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ARTICLE INFO ABSTRACT

Article history: For a family of k-graphs &, the Turdn number T (n, ) is the maxi-
mum number of edges in a k-graph of order n that does not contain
any member of #. The Turan density t(¥) = lim,_ T(n, )/
(Z) Let K4 be the tetrahedron that is the complete triple graph of
order four. Let the triple graph %, 4 defined on the vertex set P U Q
with |P| = p and |Q| = q consist of those edges which intersect
P in either one or three vertices. Let V = {1, 2, 3, 4, 5} and let 5
be defined on V with E(F5) = {123, 145, 245}. Let ¥ denote the
complement of %5, and let &5 be the weak pentagon obtained from
Fs by adding the edge 134 and let Cs be the pentagon obtained
from £ by adding one more edge 235. We prove that

o 1/2 <t(F14) <2/3,

0 23 -3 <t(Ka, F) <2 -V2,

o 1/4 < t(F14, P5) <6428,

e 2/9 < t(Fi3, Fip, Cs) < 1/4/11.
The first result relates to a conjecture of Mubayi and Markstrém-
Talbot that t(¥7,3) = 2/7. The best known bounds are 2/7 <
t(#1.3) < 0.32908. The second result relates to an old conjecture
of Turan that t(K4) = 5/9. The best bounds are 5/9 < t(K4) <

(34 +/17)/12. The last two results relate to a result of Mubayi and
Rodl that t(?‘153, @5) < ]0/31
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1. Introduction

Given a family of k-uniform hypergraphs (or k-graphs) ¥, we say that a k-graph # is ¥ -free if #
contains no subgraph isomorphic to any member in & . The Turdn number T(n, ) is the maximum
number of edges in an F -free k-graph of order n. It is well known [8] that the ratio T(n, )/ (';) is
decreasing in n. Therefore, the limit t () := limy_ T(n, ¥)/ (Z) exists, which is called the Turdn
density of ¥ . It is also well known that determining the Turdn density of any complete hypergraph is
the most fundamental open problem in extremal combinatorics.

Let p and g be two positive integers, and P and Q be two disjoint sets with [P| = p and |Q| = q.
Then the triple graph %, 4 is defined on the vertex set PUQ and consists of those edges which intersect
P in either one or three vertices. Let K4 be the tetrahedron that is the complete triple graph of order
four. Let 5 be the cycle obtained from %3 ; by deleting an edge which has only one vertex in P. Thus
if P = {u, v, w} and Q = {x, y}, then E(¥5) = {uvw, uxy, vxy}. Let ¥ denote the complement of s,
and let #s be the weak pentagon obtained from %5 by adding the edge uwx and let G5 be the pentagon
obtained from $5 by adding one more edge vwy.

Recently many attempts are toward to evaluate positive Turan densities of small triple graphs. The
best current results for triple graphs of order 4 and 5 are listed in the following.

e 2/7 < t(F13) = t(F23) < 0.32908, by Frankl and Fiiredi [3], and Markstrém and Talbot [10]
respectively;

5/9 <t(Kq) <3+ «/ﬁ)/lZ =0.593592..., by Turan[14], and Chung and Lu [1] respectively;
t(¥s) = 2/9, by Frankl and Fiiredi [2];

t(F32) = 4/9, by Fiiredi, Pikhurko and Simonovits [6,5];

2V/3-3<t(Cs) <2 — V2 =0.5857. .., by Mubayi and Rédl [12];

t(F13, Cs) < 10/31 = 0.32258 ..., by Mubayi and Rédl [12].

Very recently, Razborov [13] applied a semi-definite program with numerical computations and
improved many previously known bounds among which is the following: t (7 3) = t(%2,3) < 0.2978,
t(K4) < 0.561666, t(Cs) < 0.4683 and t(F; 3, Cs) < 0.2546. However, he did not feel motivated
enough to try to convert the floating-point computation into a rigorous mathematical proof.

It was conjectured by Mubayi [11] and Markstrém and Talbot [10], Turdn [14] and Razborov [13]
respectively that the lower bounds are the true values for 7 3, the tetrahedron and the pentagon
respectively.

Among a few known positive Turan densities, the triple graphs 5 and 3  are the only two of order
five. Though unable to improve any of the above results, we prove rigorously that density exceeding
2 — /2 forces either a tetrahedron or a copy of £, and density exceeding 0.3015 - - - forces either a
pentagon or a copy of either %7 3 or ¥3 . More precisely, we obtain the following results.

Theorem 1.1. 1/2 < t(F1.4) < 2/3.
Theorem 1.2. 24/3 — 3 < t(Ky, F&) <2 — V2.
Theorem 1.3. 1/4 < t(F1.4, P5) < 6+/2 — 8.

Theorem 1.4. 2/9 < t(fl"'l’g, ?3.2, 05) < 1/«/ 11.

The proofs combine the induction and an application of the Cauchy-Schwarz inequality. These
techniques were also used by Mubayi and Rodl [12]. We remark that a {4, %< }-free triple graph
is exactly a K 4-free triple graph with every five vertices spanning at most six edges, and we believe
that the upper bound in Theorems 1.2 may be improved.

Conjecture. t(K4, F<) = 2+/3 — 3.
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2. The triple graph ¥ 4

Definition. Let J¢ be a triple graph and S C V (#). The link multigraph of S in J¢ is the multigraph G
with V(G) = V(#) — S,and E(G) = {uv : uvw € E(H) for some w € S}.

Proof of Theorem 1.1. The lower bound follows from a construction of Goldwasser [7]. Let # be the
complement of a triple graph induced by the Fano plane. It is clear that # is % 4-free with 7 vertices
and 28 edges. Suppose |V| = nand V is partitioned into V = V; UV, U - - - U V5. Define a triple graph
H' = (V, E), where

E = {'Ujlvizvj3 1<ii<ip<iz <7, v; € V,'j, i1izis € E(F)}.

It is clear that #¢' is also F7 4-free. It is still possible to add edges to J¢’ keeping the property that it is
F1 4-free. Indeed, we can add any Fj 4-free triple graph #¢” within V; fori = 1,2, ..., 7. Consider a
set S of five vertices in the resulting triple graph. If SN V;| < 3foralli = 1, ..., 7, then edges of S
are all of #’, and thus S contains no copy of #7 4. If there is some i such that |S N V;| = 3, then S has
at most four edges in total, and thus contains no copy of %7 4. If there is some i such that |S N V;| > 3,
then edges of S are all of #”, and thus S again contains no copy of F; 4. We define #' with parts V;
fori = 1,...,7 of size as equal as possible and repeat this construction recursively. This results in a
triple graph with [a + o(1)] () edges, where a satisfies

3 n/7y _ n
28(n/7) +7a( ; >_[a+o(1)](3>.

Solving givesa = 1/2.
For the upper bound, suppose that # is a triple graph of order n and size at least % (g) + n% We
prove by induction on n that # contains a copy of %7 4. It thus suffices to find a vertex in # of degree

at most % (";1) + 2n — 1. Take a vertex v € V(#) and let G be the link graph of v. If # is ¥ 4-free,
then G is K4-free. Thus by Turan’s Theorem [14],

2 2 (n-1
dw) =EG)| <(n—-1) /3<3< 5 )—|—2n—1.

This completes the proof. O
Remark. The following general result can be obtained by applying the same technique.

Theorem 2.1. t(F14) < (k—2)/(k—1) for k > 1.

3. Either tetrahedron or %

Lemma 3.1 ([12]). Let G be a multigraph with vertex partition A U B and maximum multiplicity two. For
S C V(G), let m(S) be the number of edges (counting multiplicities) induced by S. Suppose that, for all S
of size three,

1. if JANS| > 2, then m(S) < 4, and
2. if ANS # O, thenm(S) < 5.

Then [EG)| = () +2('5') + 141 181 + 1A}

Proof of Theorem 1.2. The lower bound follows from a construction of Mubayi and Rédl [12]. Let #
be a triple graph on vertices partitioned into two sets A and B. Let E(#) consist of all triples uvw, where
u,v € Aand w € B. Note that Cs is a subgraph of #¢. It is easily checked that # is { K4, ¥4 }-free. If we
add any {K4, ¢ }-free triple graph #’ within B, then it is also easily checked that the resulting graph
keeps {K4, ¥4 }-free. Repeating this construction recursively and choosing proper sizes of A and B to

maximize produces a triple graph of size [2/3 — 3+ o(1)] ().
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For the upper bound, let ¢ = 2 —+/2 and b > 2, and suppose that # is a triple graph of order n and
size at least ¢ (;) + bn?. We prove by induction on n that # contains either a tetrahedron or a copy

of #<. It thus suffices to find a vertex in # of degree at most ¢ (”;1) + b(2n — 1). Since the average

codegree of # is at least cn, there is a pair uv with d(uv) > cn. Let A C N(uv) be of size cn, and let
B = V(#)—A.Let G(u) and G(v) be the link graphs in # — {u, v} of u and v, respectively. Consider the
multigraph G = G(u) U G(v). If # is K4-free, then G[A] must be simple. Moreover if there is a triple
S ={w, x,y} withw € Aand m(S) = 6 or w, x € Aand m(S) > 5, then clearly S U {u, v} contains a
copy of #. Thus G, A and B satisfy the condition of Lemma 3.1. Consequently,
Al 2 m 2 2.2
E(G)| < (2 >—|—|A||B|—|—|B| + Al = <z)+c(1—c)n 4+ (1 —c0¢)n“+cn

IA

[62—1—26(1—c)+2(1—c)2]<n;1)+2b(2n—1)—2n
n—1
§2c( 9 >+2b(2n—1)—2n.

The last inequality holds since the quadratic function x2 + 2(1 — x) — 2x has roots x = 2 + /2 and
opens upward. Thus one of the graphs G(u) and G(v) has at most ¢ (";1) + b(2n — 1) — n edges,

and the vertex corresponding to this link graph has degree in # at most ¢ (";]> + b(2n — 1). This
completes the proof. O

4. Either weak pentagon or ¥ 4
The following lemma is a special case of a result of Fiiredi and Kiindgen [4].

Lemma 4.1. Let G be a triangle-free multigraph of order n > 2 with maximum multiplicity two which
has only isolated multiple edges. Then G has at most n? /4 edges.

Proof. We use induction on n. This is clearly true for n = 3. If G is simple, then Mantel’s theorem [9]
implies that |E(G)| < n?/4. So we may assume that there is an isolated multiple edge. Then deleting
the multiple edge along with its pair of vertices, we obtain a subgraph H of G. Now by induction, we
have |[E(G)| = [E(H)| +2 < (n—2)?/4+2 <n?/4. O

The following property is an asymmetric variation of the above lemma.

Lemma 4.2. Let G, and G, be two K4-free simple graphs on the same vertex set V, and let G = G, U G,.
Let V. = AUB, and a := |A| > 2 and b := |B| respectively. For S C V(G), let m(S) be the number of edges
(counting multiplicities) induced by S. Suppose that G[A] is triangle-free and has only isolated multiple
edges, and moreover

1. for each S of size three, if ANS # @, then m(S) < 4, and

2. for each vertex v € B, if there is a vertex u € A such that m(uv) = 2, then u is the only neighbor of v
in A

Then |E(G)| < a*/4 + ab + 2b%/3.

Proof. The inequality holds trivially for b < 1 and it is easy to see that |[E(G)| < 2 + 2b + 2b%/3
for a = 2. So we may assume that b > 2 and firstly consider a = 3. Let G[A, B] denote the bipartite
subgraph of G induced by all edges with one end in A and the other in B. If G[A, B] is simple, then we
have

|E(G)| < m(A) + ab + m(B) < 2 + 3b + 2b*/3.

We may thus assume that an edge uv has multiplicity two, where u € Aand v € B. Then by Condition
2, u is the only neighbor of v in A. Note that if there is a vertex w € A such that uw is a multiple edge
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then ds(u) = 2 since G[A] has only isolated multiple edges. Also note that Condition 1 implies that
every vertex of B has at most two edges to {u, v}. Let H = G — {u, v}. Then we have
[E(G)| < [EH)|+2+2(b—-1)+2
<242b—1)4+2(b—-1*/3+2+2b
< 24 3b+2b%/3.

This proves the case when a = 3. Next we consider a > 3 and Lemma 4.1 is applicable to G[A]. We
use induction on a + b. Again if G[A, B] is simple, then by Lemma 4.1,

[E(G)| < m(A) + ab + m(B) < a*/4+ ab+ 2b*/3.

So we may assume that an edge uv has multiplicity two, where u € A and v € B. Then as above let
H = G — {u, v} and the induction hypothesis applied to H implies that

E@G)| < [EM)|+a—-1+2(b-1)+2
(@a—12%/4+@—1)b—-1)4+2b—-1%/3+a+2b—-1
a*/4 +ab+2b*/3 —a/2 —b/3 4+ 11/12
< a*/4 + ab + 2b%/3.

IA

This completes the proof. O

Proof of Theorem 1.3. For the lower bound, consider the complete three partite triple graph # =
(V,E)withV = ViUV, UVsand E = {vivyvs : v; € V;, i = 1,2, 3}. It contains neither a weak
pentagon nor a copy of # 4. It is still possible to add edges to # keeping this property. Indeed, we can
add any {7 4, $s}-free triple graph J¢’ within V; fori = 1, 2, 3. Consider a set S of five vertices in the
resulting triple graph. If [SNV;| < 3foralli = 1, 2, 3, then edges of S are all in #, and thus S contains
neither a weak pentagon nor a copy of #7 4. If there is some i such that [SNV;| = 3, then S has at most
four edges in total, and the four edges form a %3, in S. Thus S contains neither a weak pentagon nor
a copy of F7 4. If there is some i such that |[S N V;| > 3, then edges of S are all of ¢/, and thus S again
contains neither a weak pentagon nor a copy of #7 4. We choose the triple graph # with parts V; for
i =1, 2, 3 of size as equal as possible and repeat this construction recursively. This results in a triple
graph with [a + 0(1)] (}) edges, where a is given by

3 n/3 n
(n/3)* + 3a - [a+o(1)]( )
3 3
Solving gives a = 1/4.
For the upper bound, let ¢ = 6+/2 — 8, and suppose that # is a triple graph of order n and size at
least ¢ (g) + n?. As before, we prove by induction on n that # contains either a weak pentagon or a
copy of # 4. It thus suffices to find a vertex in # of degree at most ¢ (”;1 ) +2n— 1. Since the average

codegree of # is at least cn, there is a pair uv with d(uv) > cn. Let A C N(uv) be of size cn, and let
B = V(J¢) — A. Let G(u) and G(v) be the link graphs in # — {u, v} of u and v, respectively. Consider
the multigraph G = G(u) U G(v).

Claim 1. If # is {F; 4, Ps}-free, then G[A] satisfies the hypotheses of Lemma 4.1.

Assume to the contrary that A contains a triple S = {w, x, y} spanning at least three edges. Since #
is 1 4-free, neither G(u) nor G(v) contains any triangle in A. Thus one of the edges of S is in G(u) and
another in G(v). By symmetry, we may assume that wx € G(u) and wy € G(v), then the two triples
uwx and vwy along with the two triples uvx and uvy form a weak pentagon, which is a contradiction.

Claim 2. If # contains no weak pentagon, then for each S of size three, AN S # @ implies m(S) < 4.
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Suppose to the contrary that there is suchan S = {w, x, y} that ANS # @ and m(S) > 5. Then
S contains a triangle. Assume w € A N S. Note that one of the two edges wx and wy has multiplicity
two. Thus by symmetry, we may assume that wx € G(u) and wy € G(v). Then uvw, uwx and vwy
together with either uxy or vxy form a weak pentagon, which is a contradiction.

Claim 3. If J¢ contains no weak pentagon, then for each vertex w € B, if there is a vertex x € A such that
wx is a multiple edge, then x is the only neighbor of w in A.

Assume to the contrary that there is another vertex y € A such that wy € G, then either wy € G(u)
or G(v). If wy € G(u), then uvx and uvy along with uwy and vwx form a weak pentagon, which is a
contradiction. If wy € G(v), then uvx and uvy along with uwx and vwy form a weak pentagon, which
is also a contradiction.

By the claims, we may assume that G satisfies the conclusion of Lemma 4.2. Thus

IE(G)| < |AI*/4+ |A||B| + 2|B*/3 = (cn)*/4 + c(1 — c)n® +2(1 — ¢)*n*/3

) ) (n—])
<I/24+2c(1 -0+ 40—/ ) +2n

n—1
< 2c 5 + 2n.

The last inequality holds since the quadratic function 4(1 — x)2/3 — 3x2/2 has the greater root
x =642 —8and opens downward. Thus one of the graphs G(u) and G(v) has at most ¢ (";1) +n

edges, and the vertex corresponding to this link graph has degree in #¢ at most ¢ (“;]) + 2n — 1. This
completes the proof. O

5. Either pentagon, ¥ 3 or %3,

Proof of Theorem 1.4. For the lower bound, note that the complete three partite triple graph with
parts of size as equal as possible contains neither pentagon nor a copy of #; 3 or 5 ,. This triple graph
has density 2/9.

For the upper bound, let c = 1/4/11, and suppose that # is a triple graph with at least ¢ (g) + n?
edges. We will prove by induction on n that # contains either a pentagon or a copy of either 7 3 or

F3.5. It thus suffices to find a vertex in J¢ of degree at most ¢ (”;1) +2n—1.

Let V = V(#). Given vertices u and v in V, let N(uv) = {w : uvw € E(#)}, and let d(uv) =
IN(uv)|. For an edge e = uvw, let

s(e) = d(uv) + d(uw) + d(vw).

Ifs(e) > n,thenthereisavertex x in at least two of the sets N (uv), N(uw), N(vw),and S = {u, v, w, x}
contains a copy of #7 3. We may thus assume that s(e) < n for every edge e. Define ¢ > 0 by

(1—¢e)n = max s(e). (1)
ecE(H)

Using Zu,vev d(uv) = 3|E(#)|, the Cauchy-Schwarz inequality and the upper bound from (1) on
s(e), we obtain

ny\ —1
GO (3) = Y da= Y se) = (1-niE0)]
u,veV ecE(H)
It follows that

((§) e oo =15 [(0) 252
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and thus
c<(1—¢€)/3. (2)

Let e = uvw be an edge with s(e) = (1 — €)n. Let G(u) be the link graph of u in # — {u, v, w}, G(v)
and G(w) are similarly defined. Let G := G(u) U G(v) U G(w), A = N(uv) U N(uw) U N(vw) and let
B = V(#) — A. From now on, we also suppose that ¢ contains neither pentagon nor a copy of % 3
or %37, and aim at a contradiction. Recall that a set of vertices is stable if no pair of the vertices are
adjacent. Since # is {#7 3, 3, }-free, we obtain that

o the three link graphs G(u), G(v) and G(w) are all triangle-free,

e the multiplicity of each edge of G is at most two, and

o the three sets N(uv), N(uw) and N(vw) are all stable and disjoint from each other in G (and thus
G[A] is tripartite).

Claim 1 in the proof of Theorem 1.8 [12] claims that G[A] is simple. Therefore, by Mantel's theorem
and the Cauchy-Schwarz inequality, we obtain

d(u) +d(v) + d(w) < [E(GW)| + [E(G(v))| + [E(G(w))| + 2s(e) = |E(G)| + 2s(e)
< |[E(GIAD| + 2|A| |B| + |E(GIB])| + 2n
< d(uv)d(uw) + d(uv)d(vw) + d(uw)d(vw)
+2e(1—e)n® +3|B|*/4+ 2n
= {s*(e) — [d*(wv) + d*(uw) + d*(vw)]}/2
+2e(1—e)n? + 3€*n?/4+ 2n
< [s*(e) — s*(e)/31/2 + €(2 — 5¢/4)n* + 2n
=(1—-€)?n?/3+¢€(2—5¢/4)n* +2n

—1
< [2(1 — €)%/3 + 2(2 — 5¢/4)] (" 3 ) +3@n—1).
Thus one of u, v, w has degree at most
—1

[2(1 — €)%/9 + 2¢(2 — 5¢/4)/3] (" 3 ) +@n—1).
If this is at most ¢ (";1) + 2n — 1, then we may apply induction, so we may assume that

c<2(1—¢€)%/9+2¢(2 — 5¢/4)/3. (3)
Inequalities (2) and (3) yield

1/v/11 = ¢ < min{(1 — €)/3,2(1 — €)?/9 + 2¢(2 — 5¢/4)/3}.

This is impossible since

nzg)l() min{(1 —¢€)/3,2(1 — 6)2/9 +2e(2 —5€/4)/3} =,

with the maximum of the minimum of these two functions of € occurring at e = 1 — 3/+/11. This
contradiction completes the proof. O
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