
in [22, Lemma 2.9, pages 452-460] for the pure jump-type (non-local) Dirichlet form. The proof is quite
technical.

If u ≡ 0 in Ω, then (7.1) holds for anyφ ∈ cutoff(B0, B). Fix u ∈ F ′ ∩ L∞ with ‖u‖L2(Ω) > 0. Set
uε := |u| + ε, where

ε :=

(

−
∫

Ω

u2dμ

)1/2

> 0. (7.3)

Clearly,uε ∈ F ′ ∩ L∞.
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Let q > 1 be a number to be chosen later. Define the sequences{rn}∞n=0 and{sn}∞n=1 by

rn =
(
1− q−n) r, sn = rn − rn−1 = (q− 1)q−nr.

SetBn := B(x0,R+ rn) andUn := Bn+1 \ Bn. Obviously,rn ↑ r, Bn ↑ B asn→ +∞, and∪∞n=1Un = B \ B1.
Applying (ABB) to the functionuε and to each triple (Bn, Bn+1,Ω), we obtain that there exist some

constantsζ, C > 0 and someφn ∈ cutoff(Bn, Bn+1) such that
∫

Ω

u2
εdΓΩ(φn) ≤ ζ

∫

Bn+1

φ2
ndΓBn+1(uε) + sup

x∈Ω

C
W(x, sn+1)

∫

Ω

u2
εdμ. (7.4)

Note thatφn may depend onuε, but if it does not, the proof would be simpler, as we will see below. Since

u2
ε = (|u| + ε)2 ≤ 2(u2 + ε2),

and since by definition (2.17) and equality (5.6)
∫

Bn+1

φ2
ndΓBn+1(uε) =

∫

Bn+1

φ2
ndΓ(L)(uε) +

"

Bn+1×Bn+1

φ2
n(x) (uε(x) − uε(y))2 d j

=

∫

Bn+1

φ2
ndΓ(L)(|u|) +

"

Bn+1×Bn+1

φ2
n(x) (|u|(x) − |u|(y))2 d j

≤
∫

Bn+1

φ2
ndΓ(L)(u) +

"

Bn+1×Bn+1

φ2
n(x)(u(x) − u(y))2d j

=

∫

Bn+1

φ2
ndΓBn+1(u),

it follows from (7.4), (7.3) and the fact that 0≤ φn ≤ 1 in M, that
∫

Ω

u2
εdΓΩ(φn) ≤ ζ

∫

Bn+1

φ2
ndΓBn+1(u) + sup

x∈Ω

C
W(x, sn+1)

∫

Ω

2(u2 + ε2)dμ

≤ ζ
∫

Bn+1

dΓBn+1(u) + sup
x∈Ω

4C
W(x, sn+1)

∫

Ω

u2dμ. (7.5)

Let {an}∞n=1 and{bn}∞n=0 be two sequences of positive numbers given by

bn = q−βn, an = bn−1 − bn =
(
qβ − 1

)
q−βn,

whereβ is the constant in (2.5). Clearly,
∞∑

n=1

an = b0 = 1.

Let φ be defined by (7.2) with this choice of{an}. We will prove the following two properties:

(i) φ ∈ F (this will imply thatφ ∈ cutoff(B0, B));
(ii ) if q is close enough to 1, thenφ satisfies (7.1) (this will prove condition (ABB1/8)).

To verify (i), consider the partial sums of the series (7.2):

ΦN :=
N∑

n=1

anφn, N > 0.

Clearly,ΦN ↑ φ pointwise asN → ∞. We will also show that the sequence{ΦN}∞N=1 converges toφ in
E1-norm. For this, it suffices to show that{ΦN} is a Cauchy inF :

‖ΦN+k − ΦN‖
2
E1

= E(ΦN+k − ΦN) + ‖ΦN+k − ΦN‖
2
2→ 0

asN, k→ ∞.
Indeed, note that every metric ball of radius smallerthanRhas finite measure, and observe that

‖φn‖L2 ≤ μ(B)1/2 < ∞. (7.6)

Sinceε2 ≤ u2
ε in M and

∫

Bn+1

dΓBn+1(u) =
∫

Bn+1

dΓ(L)(u) +
"

Bn+1×Bn+1

(u(x) − u(y))2d j
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≤
∫

M
dΓ(L)(u) +

"

M×M
(u(x) − u(y))2d j = E(u),

we have by (7.5) and (2.5),
∫

Ω

dΓΩ(φn) ≤ ζε−2
∫

Bn+1

dΓBn+1(u) + sup
x∈Ω

4Cε−2

W(x, sn+1)

∫

Ω

u2dμ

≤ ζε−2E(u) + sup
x∈Ω

C′‖u‖2
L2(Ω)

W(x, r)

(
r

sn+1

)β
≤ Cqβn

for some positive constantC independent ofn. From this and using the fact thatφn is supported inB ⊂ Ω,
we see that

E(φn, φn) = E(L)(φn, φn) + E(J)(φn, φn)

=

∫

M
dΓ(L)(φn) +

"

M×M

(
φn(x) − φn(y)

)2 d j

=

∫

Ω

dΓΩ(φn) + 2
"

B×Ωc
φ2

n(x)d j ≤ Cqβn + 2
"

B×Ωc
φ2

n(x)d j. (7.7)

Sinced(B,Ωc) ≥ R′ − (R+ r) := r0 > 0 so thatΩc ⊂ B(x, r0)c for anyx in B and since 0≤ φn ≤ 1 in M, we
have by condition (TJ), (2.5) and (7.6) that

"

B×Ωc
φ2

n(x)d j =
∫

B
φ2

n(x)dμ(x)
∫

Ωc
J(x,dy)

≤
∫

B
φ2

n(x)

(

esup
x∈B

∫

B(x,r0)c
J(x,dy)

)

dμ(x)

≤

(

esup
x∈B

C
W(x, r0)

) ∫

B
φ2

n(x)dμ(x) ≤
C′μ(B)

W(x0,R′)

(
R′

r0

)β
< ∞ (7.8)

uniformly in n. It follows from (7.7), (7.8) that

E(φn, φn) ≤ Cqβn, (7.9)

where the constantC depends on all variables in question except onn. Sincean = (qβ − 1)q−βn, we obtain
from (7.6), (7.9) that for anyk ≥ 1

‖ΦN+k − ΦN‖
1/2
E1

= ‖
N+k∑

n=N+1

anφn‖
1/2
E1
≤

N+k∑

n=N+1

an‖φn‖
1/2
E1

=

N+k∑

n=N+1

an

(
‖φn‖

2
L2 + E(φn, φn)

)1/2

≤
N+k∑

n=N+1

an

(
μ(B) + Cqβn

)1/2

≤ C
(
qβ − 1

) ∞∑

n=N+1

q−βn/2,

thus showing that property (i) is true.
To verify (ii ), let us prove the following inequality

∫

Ω

u2dΓΩ(ΦN) ≤
1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C
W(x, r)

∫

Ω

u2dμ. (7.10)

In this case, inequality (7.1) will follow from ( 7.10) by lettingN → ∞ and by using the fact thatE1(ΦN −
φ)→ 0 that was already proved above.
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To this end, note that by the bilinearity ofdΓΩ

dΓΩ(ΦN) = dΓΩ




N∑

n=1

anφn,

N∑

m=1

amφm




=

N∑

n=1

a2
ndΓΩ(φn) + 2

N−1∑

n=1

anan+1dΓΩ(φn, φn+1) + 2
N−2∑

m=1

N∑

n=m+2

anamdΓΩ(φn, φm),

and, hence

SN(u) :=
∫

Ω

u2dΓΩ(ΦN)

=

N∑

n=1

a2
n

∫

Ω

u2dΓΩ(φn) + 2
N−1∑

n=1

anan+1

∫

Ω

u2dΓΩ(φn, φn+1)

+ 2
N−2∑

m=1

N∑

n=m+2

anam

∫

Ω

u2dΓΩ(φn, φm). (7.11)

We will estimate the second term on the right-hand side of (7.11).
Indeed, notice thatdΓ(L)(φn, φm) = 0 for anyn > m by using (5.3), sinceφn = 1 in supp(φm). Thus by

definition (2.17)

dΓΩ(φn, φm) = dΓ(L)(φn, φm) +
"

Ω×Ω

(
φn(x) − φn(y)

)
(φm(x) − φm(y))d j

=

"

Ω×Ω

(
φn(x) − φn(y)

)
(φm(x) − φm(y))d j for anyn > m. (7.12)

From this, we have by using the elementary inequality 2ab≤ a2 + b2

2
N−1∑

n=1

anan+1

∫

Ω

u2dΓΩ(φn, φn+1)

= 2
N−1∑

n=1

anan+1

"

Ω×Ω
u2(x)(φn(x) − φn(y))

(
φn+1(x) − φn+1(y)

)
d j

≤
N−1∑

n=1

a2
n

"

Ω×Ω
u2(x)(φn(x) − φn(y))2d j

+

N−1∑

n=1

a2
n+1

"

Ω×Ω
u2(x)(φn+1(x) − φn+1(y))2d j

≤ 2
N∑

n=1

a2
n

"

Ω×Ω
u2(x)(φn(x) − φn(y))2d j ≤ 2

N∑

n=1

a2
n

∫

Ω

u2dΓΩ(φn). (7.13)

Therefore, plugging (7.13) into (7.11), we obtain that, using (7.12),

SN(u) ≤ 3
N∑

n=1

a2
n

∫

Ω

u2dΓΩ(φn) + 2
N−2∑

m=1

N∑

n=m+2

anam

∫

Ω

u2dΓΩ(φn, φm)

= 3
N∑

n=1

a2
n

∫

Ω

u2dΓΩ(φn)

︸                    ︷︷                    ︸
I1

+ 2
N−2∑

m=1

N∑

n=m+2

anam

"

Ω×Ω
u2(x)(φm(x) − φm(y))

(
φn(x) − φn(y)

)
d j

︸                                                                             ︷︷                                                                             ︸
I2
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= 3I1 + 2I2. (7.14)

We will estimate each termI1, I2. To estimate the termI1, we will use condition (ABB), whilst to the term
I2 we will use condition (TJ).

To do this, for the termI1, we have by (7.5),

I1 =

N∑

n=1

a2
n

∫

Ω

u2dΓΩ(φn)

≤ ζ
∞∑

n=1

a2
n

∫

Bn+1

dΓBn+1(u) + 4C
∞∑

n=1

sup
x∈Ω

a2
n

W(x, sn+1)

∫

Ω

u2dμ

= ζ

∞∑

n=1

a2
n

∫

B1

dΓBn+1(u)

︸                   ︷︷                   ︸
I11

+ ζ

∞∑

n=1

a2
n

∫

Bn+1\B1

dΓBn+1(u)

︸                         ︷︷                         ︸
I12

+ 4C
∞∑

n=1

sup
x∈Ω

a2
n

W(x, sn+1)

∫

Ω

u2dμ

︸                              ︷︷                              ︸
I13

= ζ I11 + ζ I12 + 4CI13. (7.15)

We will estimate each termI11, I12, I13.
Indeed, sinceφ = 1 onB1 and

∞∑

n=1

a2
n =

qβ − 1
qβ + 1

,

we obtain by (5.7) that

I11 =

∞∑

n=1

a2
n

∫

B1

dΓBn+1(u) =
∞∑

n=1

a2
n

∫

B1

φ2dΓBn+1(u)

≤
∞∑

n=1

a2
n

∫

B1

φ2dΓB(u) =
qβ − 1
qβ + 1

∫

B1

φ2dΓB(u). (7.16)

For I12, using the facts thatam ≤ (qβ − 1)φ in Um = Bm+1 \ Bm (cf. [22, formula (2.17) on p.458]) and
an = q−(n−m)βam, we have that

I12 =

∞∑

n=1

a2
n

∫

Bn+1\B1

dΓBn+1(u) ≤
∞∑

n=1

a2
n

∫

Bn+1\B1

dΓB(u)

=

∞∑

n=1

a2
n

n∑

m=1

∫

Um

dΓB(u) =
∞∑

n=1

n∑

m=1

q−2(n−m)β
∫

Um

a2
mdΓB(u)

≤
∞∑

n=1

n∑

m=1

q−2(n−m)β
∫

Um

(qβ − 1)2φ2dΓB(u)

=

∞∑

m=1

∞∑

n=m

q−2(n−m)β
∫

Um

(qβ − 1)2φ2dΓB(u)

≤
q2β(qβ − 1)

qβ + 1

∫

B\B1

φ2dΓB(u). (7.17)

For I13, since by (2.5),

W(x, r)
W(x, sn+1)

≤ C

(
r

sn+1

)β
, x ∈ M,



24 GRIGOR’YAN, E. HU, AND J. HU

we have that, usingan =
(
qβ − 1

)
q−βn andsn+1 = (q− 1)q−(n+1)r,

I13 =

∞∑

n=1

sup
x∈Ω

a2
n

W(x, sn+1)

∫

Ω

u2dμ

≤ sup
x∈Ω

C
W(x, r)

∞∑

n=1

a2
n

(
r

sn+1

)β ∫

Ω

u2dμ

= sup
x∈Ω

C
W(x, r)

∞∑

n=1

(qβ − 1)2q−2βn

(q− 1)βq−β(n+1)

∫

Ω

u2dμ

= sup
x∈Ω

C
W(x, r)

qβ(qβ − 1)

(q− 1)β

∫

Ω

u2dμ. (7.18)

Therefore, plugging (7.16), (7.17), and (7.18) into (7.15), we conclude

I1 ≤ ζ I11 + ζ I12 + 4CI13 ≤
ζ(1+ q2β)(qβ − 1)

qβ + 1

∫

B
φ2dΓB(u) + sup

x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ. (7.19)

For the termI2, we repeat the same argument in [22, formula (2.20), p.459]. The only difference is to use
condition (TJ) here rather than the pointwise upper bound of the derivatived j

d(μ×μ) therein. In fact, for any
m≥ 1, n ≥ m+ 2

(φm(x) − φm(y))(φn(x) − φn(y)) = φm(x)(1− φn(y)) + φm(y)(1− φn(x))

sinceφnφm ≡ φm in M by usingφn = 1 in supp(φm). Thus,

I2 =

N−2∑

m=1

N∑

n=m+2

anam

"

Ω×Ω
u2(x)(φm(x) − φm(y))(φn(x) − φn(y))d j

≤
∞∑

m=1

∞∑

n=m+2

aman

"

Ω×Ω
u2(x)φm(x)(1− φn(y))d j

︸                                                        ︷︷                                                        ︸
I21

+

∞∑

m=1

∞∑

n=m+2

aman

"

Ω×Ω
u2(x)φm(y)(1− φn(x))d j

︸                                                        ︷︷                                                        ︸
I22

. (7.20)

To estimateI21, noting thatd(Bm+1, Bc
n) ≥ sm+2 for anyn ≥ m+ 2, we have by condition (TJ) and (2.5) that

esup
x∈Bm+1

"

Ω\Bn

J(x,dy) ≤ esup
x∈Bm+1

∫

B(x,sm+2)c
J(x,dy)

≤ sup
x∈Bm+1

C
W(x, sm+2)

≤ sup
x∈Ω

C
W(x, r)

(
r

sm+2

)β
,

and hence
"

Bm+1×(Ω\Bn)
u2(x)d j ≤ esup

x∈Bm+1

"

Ω\Bn

J(x,dy)
∫

Bm+1

u2(x)dμ(x)

≤ sup
x∈Ω

C
W(x, r)

(
r

sm+2

)β ∫

Ω

u2dμ.

Therefore, using the fact thatφm is supported inBm+1 and 1− φn supported inBc
n, we have

I21 =

∞∑

m=1

∞∑

n=m+2

aman

"

Ω×Ω
u2(x)φm(x)(1− φn(y))d j

≤
∞∑

m=1

∞∑

n=m+2

aman

"

Bm+1×(Ω\Bn)
u2(x)d j
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≤ sup
x∈Ω

C
W(x, r)

∞∑

m=1

am

(
r

sm+2

)β ∞∑

n=m+2

an

∫

Ω

u2dμ

= sup
x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ. (7.21)

For I22, we run the same argument as above and obtain

I22 =

∞∑

m=1

∞∑

n=m+2

aman

"

Ω×Ω
u2(x)φm(y)(1− φn(x))d j

≤
∞∑

m=1

∞∑

n=m+2

aman

"

(Ω\Bn)×Bm+1

u2(x)d j

≤
∞∑

m=1

∞∑

n=m+2

aman

∫

Ω

sup
x∈Ω

Cu2(x)
W(x, sm+2)

dμ(x) ≤ sup
x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ. (7.22)

Therefore, plugging (7.21) and (7.22) into (7.20), we obtain that

I2 ≤ I21 + I22 ≤ sup
x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ. (7.23)

Finally, substituting (7.23) and (7.19) into (7.14), and choosingq > 1 close enough to 1, we obtain

SN(u) ≤ 3I1 + 2I2

≤
3ζ(1+ q2β)(qβ − 1)

qβ + 1

∫

B
φ2dΓB(u) + sup

x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ + sup
x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ

≤
1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C(q)
W(x, r)

∫

Ω

u2dμ,

thus showing (7.10). �

8. Energy of product

Let us introduce a condition (EP), that is called theenergy of product.

Definition 8.1 (Condition (EP)). We say that the condition (EP) is satisfied if there exists a constantC > 0
such that, for any three concentric ballsB0 := B(x0,R), B := B(x0,R+ r) andΩ := B(x0,R′) with 0 < R <
R+ r < R′ < R, and for anyu ∈ F ′ ∩ L∞, there existsφ ∈ cutoff(B0, B) such that

E(uφ) := E(uφ, uφ) ≤
3
2
E(u,uφ2) + sup

x∈Ω

C
W(x, r)

∫

Ω

u2dμ + 3
"

Ω×Ωc
u(x)u(y)φ2(x)d j. (8.1)

We remark that the coefficients “32” and “3” appearing in (8.1) are unimportant. Condition (EP) will play
an important role in deriving the mean value inequality, as we will see in Section10below.

Lemma 8.2. We have
(ABB1/8)⇒ (EP). (8.2)

Consequently, if every metric ball of radius smallerthan R has finite measure, then we have the following
implications:

(Gcap) + (TJ)⇒ (ABB) + (TJ)⇒ (ABB1/8)⇒ (EP). (8.3)

Proof. Let B0 := B(x0,R), B := B(x0,R+ r) andΩ := B(x0,R′) be any three concentric balls with 0<
R < R+ r < R′ < R as before. Foru ∈ F ′ ∩ L∞, we have by condition (ABB1/8) that there exists some
φ ∈ cutoff(B0, B) such that

∫

Ω

u2dΓΩ(φ) ≤
1
8

∫

B
φ2dΓB(u) + sup

x∈Ω

C
W(x, r)

∫

Ω

u2dμ

≤
1
8

∫

Ω

φ2dΓΩ(u) + sup
x∈Ω

C
W(x, r)

∫

Ω

u2dμ.
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From this and using (5.14), we obtain
∫

Ω

u2dΓΩ(φ) ≤
1
8

(

2E(u,uφ2) + 4
∫

Ω

u2dΓΩ(φ) + 4
"

Ω×Ωc
u(x)u(y)φ2(x)d j

)

+ sup
x∈Ω

C
W(x, r)

∫

Ω

u2dμ

=
1
4
E(u,uφ2) +

1
2

∫

Ω

u2dΓΩ(φ) +
1
2

"

Ω×Ωc
u(x)u(y)φ2(x)d j + sup

x∈Ω

C
W(x, r)

∫

Ω

u2dμ.

Rearranging the above inequality, we have
∫

Ω

u2dΓΩ(φ) ≤
1
2
E(u,uφ2) +

"

Ω×Ωc
u(x)u(y)φ2(x)d j + sup

x∈Ω

2C
W(x, r)

∫

Ω

u2dμ.

From this and using (5.24), we conclude that

E(uφ) = E(u,uφ2) +
∫

Ω

u2dΓΩ(φ) + 2
"

Ω×Ωc
u(x)u(y)φ2(x)d j

≤ E(u,uφ2) +
1
2
E(u,uφ2) +

"

Ω×Ωc
u(x)u(y)φ2(x)d j

+ sup
x∈Ω

2C
W(x, r)

∫

Ω

u2dμ + 2
"

Ω×Ωc
u(x)u(y)φ2(x)d j

=
3
2
E(u,uφ2) + sup

x∈Ω

2C
W(x, r)

∫

Ω

u2dμ + 3
"

Ω×Ωc
u(x)u(y)φ2(x)d j,

thus proving condition (EP). This proves the implication (8.2).
Finally, the implications in (8.3) follow directly from Lemmas6.2and7.1. The proof is complete. �

9. Subharmonic functions

In this section we will prove a simple property of subharmonic functions stated in Lemma9.3below. We
start with the following observation.

Proposition 9.1. Assume that a function F∈ C2(R) satisfies

sup
R
|F′| < ∞, F′′ ≥ 0, sup

R
F′′ < ∞.

Then, for all u, ϕ ∈ F ′ ∩ L∞, both functions F(u) and F′(u)ϕ belong to the spaceF ′ ∩ L∞. Moreover, if in
additionϕ ≥ 0 on M, then

E(F(u), ϕ) ≤ E(u, F′(u)ϕ). (9.1)

Proof. SinceF is Lipschitz inR, we see by Proposition15.1(i) thatF(u) ∈ F ′. Sinceu ∈ L∞, we have also
F(u) ∈ L∞ and, hence,

F(u) ∈ F ′ ∩ L∞.

Similarly, we obtain
F′(u) ∈ F ′ ∩ L∞.

Sinceϕ ∈ F ′ ∩ L∞, it follows from Proposition15.1(ii ) that

F′(u)ϕ ∈ F ′ ∩ L∞.

Let us verify (9.1) assuming thatϕ ≥ 0. Indeed, by the chain and product rules ((5.2) and (5.1)), and by the
fact thatF′′ ≥ 0, we obtain

E(L)(F(u), ϕ) =
∫

M
dΓ(L)(F(u), ϕ) =

∫

M
F′(u)dΓ(L)(u, ϕ)

=

∫

M
dΓ(L)(u, F′(u)ϕ) −

∫

M
F′′(u)ϕdΓ(L)(u)

≤
∫

M
dΓ(L)(u, F′(u)ϕ) = E(L)(u, F′(u)ϕ). (9.2)

On the other hand, the conditionF′′ ≥ 0 implies that, for allX,Y,a,b ∈ R+,

(F(X) − F(Y))(a− b) ≤ (X − Y)(F′(X)a− F′(Y)b)
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(see for example [22, Eq. (3.3), p. 464]). Substituting hereX = u(x), Y = u(y), a = φ(x), b = φ(y), we
obtain

E(J)(F(u), φ) =
"

M×M
(F(u(x)) − F(u(y)))(φ(x) − φ(y))d j

≤
"

M×M
(u(x) − u(y))(F′(u(x))φ(x) − F′(u(y))φ(y))d j

= E(J)(u, F′(u)φ),

that is,
E(J)(F(u), ϕ) ≤ E(J)(u, F′(u)ϕ).

Therefore, it follows from (9.2) and the above inequality that

E(F(u), ϕ) = E(L)(F(u), ϕ) + E(J)(F(u), ϕ)

≤ E(L)(u, F′(u)ϕ) + E(J)(u, F′(u)ϕ)

= E(u, F′(u)ϕ),

thus proving (9.1). �

Let us extend Definition2.8of subharmonic functions to the spaceF ′.

Definition 9.2. Let Ω be an open subset ofM. We say that a functionu ∈ F ′ is subharmonic(resp.
superharmonic) in Ω if, for any 0≤ ϕ ∈ F (Ω),

E(u, ϕ) ≤ 0 (resp.E(u, ϕ) ≥ 0).

A functionu ∈ F ′ is calledharmonicin Ω if it is both subharmonic and superharmonic inΩ.

Lemma 9.3. If u ∈ F ′ ∩ L∞ is subharmonic in a non-empty open setΩ ⊂ M, then u+ belongs toF ′ ∩ L∞

and is also subharmonic inΩ.

Proof. Clearly,u+ ∈ F ′. Fix a function 0≤ φ ∈ F (Ω) and prove thatE(u+, φ) ≤ 0. Since each function
in F can be approximated by a sequence of functions inF ∩ L∞ in the norm ofF (see for example [17,
Thoerem 1.4.2(iii)]), we may assume in addition thatφ ∈ L∞. Let {Fk}∞k=1 be a sequence ofC2-functions on
R satisfying for alln ≥ 1 the conditions

Fn|(−∞,0] = 0, 0 ≤ F′n ≤ 1, F′′n ≥ 0, sup
R

F′′n < ∞,

and
Fn(t)⇒ t+ uniformly inR asn→ ∞. (9.3)

Such a sequence can be constructed as follows: first fix any function 0≤ f ∈ C0[0,1] with
∫ 1

0
f (t)dt = 0,

then set for anyn ≥ 1
fn(t) = n f(nt) ∈ C0[0, 1

n],

and determineFn from the equationF′′n = fn, that is,

F′n(t) =
∫ t

0
fndt and Fn(t) =

∫ t

0
F′ndt

(see Fig.3). ThenFn(t) = 0 for all t ≤ 0 andF′n(t)→ 1 asn→ ∞ for anyt > 0 whence (9.3) follows.
By Proposition9.1, the functionsFn(u) andF′n(u)φ belong toF ′ ∩ L∞ and

E(Fn(u), φ) ≤ E(u, F′n(u)φ).

Moreover, by Proposition15.1(i), (iii ) we have also

F′n(u)φ ∈ F (Ω) ∩ L∞

Sinceu is subharmonic inΩ andF′n(u)φ ≥ 0, we have,

E(u, F′n(u)φ) ≤ 0,



28 GRIGOR’YAN, E. HU, AND J. HU

Figure 3. FunctionsF′n andF′′n

which implies
E(Fn(u), φ) ≤ 0.

Hence, it suffices to verify that
E(u+, φ) = lim

n→∞
E(Fn(u), φ). (9.4)

Sinceu ∈ F ′, there existsw ∈ F anda ∈ R such thatu = w+ a. Consider the functions

wn = Fn(u) − Fn (a)

and observe that by (9.3) there is a pointwise convergence

wn→ u+ − a+ asn→ ∞.

Denote
L := sup

n
sup
R

F′n < ∞.

Since
|wn| = |Fn(u) − Fn(a)| ≤ L|u− a| = L|w| ∈ L2,

we conclude by the dominated convergence theorem that

wn
L2

→ u+ − a+ as n→ ∞. (9.5)

On the other hand, since
1
L

wn =
Fn(w+ a) − Fn(a)

L
is a normal contraction ofw, we obtain that, for anyn,

E(wn,wn) ≤ L2E(w,w). (9.6)

By (9.5), (9.6) and Proposition15.5, we conclude that

lim
n→∞
E(Fn(u), φ) = lim

n→∞
E(wn, φ) = E(u+ − a+, φ) = E(u+, φ),

which is exactly (9.4). �

10. Mean value inequality

In this section, we prove the mean value inequality for subharmonic functions.

Theorem 10.1.Assume that conditions(EP), (VD), (FK), and(TJ) hold. Let u∈ F ′ ∩ L∞ be non-negative,
subharmonic in a ball B:= B(x0,R) with 0 < R< σR. Then the mean value inequality(2.19) holds, that is,
for anyε > 0,

esup
1
2 B

u ≤ C(1+ ε−
1
2ν )

(
1
μ(B)

∫

B
u2dμ

)1/2

+ εK‖u+‖L∞(( 1
2 B)c), (10.1)

where the constant C depends only on the constants in the hypotheses (but does not depend onε), the
constantsν andσ come from(FK), and

K =

{
1 if the measure j. 0,

0 if the measure j≡ 0.
(10.2)
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Consequently, we have the following implication:

(VD) + (Gcap) + (FK) + (TJ)⇒ (2.19).

To prove Theorem10.1, we need the following lemma. Fix a pointx0 ∈ M, some numbers 0< r2 < r1

and consider two ballsBi := B(x0, ri), i = 1,2, so thatB2 ⊂ B1. Fix also some numbers 0< b1 < b2, a
measurable functionu and set

ai :=
∫

Bi

(u− bi)
2
+dμ, i = 1,2 (10.3)

(see Fig.4). Clearly, we havea2 ≤ a1. In the next lemma we show thata2 can be controlled bya1+ν
1 for

someν > 0 whenu is a subharmonic function.

Lemma 10.2. Let the jump measure j be given by

d j(x, y) = J(x,dy)dμ(x),

where J(∙, ∙) is a kernel on M× B(M). Assume that conditions(FKν) and(EP) hold.
Let u∈ F ′ ∩ L∞ be subharmonic in B(x0, r1) with r1 < σR, whereσ comes from(FKν), and let a1,a2 be

defined by(10.3) for 0 < r2 < r1. Then

a2 ≤
CW(B1)

(b2 − b1)2νμ(B1)ν

(

sup
x∈B1

1
W(x, r1 − r2)

+
A

b2 − b1

)

a1+ν
1 , (10.4)

where the constant C> 0 depends only on the constants in hypotheses, and A is given by

A := esup
x∈B(x0,

1
2(r1+r2))

∫

Bc
1

u+(y)J(x,dy).

Proof. In this proof, for any function inF , we always use itsquasi-continuousversion (cf. Definition15.2
or [17, Theorem 2.1.3 on p.71]).

Denote
U := B(x0,

1
2(r1 + r2)) and E := {u > b2} ∩ U.

By the outer regularity ofμ, for anyε > 0, there is an open setV such that

E ⊂ V ⊂ B1

and
μ(V) ≤ μ(E) + ε (10.5)

(see Fig.4).

Figure 4. SetsE andV

Consider the function
v := (u− b2)+.

It follows from Lemma9.3thatv ∈ F ′ ∩ L∞ and thatv is subharmonic inB1. By Proposition15.1(ii ),

φv ∈ F ∩ L∞ for anyφ ∈ F ∩ L∞.

Fix a functionφ ∈ cutoff(B2,U). Then

a2 =

∫

B2

(u− b2)2
+dμ =

∫

B2

φ2v2dμ ≤
∫

M
φ2v2dμ. (10.6)
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Note that, for anyw ∈ F and any open subsetΩ of M, we havew ∈ F (Ω) if and only if w̃ = 0 q.e. inΩc,
wherew̃ is a quasi-continuous version ofw and q.e. meansquasi-everywhere(cf. [17, Corollary 2.3.1 on
p.98]). Sincev = 0 on{u ≤ b2} andφ = 0 q.e. onUc, we see that

φv = 0 q.e. onEc = {u ≤ b2} ∪ Uc.

Sinceφv ∈ F andφv = 0 q.e. inVc ⊂ Ec, we conclude that

φv ∈ F (V). (10.7)

By the definition (2.13) of λ1(V) and by (10.6), we have

λ1(V) ≤
E(φv, φv)

‖φv‖2
L2

≤
E(φv, φv)

a2
,

and, hence,

a2 ≤
E(φv, φv)
λ1(V)

.

On the other hand, by (FKν) and (10.7),

1
λ1(V)

≤ CW(B1)

(
μ(V)
μ(B1)

)ν
.

Using also (10.5), we obtain

a2 ≤ CW(B1)

(
μ(V)
μ(B1)

)ν
E(φv, φv)

≤ CW(B1)

(
μ(E) + ε
μ(B1)

)ν
E(φv, φv). (10.8)

Now let us estimateE(φv, φv) from above. By Proposition15.1(iii ) and using (10.7), we see that

0 ≤ vφ2 = vφ ∙ φ ∈ F (V) ⊂ F (B1).

Sincev is subharmonic inB1, we have
E(v, vφ2) ≤ 0. (10.9)

Applying (EP) to the tripleB2, U, B1 and to the functionv, we conclude that there existsφ ∈ cutoff(B2,U)
such that

E(φv, φv) ≤
3
2
E(v, vφ2) + sup

x∈B1

C
W(x, r)

∫

B1

v2dμ + 3
"

B1×Bc
1

v(x)v(y)φ2(x)J(x,dy),

wherer := (r2 − r1)/2. Using (10.9) and the fact thatφ = 0 outsideU, we obtain that

E(vφ, vφ) ≤ sup
x∈B1

C
W(x, r)

∫

B1

v2dμ + 3
∫

U
v(x)dμ(x) ∙ esup

x∈U

∫

Bc
1

v(y)J(x,dy). (10.10)

Note that ifu ≥ b2 then
(u− b1)2 ≥ (u− b1)(b2 − b1) ≥ (u− b2)(b2 − b1),

which implies that, for all values ofu,

v = (u− b2)+ ≤
(u− b1)2

+

b2 − b1
.

Hence, we obtain from (10.10)

E(vφ, vφ) ≤ sup
x∈B1

C
W(x, r)

∫

B1

(u− b1)2
+dμ + 3

∫

B1

(u− b1)2
+

b2 − b1
dμ ∙ esup

x∈U

∫

Bc
1

u+(y)J(x,dy)

=

(

sup
x∈B1

C
W(x, r)

+
3A

b2 − b1

)

a1. (10.11)

Next, let us estimateμ(E) from above as follows:

μ(E) =
∫

U∩{u>b2}
dμ
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≤
∫

U∩{u>b2}

(u− b1)2
+

(b2 − b1)2
dμ

≤
1

(b2 − b1)2

∫

B1

(u− b1)2
+dμ

=
a1

(b2 − b1)2
.

Substituting the last inequality and (10.11) into (10.8) and lettingε→ 0, we obtain

a2 ≤ CW(B1)

(
μ(E)
μ(B1)

)ν
E(φv, φv)

≤ CW(B1)

(
a1

(b2 − b1)2μ(B1)

)ν (

sup
x∈B1

C
W(x, r)

+
3A

b2 − b1

)

a1,

which together with (2.5) implies (10.4). �

Proof of Theorem10.1. Let a ballB(x0,R) and a subharmonic functionu be as in the statement. Fix also
someρ > 0 to be determined later. Let{Rk}∞k=0, {ρk}

∞
k=0 be two sequences of positive numbers defined for

anyk ≥ 0 by
Rk = (2−1 + 2−k−1)R and ρk = (1− 2−k)ρ.

Then{Rk} is decreasing withR0 = R, Rk ↓ 1
2R, and

Rk−1 − Rk = 2−k−1R< Rk, (10.12)

while {ρk} is increasing withρ0 = 0, ρk ↑ ρ, and

ρk − ρk−1 = 2−kρ. (10.13)

Set also for allk ≥ 0

Bk = B(x0,Rk) and ak =

∫

Bk

(u− ρk)
2
+dμ,

so that
B(x0,R) = B0 ⊃ Bk−1 ⊃ Bk ⊃ B∞ := B(x0,

1
2R)

(see Fig.5).

Figure 5. Sequence of balls{Bk}

Applying the inequality (10.4) of Lemma10.2for the pair of ballsBk ⊂ Bk−1 and for

b1 = ρk−1, b2 = ρk,

we obtain, for allk ≥ 1,

ak ≤
CW(Bk−1)

(ρk − ρk−1)2νμ(Bk−1)ν

(

sup
x∈Bk−1

1
W(x,Rk−1 − Rk)

+
Ak

ρk − ρk−1

)

a1+ν
k−1, (10.14)

where

Ak = esup
x∈B(x0,

1
2(Rk+Rk−1))

∫

Bc
k−1

u+(y)J(x,dy).



32 GRIGOR’YAN, E. HU, AND J. HU

Let us estimate every term on the right hand side of (10.14). Note thatBc
k−1 ⊂ Bc

∞, and, for all x ∈
B(x0,

1
2(Rk + Rk−1)), we have

B(x,2−k−2R) = B(x, 1
2(Rk−1 − Rk)) ⊂ B(x0,Rk−1) = Bk−1.

Using this, (TJ) and (2.5), we obtain

Ak ≤ ‖u+‖L∞(Bc
∞) sup

x∈B(x0,
1
2(Rk+Rk−1)

∫

B(x,2−k−2R)c
J(x,dy)

= ‖u+‖L∞(Bc
∞) sup

x∈B(x0,
1
2(Rk+Rk−1)

CK

W(x,2−k−2R)

≤
CK2βk

W(B0)
‖u+‖L∞(Bc

∞),

where the constantK is defined in (10.2).
By (VD) we have

μ(Bk−1) ≥ μ(B∞) ≥ cμ(B0).

Hence, substituting into (10.14) the above two inequalities as well as using (10.13) and (2.5), we obtain

ak ≤
CW(B0)

(2−kρ)2νμ(B0)ν




(
R

Rk−1 − Rk

)β 1
W(B0)

+
K2βk

W(B0)

‖u+‖L∞(Bc
∞)

2−kρ


 a1+ν

k−1

=
C22kνW(B0)
ρ2νμ(B0)ν

(
2(k+1)β

W(B0)
+

K2(β+1)k

W(B0)

‖u+‖L∞(Bc
∞)

ρ

)

a1+ν
k−1

≤
C

ρ2νμ(B0)ν

(

1+
K‖u+‖L∞(Bc

∞)

ρ

)

2(2ν+β+1)ka1+ν
k−1.

Setting

D :=
C

ρ2νμ(B0)ν

(

1+
K‖u+ L∞(Bc

∞)
ρ

)

and λ := 2(2ν+β+1),

we obtain, for allk ≥ 1,
ak ≤ Dλka1+ν

k−1.

Then Proposition15.4from Appendix yields, for allk ≥ 1,

ak ≤ D−
1
ν

(
D

1
ν λ

1+ν
ν2 a0

)(1+ν)k

.

Hence, if

D
1
ν λ

1+ν
ν2 a0 ≤ 1

2, (10.15)

thenak → 0 ask→ ∞ and, hence,
∫

B∞
(u− ρ)2

+dμ = lim
k→∞

ak = 0. (10.16)

The inequality (10.15) is equivalent to

D ≤ (1
2λ
− 1+ν
ν2 a−1

0 )ν =: ca−ν0

wherec = (1
2λ
− 1+ν
ν2 )ν, that is, to

C

ρ2νμ(B0)ν

(

1+
K‖u+‖L∞(Bc

∞)

ρ

)

≤ ca−ν0 . (10.17)

Givenε > 0, (10.17) can be achieved ifρ satisfies the following conditions:

ρ ≥ εK‖u+‖L∞(Bc
∞) and

C(1+ ε−1)
ρ2νμ(B0)ν

≤ ca−ν0 .



MEAN VALUE INEQUALITY 33

Clearly, the both inequalities here are satisfied for

ρ :=



C

(
1+ ε−1

)

c




1
2ν (

a0

μ(B0)

) 1
2

+ εK‖u+‖L∞(Bc
∞).

Choosingρ as here we obtain by (10.16) that

esup
B∞

u ≤ ρ,

which is equivalent to (10.1). �

The next statement provides a multiplicative form of the mean value inequality (2.19).

Corollary 10.3. Under the hypotheses of Theorem10.1, we have also

esup
1
2 B

u ≤ CSθmax{S,T}1−θ, (10.18)

whereθ := 2ν
1+2ν and

S :=

(
1
μ(B)

∫

B
u2dμ

)1/2

and T := K‖u+‖L∞(( 1
2 B)c).

In particular, we have
(VD) + (FKν) + (Gcap) + (TJ)⇒ (10.18).

Proof. Applying (2.19), we have

esup
1
2 B

u ≤ C(1+ ε−
1
2ν )S + εT.

Let us chooseε to satisfy the equation

Cε−
1
2νS = εT,

that is,

ε =
(CS

T

) 2ν
1+2ν

=

(CS
T

)θ
.

Then we obtain

esup
1
2 B

u ≤ CS+ 2εT = CS+ 2
(CS

T

)θ
T ≤ C′Sθmax{S1−θ,T1−θ},

thus proving (10.18). �

11. Lemma of Growth

Definition 11.1. We say that condition (LG) (Lemma of Growth) holds if there exist some numbersε0, σ, η ∈
(0,1) such that, for any ballB := B(x0,R) with 0 < R < σR and for any functionu ∈ F ′ ∩ L∞ that is
superharmonic inB and is non-negative inM, the following is true: if, for somea > 0,

μ(B∩ {u < a})
μ(B)

≤ ε0, (11.1)

then
einf

1
2 B

u ≥ ηa. (11.2)

(see Fig.6).

We mention that all constantsε0, σ, η in (LG) must be independent ofa, B,u. The following statement is
the main result of this section.

Lemma 11.2(Lemma of growth). If the mean value inequality(10.18) holds, then also(LG) is also satisfied.
Consequently, we have

(VD) + (Gcap) + (FK) + (TJ) ⇒ (LG).
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Figure 6. Illustration to Definition11.1

Proof. The idea is to use the fact that the function1u+ε is subharmonic forε > 0 and to apply the mean value
inequality (10.18) to this function.

Let us fix a constantε > 0 to be specified later on and choose a functionF ∈ C2(R) such that

F(t) =
1

t + ε
for all t ≥ −

ε

2
and

sup
R
|F′| < ∞, inf

R
F′′ ≥ 0, sup

R
F′′ < ∞.

(see Fig.7).

Figure 7. FunctionF(t)

Let us prove thatF(u) is subharmonic inB. By Proposition9.1, F(u) ∈ F ′ ∩ L∞. We need to verify that,
for any 0≤ φ ∈ F (B) ∩ L∞,

E(F(u), φ) ≤ 0. (11.3)

By Proposition9.1we have also thatF′(u)φ ∈ F ′ ∩ L∞ and

E(F(u), φ) ≤ E(u, F′(u)φ). (11.4)

By Proposition15.1(i), (iii ) we haveF′(u) ∈ F ′ ∩ L∞ and

F′(u)φ ∈ F (B).

Sinceu is superharmonic inB andF′(u) ≤ 0 (becauseu ≥ 0), we obtain

E(u, F′(u)φ) ≤ 0,

which together with (11.4) yields (11.3).
Applying the mean value inequality (10.18) to subharmonic functionF(u), we obtain

esup
1
2 B

F(u) = esup
1
2 B

(u+ ε)−1 ≤ CSθεmax(Sε,Tε)
1−θ ,

where

Sε =

(

−
∫

B
F(u)2dμ

)1/2

=

(

−
∫

B
(u+ ε)−2dμ

)1/2

,

Tε = ‖F(u)‖L∞(( 1
2 B)c) = ‖(u+ ε)−1‖L∞(( 1

2 B)c).
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Hence, it follows that

einf
1
2 B

u ≥
C−1

Sθεmax(Sε,Tε)1−θ
− ε. (11.5)

SinceSε ≤ ε−1 andTε ≤ ε−1, we have

max(Sε,Tε)
1−θ ≤ ε−(1−θ). (11.6)

On the other hand, by the hypothesis (11.1), we have

S2
ε = −

∫

B
(u+ ε)−2dμ

=
1
μ(B)

(∫

B∩u<a}
+

∫

B∩{u≥a}

)

(u+ ε)−2dμ

≤
1
ε2
μ(B∩ {u < a})
μ(B)

+ (a+ ε)−2

≤
ε0

ε2
+ (a+ ε)−2.

Now let us chooseε so that
ε0

ε2
= (a+ ε)−2,

that is,
ε :=

a

ε−1/2
0 − 1

> 0. (11.7)

With this choice ofε, we have

S2
ε ≤

2ε0
ε2
. (11.8)

Therefore, plugging (11.8), (11.6) into (11.5) and using (11.7), we obtain

einf
1
2 B

u ≥
C−1

(
2ε0
ε2

)θ/2
ε−(1−θ)

− ε

=

(
C−1

(2ε0)θ/2
− 1

)

ε

=

(
C−1

(2ε0)θ/2
− 1

)
a

ε−1/2
0 − 1

= ηa,

whereη is defined by

η =

(
C−1

(2ε0)θ/2
− 1

)
1

ε−1/2
0 − 1

> 0,

assuming thatε0 > 0 is sufficiently small. �

12. Mean exit time

In this section we will obtain upper and lower estimates ofmean exit timefrom a metric ball. Our
approach is as follows: the upper estimate of the mean exit time follows directly from the Faber-Krahn
inequality, while the lower bound follows from the Lemma of Growth, which is the most difficult part of
this argument.

For any open setΩ ⊂ M, let {PΩ
t } be the heat semigroup of the Dirichlet form (E,F (Ω)). For any

f ∈ L2(Ω), the functiont 7→ PΩ
t f is continuous as a mapping from [0,∞) to L2(Ω), which allows to

integratePΩ
t f in t as anL2-valued function. Define theGreen operator GΩ by

GΩ f :=
∫ ∞

0
PΩ

t f dt

for any 0≤ f ∈ L2(Ω). The functionGΩ f takes values in [0,∞]. The monotonicity ofGΩ f in f allows us
to extend this operator to any non-negativef ∈ L2

loc(Ω), in particular, tof ≡ 1.
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For any non-empty subsetΩ of M, denote

EΩ := GΩ1 =

∫ ∞

0
PΩ

t 1Ωdt. (12.1)

The functionEΩ is called themean exit timefrom the setΩ. The valueEΩ(x) has the following probabilistic
meaning: it is the expectation of the exit time fromΩ of the Hunt processXt, associated with (E,F ), that
starts atx (see Fig.8).

Figure 8. The probabilistic meaning:EΩ(x) = ExτΩ whereτΩ = inf {t ≥ 0 : Xt < Ω}

Next, we introduce conditions (E≤), (E≥) and (E).

Definition 12.1. We say that condition (E≤) holds, if there exist constantsδ, C > 0 such that, for all balls
B ⊂ M of radius< δR,

esup
B

EB ≤ CW(B). (12.2)

We say that condition (E≥) holds, if there exists a constantC > 0 such that, for all ballsB ⊂ M of radius
< R,

einf
1
4 B

EB ≥ C−1W(B)). (12.3)

We say that condition (E) holds if both conditions (E≤) and (E≥) are satisfied.

The following gives upper bound ofEB on any ballB by using the Faber-Krahn inequality only.

Lemma 12.2. We have
(FK)⇒ (E≤).

Proof. Let B := B(x0,R) with R< σRwhereσ ∈ (0,1) is the constant form condition (FK). We are to prove
that

esup
B

EB ≤ CW(B) (12.4)

for constant someC > 0. This inequality was proved in [28, Theorem 9.4, p.1542] assumingthatR = ∞
andW(x0,R) = W(R). However, the same argument not only works for a generalW(x0,R) whenR= ∞, but
also allows to obtain (12.4) for balls of radiusR< σRwhenR< ∞. Hence, (E≤) holds true withδ := σ. �

In order to obtain a lower bound of the mean exit time, we use the following statement.

Proposition 12.3. Let a function u∈ F ′ ∩ L∞ be non-negative in an open set B⊂ M andφ ∈ F ∩ L∞ be

such thatφ = 0 in Bc. Fix anyλ > 0 and set uλ := u+ λ. Thenφ
2

uλ
∈ F ∩ L∞ and

E(u,
φ2

uλ
) ≤ 3E(φ, φ). (12.5)

Proof. Let us first show thatφ
2

uλ
∈ F ∩ L∞. Indeed, asu is non-negative inB andφ = 0 in Bc, the function

φ2

uλ
is well defined andφ

2

uλ
= F(u)φ2 on M, whereF is a function onR given by

F(t) :=
1
|t| + λ

.

Since this function is Lipschitz (with Lipschitz constantλ−2) andu ∈ F ′ ∩ L∞, we obtain by Proposition
15.1(i)

F(u) ∈ F ′.



MEAN VALUE INEQUALITY 37

Sinceφ ∈ F ∩ L∞, we have
φ2 ∈ F ∩ L∞,

(see [17, Theorem 1.4.2(ii), p.28]). Since alsoF(u) ∈ L∞, it follows by Proposition15.1(ii ) that

F(u)φ2 ∈ F ∩ L∞.

Let us now prove (12.5). Indeed, it follows from [22, Lemma 3.7, p. 469] that

E(J)(u,
φ2

uλ
) ≤ 3E(J)(φ, φ), (12.6)

On the other hand, by using the product and chain rules ((5.1) and (5.2)) as well as the Cauchy-Schwarz
inequality, we obtain

E(L)(u,
φ2

uλ
) =

∫

M
dΓ(L)(u,

φ2

uλ
)

=

∫
2φ
uλ

dΓ(L)(u, φ) −
∫
φ2

u2
λ

dΓ(L)(u,uλ)

≤
1
2

∫
φ2

u2
λ

dΓ(L)(u,u) + 2
∫

dΓ(L)(φ) −
∫
φ2

u2
λ

dΓ(L)(u,u)

= −
1
2

∫
φ2

u2
λ

dΓ(L)(u) + 2E(L)(φ, φ)

≤ 2E(L)(φ, φ).

From this and (12.6), we conclude that

E(u,
φ2

uλ
) = E(L)(u,

φ2

uλ
) + E(J)(u,

φ2

uλ
)

≤ 2E(L)(φ, φ) + 3E(J)(φ, φ) ≤ 3E(φ, φ),

thus proving (12.5). �

Let us recall the capacity condition (Cap≤) from Definition 2.2: it is satisfied if there exists a constant
C > 0 such that for all ballsB of radiusR< R

cap(12B, B) ≤ C
μ(B)
W(B)

, (12.7)

where the capacity cap(A,U) is defined by (2.7). By (2.12), the condition (Cap≤) follows from (Gcap).

Lemma 12.4. We have
(VD) + (LG) + (Cap≤)⇒ (E≥).

Proof. Let B := B(x0,R) with 0 < R< R. Denote

u := EB.

Note thatu is harmonic inB and is non-negative inM. We need to show that exists a constantC > 0 such
that

einf
1
4 B

u ≥ C−1W(B). (12.8)

Let us first assume that 0< R< σR, where constantσ comes from condition (LG). For anya > 0 we have

μ(
1
2

B∩ {u < a}) ≤ a
∫

1
2 B

1
u

dμ = aμ(
1
2

B)−
∫

1
2 B

1
u

dμ

where we use the fact thatu ≥ 0 in M. Choose a numbera such that

a−
∫

1
2 B

1
u

dμ = ε0,
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whereε0 > 0 is the constant from Lemma of Growth (LG). It follows that

μ(1
2B∩ {u < a})

μ(1
2B)

≤ a−
∫

1
2 B

1
u

dμ = ε0

so that (11.1) is satisfied, withB being replaced by12B. Applying Lemma11.2, we obtain

einf
1
4 B

u ≥ ηa = ηε0


−
∫

1
2 B

1
u

dμ



−1

. (12.9)

By (Cap≤) there is a cutoff functionφ of the pair (12B, B) such that

E(φ, φ) ≤ 2 cap(
1
2

B, B) ≤ 2C
μ(B)
W(B)

. (12.10)

For anyλ > 0 set
uλ := u+ λ.

We have by (12.5) and (12.10) that

E(u,
φ2

uλ
) ≤ 3E(φ, φ) ≤ 6C

μ(B)
W(B)

. (12.11)

On the other hand, sinceφ
2

uλ
∈ F (B) ∩ L∞ andφ = 1 in 1

2B, we see that

E(u,
φ2

uλ
) = (1,

φ2

uλ
) =

∫

B

φ2

uλ
dμ ≥

∫

1
2 B

1
uλ

dμ.

From this and using (12.11), it follows that
∫

1
2 B

1
uλ

dμ ≤ 6C
μ(B)
W(B)

,

which yields asλ→ 0 that ∫

1
2 B

1
u

dμ ≤ 6C
μ(B)
W(B)

.

Therefore, combining (12.9) and the above inequality, we obtain

einf
1
4 B

u ≥ ηε0


−
∫

1
2 B

1
u

dμ



−1

≥ ηε0
W(B)
6C

=: c0W(B). (12.12)

Now we extend the inequality (12.12) that was proved for ballsB of radius< σR to all ballsB of radius
R < R. Indeed, assumethatR < ∞ andR ∈ [σR,R). Then there exists an at most countable sequence of
balls {Bi} that coversB and such that each ballBi = B(xi , r) has a centerxi ∈ 1

4B and the radiusr = 1
8σR.

Applying (12.12) to balls 4Bi of radius 4r < σRand then using (2.5), we obtain

einf
Bi

E4Bi ≥ c0W(4Bi) ≥ c0C
′
(
4r
R

)β
W(B) ≥ C−1W(B).

Observing that

d(x0, xi) + 4r <
1
4

R+
1
2
σR< R,

we obtain that 4Bi ⊂ B whence it follows that

einf
Bi

EB ≥ einf
Bi

E4Bi ≥ C−1W(B).

Since1
4B is covered by{Bi}, we obtain (12.8). �

Combining Lemmas12.2and12.4, we obtain the following.

Corollary 12.5. We have
(VD) + (FK) + (LG) + (Cap≤)⇒ (E).
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13. Survival estimate and (GU)

We introduce condition (S), called thesurvival estimate.

Definition 13.1. We say that condition (S) holds if there exist two small constantsε, δ ∈ (0,1) such that, for
all ballsB of radius< R,

einf
1
4 B

PB
t 1B ≥ ε for all 0 < t ≤ δW(B) (13.1)

The valuePB
t 1B(x) has the following probabilistic meaning: it is equal to the probability that the process

Xt started atx stays insideB until time t; equivalently, assuming the killing conditions inBc, this means the
probability of survival up to timet.

Let us define also the following modification of (S).

Definition 13.2. We say that condition (S+) holds if there exist two small constantsε, c in (0,1) such that
for all ballsB of radius< Rand for allt > 0,

einf
1
4 B

PB
t 1B ≥ ε −

ct
W(B)

for all t > 0. (13.2)

Let us emphasize that in the condition (S+) there is no restriction on the range of timet unlike that in (S).

Remark 13.3. By a standard covering arguments (see, for example, the second part in the proof of Lemma
12.4) and (2.5), one can extend (13.1) to all balls of radius< C0Rwith anyC0 ≥ 1 by adjusting the value of
δ accordingly. The same observation is valid also for (S+).

Proposition 13.4. We have
(E)⇒ (S+)⇒ (S).

Proof. Let B be a ball with radiusR < δR, whereδ ∈ (0,1] is the constant from condition (E≤). Note that
the following inequality is true in general: for allt > 0 andμ-almost allx ∈ B,

PB
t 1B(x) ≥

(EB(x) − t)+
‖EB‖∞

where the functionEB is defined by (12.1) (see for example [10, formula (10.3)]). From this and (E) we
have

einf
1
4 B

PB
t 1B(x) ≥ einf

1
4 B

(EB(x) − t)+
CW(B)

≥
C−1W(B) − t

CW(B)
= C−2 −

C−1t
CW(B)

,

thus showing that (13.2) holds withε = C−2 ∈ (0,1) andc = C−1 ∈ (0,1). Moreover, using a standard
covering arguments (see, for example, the second part in the proof of Lemma12.4) and (2.5), one can
extend (13.2) to all balls of radius< R. Hence, we have proved the implication (E)⇒ (S+).

Finally, the implication (S+)⇒ (S) is trivial. �

The following result is an analogue of [22, Lemma 2.8, p. 451], which in turn was motivated by the argu-
ment in [1, Lemma 5.4]. However, the present proof has required some modifications due to the dependence
of W(x, r) on space variablex.

Lemma 13.5. If every metric ball of radius smallerthan R has finite measure then

(S)⇒ (GU).

Proof. We will prove that there exists a numberκ ≥ 1 such that, for any pair of ballsB0 := B(x0,R),
B := B(x0,R+ r) with x0 ∈ M and 0< R< R+ r < R, there exists a functionφ ∈ κ-cutoff(B0, B) such that,
for all u ∈ F ′ ∩ L∞,

E(u2φ, φ) ≤
κ2

inf x∈B0 W(x, r)

∫

B
u2φdμ, (13.3)

which will settle (GU) sinceB0 ⊂ B. Fix λ > 0 to be determined later, and consider the function

GB
λ1B :=

∫ ∞

0
e−λtPB

t 1Bdt.



40 GRIGOR’YAN, E. HU, AND J. HU

Note thatGB
λ1B ∈ F (B) by [17, Theorem 4.4.1]. For any 0≤ f ∈ L2(B), we have

(GB
λ1B, f ) =

∫ ∞

0
e−λt

(
PB

t 1B, f
)
dt

≤
∫ ∞

0
e−λtdt ∙ ‖ f ‖1

= λ−1‖ f ‖1,

which implies that
GB
λ1B ≤ λ

−1, μ-a.e. onB.

Let us establish a lower bound ofGB
λ1B in B0. Fix a pointx ∈ B0 and consider a ball̃B := B(x, r) ⊂ B. By

condition (S), we have, for any 0≤ f ∈ L2(1
4 B̃),

(GB
λ1B, f ) =

∫ ∞

0
e−λt

(
PB

t 1B, f
)
dt

≥
∫ δW(x,r)

0
e−λt

(
PB̃

t 1B̃, f
)
dt

≥
∫ δW(x,r)

0
e−λtdt ∙ ε‖ f ‖1

= λ−1
(
1− e−λδW(x,r))

)
ε‖ f ‖1

≥ λ−1
(
1− e−λδ inf x∈B0 W(x,r)

)
ε‖ f ‖1,

where the constantsε, δ are those from (S). Moreover, sinceB0 can be covered by a family of countable
balls like 1

4 B̃ and f is arbitrary, we obtain that

GB
λ1B ≥ λ

−1
(
1− e−λδ inf x∈B0 W(x,r)

)
ε μ-a.e. onB0.

Settingλ := (inf x∈B0 W(x, r))−1 andκ := (1− e−δ)−1ε−1, we see that

GB
λ1B




≤ inf x∈B0 W(x, r), μ-a.e. onB,

≥ κ−1 inf x∈B0 W(x, r), μ-a.e. onB0.

Define the function

φ :=
κGB
λ1B

inf x∈B0 W(x, r)
and observe that it satisfiesφ ∈ F (B), 0 ≤ φ ≤ κ, φ|B0 ≥ 1 andφ|Bc = 0. That is,φ ∈ κ-cutoff(B0, B).

Let us prove thatφ satisfied (13.3). By Proposition15.1(iii ), we haveu2φ ∈ F (B) for anyu ∈ F ′ ∩ L∞.
Using the notation

Eλ(w, v) := E(w, v) + λ(w, v)

for w, v ∈ F and applying the identity
Eλ(w,G

B
λv) = (w, v)

for w ∈ F (B) andv ∈ L2(B) (see [17, Theorem 4.4.1]), we obtain that

E(u2φ, φ) ≤ Eλ(u
2φ, φ)

=
κ

inf x∈B0 W(x, r)
Eλ(u

2φ,GB
λ1B)

=
κ

inf x∈B0 W(x, r)
(u2φ, 1B)

=
κ

inf x∈B0 W(x, r)

∫

B
u2φ dμ

≤
κ2

inf x∈B0 W(x, r)

∫

B
u2dμ,

which finishes the proof. �
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14. A full circle of equivalences

Finally, we can prove Theorem2.10that, in fact, is contained in the next Theorem14.1 that combines
together all the results of this paper.

Theorem 14.1. Let (E,F ) be a regular Dirichlet form without killing part. Assume that(VD), (FK) and
(TJ) are satisfied. Then we have the following equivalences:

(Gcap)⇔ (ABB) + (Cap≤)

⇔ (ABB1/8) + (Cap≤)

⇔ (EP) + (Cap≤)

⇔ mean value inequality (2.19) + (Cap≤)

⇔ (LG) + (Cap≤)

⇔ (E)

⇔ (S+)⇔ (S)

⇔ (GU).

Proof. To prove the implications in the direction of “⇒”, we use the following implications:

(Gcap) + (TJ)⇒ (ABB) (Lemma6.2)

(Gcap)⇒ (Cap≤) (cf. (2.12))

(ABB) + (TJ)⇒ (ABB1/8) (Lemma7.1)

(ABB1/8)⇒ (EP) (Lemma8.2)

(EP) + (VD) + (FK) + (TJ)⇒ mean value inequality (2.19) (Theorem10.1)

mean value inequality (2.19)⇒ (LG) (Corollary10.3and Lemma11.2)

(LG) + (Cap≤) + (VD) + (FK)⇒ (E) (Corollary12.5)

(E)⇒ (S+)⇒ (S) (Proposition13.4)

(S) + (VD)⇒ (GU) (Lemma13.5).

Finally, the reverse implication
(Gcap)⇐ (GU)

is trivial. Combining all the above implications, we complete the circle and the proof. �

Corollary 14.2. Let(E,F ) be a regular Dirichlet form without killing part. Assume that(VD), (Gcap), (FK)
and (TJ) are satisfied. Then, the cutoff function in the conditions(ABB), (ABBζ), (EP) can be universal,
that is, the cutoff function can be independent of the function u in the above conditions.

Proof. Under the conditions (VD), (FK) and (TJ), we have (Gcap)⇔ (GU) by Theorem14.1. Note that the
cutoff functionφ in (GU) is universal. Using (GU) instead of (Gcap) in the proofs of (ABB), (ABBζ), and
(EP), we obtain universalφ also in these conditions. �

15. Appendix

In this appendix, we collect some facts that have used in this paper.

Proposition 15.1. Let (E,F ) be a regular Dirichlet form in L2. Then the following statements are true.

(i) If u ∈ F ′ and F : R 7→ R is a Lipschitz function, then F(u) ∈ F ′.
(ii ) If u ∈ F ′ ∩ L∞ and v∈ F ∩ L∞ then uv∈ F ∩ L∞

(iii ) LetΩ be an open subset of M. If u∈ F ′ ∩ L∞ and v∈ F (Ω) ∩ L∞, then uv∈ F (Ω).

Proof. We repeat the arguments of [22, PropositionA.2 in Appendix] with minor modifications. Since
u ∈ F ′, we haveu = w+ a ∈ F ′, wherew ∈ F anda ∈ R.

(i) Denote byL the Lipschitz constant ofF and consider the function

f (t) =
F(t) − F(a)

L
.
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Since f (w) is a normal contraction ofw, we obtain by [17, formula (E.4)′′, p. 5] that f (w) ∈ F . It follows
that

F(u) = L f (u) + F(a) ∈ F ′.

(ii ) Clearly, we havew ∈ F ∩ L∞ which implies by [17, Theorem 1.4.2, p. 28] thatvw ∈ F ∩ L∞.
Consequently,

uv= vw+ av ∈ F ∩ L∞.

(iii ) Let ṽ andw̃ be quasi-continuous modifications ofv andw, respectively. Theñvw̃ is a quasi-continuous
modification ofvw. Sincev ∈ F (Ω), we obtain

ṽ w̃ = 0 q.e. inΩc.

It follows thatvw ∈ F (Ω) and
uv= vw+ av ∈ F (Ω).

�

Recall the notion of a regularE-nest(cf. [17, Section2.1, p. 66-69]). For an open setU ⊂ M, define
1-capacity ofU by

Cap1(U) := inf
{
E(u) + ‖u‖22 : u ∈ F andu ≥ 1 μ-almost everywhere onU

}
(15.1)

(noting that Cap1(U) = ∞ if the set{u ∈ F : u ≥ 1 μ-a.e. onU} is empty). An increasing sequence of closed
subsets{Fk}∞k=1 of M is called anE-nestof M if

lim
k→∞

Cap1(M \ Fk) = 0.

An E-nest{Fk} is said to beregular with respect toμ if for eachk,

μ(U(x) ∩ Fk) > 0 for anyx ∈ Fk and any open neighborhoodU(x) of x.

For anE-nest{Fk}∞k=1, let

C({Fk}) :=
{
u is a function onM : u|Fk is continuous for eachk

}
.

Definition 15.2. A function u : M 7→ R ∪ {∞} is said to bequasi-continuousif and only if u ∈ C({Fk}) for
someE-nest{Fk}∞k=1.

Proposition 15.3. Let {Fk} be aμ-regularE-nest and u∈ C({Fk}). Then for any open set U⊂ M

sup
U∩F

u = esup
U

u

where F:=
⋃

k≥1
Fk.

Proof. Note thatμ(Fc) = 0 since Cap1(Fc) = 0 where the 1-capacity Cap1 is defined in (15.1). Hence,

M0 := esup
U

u = esup
U∩F

u ≤ sup
U∩F

u.

Let us prove that supU∩F u ≤ M0. Indeed, by definition ofM0, there is a measurable setE ⊂ U ∩ F with
μ(E) = 0 such that

M0 = esup
U∩F

u = sup
(U∩F)\E

u

It suffices to show that
u(x) ≤ M0 for anyx ∈ E,

since if so, then
sup
U∩F

u =
(

sup
(U∩F)\E

u
)
∨

(
sup

E
u
)
≤ M0.

To do this, suppose that there were a pointx ∈ E ⊂ U ∩ F such thatu(x) > M0. Then there would exist an
integerk ≥ 1 such that

x ∈ U ∩ Fk.

Sinceu|Fk is continuous, one can find an open neighborhoodU(x) of x such that

u(y) > M0 for everyy ∈ U(x) ∩ Fk.
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Without loss of generality, we assume thatU(x) ⊂ U. Since{Fk} is μ-regular, we have

μ(U(x) ∩ Fk) > 0,

which implies, together with the fact thatU(x) ∩ Fk ⊂ U ∩ F, that

esup
U∩F

u > M0 = esup
U∩F

u,

leading to a contradiction. The proof is complete. �

The following iteration is elementary.

Proposition 15.4. Let {ak}∞k=0 be a sequence of non-negative numbers such that

ak ≤ Dλka1+ν
k−1 for k = 1,2, ∙ ∙ ∙ (15.2)

for some constants D, ν > 0 andλ ≥ 1. Then for any k≥ 0,

ak ≤ D−
1
ν

(
D

1
ν λ

1+ν
ν2 a0

)(1+ν)k

. (15.3)

Proof. Settingq := 1+ ν, we obtain by iterating (15.2)

ak ≤ Dλkaq
k−1 ≤ (Dλk)

(
Dλk−1aq

k−2

)q
≤ ∙ ∙ ∙

≤ (D1+q+∙∙∙+qk−1
)(λk+(k−1)q+∙∙∙+qk−1

)aqk

0

= D
qk−1
q−1 λ

qk+1−(k+1)q+k

(q−1)2 aqk

0

≤ D
qk−1
q−1 λ

qk+1

(q−1)2 aqk

0

where we have used the elementary fact that

k+ (k− 1)q+ ∙ ∙ ∙ + qk−1 =
qk+1 − (k+ 1)q+ k

(q− 1)2
≤

qk+1

(q− 1)2
.

Therefore,

ak ≤ D
−1
q−1

(
D

1
q−1λ

q

(q−1)2 a0

)qk

,

thus proving (15.3). The proof is complete. �

The following was proved in [34, Lemma 2.12].

Proposition 15.5. Let (E,F ) be a Dirichlet form in L2. If

fn
L2

→ f and sup
n
E( fn) < ∞,

then f ∈ F . Besides, there exists a subsequence, still denoted by{ fn}, such that fn
E
⇀ f weakly, that is,

E( fn, ϕ)→ E( f , ϕ) as n→ ∞

for anyϕ ∈ F . Moreover, there exists a subsequence{ fnk} such that its Cesaro mean1n
∑n

k=1 fnk converges
to f in E1-norm. Finally, we have

E( f , f ) ≤ lim inf
n→∞

E( fn, fn).
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