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Abstract

In this paper we will find optimal lower bound for the first eigenvalue of the fourth order equation with 
integrable potentials when the L1 norm of potentials is known. We establish the minimization character-
ization for the first eigenvalue of the measure differential equation, which plays an important role in the 
extremal problem of ordinary differential equation. The conclusion of this paper will illustrate a new and 
very interesting phenomenon that the minimizing measures will no longer be located at the center of the 
interval when the norm is large enough.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Given an integrable potential q ∈ L1 := L1([0, 1], R), we consider eigenvalue problem of the 
fourth order beam equation

y(4)(t) + q(t)y(t) = λy(t), t ∈ [0,1], (1.1)
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with the Lidstone boundary condition

y(0) = y′′(0) = 0 = y(1) = y ′′(1). (1.2)

It is well-known that problem (1.1), (1.2) has a sequence of (real) eigenvalues

λ1(q) < λ2(q) < · · · < λm(q) < · · · ,

satisfying limm→∞ λm(q) = +∞. See [3]. For constant potentials, one has

λm(c) = (mπ)4 + c ∀m ∈N, c ∈R. (1.3)

In this paper we are concerned with the first eigenvalues λ1(q) and will give their optimal 
lower bounds when the L1 norms ‖q‖1 = ‖q‖L1([0,1]) are known. To this end, we will solve the 
following minimization problem

L(r) := inf{λ1(q) : q ∈ B1[r]}. (1.4)

Here, for r ∈ [0, +∞),

B1[r] :=
{
q ∈ L1 : ‖q‖1 ≤ r

}

is the ball of (L1, ‖ · ‖1). Once minimization problem (1.4) is solved, one has the following lower 
bound for λ1(q)

λ1(q) ≥ L(‖q‖1) ∀q ∈ L1, (1.5)

which will be shown to be optimal in a certain sense.
Problems linking the coefficient of an operator to the sequence of its eigenvalues are among 

the most fascinating of mathematical analysis. One of the reasons which make them so attractive 
is that the solutions are involved of many different branches of mathematics. Moreover, they are 
very simple to state and generally hard to solve. For both ordinary and partial differential opera-
tors, there have evolved a lot of results [1,5–7,9,14,19,23]. In recent years, the authors and their 
collaborators have revealed some deep properties on the dependence of eigenvalues on potentials 
and completely solved the extremal value problems for eigenvalues of the second order Sturm–
Liouville and p-Laplace operators with potentials varied in balls in L1 space. See [11,18,22,24]. 
These extremal value problems cannot be solved directly by variational methods, because eigen-
values λn(q) are implicit functionals of potentials q , the space L1 is infinite dimensional, and 
the balls B1[r] with radius r in L1 are non-compact non-smooth sets. Based on some topological 
facts on Lebesgue spaces and strong continuity and Fréchet differentiability of eigenvalues in 
potentials, the authors have used an analytical method to solve these extremal value problems in 
two steps.

Step 1. Deal with the corresponding problems in Lp, p > 1, space by using the standard 
variational methods, because those balls Bp[r] in Lp are smooth in usual topology and com-
pact in weak topology when p > 1. Obtained in this step are the critical equations, which are 
autonomous Hamiltonian systems of 1-degree-of-freedom.
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Step 2. Employ limiting approaches p ↓ 1 from the viewpoint of conservation laws to obtain 
the limiting systems and extremal eigenvalues in L1 balls.

Like the second order equation, it is desirable to develop analogous ideas to study the extremal 
problem (1.4) for eigenvalues of the fourth order equation. However, how to use this analytical 
method to solve the extremal problem of the fourth order equation is still open to the authors. 
The difficulty is caused by the following two aspects. Firstly, the critical equations obtained in the 
case are Hamiltonian systems of 2-degree-of-freedom. It is an open problem that whether these 
critical equations are completely integrable. Secondly, as p ↓ 1, it is unknown to the authors 
that what the corresponding systems for these limiting solutions and eigenvalues are. For more 
details, see [20]. Hence, in this paper we will adopt a different technique to study the extremal 
problem for eigenvalues of the fourth order equation.

Since the L1 balls B1[r] lack compactness even in the weak topology of L1, we usually do not 
know if minimization problem (1.4) can be attained by some potentials from B1[r]. To overcome 
this, different from the approach in [11,18], here we will extend the problem to the measure case. 
More precisely, let μ : [0, 1] → R be a measure. Firstly, we will explain what are solutions and 
eigenvalues of the corresponding equation with a measure

dy(3)(t) + y(t)dμ(t) = λy(t)dt, t ∈ [0,1]. (1.6)

Secondly, we will establish the minimization characterization for the first eigenvalue λ1(μ) of the 
fourth order measure differential equation (MDE) (1.6) with the corresponding Lidstone bound-
ary condition. See Theorem 3.2. Thirdly, as did in [12] for second order linear MDE, we will 
show some strong continuous dependence results of solutions and the first eigenvalues of (1.6)
on measures μ with the weak∗ topology. See Theorem 2.9 and Theorem 3.4. Finally, we will find 
the explicit optimal lower bound of the first eigenvalue of MDE (1.6) when the total variation of 
measure μ is known. See Lemma 4.2. Based on the relationship between minimization problem 
of ODE and of MDE, we can obtain the main result of this paper as follows.

Theorem 1.1. Given r ≥ 0, one has

L(r) = λ1(−rδa∗) = λ1(−rδ1−a∗). (1.7)

Here a∗ ∈ (0, 1) satisfies

λ1(−rδa∗) = min
a∈(0,1)

λ1(−rδa) = min
a∈(0,1)

Yr (a) = Yr(a∗), (1.8)

where δa and Yr are as in (2.7) and (4.14), respectively.

Let us pay special attention to the following phenomenon. In general, the results known for 
the second order case do not necessarily hold for the corresponding fourth order problem. In 
[11,18], the authors have solved the minimization problem of eigenvalues of the second order 
equation. For the second order case, the critical measure of the Dirichlet eigenvalue is symmetric 
with respect to 1/2, i.e.,

∫
dμ(s) =

∫
dμ(s) ∀t ∈ [0,1]. (1.9)
[0,t] [1−t,1]
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For the fourth order case, we will find in this paper that the critical measure is symmetric when 
the fixed norm is small. However, when the norm is large enough, the critical measure is not 
symmetric with respect to 1/2. See Remark 4.6.

This paper is organized as follows. In Section 2, we will recall basic facts on measures, the 
Lebesgue–Stieltjes integral and the Riemann–Stieltjes integral. In Section 3, we will use the vari-
ational method to establish the basic theory for the first eigenvalue of the fourth order MDE. In 
section 4, based on the minimization characterization of the first eigenvalues and the relationship 
between minimization problem of ODE and of MDE, we will prove Theorem 1.1.

2. Measures and solutions of MDE

Let I = [0, 1]. For a function μ : I →R, the total variation of μ (over I ) is defined as

V(μ, I ) := sup

{
n−1∑
i=0

|μ(ti+1) − μ(ti)| : 0 = t0 < t1 < · · · < tn−1 < tn = 1, n ∈ N

}
.

Let

M(I,R) := {μ : I → R : μ(0+) ∃, μ(t+) = μ(t) ∀t ∈ (0,1), V(μ, I ) < ∞}

be the space of non-normalized R-valued measures of I . Here, for any t ∈ [0, 1), μ(t+) :=
lims↓t μ(s) is the right-limit. The space of (normalized) R-valued measures is

M0(I,R) := {μ ∈ M(I,R) : μ(0+) = 0} . (2.1)

For simplicity, we write V(μ, I ) as ‖μ‖V. By the Riesz representation theorem [8], (M0(I, R),

‖ · ‖V) is the same as the dual space of the Banach space (C(I, R), ‖ · ‖∞) of continuous R-valued 
functions of I with the supremum norm ‖ · ‖∞. In fact, μ ∈ (M0(I, R), ‖ · ‖V) defines μ∗ ∈
(C(I, R), ‖ · ‖∞)∗ by

μ∗(f ) =
∫
I

f (t)dμ(t), ∀f ∈ C(I,R), (2.2)

which refers to the Riemann–Stieltjes integral, or the Lebesgue–Stieltjes integral [2]. Moreover, 
one has

‖μ‖V = V(μ, I ) = sup
{∫

I
f dμ : f ∈ C(I,R), ‖f ‖∞ = 1

}
.

For t ∈ (0, 1], let

V(μ, (0, t]) := sup

{
n−1∑
i=0

|μ(ti+1) − μ(ti)| : 0 < t0 < t1 < · · · < tn−1 < tn = t, n ∈ N

}
.

It is known that for μ ∈M0(I, R), V(μ, I ) = |μ(0)| + V(μ, (0, 1]). See, e.g., [13].
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Lemma 2.1. ([15]) Let ν ∈M0(I, R). Define

ν̂(t) :=
{ −|ν(0)| for t = 0,

V(ν, (0, t]) for t ∈ (0,1]. (2.3)

Then ν̂ ∈M0(I, R) satisfies ‖ν‖V = ν̂(1) − ν̂(0) and∣∣∣∣∣∣∣
∫

[a,b]
f (s)dν(s)

∣∣∣∣∣∣∣ ≤
∫

[a,b]
|f (s)|dν̂(s) ∀ f ∈ C(I,R), [a, b] ⊂ I. (2.4)

For general theory of the Riemann–Stieltjes integral and Lebesgue–Stieltjes integral, see, e.g., 
[2].

Typical examples of measures are as follows.
• Let � : I → R be �(t) ≡ t . Then � yields the Lebesgue measure of I and the Lebesgue 

integral. More generally, any q ∈ L1(I, R) induces an absolutely continuous measure defined by

μq(t) :=
∫

[0,t]
q(s)ds, t ∈ I. (2.5)

In this case, one has

‖μq‖V = ‖q‖1 = ‖q‖L1(I,R), (2.6)

and ∫
I0

f (t)dμq(t) =
∫
I0

f (t)q(t)dt =
∫
I0

f (t)dμq(t)

for any f ∈ C(I, R) and subinterval I0 ⊂ I .
• For a = 0, the unit Dirac measure at t = 0 is

δ0(t) =
{ −1 for t = 0,

0 for t ∈ (0,1].
• For a ∈ (0, 1], the unit Dirac measure at t = a is

δa(t) =
{

0 for t ∈ [0, a),

1 for t ∈ [a,1]. (2.7)

In the space M0(I, R) of measures, one has the usual topology induced by the norm ‖ · ‖V. 
Due to duality relation (2.2), one has also the following weak∗ topology w∗.

Definition 2.2. Let μ0, μn ∈ M0(I, R), n ∈ N. We say that μn is weakly∗ convergent to μ0 iff, 
for each f ∈ C(I, R), one has

lim
n→∞

∫
f dμn =

∫
f dμ0.
I I
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We remark that in some literature, this topology is just called the weak topology for measures. 
For example, as a ↓ 0, one has∫

I

f dδa = f (a) → f (0) =
∫
I

f dδ0

for each f ∈ C(I, R). Thus δa → δ0 in (M0(I, R), w∗) as a ↓ 0.
In general, a measure cannot be a limit of smooth measures in the norm ‖ · ‖V. However, in 

the w∗ topology, the following conclusion holds.

Lemma 2.3. ([9]) Given μ0 ∈ M0(I, R), there exists a sequence of measures {μn} ⊂
C∞(I, R) ∩M0(I, R) such that

μn → μ0 in (M0(I,R),w∗).

Moreover, if μ0 is increasing (decreasing) on I , then the sequence {μn} above can be chosen 
such that for each n ∈N, μn is increasing (deceasing) on I and ‖μn‖V = ‖μ0‖V.

Considering q ∈ L1(I, R) as a density, one has the measure or distribution given by (2.5). 
Since ‖μq‖V = ‖q‖1,

(L1(I,R),‖ · ‖1) ↪→ (M0(I,R),‖ · ‖V) is an isometric embedding. (2.8)

For r ∈ [0, ∞), denote

B0[r] := {μ ∈M0(I,R) : ‖μ‖V ≤ r} .

Via (2.5), by the Hölder inequality and the isometrical embedding (2.8), one has the following 
result on these balls.

Lemma 2.4. Let r > 0. The following inclusion is proper

B1[r] ⊂ B0[r].

As for the compactness of these balls in weak∗ topology, we have the following result.

Lemma 2.5. ([8]) Let r > 0. Then B0[r] ⊂ (M0(I, R), w∗) is sequentially compact.

Given a measure μ ∈ M0 := M0(I, R), we will write the fourth order linear MDE with the 
measure μ as

dy(3)(t) + y(t)dμ(t) = 0, t ∈ [0,1]. (2.9)

Definition 2.6. A function y : I → R is called a solution to the equation (2.9) on the interval I if
• y ∈ C(I, R), and
• there exist (y0, y1, y2, y3) ∈ R

4 and functions y(1), y(2), y(3) : [0, 1] → R such that the fol-
lowing are satisfied



G. Meng, P. Yan / J. Differential Equations 261 (2016) 3149–3168 3155
y(t) = y0 +
∫

[0,t]
y(1)(s)ds, t ∈ [0,1], (2.10)

y(1)(t) = y1 +
∫

[0,t]
y(2)(s)ds, t ∈ [0,1], (2.11)

y(2)(t) = y2 +
∫

[0,t]
y(3)(s)ds, t ∈ [0,1], (2.12)

y(3)(t) =
{

y3, t = 0,

y3 − ∫
[0,t] y(s)dμ(s), t ∈ (0,1]. (2.13)

The initial condition of MDE (2.9) can be written as

(y(0), y(1)(0), y(2)(0), y(3)(0)) = (y0, y1, y2, y3). (2.14)

Since we have assumed that y ∈ C := C([0, 1], R), the right-hand sides of (2.10), (2.11), (2.12)
are the Lebesgue integral and (2.13) Lebesgue–Stieltjes integral respectively.

Because solutions of (2.9)–(2.14) are defined via fixed point equations, there are many meth-
ods to prove the existence and uniqueness of solutions. For example, one can find a proof from 
[4,16,17] based on the Kurzweil–Stieltjes integral, which applies also to the first order linear 
MDE.

Lemma 2.7. For each (y0, y1, y2, y3) ∈ R
4, problem (2.9)–(2.14) has the unique solution y(t)

defined on [0, 1].

For p ∈ [1, ∞], let Lp := Lp([0, 1], R) be the Lebesgue space of real-valued functions with 
the Lp norm ‖ · ‖p . For n ∈N, let Wn,p := Wn,p([0, 1], R) and

Wn,p

0 := W
n,p

0 ([0,1],R) = {y ∈Wn,p : y(0) = y(1) = 0}

be the usual Sobolev spaces with the norm ‖ · ‖Wn,p . For p = 2, Wn,2 and Wn,2
0 are denoted 

simply by Hn and Hn
0 , respectively, with the norm ‖ · ‖Hn .

By the properties of Lebesgue integral and Lebesgue–Stieltjes integral, some regularity results 
for solutions y(t) are as follows.

Corollary 2.8. Let y(t) be the solution of (2.9). Then y ∈ H3 and y(3) ∈ M := M([0, 1], R). 
Hence,

y(1)(t) = y′(t) ∈ C1 := C1([0,1],R), y(2)(t) = y′′(t) ∈AC := AC([0,1],R),

and y(3)(t) = y′′′(t) a.e. t ∈ [0, 1]. Here ′ denotes the derivative with respect to t .

We use y(t, y0, y1, y2, y3) to denote the unique solution of (2.9)-(2.14). Let

ϕ1(t) : = y(t,1,0,0,0), ϕ2(t) := y(t,0,1,0,0),

ϕ3(t) : = y(t,0,0,1,0), ϕ4(t) := y(t,0,0,0,1),
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called the fundamental solutions of (2.9). By the linearity of (2.9) and the uniqueness of solution, 
one has that, for t ∈ [0, 1],

⎛
⎜⎜⎝

y(t, y0, y1, y2, y3)

y(1)(t, y0, y1, y2, y3)

y(2)(t, y0, y1, y2, y3)

y(3)(t, y0, y1, y2, y3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ϕ1(t) ϕ2(t) ϕ3(t) ϕ4(t)

ϕ
(1)
1 (t) ϕ

(1)
2 (t) ϕ

(1)
3 (t) ϕ

(1)
4 (t)

ϕ
(2)
1 (t) ϕ

(2)
2 (t) ϕ

(2)
3 (t) ϕ

(2)
4 (t)

ϕ
(3)
1 (t) ϕ

(3)
2 (t) ϕ

(3)
3 (t) ϕ

(3)
4 (t)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

y0
y1
y2
y3

⎞
⎟⎟⎠

= : Nμ(t)

⎛
⎜⎜⎝

y0
y1
y2
y3

⎞
⎟⎟⎠ .

In [12,21], the authors have obtained the continuity of solutions in measures for the second 
order linear MDE. For the fourth order linear MDE, we can argue in a similar way to prove the 
following conclusion.

Theorem 2.9. Let y(t, μ) be the solution of (2.9)-(2.14). Then the following solution mappings 
are continuous

(M0,w
∗) → (C,‖ · ‖∞), μ → y(·,μ), (2.15)

(M0,w
∗) → (C,‖ · ‖∞), μ → y(1)(·,μ), (2.16)

(M0,w
∗) → (C,‖ · ‖∞), μ → y(2)(·,μ), (2.17)

(M0,w
∗) → (M,w∗), μ → y(3)(·,μ). (2.18)

By Corollary 2.8, we have the following corollary.

Corollary 2.10. The following solution mapping

(M0,w
∗) → (C2,‖ · ‖H2), μ → y(·,μ), (2.19)

is continuous, where C2 := C2([0, 1], R).

3. The first eigenvalue of MDE

We consider eigenvalue problem of the fourth order equation (1.6) with the Lidstone boundary 
condition (1.2).

Definition 3.1. Given μ ∈M0, we say that λ ∈R is an eigenvalue of the Lidstone problem (1.6),
(1.2), if MDE (1.6) with such a parameter λ has non-zero solutions y(t) satisfying (1.2). The 
corresponding solutions y(t) are called eigenfunctions associated with λ.

Besides the Sobolev spaces H2
0 and H3

0, let us introduce

H3
00 := {y ∈ H3 : y satisfies (1.2)} = {y ∈ H3 : y(0) = y(1) = y ′′(0) = y′′(1) = 0}.

One has the proper inclusions H3 ⊂ H3 ⊂H2.
00 0 0
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It remains open to us what is the complete structure of eigenvalues of problem (1.6), (1.2). 
Let us introduce the Rayleigh form for problem (1.6)

R(u) = Rμ(u) :=
∫
[0,1](u

′′)2 dt + ∫
[0,1] u

2 dμ(t)∫
[0,1] u2 dt

for u ∈H2
0\{0}. (3.1)

It is a standard result that any (possible) eigenvalue λ ∈R of problem (1.6), (1.2) with eigenfunc-
tion u ∈H3

00 must satisfy

R(u) = λ. (3.2)

In the following theorem, we show that problem (1.6), (1.2) does admit the smallest (first) 
eigenvalue. In fact, we have the minimization characterizations of the first eigenvalue using R(u).

Theorem 3.2. Given μ ∈ M0, problem (1.6), (1.2) admits a first (smallest) eigenvalue λ1(μ), 
which has the following minimization characterizations

λ1(μ) = min
u∈H2

0\{0}
R(u) = min

u∈H3
0\{0}

R(u) = min
u∈H3

00\{0}
R(u). (3.3)

Proof. Let u ∈H2
0 be non-zero. We have

‖u‖2∞ ≤
⎛
⎜⎝ ∫

[0,1]
|u′|dt

⎞
⎟⎠

2

≤
∫

[0,1]
u′u′ dt

= uu′∣∣1
0 −

∫
[0,1]

uu′′ dt ≤
∫

[0,1]
|uu′′|dt

≤ ‖u‖2‖u′′‖2,

i.e.,

‖u′′‖2 ≥ ‖u‖2∞/‖u‖2. (3.4)

Since

∫
[0,1]

u2 dμ(t) ≥ −‖μ‖V‖u‖2∞ = −‖μ‖V‖u‖2√
2

·
√

2‖u‖2∞
‖u‖2

≥ −1

2

(
‖μ‖2

V‖u‖2
2

2
+ 2‖u‖4∞

‖u‖2
2

)
, (3.5)

we have from (3.4) and (3.5)
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∫
[0,1]

(u′′)2 dt +
∫

[0,1]
u2 dμ(t) ≥ ‖u‖4∞

‖u‖2
2

− 1

2

(
‖μ‖2

V‖u‖2
2

2
+ 2‖u‖4∞

‖u‖2
2

)

= −‖μ‖2
V‖u‖2

2

4
.

Thus

R(u) ≥ −‖μ‖2
V

4
∀0 �= u ∈H2

0. (3.6)

Due to (3.6),

λ1 := inf
u∈H2

0\{0}
R(u) > −∞. (3.7)

Take a sequence {un} ⊂H2
0 such that

‖un‖∞ = 1 and lim
n→+∞R(un) = λ1. (3.8)

Then ∫
[0,1]

(u′′
n)

2 dt = R(un)

∫
[0,1]

u2
n dt −

∫
[0,1]

u2
n dμ(t) ≤ |R(un)| + ‖μ‖V

is bounded. See (3.8). Combining with the assumption ‖un‖∞ = 1, it is easy to see that {un} ⊂
H2

0 is bounded. As H2
0 is a Hilbert space and is compactly embedded into C1, there exists a 

non-zero u0 ∈H2
0 such that

un → u0 in (H2
0,w) and un → u0 in (C1,‖ · ‖C1),

going to a subsequence if necessary. Thus

∫
[0,1]

(u′′
0)

2 dt = lim
n→+∞

∫
[0,1]

u′′
0u

′′
n dt ≤ lim inf

n→+∞

⎛
⎜⎝ ∫

[0,1]
(u′′

0)
2 dt

⎞
⎟⎠

1/2 ⎛
⎜⎝ ∫

[0,1]
(u′′

n)
2 dt

⎞
⎟⎠

1/2

.

This implies that

∫
[0,1]

(u′′
0)

2 dt ≤ lim inf
n→+∞

∫
[0,1]

(u′′
n)

2 dt.

Hence
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R(u0) ≤ lim infn→+∞
∫
[0,1](u

′′
n)

2 dt + ∫
[0,1] u

2
0 dμ(t)∫

[0,1] u
2
0 dt

= lim inf
n→+∞

∫
[0,1](u

′′
n)

2 dt + ∫
[0,1] u

2
n dμ(t)∫

[0,1] u2
n dt

= lim inf
n→+∞R(un) = λ1.

Combining with (3.7), one has

R(u0) = λ1 = min
u∈H2

0\{0}
R(u). (3.9)

Take any

φ ∈ C∞
c := {φ ∈ C∞([0,1]) : suppφ ⊂ (0,1)}.

Then u0 + sφ ∈ H2
0\{0} for all s ∈ R with |s| small enough.

As a function of s, it follows from (3.9) that R(u0 + sφ) takes a minimum at s = 0. Thus

0 = dR(u0 + sφ)

ds

∣∣∣∣
s=0

= 2(∫
[0,1] u

2
0 dt

)2

( ∫
[0,1]

u2
0 dt

⎛
⎜⎝ ∫

[0,1]
u′′

0φ
′′ dt +

∫
[0,1]

u0φ dμ(t)

⎞
⎟⎠

−
⎛
⎜⎝ ∫

[0,1]
(u′′

0)
2 dt +

∫
[0,1]

u2
0 dμ(t)

⎞
⎟⎠ ∫

[0,1]
u0φ dt

)

= 2∫
[0,1] u

2
0 dt

⎛
⎜⎝ ∫

[0,1]
u′′

0φ
′′ dt +

∫
[0,1]

u0φ dμ(t) − λ1

∫
[0,1]

u0φ dt

⎞
⎟⎠ . (3.10)

Here (3.9) is used and the derivative is found using definition (3.1) for R(u). By introducing the 
measure μ̂ : [0, 1] → R

μ̂(t) := μ(t) − λ1t, t ∈ [0,1],

equation (3.10) is

∫
u′′

0(t)φ
′′(t)dt +

∫
u0(t)φ(t)dμ̂(t) = 0 ∀φ ∈ C∞

c . (3.11)
[0,1] [0,1]
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Since φ ∈ C∞
c , one has

φ(t) =
∫

[0,t]

⎛
⎜⎝ ∫

[0,s]
φ′′(τ )dτ

⎞
⎟⎠ ds =

∫
[0,t]

(t − s)φ′′(s)ds.

Then

∫
[0,1]

u0(t)φ(t)dμ̂(t) =
∫

[0,1]

⎛
⎜⎝ ∫

[0,t]
(t − s)u0(t)φ

′′(s)ds

⎞
⎟⎠ dμ̂(t)

=
∫

[0,1]

⎛
⎜⎝ ∫

(s,1]
(t − s)u0(t)dμ̂(t)

⎞
⎟⎠φ′′(s)ds

=
∫

[0,1]

⎛
⎜⎝ ∫

(t,1]
(s − t)u0(s)dμ̂(s)

⎞
⎟⎠φ′′(t)dt.

Substituting into (3.11), we obtain

∫
[0,1]

⎛
⎜⎝u′′

0(t) +
∫

(t,1]
(s − t)u0(s)dμ̂(s)

⎞
⎟⎠φ′′(t)dt = 0

for all φ ∈ C∞
c . Hence u0(t) satisfies

u′′
0(t) +

∫
(t,1]

(s − t)u0(s)dμ̂(s) = ct + ĉ a.e. t ∈ [0,1], (3.12)

where c, ĉ are some constants. Note that

∫
[0,t]

⎛
⎜⎝ ∫

[0,τ ]
u0(s)dμ̂(s)

⎞
⎟⎠ dτ =

∫
[0,t]

(t − s)u0(s)dμ̂(s)

=
∫

(t,1]
(s − t)u0(s)dμ̂(s) +

∫
[0,1]

(t − s)u0(s)dμ̂(s)

=
∫

(s − t)u0(s)dμ̂(s) + c1t + ĉ1,
(t,1]
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where c1 and ĉ1 are constants. Hence equation (3.12) can be rewritten as

u′′
0(t) +

∫
[0,t]

⎛
⎜⎝ ∫

[0,τ ]
u0(s)dμ̂(s)

⎞
⎟⎠ dτ = c2t + ĉ2 a.e. t ∈ [0,1], (3.13)

where c2 = c−c1 and ĉ2 = ĉ− ĉ1. By the properties of Lebesgue integral and Lebesgue–Stieltjes 
integral, one knows from (3.13) that u′′

0(t) is absolutely continuous and satisfies

u′′′
0 (t) +

∫
[0,t]

u0(s)dμ(s) − λ1

∫
[0,t]

u0(s)ds = c2 a.e. t ∈ [0,1]. (3.14)

Equation (3.14) implies that u0 ∈ H3 and therefore u0 ∈ H3
0. With the explanation to so-

lutions of MDE, (3.14) shows that u0(t) is a non-zero solution of the MDE (1.6) with the 
choice λ = λ1. Moreover, it is standard to verify that u0(t) also satisfies the boundary condi-
tion u′′

0(0) = u′′
0(1) = 0 (see [3, p. 208]). Thus u0 ∈ H3

00 and λ1 is necessarily an eigenvalue 
of problem (1.6), (1.2) with the eigenfunction u0. Because of (3.9) and the fact that u0 ∈ H3

00, 
λ1 = λ1(μ) which is characterized as in (3.3). Finally, due to result (3.2) for general eigenvalues, 
we know that λ1(μ) must be the smallest eigenvalue of problem (1.6), (1.2). �

Let us introduce the following ordering for measures. We say that measures μ2 ≥ μ1 if∫
[0,1]

f (t)dμ2(t) ≥
∫

[0,1]
f (t)dμ1(t) for all f ∈ C+ := {f ∈ C : f (t) ≥ 0, t ∈ [0,1]} .

As a consequence of (3.3) in Theorem 3.2, we can obtain the following result.

Corollary 3.3. Let μ1, μ2 ∈M0. Then

μ2 ≥ μ1 ⇒ λ1(μ2) ≥ λ1(μ1).

Now the continuity of the first eigenvalue in measures with the weak∗ topology can be proved 
by the same arguments as those in [10].

Theorem 3.4. As a nonlinear functional, λ1(μ) is continuous in μ ∈ (M0, w∗).

4. The optimal lower bound of the first eigenvalue

Let us explicitly find the first eigenvalues for Dirac measures −rδa , where a ∈ (0, 1) and 
r ≥ 0. To this end, we need to solve the following equation

dy(3)(t) − ry(t)dδa(t) = λy(t)dt, t ∈ [0,1]. (4.1)

From the explanation to solutions of MDE, one knows that solutions y(t) of (4.1) satisfies the 
classical ODE

y(4)(t) = λy(t) (4.2)
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for t on the intervals [0, a) and (a, 1]. At t = a, one has the following relations{
y(a+) = y(a−), y′(a+) = y′(a−),

y′′(a+) = y′′(a−), y′′′(a+) = y′′′(a−) + ry(a−),
(4.3)

or, ⎛
⎜⎜⎝

y(a+)

y′(a+)

y′′(a+)

y′′′(a+)

⎞
⎟⎟⎠ = Ar

⎛
⎜⎜⎝

y(a−)

y′(a−)

y′′(a−)

y′′′(a−)

⎞
⎟⎟⎠ , where Ar :=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
r 0 0 1

⎞
⎟⎟⎠ . (4.4)

From the first two conditions of (1.2), let us consider the initial value

(y(0), y′(0), y′′(0), y′′′(0)) = (0, c,0, ĉ) �= 0

at t = 0. From ODE (4.2) on [0, a), we obtain

y(t) = c1 sinωt + c2 sinhωt, t ∈ [0, a), (4.5)

for some (c1, c2) �= 0. Here,

ω :=
{

4
√

λ ∈R for λ ≥ 0,
4
√|λ|e πi

4 ∈C for λ < 0.
(4.6)

By (4.3), we have

y(a+) = z0 := c1 sinωa + c2 sinhωa,

y′(a+) = z1 := c1ω cosωa + c2ω coshωa,

y′′(a+) = z2 := −c1ω
2 sinωa + c2ω

2 sinhωa,

y′′′(a+) = z3 := c1

(
−ω3 cosωa + r sinωa

)
+ c2

(
ω3 coshωa + r sinhωa

)
.

By using this as the initial value at t = a, we obtain from ODE (4.2) that

y(t) = z0 − z2
ω2

2
cosω(t − a) +

z1
ω

− z3
ω3

2
sinω(t − a)

+ z0 + z2
ω2

2
coshω(t − a) +

z1
ω

+ z3
ω3

2
sinhω(t − a)

= c1 sinωa cosω(t − a)

+
(

c1 cosωa − r
c1 sinωa + c2 sinhωa

2ω3

)
sinω(t − a)

+ c2 sinhωa coshω(t − a)

+
(

c2 coshωa + r
c1 sinωa + c2 sinhωa

3

)
sinhω(t − a)
2ω
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= c1 sinωt + c2 sinhωt

+ r
c1 sinωa + c2 sinhωa

2ω3 (sinhω(t − a) − sinω(t − a)) (4.7)

for t ∈ (a, 1]. Now the last two conditions y(1) = y′′(1) = 0 of (1.2) are the following linear 
system for (c1, c2){

c1 sinω + c2 sinhω + r
sinh ω(1−a)−sin ω(1−a)

2ω3 (c1 sinωa + c2 sinhωa) = 0,

ω2 (−c1 sinω + c2 sinhω) + r
sinh ω(1−a)+sin ω(1−a)

2ω
(c1 sinωa + c2 sinhωa) = 0.

(4.8)

In order that system (4.8) has non-zero solutions (c1, c2), the corresponding determinant of (4.8)
is necessarily zero. This yields the following equation

G(λ,a) = r, (4.9)

where G : (−∞, π4] × (0, 1) → [0, +∞) is defined as

G(λ,a) :=
⎧⎨
⎩

2ω3 sinh ω sin ω
sin(ωa) sin(ω(1−a)) sinh ω−sinh(ωa) sinh(ω(1−a)) sin ω

for λ �= 0.

3
a2(1−a)2 for λ = 0.

(4.10)

Then, by the existence of the first eigenvalue, we conclude

λ1(−rδa) = min{λ ∈ R : G(λ,a) − r = 0}.
It is easy to check that G(λ, a) is a well-defined real function of (λ, a) ∈ (−∞, π4] × (0, 1)

with G(π4, a) = 0 and G(λ, a) = G(λ, 1 − a). Moreover, the following properties of G(λ, a)

can be proved.

Lemma 4.1. Let G(λ, a) be defined as in (4.10). One has

(i) When a ∈ (0, 1) is fixed, G(λ, a) is decreasing in λ ∈ (−∞, π4].
(ii) When λ ∈ (−∞, π4] is fixed, there exists aλ ∈ (0, 1) such that

G(λ,aλ) = min
a∈(0,1)

G(λ, a),

and E(λ, aλ) = 0, where E : (−∞, π4] × (0, 1) → R is defined as

E(λ,a) = sin (ω(1 − 2a)) sinhω − sinh (ω(1 − 2a)) sinω. (4.11)

(iii) When λ ∈ [�1, π4] is fixed, one has aλ = 1/2, i.e.,

G(λ,1/2) = min
a∈(0,1)

G(λ, a). (4.12)

Here �1(≈ −950.8843) is the unique root of H(λ) = 0 with

H : [−(3π/
√

2)4,0) → R, λ → H(λ) = w(sinw − sinhw). (4.13)
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Proof. Since these results are concerned with elementary functions, we only give the basic ideas 
of the proof of this lemma.

(i) When a ∈ (0, 1) is fixed, one can check that

∂

∂λ
G(λ,a) ≤ 0, ∀λ ∈ (−∞,π4].

(ii) Since

lim
a→0

G(λ,a) = lim
a→1

G(λ,a) = +∞,

there exists aλ ∈ (0, 1) such that

G(λ,aλ) = min
a∈(0,1)

G(λ, a),

which is equivalent to

1

G(λ,aλ)
= max

a∈(0,1)

1

G(λ,a)
.

Thus one has

0 = ∂

∂a

1

G(λ,a)

∣∣∣∣
a=aλ

= sin (ω(1 − 2aλ)) sinhω − sinh (ω(1 − 2aλ)) sinω

2ω2 sinhω sinω
,

which implies E(λ, aλ) = 0.
(iii) When λ ∈ [�1, π4] is fixed, one has

∂2

∂2a

1

G
(λ,a) = sinω cosh (ω(1 − 2a)) − sinhω cos (ω(1 − 2a))

ω sinω sinhω
≤ 0 ∀a ∈ (0,1/2],

and

∂

∂a

1

G(λ,a)

∣∣∣∣
a=1/2

= 0.

Hence

∂

∂a

1

G(λ,a)
≥ 0 ∀a ∈ (0,1/2],

which means that 1
G(λ,a)

is increasing and then G(λ, a) is decreasing in a ∈ (0, 1/2]. Thus (4.12)
follows from G(λ, a) = G(λ, 1 − a). �

By Lemma 4.1, one has that for fixed a ∈ (0, 1), r ≥ 0,

λ1(−rδa) = Yr(a).
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Here Yr : (0, 1) → (−∞, π4] is defined as

Yr(a) = λa, (4.14)

where λa ∈ (−∞, π4] is the unique root of

G(λa, a) − r = 0.

Now, we are ready to find the explicit optimal lower bounds of the first eigenvalues of MDE 
and the relationship between minimization problem of ODE and of MDE.

Firstly, we study the following minimization problem

L̃(r) := inf{λ1(μ) : μ ∈ B0[r]} = min{λ1(μ) : μ ∈ B0[r]}, (4.15)

because B0[r] is sequentially compact in (M0, w∗). See Theorem 3.4.

Lemma 4.2. Given r ≥ 0, one has

L̃(r) = λ1(−rδa∗) = λ1(−rδ1−a∗),

where a∗ ∈ (0, 1) satisfies (1.8).

Proof. Given μ ∈ B0[r], we take an eigenfunction y(t) associated with λ1(μ) which satisfies 
the normalization condition ‖y‖2 = 1. There exists a ∈ (0, 1) such that

‖y‖∞ = max
t∈[0,1]

|y(t)| = |y(a)|.

We have that

λ1(μ) =
∫

[0,1]
(y′′)2 dt +

∫
[0,1]

y2 dμ(t)

≥
∫

[0,1]
(y′′)2 dt − ‖μ‖V‖y‖2∞

≥
∫

[0,1]
(y′′)2 dt − ry2(a)

=
∫

[0,1]
(y′′)2 dt +

∫
[0,1]

y2 d(−rδa(t))

≥ λ1(−rδa). (4.16)

Here the last inequality in (4.16) follows from characterization (3.3) for λ1(−rδa) since 
‖y‖2 = 1. Hence

L̃(r) = inf
a∈(0,1)

λ1(−rδa).

By Lemma 4.1 and the definition of Yr in (4.14), there exists a∗ ∈ (0, 1) satisfying (1.8). �
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Secondly, we can obtain the relationship between minimization problem of ODE and of MDE 
as follows.

Lemma 4.3. Given r ≥ 0, one has that

L(r) = L̃(r). (4.17)

Proof. Given q ∈ B1[r], the measure μq ∈ M0 is defined as (2.5). By (2.8), we have that μq ∈
B0[r] is absolutely continuous with respect to the Lebesgue measure.

So for any q ∈ B1[r],

L̃(r) ≤ λ1(μq) = λ1(q),

which implies that

L̃(r) ≤ L(r). (4.18)

On the other hand, there exists μ̄ ∈ B0[r] such that λ1(μ̄) = L̃(r). By the property of measures 
in Lemma 2.1 and the monotonicity of λ1(μ) in Corollary 3.3, without loss of generality, we 
can assume that μ̄ = − ˆ̄μ is decreasing. By Lemma 2.3, there exists a sequence of measures 
{μ̄n} ⊂ C∞ ∩M0 such that

dμ̄n(t)

dt
= q̄n(t),

‖μ̄n‖V = ‖q̄n‖1 = ‖μ̄‖V ≤ r,

μ̄n → μ̄ in (M0,w
∗).

Therefore, by Theorem 3.4, we have

L̃(r) = λ1(μ̄) = lim
n→∞λ1(μ̄n) = lim

n→∞λ1(q̄n) ≥ lim
n→∞ L(r) = L(r). (4.19)

Now (4.18) and (4.19) imply that L(r) = L̃(r). �
The proof of Theorem 1.1. By Lemma 4.2 and Lemma 4.3, the conclusion holds directly. �
Remark 4.4. To compute L(r), it suffices to solve the following optimization problem

minf (λ, a) = λ

subject to the constraints

G(λ,a) − r = 0, 0 < a ≤ 1/2,

where G(λ, a) as in (4.10).

In Fig. 1, we have plotted L(r) as functions of r .
By Lemma 4.1 (iii), we have the following conclusion.
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Fig. 1. Function L(r) of r .

Fig. 2. Function a∗(r) of r .

Corollary 4.5. If 0 ≤ r ≤ G(�1, 1/2) (≈ 458.4163), then

a∗ = a∗(r) = 1/2 and L(r) = λ1(−rδ1/2) ∈ [�1,π
4].

Remark 4.6. In Fig. 2, we have plotted a∗ ∈ (0, 1/2] as functions of r . One can see that a∗ < 1/2
when r > G(�1, 1/2). This means that if r is large enough, then the minimal measures are not 
symmetric with respect to t = 1/2, which is different from the case of the second order equation 
(see [11,18]).
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