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GLOBAL GEOMETRICAL OPTICS APPROXIMATION TO THE HIGH
FREQUENCY HELMHOLTZ EQUATION WITH

DISCONTINUOUS MEDIA∗

CHUNXIONG ZHENG†

Abstract. The global geometrical optics method is a new semi-classical approach for the high
frequency linear waves proposed by the author in [33]. In this paper, we rederive it in a more concise
way. It is shown that the right candidate of solution ansatz for the high frequency wave equations is
the extended WKB function, distinct from the WKB function used in the classical geometrical optics
approximation. A new and the main contribution of this paper is an interface analysis for the Helmholtz
equation when the incident wave is of extended WKB-type. We derive asymptotic expressions for the
reflected and/or transmitted propagating waves in the general case. These expressions are valid even
when the incident rays include caustic points.
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1. Introduction
Numerical simulation of high frequency waves is a ubiquitous task in many applied

fields such as laser optics [26], underwater acoustics [27], and seismic tomography [22].
The feature of high frequency presents a great numerical challenge to any domain-based
direct method, mainly because a large number of grid points are necessarily involved
to ensure the basic accuracy requirement. The pollution effect [3] due to numerical
dispersion makes this situation even worse. The key ingredient to successfully applying
a direct method is to design good preconditioners for the resulting indefinite algebraic
system. However, it turns out that most preconditioning techniques, which work ef-
ficiently for the discrete elliptic equations, generally perform poorly for the discrete
time harmonic wave equations, especially in the high frequency regime [6]. Designing
a preconditioner whose performance is independent of both mesh size and frequency
parameter has become an active research topic over the last decade. The readers are
referred to [6] for a review and to [4, 5, 23, 29] for some successful examples.

There is another class of methods used to compute the high frequency wavefield.
These methods resort to some asymptotic ansatz and present approximate but simpler
models valid in the high frequency regime. The simplest such kind of method is the
geometrical optics method [13]. It is intended to seek a solution of the following WKB-
ansatz:

u(x) =Aε(x)exp[iS(x)/ε], Aε=

∞∑
j=0

(−iε)jAj , (1.1)

where 1/ε relates to the large frequency parameter, S is the real-valued phase func-
tion, and the Aj are the amplitude functions. Inserting (1.1) into the governing wave
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equation, say,

H(x,−iε∇)u= 0, x∈Rn, (1.2)

and equating the different powers of ε, one derives a Hamilton–Jacobi equation for the
phase

H(x,∇S(x)) = 0 (1.3)

and a sequence of transport equations for the amplitudes Aj which can be solved suc-
cessively after the phase is uniquely determined. In principle, the Hamilton–Jacobi
equation (1.3) can be solved by the method of characteristics. However, this solution is
not ensured to be valid in a sufficiently large domain that encloses the region of physical
interest. Caustics, around which rays collapse and amplitudes blow up, would generally
come into being. In this case, the classical geometrical optics method fails to present a
globally valid asymptotic approximation.

Actually, the caustics problem stems from the rigid choice of position representation
for the wavefield. When projected to the real space, the Lagrangian manifold induced
by the Hamiltonian flow becomes singular at caustics. Equivalently, the real space is no
longer a valid representative coordinate Lagrangian plane in the presence of caustics. It
is known that for each point of a given Lagrangian manifold, there exists a neighborhood
which admits a representative coordinate Lagrangian plane. Based on this fact, Maslov
developed the canonical operator method [19]. This method presents an asymptotic
approximation of the wavefield with uniform accuracy and thus theoretically overcomes
the difficulty of caustics. However, a practical but inevitable issue in Maslov’s method
is setting up a specific partition of unity which fulfills the requirement of single-valued
projection. This is, of course, case-dependent, and to solve it, one needs to understand
the structure of the associated Lagrangian manifold. This task is by no means a trivial
matter in multiple dimensions. From the computational point of view, a method blind
to the Lagrangian manifold is much more preferable.

Along this line, the Gaussian beam approach is a successful class of semi-classical
methods which resolve the high frequency wavefield with uniform accuracy. This ap-
proach was initiated in 1960’s (see [2]). Historically, this approach can be classified into
two subcategories, thawed-type (see [8]) and frozen-type (see [9]), depending on whether
the beam width is tunable or not during the time evolution. A common point shared by
all Gaussian beam approaches is that the central curve of each Gaussian beam is exactly
a specific classical ray which obeys the Hamiltonian system. The difference lies in their
methodology of function approximation. In the thawed-type approaches, each individ-
ual beam is an asymptotic solution of the governing wave equation. This renders the
beam summation as a suitable asymptotic solution in a large domain. Comparatively,
in the frozen-type approaches, each individual beam is not an asymptotic solution. The
accuracy of the beam summation is achieved by a delicate choice of prefactor which
balances the contribution of each single beam. The Gaussian beam approach is easy
to implement, straightforward to obtain higher accuracy [24, 12], and elegant from the
methodological point of view. In recent years, there have been many papers addressing
the accuracy analysis of this method [20, 14, 15, 16]. Besides, the Eulerian formulation
of Gaussian beam approach has been systematically developed [10, 11, 28].

From the computational point of view, Gaussian beam approaches have shortcom-
ings. For thawed-type methods, the beam width expands as the rays evolve. For a long
time or large domain simulation, re-initialization is generally needed to ensure the accu-
racy of numerical solutions, and so far this treatment can only be performed numerically



C. ZHENG 1951

(see [1, 25, 31]). For frozen-type methods, the approximate solutions are expressed as
an oscillatory integral defined on a manifold of much higher dimension. For example,
the dimension of the integral manifold involved in the well-known Herman–Kluk ap-
proximation [9] to the Schrödinger equation is 3N for a problem with N degrees of
freedom. Rousse [21] proposed a new frozen-type semi-classical approximation to the
Schrödinger equation. However, the dimension of his integral manifold, though smaller,
is still 2N . Similar things happen in the frozen-type Gaussian beam approach for the
wave equation and strictly hyperbolic system studied by Lu and Yang [17, 18].

Recently, the author proposed a new semi-classical approximation, the global ge-
ometrical optics method [33], for solving general scalar linear equations in the high
frequency regime. This method can be viewed as an improvement of the classical geo-
metrical optics method. It is blind to the structure of underlying Lagrangian manifold
and presents a semi-classical approximation of the wavefield with uniform asymptotic
accuracy. Analogous to the Gaussian beam approaches, the wavefield given by the global
geometrical optics method is expressed as an integral of Gaussian functions parameter-
ized by some manifold. However, this new semi-classical method owns the merits of both
thawed-type and frozen-type methods. On the one hand, the width of Gaussian func-
tions is fixed in frozen-type methods; thus there is no difficulty from beam spreading.
On the other hand, the dimension of the integral manifold is minimal in the thawed-type
method: it is N for problems with N degrees of freedom.

In this paper, we rederive the global geometrical optics approximation for general
linear wave equations in a manner analogous to, but more concise than, our deriva-
tion in [33]. We introduce a new concept—the extended WKB function which includes
the classical WKB function as a subset. We show that the right candidate of solution
ansatz for the high frequency wave equations is the extended WKB function instead of
the classical WKB function which results in the difficulty of caustics. Another new and
the main contribution of this paper is an interface analysis for the Helmholtz equation
when the incident wave is of extended WKB-type. This research is fundamental when
extending and applying the global geometrical optics approximation to more compli-
cated piecewise smooth media problems such as seismic migration in computational
geophysics. In the case when the wave is totally reflected, or partially reflected and
partially transmitted, we show that the split waves are also of extended WKB-type. A
subtle issue in this interface analysis is determining geometric factors related to the ge-
ometries of the incident and split manifolds when the incident rays include some caustic
points. These geometric factors are needed to determine the amplitudes of split waves.

The rest of this paper is organized as follows. In Section 2, we introduce basic
notation and collect some results from [33] which are necessary for the later derivation.
In Section 3, we rederive the global geometrical optics approximation for the scalar wave
equations. In Section 4, we perform an asymptotic interface analysis for the Helmholtz
equation, and in Section 5, we discuss some miscellaneous issues related to the global
geometrical optics approximation. Finally, in Section 6, we conclude this paper.

2. Preliminaries
We start this section with a brief explanation of notation and definitions.

- We use IN to denote the identity matrix of dimension N . The canonical symplectic
matrix is denoted by

J2N =

[
0 IN
−IN 0

]
.

The dimension parameter will be omitted whenever it is clear from context.
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- Any plane can be represented by a matrix whose columns vectors constitute a basis
of the plane. We do not distinguish a plane from its specific matrix representation.

- The symplectic inner product in R2N is defined as

[z,z′] = (z,Jz′), ∀z,z′∈R2N .

A plane is Lagrangian if any two column vectors of its representative matrix are
symplectic orthogonal.

- Throughout this paper, unless explicitly specified, we use the subscripts 1 and 2 to
indicate the upper and lower parts of an N -plane in the 2N -dimensional phase space.
This implies that given any N -plane C ∈R2N×N , we have

C=

[
C1

C2

]
, C1,C2∈RN×N .

If detC1 6= 0 and C2C
−1
1 is similar to a real diagonal matrix, the following definition

M(C) = det

√
IN − iC2C

−1
1 (2.1)

is appropriate since there is no ambiguity in the branch choice of the square root func-
tion. In particular, if C is Lagrangian and C1 is invertible, then C2C

−1
1 is symmetric,

and thus M(C) is well-defined.
- Any N -dimensional Lagrangian plane in R2N admits a unitary matrix representation.

Suppose C ∈R2N×N is a matrix representation. Let C=QP be the polar decomposi-
tion and set U =Q1 + iQ2. Then U is unitary.

2.1. Heisenberg group and Weyl quantization. The Heisenberg Lie group
HN is R2N+1 equipped with the group law

(z,s)(z′,s′) = (z+z′,s+s′+[z,z′]/2), ∀z,z′∈R2N , ∀s,s′∈R.

The unitary representation of HN is defined by

ρε(z,s) = exp{i([z,W ]−s)/ε}, W = (x,−iε∇).

Throughtout this paper, we make the convention that ρε(z) =ρε(z,0). For any
f ∈L2(RN ), it is straightforward to verify that (or consult Page 21 in [7])

[ρε(z)f ](x) = exp[−ip(x+q/2)/ε]f(x+q). (2.2)

For any H=H(ω) =H(x,ξ)∈S ′(RNx ×RNξ ) with ω= (x,ξ), the Weyl quantization
of H, denoted by H(W ), is a linear operator determined by

H(W ) =H(x,−iε∇) = (2π)−2N

∫
Ĥ(z)ρε(εz)dz,

where Ĥ indicates the symplectic Fourier transform of H defined by

Ĥ(z) =

∫
H(ω)exp(i[ω,z])dω.
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2.2. Unitary representation of unitary matrix group. The Bargmann
transform Bε is defined by

[Bεf ](ς) =

∫
exp

[
−(2x2−4ςx+ ς2)/4ε

]
f(x)dx, ∀ς ∈CN .

The transform Bε is an isometry from L2(RN ) into the Fock space

FN =

{
F entire

∣∣‖F‖2 = 2N/2(2πε)−3N/2

∫
|F (ς)|2 exp

[
−|ς|2/2ε

]
dς <∞

}
.

The inverse Bargmann transform B−1
ε from FN to L2(RN ) is given by

[B−1
ε F ](x) = 2N/2(2πε)−3N/2

∫
exp

[
−(2x2−4ς̄x+ ς̄2)/4ε

]
exp

[
−|ς|2/2ε

]
F (ς)dς.

Let UN denote the unitary matrix group acting on CN . For any U ∈UN , we define

[TUF ](ς) =F (U†ς), ∀F ∈FN ,

and

µε(U) =B−1
ε TUBε.

Here and hereafter, the symbol † indicates the real transpose operator. Since T is a
unitary representation of UN on the Fock space FN , µε is a unitary representation of
UN on L2(RN ).

In the following, we list some properties of the representation operators ρε and µε.
Their proofs can be found in [33] with some slight formulation differences.

Lemma 2.1. Define the fundamental coherent state function as

φε(x) = (2πε)−N/2 exp
(
−x2/2ε

)
.

For any unitary matrix U ∈UN , it holds that µε(U)φε=φε.

Lemma 2.2. For any U =UR+ iUI ∈UN , z∈R2N , and H ∈S ′(RNx ×RNξ ), it holds that

ρε(z)H(W )ρε(−z) =H(W +z), (2.3)

µε(U
∗)H(W )µε(U) =H(RUW ), (2.4)

where RU is an orthogonal symplectic matrix defined by

RU =

[
UR −UI
UI UR

]
.

Lemma 2.3. Suppose z=z(t) is a smooth curve in R2N and U =U(t) is a smooth curve
in UN . Then it holds that

−iε∂tρε(z) = ([ż,W ]− [z,ż]/2)ρε(z),

−iε∂tµε(U∗) = (WΦW −εtrTI)µε(U∗)/2,
µε(U

∗)ρε(z)(−iε∂t)[ρε(−z)µε(U)] =−[ż,RUW ]−WΦW/2+[z,ż]/2+εtrTI/2.

In the above equations, TI and Φ are given by

TR+ iTI = U̇∗U, Φ =

[
TI TR
−TR TI

]
.
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2.3. Extended WKB function.
Definition 2.4. A (standard) WKB function is an asymptotic series of the form

u(x) = [A(x)+(−iε)A1(x)+ ·· ·]exp[iS(x)/ε], x∈RN .

The Lagrangian manifold associated with a WKB function is the graph of the differential
dS in the phase space R2N . We use the same notation dS to indicate this Lagrangian
manifold; i.e.,

dS={(q,p)|p=∇S(q)}.

A WKB function is said to admit the vanishing derivatives property if

∇S(0) = 0, ∇2S(0) = 0.

The geometric interpretation of the vanishing derivatives property is that the La-
grangian manifold of a WKB function is tangent to the real plane at the origin.

The following formula plays a fundamental role in the classical WKB analysis:

H(W ){A(x)exp[iS(x)/ε]}= exp[iS(x)/ε]

∞∑
j=0

(−iε)jRj [A]. (2.5)

Here H(W ) is the Weyl quantization of the symbol H=H(w) =H(x,ξ). The operators
Rj are linear differential operators of order j, with the first two given by

R0[A] =HA, R1[A] =∇ξH ·∇A+tr
(
∇2
ξH∇2S+∇x∇ξH

)
A/2.

In the above equations, the function H and its derivatives are evaluated at the phase
point (x,∇S(x)).

Definition 2.5. An extended WKB function is an asymptotic series of the form

u(x) =

∫
z∈Λ

[A(z)+(−iε)A1(z)+ ·· ·]exp[iS(z)/ε][ρε(−z)φε](x)dvol, x∈RN ,

where Λ is a Lagrangian manifold in the phase space R2N . The amplitude A (and
Ai) and the (real) phase S are only defined on Λ. Additionally, S is assumed to be a
generating function of the differential 1-form pdq−d(pq)/2 on Λ.

Throughout this paper, we are merely concerned with the first order approximation
of the relevant quantities. In most cases, only the leading order term of the amplitude
series is important. For brevity of notation, we simply use O(ε) to denote the higher-
order terms. The following theorem reveals that the extended WKB function is indeed
an extended concept of the standard WKB function. Its proof combines Theorem 3.2
and Lemma 3.3 in [33], and we omit it here.

Theorem 2.6. Given an extended WKB function

u(x) =

∫
z∈Λ

[A(z)+O(ε)]exp[iS(z)/ε][ρε(−z)φε](x)dvol.

For any z= (q,p)∈ suppA, let U be a unitary matrix representation of the tangent plane.
Then µε(U

∗)ρε(z)u is a local WKB function with the vanishing derivatives property, and
it holds that

[µε(U
∗)ρε(z)u](0) = [A(z)+O(ε)]exp[iS(z)/ε] .
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Furthermore, if Λ admits a local one-to-one projection onto the real plane, then we have

ϕ(q) = [A(z)M(C(z))+O(ε)]exp{i[S(z)+pq/2]/ε} .

Here C(z)∈R2N×N is any matrix representation of the tangent plane of Λ at the point
z.

3. Global geometrical optics approximation
In this section, we derive the global geometrical optics approximation to the high

frequency scalar wave equation in its general form

H(W )u= 0, W = (x,−iε∇). (3.1)

Here H(W ) denotes the Weyl quantization of the symbol H(w) =H(x,ξ) with w= (x,ξ).
The zero level set of H is denoted by N . Suppose Λ0⊂N is an isotropic manifold
of dimension N−1 in the phase space R2N . If the Hamilton vector field J∇H(z) is
transversal to Λ0, then the Hamiltonian system

ż=J∇H(z), (3.2)

equipped with the initial data

z|t=0 =z0∈Λ0,

renders a Lagrangian manifold embedded in N . Let us denote this Lagrangian manifold
by Λ. Suppose the Hamiltonian H is specified in a way such that Λ is topologically
isomorphic to Λ0×R. Let y be a coordinate of Λ0. Then Λ is parameterized by (t,y).
Therefore, the Jacobian C=∂z/∂(t,y) determined by

Ċ=J∇2H(z)C, C|t=0 =
[
J∇H(z0) ∂yz0

]
(3.3)

forms a matrix representation of the tangent plane of Λ at the point z=z(t,y). Let

C=QP, Q∈R2N×N , P ∈RN×N (3.4)

be the polar decomposition of C; i.e.,

P =
(
C†C

)1/2
, Q=C

(
C†C

)−1/2
.

Set

U =Q1 + iQ2. (3.5)

Then U is a unitary matrix.
Given a generating function S0 of pdq−d(pq)/2 on Λ0, if S is the solution to the

following ODE problem

Ṡ+[z,ż]/2 = 0, S|t=0 =S0(z0),

then S is a generating function of pdq−d(pq)/2 on Λ. Let us introduce the operator K
as

[KA](x) =

∫
ς∈Λ

A(ς)exp[iS(ς)/ε][ρε(−ς)φε](x)dvol.
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This is an extended WKB function with the Lagrangian manifold Λ. Let (z,U) be any
moving frame induced by the underlying Hamiltonian flow and positioned on Λ; i.e.,
z=z(t) solves the Hamiltonian system (3.2) and U =U(z(t)) is determined by (3.3),
(3.4), and (3.5). Applying Lemma 2.2 and Lemma 2.3, we derive

µε(U
∗)ρε(z)H(W )KA=µε(U

∗)ρε(z)[H(W )− iε∂t]KA
=µε(U

∗)ρε(z)[H(W )− iε∂t]ρε(−z)µε(U)µε(U
∗)ρε(z)KA

=
[
H̃(W,t)+εtrTI/2− iε∂t

]
µε(U

∗)ρε(z)KA,

where

H̃(w,t) =H(RUw+z)−∇H(z) ·RUw−wΦw/2+[z,ż]/2. (3.6)

By Theorem 2.6, µε(U
∗)ρε(z)KA is a local WKB function with the vanishing derivatives

property. Suppose

[µε(U
∗)ρε(z)KA](x,t) = [A0(x,t)+O(ε)]exp[iS(x,t)/ε] . (3.7)

Then we have

A0(0,t) =A(z), (3.8)

and

S(0,t) =S(z), ∇S(0,t) = 0, ∇2S(0,t) = 0. (3.9)

For any smooth function ϕ=ϕ(x,t), applying the fundamental formula (2.5), we
derive [

H̃(W,t)+εtrTI/2− iε∂t
]

[ϕexp(iS/ε)] = exp(iS/ε)

∞∑
j=0

(−iε)jTj [ϕ],

where

T0[ϕ] =
(
Ṡ+H̃

)
ϕ,

T1[ϕ] = ϕ̇+∇ξH̃ ·∇ϕ+
[
∇2
ξH̃ :∇2S+tr(∇x∇ξH̃)+ itrTI

]
ϕ/2.

In the above equations, the function H̃ and its derivatives are evaluated at the point
(x,∇S(x,t),t).

Recalling the definition of H̃ (see (3.6)) and the definition of RU (see Lemma 2.2),
we have

H̃(0,t) = [z,ż]/2, ∇H̃(0,t) = 0, (3.10)

∇2H̃(0,t) =

[
Q†∇2H(z)Q −Q†∇2H(z)JQ
Q†J∇2H(z)Q −Q†J∇2H(z)JQ

]
−
[
TI TR
−TR TI

]
. (3.11)

By (3.9) and (3.10), we have

T0[ϕ]|x=0 =
(
Ṡ+[z,ż]/2

)
ϕ(0,t) = 0.
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Considering TR is skew-symmetric and TI =Q†∇2H(z)Q, recalling (3.9), (3.10), and
(3.11), we have

T1[ϕ]|x=0 = ϕ̇(0,t)+tr
[
Q†(iI+J)∇2H(z)Q

]
ϕ(0,t)/2

def
= L(ϕ(0,t)).

Therefore, recalling (3.7) and (3.8), we derive

[µε(U
∗)ρε(z)H(W )KA]|x=0 =

[
(−iε)L(A)+O(ε2)

]
exp(iS/ε).

Applying Theorem 2.6, we arrive at

H(W )KA= (−iε)K [L(A)+O(ε)]. (3.12)

The formula (3.12) implies that if A is such that L(A) = 0, i.e.

Ȧ+tr
[
Q†(iI+J)∇2H(z)Q

]
A/2 = 0, (3.13)

then we have

H(W )KA=O(ε2).

For a short conclusion, given an isotropic manifold Λ0 transversal to the Hamil-
ton vector field J∇H(z) and embedded in the null manifold of the Hamiltonian H, a
generating function S0 of pdq−d(pq)/2 on Λ0, and a smooth function A0 on Λ0, if we
determine a Lagrangian manifold Λ by

ż=J∇H(z), z|t=0 =z0∈Λ0,

a generating function S of pdq−d(pq)/2 on Λ by

Ṡ+[z,ż]/2 = 0, S|t=0 =S0(z0),

and an amplitude function A on Λ by

Ċ=J∇2H(z)C, C=QP, C|t=0 =
[
J∇H(z0) ∂yz0

]
,

Ȧ+tr
[
Q†(iI+J)∇2H(z)Q

]
A/2 = 0, A|t=0 =A0(z0),

then the extended WKB function

u(x) =

∫
z∈Λ

A(z)exp[iS(z)/ε][ρε(−z)φε](x)dvol (3.14)

gives an asymptotic solution of first order to the wave equation (3.1). We call this
approximation the global geometrical optics approximation since it is globally valid and
analogous to the classical geometrical optics method. The main tool we used is merely
WKB analysis, although we performed it with a moving frame technique in the phase
space.

4. Helmholtz equation with discontinuous media
We consider the Helmholtz equation

−ε2∆u−s2u= 0, (4.1)
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where ε=ω−1 is the inverse of angular frequency and s is the slowness field, the inverse
of the velocity field. The Helmholtz equation (4.1) is a special instance of the general
wave equation (3.1) with

H(x,ξ) = [ξ2−s2(x)]/2.

Suppose standard WKB Cauchy data is specified on a smooth manifold Γ of codimension
1 in the spatial domain

uΓ(x) = [AΓ(x)+O(ε)]exp[iSΓ(x)/ε] , ∀x∈Γ. (4.2)

By a standard WKB analysis, we know that if

|∇ΓSΓ(x)| 6=s(x), ∀x∈Γ,

there are two local WKB solutions u± around Γ which satisfy (within O(ε))

u±(x) =uΓ(x), ∀x∈Γ, (4.3)

(−iε)∇u±(x) =
[
∇ΓSΓ(x)±ζ(x)n(x)

]
uΓ(x), ∀x∈Γ. (4.4)

In the above equation, n is the normal direction of Γ and ζ(x) is the impedance deter-
mined by

ζ(x) =
[
s2(x)−|∇ΓSΓ(x)|2

]1/2
, ∀x∈Γ.

Note that if s(x)< |∇ΓSΓ(x)|, the impedance ζ(x) is purely imaginary with a positive
imaginary part.

Now suppose the slowness field s is piecewise smooth with an interface Γ dividing
the spatial domain into two parts, Ω1 and Ω2. Let us denote the slowness fields on Ω1

and Ω2 by s1 and s2, respectively. At the interface Γ, the wavefield is assumed to satisfy
the connection conditions

u|Γ,Ω2
−u|Γ,Ω1

= 0, n†∇u|Γ,Ω2
−n†∇u|Γ,Ω1

= 0. (4.5)

We consider an incident wave of extended WKB-type which propagates in Ω1 and
is initiated from an isotropic manifold Λ0 (parameterized by y) of dimension N−1
embedded in the null manifold of the Hamiltonian H(x,ξ). That is to say, we suppose
the incident wavefield is given as

uI(x) =

∫
zI=(qI ,pI)∈ΛI

AI(zI)exp[iSI(zI)/ε][ρε(−zI)φε](x)dvol, (4.6)

where the incident manifold ΛI and other relevant quantities are determined by

żI =J∇H(zI), zI |t=0 =z0∈Λ0, (4.7)

ṠI +[zI , żI ]/2 = 0, SI |t=0 =S0(z0), (4.8)

ĊI =J∇2H(zI)CI , CI =QIPI , CI |t=0 =
[
J∇H(z0) ∂yz0

]
, (4.9)

ȦI +tr
[
Q†I(iI+J)∇2H(zI)QI

]
AI/2 = 0, AI |t=0 =A0(z0). (4.10)

In the above equations, S0 is a generating function of the differential 1-form pdq−
d(pq)/2 on Λ0 and A0 is a prescribed smooth function on Λ0. Suppose the interface Γ
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is specified as the zero-level set of the function Φ = Φ(q). Then the time τ = τ(y) for a
ray indexed by y to impinge Γ satisfies

Φ(qI(τ,y)) = 0.

Differentiating the above equation with respect to y yields

n†∂tqI(τ,y)∂yτ+n†∂yqI(τ,y) = 0.

Therefore, we have

∂yτ =−
[
n†∂tqI(τ,y)

]−1 [
n†∂yqI(τ,y)

]
.

4.1. Reflected and transmitted waves. Let us set

qΓ = qI(τ,y), pI,Γ =pI(τ,y), zI,Γ = (qΓ,pI,Γ), CI,Γ =CI(zI,Γ).

When zI,Γ is a regular point of the projection map from the Lagrangian manifold ΛI
to the real plane, the matrix CI,Γ,1 (the upper half part of CI,Γ by our convention)
is invertible, and M(CI,Γ) is well-defined. According to Theorem 2.6, the incident
wavefield uI is a local WKB function around qΓ, and within O(ε) the following holds:

uI(qΓ) =AΓ(qΓ)exp[iSΓ(qΓ)/ε], (−iε)∇uI(qΓ) =pI,ΓAΓ(qΓ)exp[iSΓ(qΓ)/ε] , (4.11)

with

AΓ(qΓ) =A(zI,Γ)M(CI,Γ), SΓ(qΓ) =SI(zI,Γ)+pI,ΓqΓ/2. (4.12)

Note that by setting the normal and tangent projection operators to

T⊥=n†n, T‖= I−T⊥,

and the normal impedance ζ1 in Ω1 to

ζ1 =
[
s2

1(qΓ)−|T‖pI,Γ|2
]1/2

,

we have

∇ΓSΓ(qΓ) =T‖pI,Γ, n1ζ1 =T⊥pI,Γ, pI,Γ =∇ΓSΓ(qΓ)+n1ζ1,

where n1 denotes the normal direction of the interface Γ exterior to Ω1. Suppose that
when confined to Γ, the reflected wave uR and the transmitted wave uT are expressed
as

uR(qΓ) =FRAΓ(qΓ)exp[iSΓ(qΓ)/ε], uT (qΓ) =FTAΓ(qΓ)exp[iSΓ(qΓ)/ε] , (4.13)

where FR and FT are the reflection and transmission coefficients. Then based on the
analysis at the beginning of this section, it holds that

(−iε)∇uR(qΓ) = [∇ΓSΓ(qΓ)−n1ζ1]FRAΓ(qΓ)exp[iSΓ(qΓ)/ε] , (4.14)

(−iε)∇uT (qΓ) = [∇ΓSΓ(qΓ)+n1ζ2]FTAΓ(qΓ)exp[iSΓ(qΓ)/ε] , (4.15)

where

ζ2 =
[
s2

2(qΓ)−|T‖pI,Γ|2
]1/2
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is the normal impedance in Ω2. Note that when ζ2 is purely imaginary, the transmitted
wave uT is evanescent along the normal direction n1.

The wavefield on Ω1 is a combination of the incident wave uI and the reflected wave
uR, and the wavefield on Ω2 consists solely of the transmitted wave uT . Applying the
connection conditions (4.5) and recalling (4.11), (4.13), and (4.14)–(4.15), we derive

1+FR=FT , ζ1 (1−FR) = ζ2FT ,

which leads to

FR= (ζ1−ζ2)/(ζ1 +ζ2), FT = 2ζ1/(ζ1 +ζ2).

For any β∈{I,R,T}, let us set

pβ,Γ =
(
T‖+aβT⊥

)
pI,Γ, zβ,Γ = (qΓ,pβ,Γ), (4.16)

with

aI = 1, aR=−1, aT = ζ2/ζ1.

The reflected wave is always propagating. If ζ2>0, then the transmitted wave is also
propagating. In either case, we determine and parameterize the reflected manifold ΛR
and the transmitted manifold ΛT by

żβ =J∇H(zβ), zβ |t=τ =zβ,Γ.

Therefore, the matrix representation Cβ =∂zβ/∂(t,y) of the tangent plane satisfies

Ċβ =J∇2H(zβ)Cβ , Cβ =QβPβ , Cβ |t=τ =Cβ,Γ,

where

Cβ,Γ =∂zβ/∂(t,y)|t=τ =
[
J∇H(zβ,Γ) ∂yzβ,Γ−J∇H(zβ,Γ)∂yτ

]
. (4.17)

By recalling (4.12), (4.13), and applying Theorem 2.6, the global geometrical optics
approximation to the reflected and transmitted waves is then given by

uβ(x) =

∫
zβ∈Λβ

Aβ(zβ)exp[iSβ(zβ)/ε][ρε(−zβ)φε](x)dvol, ∀β∈{R,T},

where the phase Sβ and the amplitude Aβ are determined by

Ṡβ+[zβ , żβ ]/2 = 0, Sβ |t=τ =SI(zI,Γ)+pI,ΓqΓ/2−pβ,ΓqΓ/2, (4.18)

Ȧβ+tr
[
Q†β(iI+J)∇2H(zβ)Qβ

]
Aβ/2 = 0, Aβ |t=τ =FβGβAI(zI,Γ), (4.19)

and the geometric factors Gβ are defined as

Gβ =M(CI,Γ)/M(Cβ,Γ).

The denominator M(Cβ,Γ) in the definition of Gβ is well-defined if and only if
M(CI,Γ) is well-defined. Equivalently, zβ,Γ is a regular point of Λβ if and only if zI,Γ
is a regular point of ΛI . Actually, considering n†∂yqΓ = 0, by (4.17) and (4.16) it holds
that

Cβ,Γ,1

[
1 ∂yτ
0 IN−1

]
=
(
T‖+aβT⊥

)
[pI,Γ ∂yqΓ] =

(
T‖+aβT⊥

)
CI,Γ,1

[
1 ∂yτ
0 IN−1

]
,
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which yields

Cβ,Γ,1 =
(
T‖+aβT⊥

)
CI,Γ,1. (4.20)

This implies that Cβ,Γ,1 and CI,Γ,1 are simultaneously invertible or non-invertible since

detCβ,Γ,1 =aβ detCI,Γ,1.

In the case that zI,Γ is singular with respect to the projection map onto the real
plane, the incident point qI is a caustic and the above interface analysis ceases to be
valid. However, since

G2
β =
M2(CI,Γ)

M2(Cβ,Γ)
=

det(CI,Γ,1− iCI,Γ,2)

det(Cβ,Γ,1− iCβ,Γ,2)
· detCβ,Γ,1
detCI,Γ,1

=aβ
det(CI,Γ,1− iCI,Γ,2)

det(Cβ,Γ,1− iCβ,Γ,2)
, (4.21)

we see that Gβ as an entirety is always well-defined regardless of whether zI,Γ is regular
or not. In the following two subsections, we will deduce an expression of Gβ which is
valid for all incident cases.

4.2. Geometric factors Gβ in the case of a planar interface. Analogous
to the derivation of (4.17), it is straightforward to verify that

CI,Γ

[
1 ∂yτ
0 IN−1

]
=

[
pI,Γ ∂yqΓ

s1∇s1 ∂ypI,Γ

]
.

Since CI,Γ is a matrix representation of a Lagrangian plane and ∂yqΓ lies in the tangent
plane of Γ at qΓ, we know that the matrix

L=

[
n ∂yqΓ

0 T‖∂ypI,Γ

]
also represents a Lagrangian plane. Set

P̃ =
{

(∂yqΓ)
†
∂yqΓ +(∂ypI,Γ)

†T‖∂ypI,Γ
}1/2

∈R(N−1)×(N−1),

and let L=QP be the polar decomposition. Then we have

P =
(
L†L

)1/2
=

[
1 0

0 P̃

]
, Q=

[
n ∂yqΓP̃

−1

0 T‖∂ypI,ΓP̃−1

]
.

Note that the matrix

V =Q1 + iQ2 =
[
n T‖ (∂yqΓ + i∂ypI,Γ)P̃−1

]
(4.22)

is unitary since Q is both orthogonal and Lagrangian.
Now suppose that the interface Γ is planar. In this case, n, T⊥, and T‖ are constant.

Let O be any orthogonal real matrix which transforms the normal direction n to the
first Cartesian basis vector, i.e.,

On=e1 = [1,0, ·· · ,0]†.

For an arbitrary but fixed choice of y, let us consider the following canonical transfor-
mation in the phase space:

z−→ z̃= z̃(z) =RV ∗(z−zc), zc= (qΓ,T‖pI,Γ). (4.23)
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The associated unitary transformation in the function space is

u−→µε(V
∗)ρε(zc)u=µε((OV )∗)µε(O)ρε(zc)u.

Since

OV =O
[
n T‖ (∂yqΓ + i∂ypI,Γ)P̃−1

]
=
[
e1 (I−e1e

†
1)O(∂yqΓ + i∂ypI,Γ)P̃−1

]
,

we see that the unitary transformation µε((OV )∗) keeps the first real variable un-
changed. Consequently, µε((OV )∗) commutes with any linear operator that only acts
on the first real variable. In particular, if u satisfies the connection conditions (4.5),
then µε(V

∗)ρε(zc)u satisfies

[µε(V
∗)ρε(zc)u]|Γ̃,Ω̃2

− [µε(V
∗)ρε(zc)u]|Γ̃,Ω̃1

= 0, (4.24)

e†1∇[µε(V
∗)ρε(zc)u]|Γ̃,Ω̃2

−e†1∇[µε(V
∗)ρε(zc)u]|Γ̃,Ω̃1

= 0, (4.25)

where

Ω̃1 =O(Ω1−qΓ), Ω̃2 =O(Ω2−qΓ), Γ̃ =O(Γ−qΓ) ={(x1,. ..,xN )|x1 = 0}.

The benefit of the above phase space transformation technique is that in the new
frame the manifold z̃(Λβ) for any β∈{I,R,T} admits a local one-to-one projection to
the new real space around z̃(zβ,Γ). This point can be verified in the following manner.
Recalling that

pβ,Γ =
(
T‖+aβT⊥

)
pI,Γ,

we have

∂ypβ,Γ =T‖∂ypI,Γ +T⊥∂y(aβpI,Γ).

The transformed tangent plane RV ∗Cβ,Γ corresponding to the phase point zβ,Γ satisfies

RV ∗Cβ,Γ

[
1 ∂yτ
0 IN−1

]
=


n† 0

P̃−1 (∂yqΓ)
†

P̃−1 (∂ypI,Γ)
†T‖

0 n†

−P̃−1 (∂ypI,Γ)
†T‖ P̃−1 (∂yqΓ)

†



×
[(
T‖+aβT⊥

)
pI,Γ ∂yqΓ

s∇s T‖∂ypI,Γ +T⊥∂y(aβpI,Γ)

]
=


aβn

†pI,Γ 0

∗ P̃
∗ ∗
∗ ∗

.
From the above equations, we see that the upper half part of RV ∗Cβ,Γ is always non-
singular. Therefore, the new real variable forms a local coordinate of z̃(Λβ) around
z̃(zβ,Γ).

Recall that the incident, reflected, and transmitted waves have the following ex-
pression:

uβ(x) =

∫
zβ∈Λβ

Aβ(zβ)exp[iSβ(zβ)/ε][ρε(−zβ)φε](x)dvol, ∀β∈{I,R,T}.

In the new phase space frame (4.23), we have

[µε(V
∗)ρε(zc)uβ ](x)
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=

∫
zβ∈Λβ

Aβ(zβ)exp[iSβ(zβ)/ε][µε(V
∗)ρε(zc)ρε(−zβ)φε](x)dvol

=

∫
zβ∈Λβ

Aβ(zβ)exp{i[Sβ(zβ)+[zc,zβ ]/2]/ε}[ρε(−RV ∗(zβ−zc))φε](x)dvol

=

∫
z̃=RV ∗ (zβ−zc)∈z̃(Λβ)

Aβ(zβ)exp{i[Sβ(zβ)+[zc,zβ ]/2]/ε}[ρε(−z̃)φε](x)dvol.

These are still extended WKB functions since the transformation zβ→ z̃= z̃(zβ) is
canonical. Considering

RV ∗(zβ,Γ−zc) =


n† 0

P̃−1 (∂yqΓ)
†

P̃−1 (∂ypI,Γ)
†T‖

0 n†

−P̃−1 (∂ypI,Γ)
†T‖ P̃−1 (∂yqΓ)

†

[ 0
aβT⊥pI,Γ

]
=


0
0

aβn
†pI,Γ
∗

,
we know that at x= 0 the following holds within O(ε)

[µε(V
∗)ρε(zc)uβ ](0) =Aβ(zβ,Γ)M(RV ∗Cβ,Γ)exp{i[Sβ(zβ,Γ)+[zc,zβ,Γ]/2]/ε} ,

(−iε)e†1∇[µε(V
∗)ρε(zc)uβ ](0) =aβn

†pI,Γ[µε(V
∗)ρε(zc)uβ ](0).

Note that since

Sβ(zβ,Γ) =SI(zI,Γ)+(1−aβ)qΓT⊥pI,Γ/2,

and

[zc,zβ,Γ] = [zc,zβ,Γ−zc] = [(qΓ,T‖pI,Γ),(0,aβTpI,Γ)] =aβqΓT⊥pI,Γ,

we have

[µε(V
∗)ρε(zc)uβ ](0) =Aβ(zβ,Γ)M(RV ∗Cβ,Γ)exp{i[SI(zI,Γ)+qΓT⊥pI,Γ/2]/ε}.

Applying the connection conditions (4.24)–(4.25) yields

Aβ(zβ,Γ)M(RV ∗Cβ,Γ) =FβAI(zI,Γ)M(RV ∗CI,Γ), ∀β∈{R,T}.

Recalling

Aβ(zβ,Γ) =FβGβAI(zI,Γ), ∀β∈{R,T},

we then derive

Gβ =M(RV ∗CI,Γ)/M(RV ∗Cβ,Γ), ∀β∈{R,T}.

4.3. Geometric factors Gβ in the general case. When the interface is not
planar, the geometric factors Gβ cannot be determined in the way explained in the last
subsection. As shown by (4.20), Cβ,Γ,1 is independent of the curvature information of
the interface Γ at qΓ, thus so is CI,Γ,1. However, since

Cβ,Γ,2

[
1 ∂yτ
0 IN−1

]
=
[
s∇s ∂ypβ,Γ

]
, ∀β∈{R,T},
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and

pβ,Γ =
(
T‖+aβT⊥

)
pI,Γ,

by a direct computation, we derive

∂pR,Γ
∂y

= (T‖−T⊥)∂ypI,Γ−2(n†pI,Γ +np†I,Γ)∂qn∂yqΓ,

and

∂pT,Γ
∂y

=
(
T‖+a−1

T T⊥
)
∂ypI,Γ +(ζ1ζ2)−1T⊥pI,Γ∂y(s2

2−s2
1)/2

+
[
(aT −1)n†pI,Γ +

(
a−1
T −1

)
np†I,Γ

]
∂qn∂yqΓ,

which implies that the tangent planes CR,Γ and CT,Γ indeed depend on the curvature
information of Γ.

For an arbitrary but fixed y, let us set

Φy,0(q) = Φ(qΓ)+∇Φ(qΓ) ·(q−qΓ),

and

Φy,σ(q) = (1−σ)Φy,0(q)+σΦ(q), ∀σ∈ [0,1].

The zero-level set of Φy,σ, denoted by Γσ, defines a smooth family of interfaces con-
taining the incident point qΓ. Let us denote the normal direction of Γσ by nσ and
set

T⊥,σ =n†σnσ, T‖,σ = I−T⊥,σ.

Then for any σ∈ [0,1], it holds that

nσ(qΓ) =n(qΓ), T⊥,σ(qΓ) =T⊥(qΓ), T‖,σ(qΓ) =T‖(qΓ), ∇nσ(qΓ) =σ∇n(qΓ).

Since the ray indexed by y penetrates through the interface Γ at qΓ, so does it for any
Γσ. The geometric factor Gβ,σ determined by replacing Γ with Γσ thus defines a smooth
family with respect to σ∈ [0,1]. Let us set

C
(σ)
R,Γ,2 =

[
s∇s (T‖−T⊥)∂ypI,Γ−2σ(n†pI,Γ +np†I,Γ)∂qn∂yqΓ

][1 −∂yτ
0 IN−1

]
,

C
(σ)
T,Γ,2 =

s∇s (T‖+a−1
T T⊥

)
∂ypI,Γ +(ζ1ζ2)−1T⊥pI,Γ∂y(s2

2−s2
1)/2

+σ
[
(aT −1)n†pI,Γ +

(
a−1
T −1

)
np†I,Γ

]
∂qn∂yqΓ

[1 −∂yτ
0 IN−1

]
,

C
(σ)
β,Γ =

[
Cβ,Γ,1

C
(σ)
β,Γ,2

]
, ∀β∈{R,T}.

Note that we have

C
(1)
β,Γ =Cβ,Γ, ∀β∈{R,T}.
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Recalling (4.21), we have

G2
β,σ =aβ

det(CI,Γ,1− iCI,Γ,2)

det
(
Cβ,Γ,1− iC(σ)

β,Γ,2

)
=aβ

det(CI,Γ,1− iCI,Γ,2)

det
(
Cβ,Γ,1− iC(0)

β,Γ,2

)
det

[(
Cβ,Γ,1− iC(0)

β,Γ,2

)−1(
Cβ,Γ,1− iC(σ)

β,Γ,2

)] .
Since C

(0)
β,Γ is the matrix representation of the tangent plane when the interface is planar,

applying the result in the last subsection, we have

Gβ,0 =M(RV ∗CI,Γ)/M(RV ∗C
(0)
β,Γ), ∀β∈{R,T}. (4.26)

Therefore, we arrive at

Gβ,σ =Gβ,0
{

det

[(
Cβ,Γ,1− iC(0)

β,Γ,2

)−1(
Cβ,Γ,1− iC(σ)

β,Γ,2

)]}−1/2

.

In the above equation, the branch of the square root function is chosen to ensure the
continuity of Gβ,σ with respect to σ.

As a matter of fact, we can determine Gβ,σ, and thus Gβ =Gβ,1, without resorting

to the above continuity argument. Since C
(σ)
β,Γ,2 is linear with respect to σ, we know

that

Wσ
def
=
(
Cβ,Γ,1− iC(0)

β,Γ,2

)−1(
Cβ,Γ,1− iC(σ)

β,Γ,2

)
= I+ i

(
Cβ,Γ,1− iC(0)

β,Γ,2

)−1(
C

(0)
β,Γ,2−C

(σ)
β,Γ,2

)
= I− iσ

(
Cβ,Γ,1− iC(0)

β,Γ,2

)−1 d

dσ
C

(σ)
β,Γ,2,

where d
dσC

(σ)
β,Γ,2 does not depend on σ. This implies that the eigenvalues of the matrix

Wσ would never appear on the negative real axis, the branch cut of the square root
function, since, otherwise, there must exist some σ∈ [0,1] such that Wσ is singular, and
this is in contradiction to the assumption that the ray is transversal to the interface at
qΓ. Based on this fact, we have

(detWσ)1/2 =
∏

λ∈SpWσ

√
λ
def
=
√

detWσ, (4.27)

where SpWσ denotes the set of eigenvalues of Wσ (accounting for their multiplicities).
Combining (4.26) and (4.27) we finally derive

Gβ =
Gβ,0√
detW1

=
M(RV ∗CI,Γ)

M(RV ∗C
(0)
β,Γ)
√

det

[(
Cβ,Γ,1− iC(0)

β,Γ,2

)−1

(Cβ,Γ,1− iCβ,Γ,2)

] .
5. Miscellaneous issues

In this section, we discuss some issues related to the global geometrical optics ap-
proximation and the numerical implementation.
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5.1. Phase modification. In the definition of extended WKB functions, we
have assumed that the phase S is a generating function of pdq−d(pq)/2. If we mod-
ify S to S−pq/2, then an equivalent definition of the extended WKB function is an
asymptotic series of the form

u(x) =

∫
z∈Λ

[A(z)+(−iε)A1(z)+ ·· ·]exp[iS(z)/ε][ρ̃ε(−z)φε](x)dvol, x∈RN ,

where

ρ̃ε(−z) = exp(−ipq/2ε)ρε(−z),

and S is a generating function of pdq of the Lagrangian manifold Λ. Accordingly,
the global geometrical optics approximation to the general wave equation (3.1) is an
extended WKB function

u(x) =

∫
z∈Λ

A(z)exp[iS(z)/ε][ρ̃ε(−z)φε](x)dvol,

where S solves the ODE

Ṡ=pq̇.

The new phase function S has an explicit physical meaning since it is simply the classical
action function, also called travel time in geometrical optics. In addition, the ODE (4.18)
satisfied by the travel time is modified into a more handy form,

Ṡβ =pβ q̇β , Sβ |t=τ =SI(zI,Γ).

This recovers a known fact that the reflected and transmitted waves have the same
travel time as the incident wave at the impinging time point.

5.2. Other connection conditions. In Section 3, we specified the C1-
continuity connection conditions at the interface. Actually, the reflected manifold and
the transmitted manifold (if they exist) only depend on the slowness fields, and the
connection conditions only affect the reflection and/or transmission coefficients. Some
other connection conditions can be considered analogously. For example, if the interface
is sound-soft or sound-hard, i.e., a homogeneous Dirichlet or Neumann boundary con-
dition is specified, then only the reflected manifold exists and the reflection coefficient
FR is ±1. If the C1-continuity connection (4.5) is modified to

u|Γ,Ω2
−u|Γ,Ω1

= 0, σ2n
†∇u|Γ,Ω2

−σ1n
†∇u|Γ,Ω1

= 0, (5.1)

then the reflection and transmission coefficients are

FR=
σ1ζ1−σ2ζ2
σ1ζ1 +σ2ζ2

, FT =
2σ1ζ1

σ1ζ1 +σ2ζ2
.

The connection conditions (5.1) will appear if one considers the time-harmonic acoustic
equation [

ω2

κ
+∇·

(
1

ρ
∇
)]

u= 0,

where ρ is the density, κ is the bulk modulus, and u is the pressure. If κ is piece-
wise smooth and ρ is piecewise constant with the interface Γ, then s=

√
ρ/κ and the

connection conditions are of the form (5.1) with

σ1 =ρ−1|Γ,Ω1
, σ2 =ρ−1|Γ,Ω2

.
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5.3. Conservation property. The ODE (3.13) satisfied by the amplitude
function can be rewritten into a more handy form. Put U =Q1 + iQ2. Then U is
unitary. It is straightforward to verify that

Q†(I− iJ)Q̇=U∗U̇ =U−1U̇ .

From the ODE (3.3), we have

Q̇P +QṖ =J∇2H(z)QP.

Thus,

∇2H(z)Q=J−1
(
Q̇P +QṖ

)
P−1 =J−1

(
Q̇+QṖP−1

)
.

Therefore, we have

tr
[
Q†(iI+J)∇2H(z)Q

]
= tr

[
Q†(I− iJ)

(
Q̇+QṖP−1

)]
= tr

[
Q†(I− iJ)Q̇+ ṖP−1

]
= tr

(
U−1U̇+ ṖP−1

)
=

1

det(ŪP )

d

dt
det(ŪP ).

(5.2)

In the last equality, we have used the Liouville formula; i.e., for any smooth family of
nonsingular matrices Φ =Φ(t), it holds that

d

dt
detΦ = tr

(
Φ−1 dΦ

dt

)
detΦ.

Substituting (5.2) into the amplitude ODE (3.13) yields

d

dt

[
A2 det(ŪP )

]
=
d

dt

[
A2 det(C1− iC2)

]
= 0, (5.3)

which implies thatA2 det(ŪP ) is a conserved quantity along each bi-characteristic. Thus
the amplitude A can be determined either from the ODE (3.13) or from a continuity
treatment.

5.4. Constant slowness case. When the slowness field is constant, the ODE
system determining the global geometrical optics approximation can be integrated out
explicitly. In this case, the solution of the Hamiltonian system

q̇=p, ṗ= 0

is simply

q(t) = q(ts)+(t− ts)p(ts), p(t) =p(ts),

where ts is the starting time point. The travel time satisfies

S(t) =S(ts)+(t− ts)|p(ts)|2,

and the tangent plane satisfies

C1(t) =C1(ts)+(t− ts)C2(ts), C2(t) =C2(ts).

Applying (5.3) and performing an argument analogous to that in the Subsection 4.3,
we derive the amplitude

A(t) =
A(ts)√

det([C1(ts)− iC2(ts)]−1[C1(t)− iC2(t)])
.
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5.5. Point source. The wave stimulated by a point source is actually an ex-
tended WKB function. To illustrate this, let us consider the two-dimensional Helmholtz
equation

−ε2∆u−s2u=−2iε3/2δ(x−x0).

First, we seek a local asymptotic solution around the source point x0 which admits the
following ansatz (see [32, 30])

u(x) =
1

2ε1/2
[B(x)+O(ε)]H

(1)
0 (Θ/ε). (5.4)

Here H
(1)
0 indicates the zeroth order Hankel function of the first kind. The use of an

asymptotic technique analogous to the WKB analysis results in

|∇Θ|=s, Θ(x0) = 0,

and

2∇Θ ·∇B+

(
∆Θ− |∇Θ|2

Θ

)
B= 0, B(x0) = 1. (5.5)

Away from the source point x0, we have the local asymptotic approximation

u(x)∼ B(x)

2ε1/2

(
2

πΘ/ε

)1/2

exp[i(Θ/ε−π/4)] =B(x)(2πiΘ)−1/2 exp(iΘ/ε) .

Let us set s0 =s(x0) and define the isotropic manifold

Λ0 ={z0 = (q0,p0)|q0 =x0,p0 =s0[cosy;siny],∀y∈R/Z}.

We determine a Lagrangian manifold Λ+ by solving the Hamiltonian system

q̇=p, q|t=0 = q0,

ṗ=s∇s, p|t=0 =p0,

with t>0, and the travel time by

Ṡ=pq̇, S|t=0 = 0.

Note that Λ+ is a manifold with boundary Λ0. Since S is the generating function of
pdq on Λ+ and Λ+ admits a local one-to-one projection to the real plane, we have

S(z) = Θ(q).

Let us consider the extended WKB function

ũ(x) =

∫
z∈Λ+

A(z)exp[iS(z)/ε][ρ̃ε(−z)φε](x)dvol, (5.6)

where the amplitude function A is determined by

Ċ=J∇2H(z)C, C=QP, C|t=0 =
[
J∇H(z0) ∂yz0

]
,

Ȧ+tr
[
Q†(iI+J)∇2H(z)Q

]
A/2 = 0, A|t=0 = (2π)−1/2s−1

0 .
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We will show that away from x0, within O(ε), the function ũ in (5.6) is the same as the
function u given in (5.4).

Away from the source point x0, ũ solves the homogeneous Helmholtz equation.
Besides, locally within O(ε), it holds that

ũ(q) =A(z)M(C(z))exp[iS(z)/ε] .

Let us set

B̃(q) =A(z)M(C(z))[2πiΘ(q)]1/2.

It suffices to show that B̃ solves Equation (5.5). First, it is straightforward to verify
that

B̃(q0) = lim
t→0+

A(z)M(C(z))[2πiΘ(q)]1/2 = lim
t→0+

{
A|t=0(it)−1/2[2πits2

0]1/2
}

= 1.

Second, by Liouville’s lemma, we have

d

dt
detC1 = tr(Ċ1C

−1
1 )detC1 = tr(C2C

−1
1 )detC1 = ∆ΘdetC1. (5.7)

Since

Θ

B̃2
=

1

2πiA2M2
=

detC1

2πiA2 det(C1− iC2)
,

recalling (5.3) and applying (5.7), we derive

d

dt

Θ

B̃2
= ∆Θ

Θ

B̃2
,

which leads to

∇Θ ·∇ Θ

B̃2
= ∆Θ

Θ

B̃2
.

It is straightforward to verify that the above equation is equivalent to Equation (5.5).

6. Numerical experiments

The global geometrical optics approximation (3.14) to the high frequency wave
equations is an integral on the underlying Lagrangian manifold. In the numerical im-
plementation, this integral should be discretized with some quadrature scheme. In the
(t,y) coordinate, the approximate wavefield u is expressed as

u(x) =

∫
A(z)exp[iS(z)/ε][ρε(−z)φε](x)detPdtdy.

This integral is then approximated by the trapezoid rule. As suggested by [24, 20, 31]
and validated by our partial numerical evidences, the sampling resolution needs only to
be O(ε1/2) to ensure optimal first order asymptotic accuracy. In all the numerical tests
shown below, we simply set the sampling resolution sufficiently refined.
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Fig. 6.1. Dirichlet interface. The source point is located at (0,0.5). Left: a line with z= 5. Right:
a circle of radius 25 with the center located at (0,30).

Fig. 6.2. Green function with a Dirichlet boundary. The angular frequency is ω= 20.

6.1. Sound-soft Green function. In this part, we evaluate the numerical
asymptotic accuracy of the global geometrical optics approximation to the Green func-
tion of the Helmholtz equation with a homogeneous Dirichlet boundary. The point
source is located at (0,0.5) and the slowness is set to 1. Two cases will be considered.
The interface of the first case is a line with z= 5, and the interface of the second one is
a circle of radius 25 with the center located at (0,30). See Figure 6.1.

In Figure 6.2, we show the Green function approximated by the global geometrical
optics method with an angular frequency of ω= 20. In Figure 6.3, we plot the relative
maximum errors of the global geometrical optics approximation. For the first example,
the exact Green function is available by the mirror principle. For the second example,
we compute a reference solution by the separation of variables on the circular boundary.
In either case, a first order asymptotic accuracy can be observed.

6.2. Green function for multi-layered media. In this part, we consider the
application of the global geometrical optics approximation to the Green function of the
Helmholtz equation with multilayered media. The point source is located at (0,0.5), and
the computational domain is restricted to [−5,5]× [0,10]. In the first numerical example,
we consider a three-layered piecewise constant medium. The velocity on each layer is



C. ZHENG 1971

10
1

10
2

10
3

10
−5

10
−4

10
−3

ω

R
e
la

ti
v
e
 E

rr
o
r

 

 

Receiver 1

Receiver 2

slope=1

10
1

10
2

10
3

10
−5

10
−4

10
−3

ω

R
e
la

ti
v
e
 E

rr
o
r

 

 

Receiver 1

Receiver 2

slope=1

Fig. 6.3. Relative maximum errors by the global geometrical optics approximation.
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Fig. 6.4. Multi-layered media. Left: three layers with constant slowness. Right: two layers with
variable slowness.
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Fig. 6.5. Three-layered medium. Left: wavefield with frequency 15Hz. Right: incident and first
transmitted rays.
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Fig. 6.6. Two-layered medium with variable slowness. Left: wavefield with frequency 15Hz. Right:
incident and transmitted rays.
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Fig. 6.7. Three-layered medium. Left: reflected and transmitted rays. Right: travel times for the
rays traveling to z= 0.
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Fig. 6.8. Two-layered medium with variable slowness. Left: reflected rays. Right: travel times
for the rays traveling to z= 0.
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2.0, 2.5, and 3.0 respectively. The two interfaces pass through the points (0,5) and (0,8)
and have a dip angle of 7.5 degrees. In the second numerical example, we consider a
two-layered medium with variable slowness. The interface is a curve determined by

z= 5+exp(−x2/4).

The slowness in the upper part is

s(x,z) = 0.5+0.2exp
{
−[x2 +(z−3)2]/0.5

}
,

and the slowness in the lower part is 1/2.5 = 0.4. See Figure 6.4.
On the left of Figure 6.5 and Figure 6.6, we show the real part of the wavefield

derived by global geometrical optics approximation with frequency 15 Hz, and on the
right, we show the incident rays and the first transmitted rays. Since the reflected waves
are relatively weak, the wave pattern is in good agreement with the wavefronts of the
incident and first transmitted waves. On the left of Figure 6.7 and Figure 6.8, we show
the reflected and successive transmitted rays, and on the right, we plot the travel times
for all rays which travel to the line z= 0.

7. Conclusion
The global geometrical optics approximation is a new semi-classical approximation

of high frequency wave equations which was originally proposed in [33]. In this paper, we
rederived it in a more concise way. It was shown that the right ansatz for the asymptotic
approximation of the high frequency waves is the extended WKB function, as opposed
to the WKB function used in the classical geometrical optics approximation. The new
ingredient of this paper is an interface analysis of the Helmholtz equation when the
incident waves are extended WKB functions. Though this analysis is standard for the
regular incident points, it becomes more involved when the incident points are singular.
The key issue is to determine the geometric factor which relates to the incident and
reflected (or transmitted) manifolds. Instead of resorting to the continuity treatment,
we developed a method which only utilizes the local properties of the incident rays and
the interface geometry.
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