European Journal of Combinatorics 52 (2016) 95-102

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On Turán densities of small triple graphs*

Lingsheng Shi

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

ARTICLE INFO

Article history:

ABSTRACT

For a family of *k*-graphs \mathcal{F} , the Turán number $T(n, \mathcal{F})$ is the maximum number of edges in a *k*-graph of order *n* that does not contain any member of \mathcal{F} . The Turán density $t(\mathcal{F}) = \lim_{n\to\infty} T(n, \mathcal{F})/{\binom{n}{k}}$. Let \mathcal{K}_4 be the tetrahedron that is the complete triple graph of order four. Let the triple graph $\mathcal{F}_{p,q}$ defined on the vertex set $P \cup Q$ with |P| = p and |Q| = q consist of those edges which intersect *P* in either one or three vertices. Let $V = \{1, 2, 3, 4, 5\}$ and let \mathcal{F}_5 be defined on *V* with $E(\mathcal{F}_5) = \{123, 145, 245\}$. Let \mathcal{F}_5^c denote the complement of \mathcal{F}_5 , and let \mathcal{P}_5 be the weak pentagon obtained from \mathcal{F}_5 by adding the edge 134 and let \mathcal{C}_5 be the prove that

- $1/2 \le t(\mathcal{F}_{1,4}) \le 2/3$,
- $2\sqrt{3} 3 \le t(\mathcal{K}_4, \mathcal{F}_5^c) \le 2 \sqrt{2}$,
- $1/4 \le t(\mathcal{F}_{1,4}, \mathcal{P}_5) \le 6\sqrt{2} 8$,
- $2/9 \le t(\mathcal{F}_{1,3}, \mathcal{F}_{3,2}, \mathcal{C}_5) \le 1/\sqrt{11}$.

The first result relates to a conjecture of Mubayi and Markström– Talbot that $t(\mathcal{F}_{1,3}) = 2/7$. The best known bounds are $2/7 \leq t(\mathcal{F}_{1,3}) < 0.32908$. The second result relates to an old conjecture of Turán that $t(\mathcal{K}_4) = 5/9$. The best bounds are $5/9 \leq t(\mathcal{K}_4) \leq (3 + \sqrt{17})/12$. The last two results relate to a result of Mubayi and Rödl that $t(\mathcal{F}_{1,3}, \mathcal{C}_5) \leq 10/31$.

© 2015 Elsevier Ltd. All rights reserved.

European Journal of Combinatorics

[☆] Supported by Tsinghua University Initiative Scientific Research Program and Project 91338102 supported by National Natural Science Foundation of China.

E-mail address: lshi@math.tsinghua.edu.cn.

http://dx.doi.org/10.1016/j.ejc.2015.09.005

^{0195-6698/© 2015} Elsevier Ltd. All rights reserved.

1. Introduction

Given a family of *k*-uniform hypergraphs (or *k*-graphs) \mathcal{F} , we say that a *k*-graph \mathcal{H} is \mathcal{F} -free if \mathcal{H} contains no subgraph isomorphic to any member in \mathcal{F} . The *Turán number* $T(n, \mathcal{F})$ is the maximum number of edges in an \mathcal{F} -free *k*-graph of order *n*. It is well known [8] that the ratio $T(n, \mathcal{F}) / {n \choose k}$ is decreasing in *n*. Therefore, the limit $t(\mathcal{F}) := \lim_{n \to \infty} T(n, \mathcal{F}) / {n \choose k}$ exists, which is called the *Turán density* of \mathcal{F} . It is also well known that determining the Turán density of any complete hypergraph is the most fundamental open problem in extremal combinatorics.

Let *p* and *q* be two positive integers, and *P* and *Q* be two disjoint sets with |P| = p and |Q| = q. Then the triple graph $\mathcal{F}_{p,q}$ is defined on the vertex set $P \cup Q$ and consists of those edges which intersect *P* in either one or three vertices. Let \mathcal{K}_4 be the tetrahedron that is the complete triple graph of order four. Let \mathcal{F}_5 be the cycle obtained from $\mathcal{F}_{3,2}$ by deleting an edge which has only one vertex in *P*. Thus if $P = \{u, v, w\}$ and $Q = \{x, y\}$, then $E(\mathcal{F}_5) = \{uvw, uxy, vxy\}$. Let \mathcal{F}_5^c denote the complement of \mathcal{F}_5 , and let \mathcal{P}_5 be the weak pentagon obtained from \mathcal{F}_5 by adding the edge uwx and let \mathcal{C}_5 be the pentagon obtained from \mathcal{P}_5 by adding one more edge vwy.

Recently many attempts are toward to evaluate positive Turán densities of small triple graphs. The best current results for triple graphs of order 4 and 5 are listed in the following.

- $2/7 \le t(\mathcal{F}_{1,3}) = t(\mathcal{F}_{2,3}) < 0.32908$, by Frankl and Füredi [3], and Markström and Talbot [10] respectively;
- $5/9 \le t(\mathcal{K}_4) \le (3 + \sqrt{17})/12 = 0.593592...$, by Turán [14], and Chung and Lu [1] respectively;
- $t(\mathcal{F}_5) = 2/9$, by Frankl and Füredi [2];
- $t(\mathcal{F}_{3,2}) = 4/9$, by Füredi, Pikhurko and Simonovits [6,5];
- $2\sqrt{3} 3 \le t(c_5) \le 2 \sqrt{2} = 0.5857...$, by Mubayi and Rödl [12];
- $t(\mathcal{F}_{1,3}, \mathbb{C}_5) \le 10/31 = 0.32258...$, by Mubayi and Rödl [12].

Very recently, Razborov [13] applied a semi-definite program with numerical computations and improved many previously known bounds among which is the following: $t(\mathcal{F}_{1,3}) = t(\mathcal{F}_{2,3}) \le 0.2978$, $t(\mathcal{K}_4) \le 0.561666$, $t(\mathcal{C}_5) < 0.4683$ and $t(\mathcal{F}_{1,3}, \mathcal{C}_5) \le 0.2546$. However, he did not feel motivated enough to try to convert the floating-point computation into a rigorous mathematical proof.

It was conjectured by Mubayi [11] and Markström and Talbot [10], Turán [14] and Razborov [13] respectively that the lower bounds are the true values for $\mathcal{F}_{1,3}$, the tetrahedron and the pentagon respectively.

Among a few known positive Turán densities, the triple graphs \mathcal{F}_5 and $\mathcal{F}_{3,2}$ are the only two of order five. Though unable to improve any of the above results, we prove rigorously that density exceeding $2 - \sqrt{2}$ forces either a tetrahedron or a copy of \mathcal{F}_5^c , and density exceeding $0.3015 \cdots$ forces either a pentagon or a copy of either $\mathcal{F}_{1,3}$ or $\mathcal{F}_{3,2}$. More precisely, we obtain the following results.

Theorem 1.1. $1/2 \le t(\mathcal{F}_{1,4}) \le 2/3$.

Theorem 1.2. $2\sqrt{3} - 3 \le t(\mathcal{K}_4, \mathcal{F}_5^c) \le 2 - \sqrt{2}$.

Theorem 1.3. $1/4 \le t(\mathcal{F}_{1,4}, \mathcal{P}_5) \le 6\sqrt{2} - 8$.

Theorem 1.4. $2/9 \le t(\mathcal{F}_{1,3}, \mathcal{F}_{3,2}, \mathcal{C}_5) \le 1/\sqrt{11}$.

The proofs combine the induction and an application of the Cauchy–Schwarz inequality. These techniques were also used by Mubayi and Rödl [12]. We remark that a { \mathcal{K}_4 , \mathcal{F}_5^c }-free triple graph is exactly a \mathcal{K}_4 -free triple graph with every five vertices spanning at most six edges, and we believe that the upper bound in Theorems 1.2 may be improved.

Conjecture. $t(\mathcal{K}_4, \mathcal{F}_5^c) = 2\sqrt{3} - 3.$

2. The triple graph $\mathcal{F}_{1,4}$

Definition. Let \mathcal{H} be a triple graph and $S \subset V(\mathcal{H})$. The *link multigraph* of S in \mathcal{H} is the multigraph G with $V(G) = V(\mathcal{H}) - S$, and $E(G) = \{uv : uvw \in E(\mathcal{H}) \text{ for some } w \in S\}$.

Proof of Theorem 1.1. The lower bound follows from a construction of Goldwasser [7]. Let \mathcal{H} be the complement of a triple graph induced by the Fano plane. It is clear that \mathcal{H} is $\mathcal{F}_{1,4}$ -free with 7 vertices and 28 edges. Suppose |V| = n and V is partitioned into $V = V_1 \cup V_2 \cup \cdots \cup V_7$. Define a triple graph $\mathcal{H}' = (V, E)$, where

$$E = \{v_{i_1}v_{i_2}v_{i_3} : 1 \le i_1 < i_2 < i_3 \le 7, v_{i_i} \in V_{i_i}, i_1i_2i_3 \in E(\mathcal{H})\}.$$

It is clear that \mathcal{H}' is also $\mathcal{F}_{1,4}$ -free. It is still possible to add edges to \mathcal{H}' keeping the property that it is $\mathcal{F}_{1,4}$ -free. Indeed, we can add any $\mathcal{F}_{1,4}$ -free triple graph \mathcal{H}'' within V_i for i = 1, 2, ..., 7. Consider a set *S* of five vertices in the resulting triple graph. If $|S \cap V_i| < 3$ for all i = 1, ..., 7, then edges of *S* are all of \mathcal{H}' , and thus *S* contains no copy of $\mathcal{F}_{1,4}$. If there is some *i* such that $|S \cap V_i| = 3$, then *S* has at most four edges in total, and thus contains no copy of $\mathcal{F}_{1,4}$. If there is some *i* such that $|S \cap V_i| > 3$, then edges of *S* are all of \mathcal{H}'' , and thus *S* again contains no copy of $\mathcal{F}_{1,4}$. If there is not that $|S \cap V_i| > 3$, then edges of *S* are all of \mathcal{H}'' , and thus *S* again contains no copy of $\mathcal{F}_{1,4}$. We define \mathcal{H}' with parts V_i for i = 1, ..., 7 of size as equal as possible and repeat this construction recursively. This results in a triple graph with $[a + o(1)] {n \choose 3}$ edges, where *a* satisfies

$$28(n/7)^3 + 7a\binom{n/7}{3} = [a+o(1)]\binom{n}{3}.$$

Solving gives a = 1/2.

For the upper bound, suppose that \mathcal{H} is a triple graph of order n and size at least $\frac{2}{3} \binom{n}{3} + n^2$. We prove by induction on n that \mathcal{H} contains a copy of $\mathcal{F}_{1,4}$. It thus suffices to find a vertex in \mathcal{H} of degree at most $\frac{2}{3} \binom{n-1}{2} + 2n - 1$. Take a vertex $v \in V(\mathcal{H})$ and let G be the link graph of v. If \mathcal{H} is $\mathcal{F}_{1,4}$ -free, then G is K_4 -free. Thus by Turán's Theorem [14],

$$d(v) = |E(G)| \le (n-1)^2/3 < \frac{2}{3} {\binom{n-1}{2}} + 2n - 1.$$

This completes the proof. \Box

Remark. The following general result can be obtained by applying the same technique.

Theorem 2.1. $t(\mathcal{F}_{1,k}) \leq (k-2)/(k-1)$ for k > 1.

3. Either tetrahedron or \mathcal{F}_5^c

Lemma 3.1 ([12]). Let G be a multigraph with vertex partition $A \cup B$ and maximum multiplicity two. For $S \subset V(G)$, let m(S) be the number of edges (counting multiplicities) induced by S. Suppose that, for all S of size three,

1. *if* $|A \cap S| \ge 2$, *then* $m(S) \le 4$, *and* 2. *if* $A \cap S \ne \emptyset$, *then* $m(S) \le 5$. *Then* $|E(G)| \le {|A| \choose 2} + 2{|B| \choose 2} + |A| |B| + |A|$.

Proof of Theorem 1.2. The lower bound follows from a construction of Mubayi and Rödl [12]. Let \mathcal{H} be a triple graph on vertices partitioned into two sets *A* and *B*. Let $E(\mathcal{H})$ consist of all triples uvw, where $u, v \in A$ and $w \in B$. Note that C_5 is a subgraph of \mathcal{F}_5^c . It is easily checked that \mathcal{H} is $\{\mathcal{K}_4, \mathcal{F}_5^c\}$ -free. If we add any $\{\mathcal{K}_4, \mathcal{F}_5^c\}$ -free triple graph \mathcal{H}' within *B*, then it is also easily checked that the resulting graph keeps $\{\mathcal{K}_4, \mathcal{F}_5^c\}$ -free. Repeating this construction recursively and choosing proper sizes of *A* and *B* to maximize produces a triple graph of size $[2\sqrt{3} - 3 + o(1)] {n \choose 3}$.

For the upper bound, let $c = 2 - \sqrt{2}$ and $b \ge 2$, and suppose that \mathcal{H} is a triple graph of order n and size at least $c\binom{n}{3} + bn^2$. We prove by induction on n that \mathcal{H} contains either a tetrahedron or a copy of \mathcal{F}_5^c . It thus suffices to find a vertex in \mathcal{H} of degree at most $c\binom{n-1}{2} + b(2n-1)$. Since the average codegree of \mathcal{H} is at least cn, there is a pair uv with $d(uv) \ge cn$. Let $A \subset N(uv)$ be of size cn, and let $B = V(\mathcal{H}) - A$. Let G(u) and G(v) be the link graphs in $\mathcal{H} - \{u, v\}$ of u and v, respectively. Consider the multigraph $G = G(u) \cup G(v)$. If \mathcal{H} is \mathcal{K}_4 -free, then G[A] must be simple. Moreover if there is a triple $S = \{w, x, y\}$ with $w \in A$ and m(S) = 6 or $w, x \in A$ and $m(S) \ge 5$, then clearly $S \cup \{u, v\}$ contains a copy of \mathcal{F}_5^c . Thus G, A and B satisfy the condition of Lemma 3.1. Consequently,

$$|E(G)| < \binom{|A|}{2} + |A||B| + |B|^2 + |A| = \binom{cn}{2} + c(1-c)n^2 + (1-c)^2n^2 + cn$$

$$\leq [c^2 + 2c(1-c) + 2(1-c)^2] \binom{n-1}{2} + 2b(2n-1) - 2n$$

$$\leq 2c \binom{n-1}{2} + 2b(2n-1) - 2n.$$

The last inequality holds since the quadratic function $x^2 + 2(1 - x) - 2x$ has roots $x = 2 \pm \sqrt{2}$ and opens upward. Thus one of the graphs G(u) and G(v) has at most $c \binom{n-1}{2} + b(2n - 1) - n$ edges, and the vertex corresponding to this link graph has degree in \mathcal{H} at most $c \binom{n-1}{2} + b(2n - 1)$. This completes the proof. \Box

4. Either weak pentagon or $\mathcal{F}_{1,4}$

The following lemma is a special case of a result of Füredi and Kündgen [4].

Lemma 4.1. Let G be a triangle-free multigraph of order n > 2 with maximum multiplicity two which has only isolated multiple edges. Then G has at most $n^2/4$ edges.

Proof. We use induction on *n*. This is clearly true for n = 3. If *G* is simple, then Mantel's theorem [9] implies that $|E(G)| \le n^2/4$. So we may assume that there is an isolated multiple edge. Then deleting the multiple edge along with its pair of vertices, we obtain a subgraph *H* of *G*. Now by induction, we have $|E(G)| = |E(H)| + 2 \le (n-2)^2/4 + 2 \le n^2/4$. \Box

The following property is an asymmetric variation of the above lemma.

Lemma 4.2. Let G_1 and G_2 be two K_4 -free simple graphs on the same vertex set V, and let $G = G_1 \cup G_2$. Let $V = A \cup B$, and a := |A| > 2 and b := |B| respectively. For $S \subset V(G)$, let m(S) be the number of edges (counting multiplicities) induced by S. Suppose that G[A] is triangle-free and has only isolated multiple edges, and moreover

- 1. for each *S* of size three, if $A \cap S \neq \emptyset$, then $m(S) \leq 4$, and
- 2. for each vertex $v \in B$, if there is a vertex $u \in A$ such that m(uv) = 2, then u is the only neighbor of v in A.

Then $|E(G)| \le a^2/4 + ab + 2b^2/3$.

Proof. The inequality holds trivially for $b \le 1$ and it is easy to see that $|E(G)| \le 2 + 2b + 2b^2/3$ for a = 2. So we may assume that $b \ge 2$ and firstly consider a = 3. Let G[A, B] denote the bipartite subgraph of *G* induced by all edges with one end in *A* and the other in *B*. If G[A, B] is simple, then we have

$$|E(G)| \le m(A) + ab + m(B) \le 2 + 3b + 2b^2/3.$$

We may thus assume that an edge uv has multiplicity two, where $u \in A$ and $v \in B$. Then by Condition 2, u is the only neighbor of v in A. Note that if there is a vertex $w \in A$ such that uw is a multiple edge

then $d_A(u) = 2$ since G[A] has only isolated multiple edges. Also note that Condition 1 implies that every vertex of *B* has at most two edges to $\{u, v\}$. Let $H = G - \{u, v\}$. Then we have

$$|E(G)| \le |E(H)| + 2 + 2(b-1) + 2$$

$$\le 2 + 2(b-1) + 2(b-1)^2/3 + 2 + 2b$$

$$< 2 + 3b + 2b^2/3.$$

This proves the case when a = 3. Next we consider a > 3 and Lemma 4.1 is applicable to G[A]. We use induction on a + b. Again if G[A, B] is simple, then by Lemma 4.1,

$$|E(G)| \le m(A) + ab + m(B) \le a^2/4 + ab + 2b^2/3.$$

So we may assume that an edge uv has multiplicity two, where $u \in A$ and $v \in B$. Then as above let $H = G - \{u, v\}$ and the induction hypothesis applied to H implies that

$$\begin{split} |E(G)| &\leq |E(H)| + a - 1 + 2(b - 1) + 2 \\ &\leq (a - 1)^2/4 + (a - 1)(b - 1) + 2(b - 1)^2/3 + a + 2b - 1 \\ &= a^2/4 + ab + 2b^2/3 - a/2 - b/3 + 11/12 \\ &< a^2/4 + ab + 2b^2/3. \end{split}$$

This completes the proof. \Box

Proof of Theorem 1.3. For the lower bound, consider the complete three partite triple graph $\mathcal{H} = (V, E)$ with $V = V_1 \cup V_2 \cup V_3$ and $E = \{v_1v_2v_3 : v_i \in V_i, i = 1, 2, 3\}$. It contains neither a weak pentagon nor a copy of $\mathcal{F}_{1,4}$. It is still possible to add edges to \mathcal{H} keeping this property. Indeed, we can add any $\{\mathcal{F}_{1,4}, \mathcal{P}_5\}$ -free triple graph \mathcal{H}' within V_i for i = 1, 2, 3. Consider a set *S* of five vertices in the resulting triple graph. If $|S \cap V_i| < 3$ for all i = 1, 2, 3, then edges of *S* are all in \mathcal{H} , and thus *S* contains neither a weak pentagon nor a copy of $\mathcal{F}_{1,4}$. If there is some *i* such that $|S \cap V_i| = 3$, then *S* has at most four edges in total, and the four edges form a $\mathcal{F}_{3,2}$ in *S*. Thus *S* contains neither a weak pentagon nor a copy of $\mathcal{F}_{1,4}$. If there is some *i* such that $|S \cap V_i| = 3$, then *S* has at most four edges in total, and the four edges form a $\mathcal{F}_{3,2}$ in *S*. Thus *S* contains neither a weak pentagon nor a copy of $\mathcal{F}_{1,4}$. If there is some *i* such that $|S \cap V_i| > 3$, then edges of *S* are all of \mathcal{H}' , and thus *S* again contains neither a weak pentagon nor a copy of $\mathcal{F}_{1,4}$. We choose the triple graph \mathcal{H} with parts V_i for i = 1, 2, 3 of size as equal as possible and repeat this construction recursively. This results in a triple graph with $[a + o(1)] \binom{n}{3}$ edges, where *a* is given by

$$(n/3)^3 + 3a\binom{n/3}{3} = [a+o(1)]\binom{n}{3}.$$

Solving gives a = 1/4.

For the upper bound, let $c = 6\sqrt{2} - 8$, and suppose that \mathcal{H} is a triple graph of order n and size at least $c\binom{n}{3} + n^2$. As before, we prove by induction on n that \mathcal{H} contains either a weak pentagon or a copy of $\mathcal{F}_{1,4}$. It thus suffices to find a vertex in \mathcal{H} of degree at most $c\binom{n-1}{2} + 2n - 1$. Since the average codegree of \mathcal{H} is at least cn, there is a pair uv with $d(uv) \ge cn$. Let $A \subset N(uv)$ be of size cn, and let $B = V(\mathcal{H}) - A$. Let G(u) and G(v) be the link graphs in $\mathcal{H} - \{u, v\}$ of u and v, respectively. Consider the multigraph $G = G(u) \cup G(v)$.

Claim 1. If \mathcal{H} is $\{\mathcal{F}_{1,4}, \mathcal{P}_5\}$ -free, then G[A] satisfies the hypotheses of Lemma 4.1.

Assume to the contrary that A contains a triple $S = \{w, x, y\}$ spanning at least three edges. Since \mathcal{H} is $\mathcal{F}_{1,4}$ -free, neither G(u) nor G(v) contains any triangle in A. Thus one of the edges of S is in G(u) and another in G(v). By symmetry, we may assume that $wx \in G(u)$ and $wy \in G(v)$, then the two triples uwx and vwy along with the two triples uvx and uvy form a weak pentagon, which is a contradiction.

Claim 2. If \mathcal{H} contains no weak pentagon, then for each *S* of size three, $A \cap S \neq \emptyset$ implies $m(S) \leq 4$.

Suppose to the contrary that there is such an $S = \{w, x, y\}$ that $A \cap S \neq \emptyset$ and $m(S) \ge 5$. Then *S* contains a triangle. Assume $w \in A \cap S$. Note that one of the two edges wx and wy has multiplicity two. Thus by symmetry, we may assume that $wx \in G(u)$ and $wy \in G(v)$. Then uvw, uwx and vwy together with either uxy or vxy form a weak pentagon, which is a contradiction.

Claim 3. If \mathcal{H} contains no weak pentagon, then for each vertex $w \in B$, if there is a vertex $x \in A$ such that wx is a multiple edge, then x is the only neighbor of w in A.

Assume to the contrary that there is another vertex $y \in A$ such that $wy \in G$, then either $wy \in G(u)$ or G(v). If $wy \in G(u)$, then uvx and uvy along with uwy and vwx form a weak pentagon, which is a contradiction. If $wy \in G(v)$, then uvx and uvy along with uwx and vwy form a weak pentagon, which is also a contradiction.

By the claims, we may assume that G satisfies the conclusion of Lemma 4.2. Thus

$$\begin{split} |E(G)| &\leq |A|^2/4 + |A| \, |B| + 2|B|^2/3 = (cn)^2/4 + c(1-c)n^2 + 2(1-c)^2n^2/3\\ &\leq [c^2/2 + 2c(1-c) + 4(1-c)^2/3] \, \binom{n-1}{2} + 2n\\ &\leq 2c \, \binom{n-1}{2} + 2n. \end{split}$$

The last inequality holds since the quadratic function $4(1 - x)^2/3 - 3x^2/2$ has the greater root $x = 6\sqrt{2} - 8$ and opens downward. Thus one of the graphs G(u) and G(v) has at most $c\binom{n-1}{2} + n$ edges, and the vertex corresponding to this link graph has degree in \mathcal{H} at most $c\binom{n-1}{2} + 2n - 1$. This

completes the proof. \Box

5. Either pentagon, $\mathcal{F}_{1,3}$ or $\mathcal{F}_{3,2}$

Proof of Theorem 1.4. For the lower bound, note that the complete three partite triple graph with parts of size as equal as possible contains neither pentagon nor a copy of $\mathcal{F}_{1,3}$ or $\mathcal{F}_{3,2}$. This triple graph has density 2/9.

For the upper bound, let $c = 1/\sqrt{11}$, and suppose that \mathcal{H} is a triple graph with at least $c\binom{n}{3} + n^2$ edges. We will prove by induction on n that \mathcal{H} contains either a pentagon or a copy of either $\mathcal{F}_{1,3}$ or $\mathcal{F}_{3,2}$. It thus suffices to find a vertex in \mathcal{H} of degree at most $c\binom{n-1}{2} + 2n - 1$.

Let $V = V(\mathcal{H})$. Given vertices u and v in V, let $N(uv) = \{w : uvw \in E(\mathcal{H})\}$, and let d(uv) = |N(uv)|. For an edge e = uvw, let

$$s(e) = d(uv) + d(uw) + d(vw).$$

If s(e) > n, then there is a vertex x in at least two of the sets N(uv), N(uw), N(vw), and $S = \{u, v, w, x\}$ contains a copy of $\mathcal{F}_{1,3}$. We may thus assume that $s(e) \le n$ for every edge e. Define $\epsilon > 0$ by

$$(1-\epsilon)n = \max_{e \in E(\mathcal{H})} s(e).$$
⁽¹⁾

Using $\sum_{u,v \in V} d(uv) = 3|E(\mathcal{H})|$, the Cauchy–Schwarz inequality and the upper bound from (1) on s(e), we obtain

$$9|E(\mathcal{H})|^2 {\binom{n}{2}}^{-1} \leq \sum_{u,v\in V} d^2(uv) = \sum_{e\in E(\mathcal{H})} s(e) \leq (1-\epsilon)n|E(\mathcal{H})|.$$

It follows that

$$c\binom{n}{3}+n^2\leq |E(\mathcal{H})|\leq \frac{1-\epsilon}{3}\left[\binom{n}{3}+\frac{n(n-1)}{3}\right],$$

and thus

$$c < (1 - \epsilon)/3. \tag{2}$$

Let e = uvw be an edge with $s(e) = (1 - \epsilon)n$. Let G(u) be the link graph of u in $\mathcal{H} - \{u, v, w\}, G(v)$ and G(w) are similarly defined. Let $G := G(u) \cup G(v) \cup G(w), A = N(uv) \cup N(uw) \cup N(vw)$ and let $B = V(\mathcal{H}) - A$. From now on, we also suppose that \mathcal{H} contains neither pentagon nor a copy of $\mathcal{F}_{1,3}$ or $\mathcal{F}_{3,2}$, and aim at a contradiction. Recall that a set of vertices is *stable* if no pair of the vertices are adjacent. Since \mathcal{H} is $\{\mathcal{F}_{1,3}, \mathcal{F}_{3,2}\}$ -free, we obtain that

- the three link graphs G(u), G(v) and G(w) are all triangle-free,
- the multiplicity of each edge of G is at most two, and
- the three sets N(uv), N(uw) and N(vw) are all stable and disjoint from each other in G (and thus G[A] is tripartite).

Claim 1 in the proof of Theorem 1.8 [12] claims that *G*[*A*] is simple. Therefore, by Mantel's theorem and the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} d(u) + d(v) + d(w) &\leq |E(G(u))| + |E(G(v))| + |E(G(w))| + 2s(e) = |E(G)| + 2s(e) \\ &\leq |E(G[A])| + 2|A| |B| + |E(G[B])| + 2n \\ &\leq d(uv)d(uw) + d(uv)d(vw) + d(uw)d(vw) \\ &+ 2\epsilon(1-\epsilon)n^2 + 3|B|^2/4 + 2n \\ &= \{s^2(e) - [d^2(uv) + d^2(uw) + d^2(vw)]\}/2 \\ &+ 2\epsilon(1-\epsilon)n^2 + 3\epsilon^2n^2/4 + 2n \\ &\leq [s^2(e) - s^2(e)/3]/2 + \epsilon(2 - 5\epsilon/4)n^2 + 2n \\ &= (1-\epsilon)^2n^2/3 + \epsilon(2 - 5\epsilon/4)n^2 + 2n \\ &\leq [2(1-\epsilon)^2/3 + 2\epsilon(2 - 5\epsilon/4)] \binom{n-1}{2} + 3(2n-1). \end{aligned}$$

Thus one of u, v, w has degree at most

$$[2(1-\epsilon)^2/9 + 2\epsilon(2-5\epsilon/4)/3]\binom{n-1}{2} + (2n-1).$$

If this is at most $c\binom{n-1}{2} + 2n - 1$, then we may apply induction, so we may assume that

$$c < 2(1-\epsilon)^2/9 + 2\epsilon(2-5\epsilon/4)/3.$$
 (3)

Inequalities (2) and (3) yield

$$1/\sqrt{11} = c < \min\{(1-\epsilon)/3, 2(1-\epsilon)^2/9 + 2\epsilon(2-5\epsilon/4)/3\}.$$

This is impossible since

$$\max_{\epsilon \in (0,1)} \min\{(1-\epsilon)/3, 2(1-\epsilon)^2/9 + 2\epsilon(2-5\epsilon/4)/3\} = c,$$

with the maximum of the minimum of these two functions of ϵ occurring at $\epsilon = 1 - 3/\sqrt{11}$. This contradiction completes the proof.

Acknowledgment

The author owes to a referee for comments that have improved Theorems 1.1 and 1.4. The referee also pointed out that it is quite likely that $t(\mathcal{F}_{1,4}) = 1/2$ since J. Talbot and R. Baber (private communication 2011) used Razborov's flag algebra method to show that $t(\mathcal{F}_{1,4}) \leq 0.504$.

References

- [1] F. Chung, L. Lu, An upper bound for the Turán number $t_3(n, 4)$, J. Combin. Theory Ser. A 87 (1999) 381–389.
- [2] P. Frankl, Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983) 341–349.
- [3] P. Frankl, Z. Füredi, An exact result for 3-graphs, Discrete Math. 50 (2-3) (1984) 323-328.
- [4] Z. Füredi, A. Kündgen, Turán problems for integer-weighted graphs, J. Graph Theory 40 (2002) 195–225.
- [5] Z. Füredi, O. Pikhurko, M. Simonovits, The Turán density of the hypergraph {*abc*, *ade*, *bde*, *cde*}, Electron. J. Combin. 10 (2003) #R18.
- [6] Z. Füredi, O. Pikhurko, M. Simonovits, On triple systems with independent Neighbourhoods, Combin. Probab. Comput. 14 (2005) 795–813.
- [7] J. Goldwasser, AIM Workshop on Turan Hypergraphs, Palo Alto, California, 2011.
- [8] G.O.H. Katona, T. Nemetz, M. Simonovits, On a graph problem of Turán, Mat. Fiz. Lapok 15 (1964) 228–238. (in Hungarian).
 [9] W. Mantel, Problem 28: Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff.
- Wiskundige Opgaven 10 (1907) 60-61. [10] K. Markström, J. Talbot, On the density of 2-colorable 3-graphs in which any four points span at most two edges, J. Combin.
- [10] K. Markstrom, J. Talbot, On the density of 2-colorable 3-graphs in which any four points span at most two edges, J. Combin. Des. 18 (2) (2010) 105–114.
- [11] D. Mubayi, On hypergraphs with every four points spanning at most two triples, Electron. J. Combin. 10 (2003) #N10.
- [12] D. Mubayi, V. Rödl, On the Turán number of triple systems, J. Combin. Theory Ser. A 100 (2002) 136–152.
- [13] A. Razborov, On 3-Hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math. 24 (3) (2010) 946–963.
- [14] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941) 436–452.