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Abstract. Parameterizations of manifolds are widely applied to the fields of numerical partial differential equa-
tions and computer graphics. To this end, in recent years several efficient and reliable numerical
algorithms have been developed by different research groups for the computation of triangular and
tetrahedral mesh parameterizations. However, it is still challenging when the topology of manifolds
is nontrivial, e.g., the 3-manifold of a topological solid torus. In this paper, we propose a novel vol-
umetric stretch energy minimization algorithm for volume-preserving parameterizations of toroidal
polyhedra with a single boundary being mapped to a standard torus. In addition, the algorithm can
also be used to compute the equiareal mapping between a genus-one closed surface and the stan-
dard torus. Numerical experiments indicate that the developed algorithm is effective and performs
well on the bijectivity of the mapping. Applications on manifold registrations and partitions are
demonstrated to show the robustness of our algorithms.
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1. Introduction. A 3-manifold refers to a 3-dimensional topological space that each point
of the 3-manifold has a neighborhood being homeomorphic to a subset of R3. In recent years,
3D imaging technologies, such as the magnetic resonance image (MRI) and the computed
tomography (CT) scan, have successfully been developed in real-world applications. These
issues raise the importance of 3-manifold parameterizations. A 3-manifold parameterization
represents a bijective mapping between the 3-manifold and the 3-dimensional domain with a
simple canonical shape. The mapping can be used to produce a canonical coordinate system
on the 3-manifold for simplifying problems arising from complicated geometry processing and
computer graphics. However, the bijectivity of the volumetric mapping is, in general, very
difficult to be guaranteed due to that the convex combination mapping in 3D space is not nec-
essary to be bijective, an elegant counterexample can be found in [20]. Therefore, it points out
that conformal (angle-preserving) mappings between 3-manifolds generally do not exist. Yet,
volumetric mappings with a small angular distortion are frequently used. Paillé and Poulin
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[32], as well as Chern et al. [8] proposed conformal-based volumetric mapping algorithms by
applying the Cauchy-Riemann equation to a canonical orthogonal plane in R3 with a low shear
distortion. Based on the dihedral angle representation, Paillé et al. [33] proposed a spectral
method for the computation of the locally injective mapping of tetrahedral meshes. With
bounded constraints of distortion, Kovalsky et al. [29, 30] developed algorithms to deform a
given volumetric mapping into a bijective one. By minimizing the stretch-distortion energy
with balancing between angle and volume distortions, Jin et al. [28] developed an algorithm
for the computation of the volumetric parameterization. Based on minimizing a linear combi-
nation of local isometric distortion measures [36], and the quasi-conformal homeomorphism,
respectively, Rabinovic et al. [34] and Naitsat et al. [31] proposed deformation algorithms for
volumetric meshes. The above algorithms are, in general, not volume-preserving, but have
mainly been developed for the computation of bijective volumetric mappings of 3-manifolds
by minimizing angular distortions such that the quality on local shapes of tetrahedral meshes
is well-preserved.

Additionally, only a few of the existing algorithms consider finding volume-preserving
parameterizations by minimizing the volume distortion for prescribed tetrahedral meshes.
Based on the discrete optimal mass transportation (OMT) [21], Su et al. [37] first proposed an
algorithm to realize the volume-preserving parameterization between a genus-zero 3-manifold
and the solid unit ball B3. However, it is somewhat time-consuming, especially, when the
high-resolution mesh data, e.g., the volume-mesh of 290K tetrahedrons (human brain), is
considered. Very recently, based on minimizing the volumetric stretch energy, Yueh et al. [45]
developed a significantly efficient volume-preserving parameterization between a genus-zero
3-manifold and B3 to improve the convergence from 15 hours to 157.8 sec. for the above
example.

Now we go back to the discussion of closed surfaces. In the past ten years, several numeri-
cal algorithms based on minimizing the distortion of angles [11, 12, 9, 46] or area [49, 38, 10, 47]
or balancing between them [43, 34, 35] have been widely developed to find the angle-preserving
(conformal/quasi-conformal) and area-preserving (authalic/equiareal) parameterizations, re-
spectively, to a sphere S2 or a disk B2 for a 2-manifold of genus-zero or with a single boundary,
and applied in various tasks of computer vision including surface remeshing, registration, tex-
ture mapping, morphing and retargeting [44]. The classical Poincaré-Klein-Koebe uniformiza-
tion theorem shows that any genus-zero, genus-one and higher genus closed 2D surfaces are
uniquely conformal to the surface with constant Gaussian curvatures 1, 0 and −1, respectively,
and the associated universal covering spaces with the uniformization metrics can be isomet-
rically embedded onto S2, R2 and H2 (hyperbolic space) with Euler characteristic numbers
χ > 0, χ = 0 and χ < 0, respectively. This indicates that the topological property of genus-
one closed surfaces is different from others. More precisely, any genus-one closed surface can
be periodically and conformally mapped to a parallelogram forming a tiling of the whole plane
C with Euclidean metric. The parallelogram with equivalent left and right sides, as well as,
upper and lower sides, respectively, isometrically forms a standard torus T2. For conformal
parameterizations of genus-one or higher genus surfaces, some well-developed algorithms, such
as the holomorphic 1-form [22, 23, 27] and the discrete Ricci flow [26, 48] have been proposed.

Because of the special topological property of genus-one closed surfaces, in this paper, we
are motivated to study the area- and volume-preserving parameterizations of genus-one 2- and



VOLUME-PRESERVING PARAMETERIZATIONS OF GENUS-ONE 3-MANIFOLDS 3

3-manifolds, respectively. For the further applications of the genus-one 3-manifold (toroidal
polyhedron), we mainly focus on developing an efficient algorithm for the computation of
the volume-preserving parameterizations between genus-one 3-manifolds and the standard
solid torus T3. The basic approach is first to conformally map the boundary of the genus-
one 3-manifold onto a standard T2 by computing the holomorphic 1-forms [22]. Then the
boundary map is equiareally deformed to an area-preserving map on T2 by minimizing the
stretch energy. Finally, the volume-preserving parameterization between the genus-one 3-
manifold and the solid torus T3 is computed by minimizing the volumetric stretch energy.
The contribution of this paper can be divided into the following three parts.

(i) Universality: The newly developed stretch energy minimization can be utilized to
find the area-preserving (equiareal) parameterizations between genus-one closed sur-
faces and T2, as well as the volume-preserving parameterizations between genus-one
3-manifolds and the solid torus T3.

(ii) Effectiveness and reliability: The proposed area-preserving parameterization algo-
rithm for genus-one closed surfaces converges well within 5 iterations, the average
of ratios between local areas of triangular faces is close to one up to ±6 × 10−4 and
the resulting mappings for the benchmark mesh models are bijective. Furthermore,
the proposed volume-preserving parameterization algorithm for genus-one 3-manifolds
converges well within 20 iterations, the average of ratios between local volumes of tetra-
hedrons is close to one up to ±0.03 and the percentage of bijectivity of tetrahedrons
is higher than 99.9% by using the regularization technique.

(iii) Applications: Applications on the vertebra registrations and the volume-based mani-
fold partitions can robustly be carried out by the proposed parameterization algorithm.

1.1. Notations and overview. The following notations are used in this paper. Other
notations will be clearly defined whenever they appear.

• Bold letters, e.g. u, v, w, denote (complex) vectors.
• Capital letters, e.g. A, B, C, denote matrices.
• Typewriter letters, e.g. I, J, K, denote ordered sets of indices.
• vi denotes the ith entry of the vector v.
• vI denotes the subvector of v composed of vi, for i ∈ I.
• |v| denotes the vector with the ith entry being |vi|.
• diag(v) denotes the diagonal matrix with the (i, i)th entry being vi.
• Ai,j denotes the (i, j)th entry of the matrix A.
• AI,J denotes the submatrix of A composed of Ai,j , for i ∈ I and j ∈ J.
• Sn := {x ∈ Rn+1 | ‖x‖ = 1} denotes the n-sphere in Rn+1.
• Bn := {x ∈ Rn | ‖x‖ ≤ 1} denotes the solid n-ball in Rn.
• [v0, . . . , vm] denotes the m-simplex determined by the points v0, . . . , vm.
• |[v0, . . . , vm]| denotes the volume of the m-simplex [v0, . . . , vm].
• i denotes the imaginary unit

√
−1.

• In denotes the identity matrix of size n× n.
• 0 denotes the zero vectors and matrices of appropriate sizes.

This paper is organized as follows. First, we introduce the discrete manifolds and mappings
as well as the computation of the conformal parameterization via the holomorphic differentials
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in Sections 2 and 3, respectively. Then, we propose a modified stretch and volumetric stretch
energy minimization for the computation of the area- and volume-preserving parameterizations
in Sections 4 and 5, respectively. Numerical experiments of the proposed algorithms are
presented in Section 6. Applications on Vertebra registrations and partitions are demonstrated
in Section 7. Concluding remarks are given in Section 8.

2. Discrete 3-manifolds and parameterizations. In this paper, we consider discrete 3-
manifolds embedded in R3 with a single boundary being a genus-one closed 2D surface. In
real applications, a discrete 3-manifold can be represented as a tetrahedral meshM, which is
consisted of n vertices with coordinates in R3

V(M) =
{
vs ≡

(
v1s , v

2
s , v

3
s

)> ∈ R3
}n
s=1

and tetrahedrons

T (M) =
{

[vi, vj , vk, v`] ⊂ R3 for some vertices {vi, vj , vk, v`} ⊂ V(M)
}
,

where the bracket [vi, vj , vk, v`] denotes the convex hull (3-simplex) of the affinely independent
points {vi, vj , vk, v`}. Furthermore, the sets of triangular faces and edges of the mesh M are
denoted by

F(M) = {[vi, vj , vk] | [vi, vj , vk, v`] ∈ T (M) for some v` ∈ V(M)}

and
E(M) = {[vi, vj ] | [vi, vj , vk] ∈ F(M) for some vk ∈ V(M)} ,

respectively. The union of V(M), E(M), F(M) and T (M) forms a homogeneous simplicial
3-complex. Similarly, a 2-manifold is called a surface, which is represented as a triangular
mesh consisted of vertices and triangular faces.

A piecewise affine mapping f :M→ R3 is defined as a matrix

(2.1) f =
[
f(v1) · · · f(vn)

]> ≡ [f1 · · · fn
]> ∈ Rn×3.

For a point v ∈ M belonging to some tetrahedron [vi, vj , vk, v`] ∈ T (M), the value f(v) is
defined as a linear combination of fi, fj , fk and f`

f |[vi,vj ,vk,v`](v) = λi(v) fi + λj(v) fj + λk(v) fk + λ`(v) f`

with coefficients λi(v) =
|[v,vj ,vk,v`]|
|[vi,vj ,vk,v`]| , λj(v) = |[vi,v,vk,v`]|

|[vi,vj ,vk,v`]| , λk(v) =
|[vi,vj ,v,v`]|
|[vi,vj ,vk,v`]| and λ`(v) =

|[vi,vj ,vk,v]|
|[vi,vj ,vk,v`]| being the barycentric coordinates of v in [vi, vj , vk, v`]. Here the absolute value

|[v0, . . . , vm]| denotes the volume of the m-simplex [v0, . . . , vm]. In particular, |[vi, vj , vk, v`]|,
|[vi, vj , vk]| and |[vi, vj ]| denote the volume, area and length of the tetrahedron [vi, vj , vk, v`],
triangle [vi, vj , vk] and interval [vi, vj ], respectively.

In this paper, we consider developing an algorithm for the computation of a bijective
volume-preserving parameterization between a genus-one 3-manifold M ⊂ R3 and the stan-
dard solid torus T3. A parameterization f : M → T3 is said to be volume-preserving if the

Jacobian matrix Jf−1 = [∂f
−1

∂u1
, ∂f

−1

∂u2
, ∂f

−1

∂u3
] satisfies

det
(
Jf−1(u1, u2, u3)

)
= 1.
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Table 3.1
The length of loops γ1, γ2, and the execution time cost (sec.) of the homology group basis by the minimal

spanning tree method provided in Chapter 9 of [24] and the Reeb graph method [14]. #F(∂M) denotes the
number of triangular faces of the model.

Model Name #F(∂M)
Minimal Spanning Tree Reeb Graph
|γ1| |γ2| Time |γ1| |γ2| Time

Petal 14,506 1.6486 6.4235 0.58 1.1012 4.3046 0.51
Vertebra 16,420 7.0326 2.0194 0.66 1.0358 1.9880 0.59
Rocker Arm 25,182 2.8960 2.7636 0.95 2.0576 2.3290 0.87
Kitten 21,584 3.4239 1.3030 0.89 0.4661 1.5106 0.73

In other words, f preserves the local volume. Additionally, a parameterization f : ∂M→ T2

is said to be area-preserving or angle-preserving (conformal) if the first fundamental form If−1

satisfies det
(
If−1(u1, u2)

)
= 1, i.e., f preserves the local area, or If−1(u1, u2) = λ(u1, u2)I2,

for some positive scaling function λ, i.e., f preserves local angles.

3. Conformal parameterizations via holomorphic differentials. Given a genus-g closed
surface ∂M. Based on the Hodge Theorem for the isomorphism between the de Rham coho-
mology group and the harmonic 1-form group, Gu and Yau [22, 23] [24, Chap. 11] developed
an elegant numerical algorithm via holomorphic differentials for the computation of holomor-
phic 1-forms, and further the conformal map between ∂M and the g connected sum of T2,
namely, T2# · · ·#T2 = (T2\D2)∪· · ·∪(T2\D2). The procedure consists of four steps: (i) com-
puting a basis for the cohomology group, (ii) computing a basis for the harmonic 1-form group,
(iii) computing the corresponding holomorphic 1-forms, and (iv) integrating the holomorphic
1-forms to the holomorphic maps.

3.1. Homology and cohomology groups. The handle and tunnel loops {γ1, . . . , γ2g} on
the genus-g closed surface ∂M form a basis for the homology group H1(∂M). The basis can
be efficiently computed by, e.g., the minimal spanning tree method [24, Chap. 9, Alg. 6] and
the Reeb graph method [14].

In this subsection, we first compare these two algorithms in terms of efficiency and lengths
of resulting loops for the computation of a basis for the homology group of a genus-one closed
surface. The minimal spanning tree method and the Reeb graph method are performed by the
software RiemannMapper and ReebHanTun developed by Gu [7] and Dey et al. [3], respectively.
In Table 3.1, we see that the execution time of these two methods is similar, however, the
resulting loops by the Reeb graph method have significantly shorter lengths compared to the
loops by the minimal spanning tree method. Therefore, in this paper, we adopt the Reeb
graph method in [14] for the computation of a basis for the homology group.

A 1-form η : E(∂M)→ R is said to be closed if for each face [vi, vj , vk] ∈ F(∂M), it holds

η([vi, vj ]) + η([vj , vk]) + η([vk, vi]) = 0.

Each handle or tunnel loop γ` corresponds to a characteristic closed 1-form η` : E(∂M)→ R
defined as

(3.1a) η`([vi, vj ]) = f`(vj)− f`(vi)
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with

(3.1b) f`(v) =

{
1 if v ∈ γ+` ,

0 otherwise,

where γ+` ∪ γ
−
` forms the boundary of the open mesh ∂M` by slicing ∂M along γ`, for

` = 1, . . . , 2g. The set of characteristic closed 1-forms {η1, . . . , η2g} form a basis for the
cohomology group H1(∂M).

3.2. Harmonic 1-form ([24, Section 11.5]). For each vertex vi ∈ V(∂M), let N(vi) =
{vj | [vi, vj ] ∈ E(∂M)} denote the one-ring neighborhood of vi. The weighted coefficient wi,j
of the discrete Laplacian operator 4∂M is given by the cotangent weight

(3.2) wi,j =
cot θi,j + cot θj,i

2
,

where θi,j and θj,i are two angles opposite to the edge [vi, vj ] connecting vertices vi and vj on
the mesh ∂M.

A closed 1-form ω is said to be a harmonic 1-form, if it is locally gradient of some harmonic
function h : V(∂M)→ R. In other words, a harmonic 1-form ω satisfies

(4∂Mh)(vi) =
∑

vj∈N(vi)

wi,j dh([vi, vj ]) =
∑

vj∈N(vi)

wi,j (h(vj)− h(vi))

=
∑

vj∈N(vi)

wi,jω([vi, vj ]) = 0.(3.3)

Given a closed 1-form η, from the Hodge theorem [24, Chap. 4], the unique harmonic 1-form
ω cohomologous to η is given by

(3.4) ω([vi, vj ]) = η([vi, vj ]) + h(vj)− h(vi),

where the unknown function h : V(∂M)→ R is solved from the linear system

(3.5)
∑

vj∈N(vi)

wi,j (η([vi, vj ]) + h(vj)− h(vi)) = 0, for each vi ∈ V(∂M).

3.3. Conjugate 1-form ([24, Sec. 11.6]). Note that every closed 1-form ω corresponds
to a vector-valued 2-form ω : F(∂M)→ R3 satisfying

ω([vi, vj , vk])
>(vj − vi) = ω([vi, vj ]),

ω([vi, vj , vk])
>(vk − vj) = ω([vj , vk]),

ω([vi, vj , vk])
>(vi − vk) = ω([vk, vi]).

The 2-form ω can be explicitly formulated as

(3.6) ω([vi, vj , vk]) =
(ω([vi, vj ])vk + ω([vk, vi])vj + ω([vj , vk])vi)× n([vi, vj , vk])

2|[vi, vj , vk]|
.
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On the other hand, the Hodge conjugate of ω, a vector-valued 2-form ?ω : F(∂M) → R3, is
defined as

(3.7) ? ω(τ) = n(τ)× ω(τ),

where n(τ) is the normal vector of the triangular face τ .
Under a basis of harmonic 1-forms {ω1, . . . , ω2g}, each harmonic 1-form ω can be written

as the linear combination of {ωm}2gm=1. Suppose the Hodge conjugate ?ω of the harmonic
1-form ω is represented as

(3.8) ? ω =

2g∑
m=1

µmωm.

Then, the unknown coefficients {µm}2gm=1 must satisfy

(3.9)

∫
∂M

ω` ∧ ?ω =

2g∑
m=1

µm

∫
∂M

ω` ∧ ωm,

for ` = 1, . . . , 2g. Note that the 2-forms ω` ∧ ?ω and ω` ∧ ωm from F(∂M) to R can be
computed by

(ω` ∧ ?ω)(τ) = ω`(τ)× ?ω(τ) · n(τ)|τ |,

and

(ω` ∧ ωm)(τ) = ω`(τ)× ωm(τ) · n(τ)|τ |,

for each τ ∈ F(∂M). It follows that

(3.10) b` ≡
∫
∂M

ω` ∧ ?ω =
∑

τ∈F(∂M)

ω`(τ)× ?ω(τ) · n(τ)|τ |,

and

c`,m ≡
∫
∂M

ω` ∧ ωm =
∑

τ∈F(∂M)

ω`(τ)× ωm(τ) · n(τ)|τ |,

for `,m = 1, . . . , 2g. As a result, the coefficients {µm}2gm=1 can be obtained by solving the
linear system

(3.11)


0 c1,2 · · · c1,2g
−c1,2 0 · · · c2,2g

...
...

. . .
...

−c1,2g −c2,2g · · · 0



µ1
µ2
...
µ2g

 =


b1
b2
...
b2g

 .
Ultimately, a basis for holomorphic 1-forms is given by

(3.12) {ζ` = ω` + i ? ω`}2g`=1 .

Note that each holomorphic 1-form ζ on ∂M can be represented as the linear combination
ζ =

∑2g
`=1 α`ζ` with α` ∈ R.
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3.4. Visualization of the fundamental domain. In particular, to compute the conformal
map of a genus-one closed surface ∂M induced by the holomorphic 1-form ζ, we first slice ∂M,
respectively, along the handle and the tunnel loops in a basis ofH1(∂M). The only intersecting
vertex of these two loops on the mesh ∂M is separated into 4 corner vertices vC(1), . . . , vC(4)

counterclockwise on the sliced mesh ∂M̃. Choosing the vertex v0 ≡ vC(1) ∈ ∂M̃ as the origin,

for each vt ∈ V(∂M̃), we integrate ζ along a curve γ(v0, vt) from v0 to vt (see [24, Alg. 35]
for details) as

(3.13) zt := xt + iyt =

∫
γ(v0,vt)

ζ.

The image of the mapping fC : ∂M̃ → C given by fC(vt) = zt is known as the fundamental
domain of the genus-one surface ∂M.

Note that the polygon formed by zC(1), . . . , zC(4), in general, is a parallelogram. In order to
obtain a fundamental domain with four corner vertices forming a rectangle, we first compute

a1,1 =

∫
γ(vC(1),vC(2))

ζ1, a1,2 =

∫
γ(vC(1),vC(4))

ζ1, a2,1 =

∫
γ(vC(1),vC(2))

ζ2, a2,2 =

∫
γ(vC(1),vC(4))

ζ2,

where {ζ1, ζ2} is given in (3.12). We find an optimal coefficient β ∈ [0, 1] so that (1−β)a1,1 +
βa2,1 is as perpendicular as possible to (1− β)a1,2 + βa2,2. That is, β satisfies

(3.14) β = argmin
β∈[−1,1]

Re
(

((1− β)a1,1 + βa2,1)((1− β)a1,2 + βa2,2)
)2
.

The desired holomorphic 1-form ζ in (3.13) is then given by ζ = (1− β)ζ1 + βζ2.

Finally, the rectangle fundamental domain fC(∂M̃) is conformally mapped to T2 by fT2 :
C→ T2 defined as
(3.15)

fT2(xt + iyt) =

(
r sin 2πxt

maxt(xt)√
r2 + 1− cos 2πyt

maxt(yt)

,
r cos 2πxt

maxt(xt)√
r2 + 1− cos 2πyt

maxt(yt)

,
sin 2πyt

maxt(yt)√
r2 + 1− cos 2πyt

maxt(yt)

)
,

where r =
√

(ab )2 − 1 in which a and b are the side lengths of the rectangle fC(∂M̃) with
a > b. Note that the radius of the tube is 1

r and the distance from the center of the tube to

the center of the torus is
√

1 + r2/r. The conformal mapping (3.15) is adopted from a formula
in [39] by changing the periods of x-direction and y-direction to be maxt(xt) and maxt(yt),
respectively.

The computational procedure for Subsections 3.1 to 3.4 is summarized in Algorithm 3.1.

4. Area-preserving parameterizations. In this section, we propose a modified stretch
energy minimization (SEM) for the computation of the area-preserving parameterization be-
tween a genus-one closed triangular mesh ∂M and T2. Let g : ∂M→ T2 be a piecewise affine
mapping satisfying

g = [g(v1), · · · , g(vn)]> = [g1, · · · ,gn]> ∈ Rn×3 with gi ∈ T2,
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Algorithm 3.1 Conformal Parameterization on T2

Input: A genus-one closed triangular mesh ∂M.
Output: A conformal mapping g that maps ∂M to a standard torus T2.

1: Compute a basis {γ1, γ2} for the homology group H1(∂M) by ReebHanTun [3].
2: Compute the dual basis (characteristic closed 1-form) {η1, η2} for H1(∂M) by (3.1).
3: Compute the harmonic 1-form basis {ω1, ω2} for H1(∂M) by (3.2)–(3.5).
4: Compute the holomorphic 1-form basis {ζ` = ω` + i ? ω`}2`=1 by (3.6)–(3.11).
5: Compute the holomorphic 1-form ζ = (1− β)ζ1 + βζ2, where β is given by (3.14).

6: Slice ∂M along γ1 and γ2 into ∂M̃.
7: Compute the holomorphic mapping fC : ∂M̃ → C by (3.13).
8: Map the rectangle to the standard torus by fT2 : C→ T2 as in (3.15).
9: return g ≡ fT2 ◦ fC|∂M.

for vi ∈ V(∂M), i = 1, . . . , n. Based on the original SEM algorithm [47] aiming to compute the
disk-shaped equiareal parameterizations of simply connected open surfaces, we try finding an
area-preserving mapping g : ∂M→ T2 by minimizing the modified stretch energy functional

(4.1) ES(g) =
1

2
trace

(
g>LS(g)g

)
− |g(∂M)|,

where |g(∂M)| denotes the area of the image g(∂M), LS(g) is the stretch Laplacian matrix
with

(4.2) [LS(g)]i,j =


wi,j(g) ≡ −1

2

(
cot(θi,j(g))

σg−1 ([vi,vj ,vk])
+

cot(θj,i(g))
σg−1 ([vj ,vi,v`])

)
if [vi, vj ] ∈ E(∂M),

−
∑
6̀=iwi,`(g) if j = i,

0 otherwise

in which θi,j(g) and θj,i(g) are two angles opposite to the edge [g(vi), g(vj)] connecting vertices
g(vi) and g(vj) on T2, as illustrated in Fig. 4.1, and

(4.3) σg−1(τ) =
|τ |
|g(τ)|

is the stretch factor of g on the triangular face τ ∈ F(∂M). The modified SEM algorithm for
genus-one closed triangular meshes ∂M is stated as follows. We first compute the conformal
mapping g(0) : ∂M→ T2 by Algorithm 3.1 as an initial map. Then, for k = 1, 2, . . ., and ` =
1, 2, we imitate the steps of (3.3)–(3.5) and (3.12)–(3.15) by modifying the stretch Laplacian
matrix LS(g(k−1)) as in (4.2) at each k-iteration and compute the stretched harmonic 1-form

ω
(k)
` : E(∂M)→ R by

(4.4) ω
(k)
` ([vi, vj ]) = η`([vi, vj ]) + h

(k)
` (vj)− h(k)` (vi)

in which η` is the characteristic closed 1-form defined in (3.1), and the unknown function

h
(k)
` : V(∂M)→ R is solved from the linear system

(4.5)
∑

vj∈N(vi)

[
LS(g(k−1))

]
i,j

(
η`([vi, vj ]) + h

(k)
` (vj)− h(k)` (vi)

)
= 0,
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for each vi ∈ V(∂M). The Hodge conjugate ?ω
(k)
` of the stretched harmonic 1-form ω

(k)
` is

computed as in Subsection 3.3. The stretched harmonic 1-form is then given by

(4.6) ζ
(k)
` = ω

(k)
` + i ? ω

(k)
` , ` = 1, 2.

By integrating ζ
(k)
` as in (3.13), we obtain the mapping (fC)

(k)
` : ∂M̃ → C, for ` = 1, 2. Similar

to Subsection 3.4, we find an optimal coefficient β ∈ [0, 1] by (3.14) so that the parallelogram
form by corners of the mapping

(4.7) f
(k)
C = (1− β)(fC)

(k)
1 + β(fC)

(k)
2

is as close to a rectangle as possible.

Note that the corner vertices are mapped into the four corners (0, 0), p(k) = (p
(k)
1 , p

(k)
2 ),

q(k) = (q
(k)
1 , q

(k)
2 ), r(k) = (r

(k)
1 , r

(k)
2 ) of a parallelogram with width a(k) and height b(k). In order

to map the fundamental domain to a standard torus T2, we first map the parallelogram to a
rectangle of the side lengths a(k) and b(k) with a(k) > b(k), by an affine mapping ϕ(k) : C→ R2

given by

(4.8a) ϕ(k)(x+ iy) = P (k)

[
x
y

]
+ t(k),

where P (k) ∈ R2×2 is a matrix with detP (k) 6= 0 and t(k) ∈ R2 is a translation vector. The
matrix P (k) and the vector t(k) can be determined by the equation

(4.8b)

[
P (k) t(k)

0> 1

]
=

p(k)1 q
(k)
1 r

(k)
1

p
(k)
2 q

(k)
2 r

(k)
2

1 1 1


 0 a(k) a(k)

b(k) b(k) 0
1 1 1

−1 .
Alternatively, the affine mapping ϕ(k) can be directly computed using the MATLAB built-in
function fitgeotrans. Note that the affine mapping ϕ(k) is area-preserving, but not angle-
preserving which cannot be used in Subsection 3.4.

The updated torus mapping g(k) : ∂M→ T2 is given by

g(k) := fT2 ◦ ϕ(k) ◦ f (k)C ,

where fT2 is the map from the rectangle fundamental domain to T2 as in (3.15). The sequence
{g(k)}k∈N would numerically converge to an area-preserving mapping g(∗) : ∂M→ T2.

The computational procedure for the area-preserving parameterization is summarized in
Algorithm 4.1.

Remark. (i) Imitating Algorithm 3.1, we have the following iteration:

g(k−1)
(4.2)−→ LS(g(k−1))

(4.4)−→
(4.6)

ζ
(k)
`

(3.13)−→
(4.7)

f
(k)
C

(4.8)−→
(3.15)

fT2 ◦ ϕ(k) ◦ f (k)C := g(k).
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θi,j(g) θj,i(g)

gi

gj

gkg`

Figure 4.1. An illustration for the cotangent weights.

Algorithm 4.1 Modified SEM for Area-Preserving Parameterization on T2

Input: A genus-one closed triangular mesh ∂M.
Output: An area-preserving mapping g that maps ∂M to a standard torus T2.

1: Compute a conformal mapping g : ∂M→ T2 by Algorithm 3.1.
2: while not convergent do
3: Update L← LS(g) as in (4.2).
4: Update the 1-forms {ω1, ω2} as in (4.4) and (4.5).
5: Compute the 1-forms {ζ` = ω` + i ? ω`}2`=1.
6: Compute mappings {(fC)`}2`=1 by integrating {ζ`}2`=1, respectively, as (3.13).

7: Compute the parallelogram mapping fC : ∂M̃ → C as in (4.7).
8: Map the parallelogram into a rectangle of width a and height b by the affine transfor-

mation ϕ as in (4.8).
9: Map the rectangle to the standard torus by fT2 : C→ T2 defined as (3.15).

10: Update g ← fT2 ◦ ϕ ◦ fC|∂M.
11: end while
12: return g.

In fact, we solve the energy minimization problem of (4.1) with the constraint g : ∂M→ T2

via sequential quadratic optimizations by regarding LS(g(k−1)) as a matrix independent of g(k).
At each kth iteration, we solve the quadratic optimization problem

E(k)S (g) =
1

2
trace

(
g>LS(g(k−1))g

)
− |g(∂M)|

with g : ∂M → T2 as follows. We first consider solving the critical point of the gradient
equation for f : ∂M̃ → C

∇E(k)S (f) = LS(g(k−1)) f = 0.

From the fact that
∑

vj∈N(vi)

[
LS(g(k−1))

]
i,j
ζ
(k)
` ([vi, vj ]) = 0 by (4.4)–(4.6) follows that

LS(g(k−1)) f
(k)
C = 0,

where f
(k)
C is the matrix representation of f

(k)
C at V(∂M̃). Then, to guarantee the image being

a torus T2, we use the bijective maps (3.15) and (4.8) to project the fundamental domain of

the image of f
(k)
C back to T2 by setting g(k) := fT2 ◦ ϕ(k) ◦ f (k)C .
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(ii) Since the constrained energy minimization problem of (4.1) with the imposed condi-
tion σg−1 = |τ |/|g(τ)| in (4.3) is highly nonlinear, the convergence of the stretch factors of
(4.3) and the stretch energy of (4.1) is hard to be proved theoretically. However, we can nu-
merically check the convergence behavior of the stretch energy and the total area distortion,
and the stretch factors in Figures 6.6 and 6.7, respectively. In Figure 6.6, we observe that
Algorithm 4.1 drops very fast in the first 5 steps and then goes down very gently in the last
15 steps that is very similar to a sublinear convergence behavior. It can be expected that the
convergence rate of Algorithm 4.1 is of O(1/ks) with 1 ≤ s ≤ 2.

(iii) The main differences between the proposed modified SEM algorithm and the SEM in
[44] are: (1) The modified SEM aims to find a map g : S → T2 for a genus-one closed surface
S while the original SEM aims to find a map g : D → D for a simply connected open surface
D. (2) The iteration is performed on computing the 1-form associated with the fundamental
domain of T2 and the map is obtained by integrating the 1-form while the original SEM is
performed directly on the disk-shaped image of the map.

5. Volume-preserving parameterization. In this section, we propose a modified volumet-
ric stretch energy minimization (VSEM) algorithm for the computation of a volume-preserving
parameterization between an n-vertex tetrahedral mesh M with a genus-one closed surface
as the boundary and the standard solid torus T3. Let f : M → T3 be the piecewise affine
mapping satisfying

f =
[
f(v1) · · · f(vn)

]>
=
[
f1 · · · fn

]> ∈ Rn×3 with fi ∈ T3.

The volumetric stretch energy functional [45] on M is defined as

(5.1) ES(f) =
1

2
trace

(
f>LS(f) f

)
,

where LS(f) is the stretch volumetric Laplacian matrix with

(5.2) [LS(f)]i,j =


wi,j(f) if [vi, vj ] ∈ E(M),

−
∑

`6=iwi,`(f) if j = i,

0 otherwise

in which wi,j(f) is the modified cotangent weight [45] given by

(5.3) wi,j(f) = −1

9

∑
τ∈T (M)

[vi,vj ]∪[vk,v`]⊂τ
[vi,vj ]∩[vk,v`]=∅

|f([vi, vk, v`])||f([vj , v`, vk])| cos θk,`i,j (f)

σf−1(τ) |f(τ)|
,

with σf−1(τ) being the stretch factor defined as

(5.4) σf−1(τ) =
|τ |
|f(τ)|

, for τ ∈ T (M).
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Suppose an area-preserving parameterization f
(0)
B ≡ g(∗) between ∂M and the torus T2 is

computed by Algorithm 4.1. Then the volume-preserving parameterization between M and
T3 is computed by minimizing the volumetric stretch energy (5.1) via the iteration

(5.5) [LS(f (k))]I,If
(k+1)
I = −[LS(f (k))]I,Bf

(0)
B ,

for solving the sequential quadratic programmings, where B = {s | vs ∈ ∂M}, I = {1, . . . , n}\B
and the matrix LS(f (k)) is updated by (5.2). The algorithm of the volumetric stretch energy
minimization (VSEM) for the computation of the volume-preserving parameterizations be-
tween M and T3 is summarized in Algorithm 5.1.

Remark. (i) As in Remark (i) of Section 4, Algorithm 5.1 solves the volumetric stretch

energy minimization problem of (5.1) with the fixed area-preserving boundary constraint f
(0)
B :

∂M → T2 via sequential quadratic optimizations by regarding LS(f (k−1)) as a matrix inde-
pendent of f (k). At each kth step, the iteration (5.5) aims to find a critical f(k) that satisfies

∇ES(f (k)) = LS(f (k−1))f(k) = 0.

Under the given torus-shaped boundary condition f
(0)
B , the map f (k) can be computed by solving

the linear system [
[LS(f (k−1))]I,I [LS(f (k−1))]I,B
[LS(f (k−1))]B,I [LS(f (k−1))]B,B

][
f
(k)
I

f
(0)
B

]
= 0,

which is equivalent to (5.5).
(ii) As in Remark (ii) of Section 4, since the stretch energy functional ES(f) in (5.1) is

highly nonlinear and the condition |τ | = |f(τ)| is imposed in (5.3) implicitly, the convergence
of the VSEM Algorithm 5.1 for volume-preserving parameterizations are hard to be proved
theoretically. For convergence criterion, it is reasonable to numerically check whether the
resulting stretch factors σf−1(τ) of (5.4) are close to one, as well as the volumetric stretch
energy in (5.1) stop decreasing. The convergence of ES(f) and the distributions of σf−1(τ)
for various benchmark mesh models are demonstrated in Figures 6.9 and 6.10, respectively.
From Figure 6.9, it is expected that the convergence rate is sublinear and of O(1/ks) with
1/2 ≤ s ≤ 1.

(iii) In practice, the value of the stretch factor σf−1(τ) in (5.4) could be extremely small
which might potentially make the algorithm unstable. To remedy this drawback, we could add
a global regularization constant c to σf−1(τ) at each iteration to make the algorithm much
more reliable and efficient. In this case, the stretch factor σf−1(τ) in (5.4) is modified by

(5.6) σf−1(τ) =
|τ |
|f(τ)|

+ c, τ ∈ T (M),

for some c > 0.
(iv) The bijectivity of the volume-preserving parameterization of genus-one tetrahedral

meshes, in general, is not guaranteed even if the mapping is a convex combination with the
boundary being convex. A counterexample has been given in [20]. The bijectivity of the volume-
preserving parameterization can be checked by the number of flips of {f(τ) | τ ∈ T (M)}. See
Tables 6.3 and 6.4 below.
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Algorithm 5.1 VSEM for Volume-Preserving Parameterizations

Input: A simply connected tetrahedral mesh M with ∂M being a genus-one closed surface,
a tolerance ε (e.g. ε = 10−6).

Output: A volume-preserving parameterization f.
1: Let n be the number of vertices of M.
2: Let B = {s | vs ∈ ∂M} and I = {1, . . . , n}\B.
3: Compute an area-preserving parameterization gB between ∂M and T2 by Algorithm 4.1.
4: Compute g by solving the linear system

[LD]I,IgI = −[LD]I,BgB,

where LD ∈ Rn×n is the volumetric Laplacian matrix [40, 41, 42] with

(5.7) [LD]i,j =


−wi,j if [vi, vj ] ∈ E(M),∑

k 6=iwi,k if j = i,

0 otherwise,

in which wi,j is the cotangent weight on the edge [vi, vj ] given by

(5.8) wi,j =
1

6

∑
τ∈T (M)

[vi,vj ]∪[vk,v`]⊂τ
[vi,vj ]∩[vk,v`]=∅

|[vk, v`]| cot θk,`i,j ,

where θk,`i,j is the dihedral angle between [vi, vk, v`] and [vj , v`, vk] in the tetrahedron τ on
the edge [vk, v`], as illustrated in Figure 5.1.

5: Set δ ←∞.
6: Set fB ← gB.
7: while δ > ε do
8: Update A← LS(g), where LS(g) is defined as in (5.2).
9: Update f by solving the linear system AI,IfI = −AI,BfB.

10: Update δ ← ES(g)− ES(f).
11: Update g← f.
12: end while
13: return The volumetric mapping f.

6. Numerical experiments. In this section, we fist justify the holomorphic 1-form method
[22, 23, 27] for the computation of the initial conformal map is better than the Ricci flow
method [26, 48]. Then we demonstrate numerical experiments of the modified SEM algorithm
for area-preserving mapping of genus-one closed triangular meshes and the VSEM algorithm
for volume-preserving parameterizations of genus-one tetrahedral meshes. The linear systems
in our algorithms are solved by the backslash operator (\) in MATLAB. The surface models,
shown in Figures 6.1 and 7.2, are obtained from CGTrader [5], TurboSquid [2], AIM@SHAPE
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θk,`i,j

p

vi

v`

vk

vj

Figure 5.1. An illustration for the dihedral angle between [vi, vk, v`] and [vj , v`, vk] in the tetrahedron
[vi, vj , vk, v`].

Petal Vertebra Rocker Arm Kitten

Figure 6.1. The surface models of Petal, Vertebra, Rocker Arm, and Kitten.

shape repository [1], Sketchfab [6] and Gu’s website [4]. The tetrahedral meshes are generated
using JIGSAW mesh generators [15, 18, 16, 19, 17].

6.1. Angle-preserving mappings of genus-one closed triangular meshes. In this sub-
section, we compare the conformality and the efficiency of the Ricci flow method [26, 48]
and the holomorphic 1-form method [22, 23, 27] for the computation of the holomorphic map
z : ∂M → C of genus-one closed surfaces that maps ∂M to its fundamental domain in C.
The conformality is measured by the conformal energy [25, 13] given by

(6.1) EC(z) =
1

2
z∗Lz− |z(∂M)|,

where L is the cotangent-weighted Laplacian matrix. The Ricci flow method is performed by
the software RicciFlow developed by Gu [7].

From Table 6.1, we see that the resulting mapping by the holomorphic 1-form method
[22, 23, 27] has slightly better accuracy in terms of conformal energy, and significantly better
efficiency, compared to the Ricci flow method [26, 48]. Therefore, we adapt the holomorphic 1-
form method, summarized in Algorithm 3.1, as the method for computing the initial conformal
mapping in Algorithm 4.1.

6.2. Area-preserving mappings of genus-one closed triangular meshes. We now intro-
duce the distortion measurements of the accuracy of an area-preserving mapping g : ∂M→ T2.
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Table 6.1
The conformal energy EC and the execution time cost (sec.) of angle-preserving mapping by the Ricci flow

method [26, 48] and the holomorphic 1-form method [22, 23, 27] (Algorithm 3.1). #F(∂M) denotes the number
of triangular faces of the model.

Model Name #F(∂M)
Ricci Flow Holomorphic 1-Form
EC Time EC Time

Petal 14,506 2.6773× 10−3 2.10 2.4208× 10−3 0.39
Vertebra 16,420 2.0765× 10−3 2.45 2.0385× 10−3 0.44
Rocker Arm 25,182 3.7663× 10−4 4.07 3.6363× 10−4 0.70
Kitten 21,584 1.8736× 10−3 3.18 1.8056× 10−3 0.56

The global area distortion of the mapping g is measured by the total area distortion defined
as

(6.2) Darea(g) =
1

4

∑
v∈V(∂M)

∣∣∣∣∣
∑

τ∈NF (v) |τ |
|∂M|

−
∑

τ∈NF (v) |g(τ)|
|g(∂M)|

∣∣∣∣∣ ,
where NF (v) = {τ ∈ F(∂M) | v ⊂ τ} is the set of neighboring triangular faces of the vertex
v, |∂M| and |f(∂M)| denote areas of ∂M and its image, respectively. The mapping g is
area-preserving if Darea(g) = 0. In addition, the local area distortion of the mapping g is
measured by the mean and standard deviation (SD) of the local area ratios defined as

(6.3) Rarea(g, v) =

∑
τ∈NF (v) |g(τ)|/|g(∂M)|∑

τ∈NF (v) |τ |/|∂M|
.

Also, the mapping g is area-preserving if the mean is 1 and the SD is 0.
Figures 6.2 to 6.5 show the boundaries of four tetrahedral mesh models, their equiareal

mapping on T2 and the associated fundamental domain computed by the modified SEM
Algorithm 4.1.

Figure 6.6 shows the relationship between the number of iterations and the stretch energy
as well as the total area distortion of the area-preserving mapping computed by the modified
SEM Algorithm 4.1. It is worth mentioning that both the stretch energy and the total area
distortion are significantly decreased in the first 5 iteration steps, and monotonically decreasing
during the whole iteration procedure, which indicates that the modified SEM algorithm works
effectively on reducing both the stretch energy and the total area distortion.

Table 6.2 shows the total area distortion, the mean and SD of local area ratios, and the
number of overlapped triangular faces computed by Algorithm 4.1. We observe that the total
area distortions of four mappings are between 1%-5%. In addition, the means of the local
area ratios are close to 1 with fairly small SDs, and the corresponding histograms of local
area ratios are presented in Figure 6.7. These imply that the mappings preserve the local area
well. Furthermore, it is worth noting that all resulting mappings are bijective.

6.3. Volume-preserving parameterizations of genus-one tetrahedral meshes. We now
introduce the distortion measurement of the accuracy of a volume-preserving parameterization
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The boundary of Petal The torus mapping of Petal

The fundamental domain of Petal

Figure 6.2. The boundary of the tetrahedral mesh model Petal and its area-preserving parameterization on
T2 as well as the associated fundamental domain computed by the modified SEM Algorithm 4.1.

Table 6.2
The total area distortion Darea as well as the mean and SD of local area ratios Rarea of area-preserving

mapping by the SEM Algorithm 4.1. #F(∂M) denotes the number of triangular faces of the model.

Model Name #F(∂M) Darea
Rarea #Flip

Mean SD

Petal 14,506 0.0169 1.0000 0.0288 0
Vertebra 16,420 0.0201 0.9999 0.0367 0
Rocker Arm 25,182 0.0119 1.0001 0.0200 0
Kitten 21,584 0.0465 1.0006 0.0999 0

f : M → T3. The global volume distortion of the mapping f is measured using the total
volume distortion defined as

(6.4) Dvolume(f) =
1

4

∑
v∈V(M)

∣∣∣∣∣
∑

τ∈NT (v) |τ |
|M|

−
∑

τ∈NT (v) |f(τ)|
|f(M)|

∣∣∣∣∣ ,
where NT (v) = {τ ∈ T (M) | v ⊂ τ} is the set of neighboring tetrahedrons of the vertex v,
|M| and |f(M)| denote volumes ofM and its image, respectively. The mapping f is volume-
preserving if Dvolume(f) = 0. In addition, the local volume distortion of the mapping f is
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The boundary of Vertebra The torus mapping of Vertebra

The fundamental domain of Vertebra

Figure 6.3. The boundary of the tetrahedral mesh model Vertebra and its area-preserving parameterization
on T2 as well as the associated fundamental domain computed by the modified SEM Algorithm 4.1.

measured by the mean and SD of the local volume ratios defined as

(6.5) Rvolume(f, v) =

∑
τ∈NT (v) |f(τ)|/|f(M)|∑

τ∈NT (v) |τ |/|M|
.

Also, the mapping f is volume-preserving if the mean is 1 and the SD is 0.
Figure 6.8 shows the tetrahedral mesh model Vertebra and its volume-preserving param-

eterization computed by the VSEM Algorithm 5.1.
Figure 6.9 shows the relationship between the number of iterations and the volumetric

stretch energy as well as the total volume distortion of the parameterization computed by
the VSEM Algorithm 5.1. We observe that both of the volumetric stretch energy and the
total volume distortion are significantly decreased in the first 20 iterations, and monotonically
decreasing during the whole iteration procedure, which shows that the VSEM algorithm works
effectively on reducing both the volumetric stretch energy and the total volume distortion of
the parameterization.

Table 6.3 shows the relationship between the regularization constant c as in (5.6), the
total volume distortion, the local volume ratios, and the number of flipped tetrahedrons of
the parameterization computed by the VSEM Algorithm 5.1. We observe that the bijectivity
of the parameterization can be improved by increasing the value of the regularization constant
c and slightly sacrificing the total and local volume distortion.

In Table 6.4, we show numbers of iterations of volume-preserving parameterizations for
various genus-one tetrahedral models computed by the modified VSEM Algorithm 5.1 with
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The boundary of Rocker Arm The torus mapping of Rocker Arm

The fundamental domain of Rocker Arm

Figure 6.4. The boundary of the tetrahedral mesh model Rocker Arm and its area-preserving parameteri-
zation on T2 as well as the associated fundamental domain computed by the modified SEM Algorithm 4.1.

the regularization constant c = 10 vs. the total volume and local volume (mean and SD) dis-
tortions as well as the number of flipped tetrahedrons. In practice, the VSEM Algorithm 5.1
begins with the harmonic map of LD in (5.7) with the fixed boundary gB given in Step 3. For
four cases we see that after 20 iterations, the means are close to 1±0.02, the SDs significantly
reduce from (0.7348, 0.7508, 0.7041, 0.8085) to (0.5257, 0.4895, 0.3887, 0.4790), respectively, as
well as the numbers of flipped tetrahedrons reduce from 656 (99.36%), 9109 (95.04%), 670
(99.71%) and 5081 (98.57%) to 14 (99.99%), 0 (100%), 14 (99.99%) and 30 (99.99%), respec-
tively, which are rather satisfactory in practical applications.

Figure 6.10 shows the histogram of the local volume ratios of the four models. We observe
that the ratios of Petal and Kitten seemingly form binomial distributions with two local means,
respectively, less and greater than one. In Figure 6.1 we see that the parts with larger surfaces,
such as the ”bud” of Petal and the ”head” of Kitten have local means slightly smaller than
one, while the other parts with smaller surfaces have local means greater than one. However,
the means of local volume ratios are quite close to one as shown in Table 6.4.

7. Applications. In this section, we present applications of volume-preserving parameter-
izations for genus-one 3-manifolds on Vertebra registrations and partitions.

7.1. Vertebra registrations. A Vertebra is a 3-manifold with the boundary being a genus-
one closed surface. Given a pair of Vertebrae M and N with n landmarks {p`}n`=1 ⊂ ∂M
and {q`}n`=1 ⊂ ∂N , respectively. The aim of the Vertebrae registration is to find a volume-
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The boundary of Kitten The torus mapping of Kitten

The fundamental domain of Kitten

Figure 6.5. The boundary of the tetrahedral mesh model Kitten and its area-preserving parameterization
on T2 as well as the associated fundamental domain computed by the modified SEM Algorithm 4.1.
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Figure 6.6. The relationship between the number of iterations and the stretch energy as well as the total
area distortion of the area-preserving parameterizations computed by the modified SEM Algorithm 4.1.
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Petal Vertebra RockerArm Kitten

Figure 6.7. Histogram of local area ratios of the torus parameterization computed by the modified SEM
Algorithm 4.1.

Table 6.3
The total volume distortion Dvolume as well as the mean and SD of local volume ratios Rvolume of volume-

preserving parameterizations by the VSEM algorithm. #T (M) denotes the number of tetrahedrons of the model,
and c is the regularization constant. The maximal number of iterations is 20.

Model Name
c Dvolume

Rvolume #Flip
Bijectivity Time

#T (M) Mean SD (%) (sec.)

Petal

102,513

0 0.2751 1.0284 0.3513 504 99.51% 11.67
1 0.2945 1.0320 0.3957 198 99.81% 11.45

10 0.3862 1.0281 0.5257 14 99.99% 11.38

Vertebra

183,792

0 0.3227 1.0180 0.3710 49 99.97% 19.56
1 0.3401 1.0192 0.3943 7 100.00% 19.58

10 0.3879 1.0228 0.4895 0 100.00% 19.74

Rocker Arm

227,216

0 0.0960 1.0059 0.1472 583 99.74% 25.46
1 0.1277 1.0108 0.2037 216 99.90% 25.46

10 0.2818 1.0112 0.3887 14 99.99% 25.40

Kitten

354,772

0 0.1440 1.0053 0.2018 373 99.89% 39.71
1 0.1748 1.0106 0.2585 161 99.95% 39.85

10 0.2875 1.0289 0.4790 30 99.99% 39.94

preserving mapping f :M→N such that f(p`) = q`, for ` = 1, . . . , n.
First, the boundaries ∂M and ∂N of the Vertebrae are mapped holomorphically to their

fundamental domains by
ϕ : ∂M→ C and ψ : ∂N → C,

respectively, using Algorithm 3.1, as illustrated in Figure 7.1. Let c1, . . . , c4 and d1, . . . , d4
counterclockwise be four corner points of the fundamental domains ϕ(∂M) and ψ(∂N ), re-
spectively. The size of ϕ(∂M) is normalized by an affine transformation α : C → C that
satisfies

α ◦ ϕ(c`) = ψ(d`), for ` = 1, . . . , 4.

Then a coarse Delaunay triangular mesh P of the points {α ◦ ϕ(p`)}n`=1 ∪ {α ◦ ϕ(c`)}4`=1 is



22 M.-H. YUEH, T. LI, W.-W. LIN, AND S.-T. YAU

Figure 6.8. The tetrahedral mesh model Vertebra and its volume-preserving parameterization computed by
the VSEM Algorithm 5.1.

generated on C using the function delaunay in MATLAB. Note that P is a mesh of the
rectangle with the vertices

V(P) = {α ◦ ϕ(p`)}n`=1 ∪ {α ◦ ϕ(c`)}4`=1.

Let Q be the triangular mesh of the vertices

V(Q) = {ψ(q`)}n`=1 ∪ {ψ(d`)}4`=1

with the same vertex adjacency as P. Then a piecewise affine mapping h : P → Q is induced by
mapping each triangular face in F(P) to the corresponding triangular face in F(Q) using the
barycentric coordinates of the triangles. The boundary registration mapping g : ∂M→ ∂N
is then given by

g = ψ−1 ◦ h ◦ α ◦ ϕ.

Ultimately, the volume-preserving mapping f : M → N is computed using Algorithm 5.1
with the boundary mapping f |∂M in Step 3 being g.

In practice, the considered VertebraeM and N are the tetrahedral meshes Vertebra 1 and
Vertebra 2 with 38 landmarks on the boundaries, respectively, as shown in Figure 7.1. The
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Table 6.4
The relationship between the number of iterations and the volumetric stretch energy as well as the total

volume distortion Dvolume and the local volume ratio Rvolume of volume-preserving parameterizations by the
VSEM algorithm with the regularization constant c = 10. #T (M) denotes the number of tetrahedrons of the
model.

Model Name
#Iter. ES Dvolume

Rvolume #Flip
Bijectivity Time

#T (M) Mean SD (%) (sec.)

Petal

102,513

0 3.1305 0.5859 1.0014 0.7348 656 99.36

11.38
1 3.1241 0.5664 1.0046 0.7152 209 99.80
5 3.1166 0.5045 1.0141 0.6517 37 99.96

10 3.1137 0.4514 1.0212 0.5955 19 99.98
20 3.1115 0.3862 1.0281 0.5257 14 99.99

Vertebra

183,792

0 0.0827 0.6092 1.0107 0.7508 9109 95.04

19.74
1 0.0818 0.5922 1.0142 0.7299 518 99.72
5 0.0814 0.5136 1.0203 0.6385 3 100.00

10 0.0813 0.4500 1.0228 0.5657 0 100.00
20 0.0812 0.3879 1.0228 0.4895 0 100.00

Rocker Arm

227,216

0 7.0445 0.5650 0.9734 0.7041 670 99.71

25.40
1 7.0297 0.5380 0.9780 0.6719 304 99.87
5 7.0123 0.4505 0.9912 0.5712 41 99.98

10 7.0054 0.3734 1.0012 0.4860 15 99.99
20 7.0003 0.2818 1.0112 0.3887 14 99.99

Kitten

354,772

0 3.2989 0.5392 1.0612 0.8085 5081 98.57

39.94
1 3.2888 0.5123 1.0583 0.7770 120 99.97
5 3.2789 0.4288 1.0482 0.6746 24 99.99

10 3.2757 0.3607 1.0394 0.5867 23 99.99
20 3.2737 0.2875 1.0289 0.4790 30 99.99

total volume distortion of the resulting volume-preserving mapping f :M→N is 0.0739, and
the mean and SD of the volume ratios are 0.9944 and 0.1214, respectively. The histogram of
volume ratios of the mapping f , shown in Figure 7.1, indicates that most of the volume ratios
are concentrated at 1, which is quite satisfactory. The evolution of deformation between the
Vertebrae by the linear homotopy method can be found at https://mhyueh.github.io/projects/
Torus VSEM.html.

7.2. Volume-based manifold partitions. The volume-based manifold partition refers to
separating a manifold into several parts according to the volume. With aid of the VSEM
Algorithm 5.1, a manifold M can be mapped to the standard solid torus T3 by f :M→ T3

with fairly small volume distortion. Note that T3 can be parameterized by the mapping
ξ : [0, 2π)× [0, 2π)× [0, r]→ T3 defined as

(7.1) ξ(u, v, s) = ((R+ s cos v) cosu, (R+ s cos v) sinu, s sin v) ,

where r is the radius of the tube, R is the distance from the center of the tube to the center
of the torus, and u, v ∈ [0, 2π), s ∈ [0, r]. The partition of T3 can then be selected by

https://mhyueh.github.io/projects/Torus_VSEM.html
https://mhyueh.github.io/projects/Torus_VSEM.html
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Figure 6.9. The relationship between the number of iterations and the volumetric stretch energy as well as
the total volume distortion of the parameterization computed by the VSEM Algorithm 5.1.

Petal Vertebra Rocker Arm Kitten

Figure 6.10. Histogram of the local volume ratios of the parameterizations computed by the VSEM Algo-
rithm 5.1.

the parameters u, v, s of the map ξ. Suppose a submanifold S of T3 is selected. Then the
corresponding partition M̂ ≡ f−1(S) ⊂ M can be easily constructed by the inverse map
f−1 : T3 →M.

In practice, we consider the Vertebra tetrahedral mesh model M shown in Figure 6.8.
First, a volume-preserving mapping f : M → T3 between M and T3 is computed by the
VSEM Algorithm 5.1. Then, a uniform sampling V(T3) of T3 is constructed using the param-
eterization ξ(u, v, s) in (7.1) so that the size of each part can be easily controlled by parameters
u, v, s. The tetrahedral mesh T (T3) of the sampling V(T3) can be constructed by applying
the functions alphaShape and alphaTriangulation in MATLAB. Next, we selected a part
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Vertebra 1 Vertebra 2

Fundamental Domain of Vertebra 1 Fundamental Domain of Vertebra 2

Figure 7.1. The boundaries of the tetrahedral mesh model Vertebra 1 and Vertebra 2 as well as their
fundamental domains.

Vertebra 1 Vertebra 2 Volume Ratio

Figure 7.2. The charts of the boundaries of the tetrahedral mesh model Vertebra 1 and Vertebra 2 and the
histogram of volume ratios of the registration mapping.
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Figure 7.3. The level surfaces of Vertebra with volumes being 1
5
, 2
5
, 3
5
, 4
5

the volume of Vertebra, endowed
by colors (red, orange, green, blue), respectively.

Table 7.1

The volume ratios |M̂k|
|M| and the relative errors

||M̂k|− k
5
|M||

k
5
|M|

of the submanifold M̂k, for k = 1, 2, 3, 4.

k 1 2 3 4

Volume Ratio |M̂k|
|M| 0.1998 0.3998 0.6010 0.8012

Relative Error
||M̂k|− k5 |M||

k
5
|M| 0.08% 0.06% 0.17% 0.15%

of T3 by

Sk ≡ ξ

(
[0, 2π)× [0, 2π)×

[
0,

√
k

5
r

])
,

with the volume being k
5 |T

3|, for k = 1, 2, 3, 4. Ultimately, the corresponding submanifold M̂k

in M is constructed by

M̂k ≡ f−1(Sk).

In Figure 7.3, we show the level surfaces of the submanifolds M̂k of Vertebra with volumes
being 1

5 ,
2
5 ,

3
5 ,

4
5 of the volume of Vertebra, endowed by colors (red, orange, green, blue),

respectively. In Table 7.1, we see that the volume ratios |M̂k|
|M| is quite close to k

5 , for k =

1, 2, 3, 4, and the relative errors
||M̂k|− k5 |M||

k
5
|M| are less than 0.17%, which are fairly acceptable.

8. Concluding remarks. In this paper, we develop novel algorithms for the minimization
of the stretch and volumetric stretch energies, which can be used to compute the angle-
and area-preserving parameterizations of topological tori, as well as, the volume-preserving
parameterizations of topological solid tori, respectively. Numerical experiments indicate that
both SEM and VSEM algorithms perform well on practical models. Applications of the
Vertebrae registrations and the volume-based manifold partitions are demonstrated to show
the robustness of our algorithms.
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