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Abstract. Surface conformal parameterizations have been widely applied to various tasks in computer graphics.
In this paper, we develop a convergent conformal energy minimization (CCEM) iterative algorithm
via the line-search gradient descent method with a quadratic approximation for the computation of
disk-shaped conformal parameterizations of simply connected open triangular meshes. In addition,
we prove the global convergence of the proposed CCEM iterative algorithm. Moreover, under some
mild assumptions, we prove the existence of the nontrivial solution, which is a local minimum of the
conformal energy with a bijective boundary map. Numerical experiments indicate that the efficiency
of the proposed CCEM algorithm is highly improved and the accuracy is competitive with that of
state-of-the-art algorithms.
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1. Introduction. A conformal parameterization of a surface refers to an angle-preserving
diffeomorphism that maps the surface to a planar domain of a canonical shape. The compu-
tation of surface conformal parameterizations aims to develop efficient and robust algorithms
for computing a conformal diffeomorphism that maps a surface to a canonical planar domain.
A global coordinate system on the surface is induced by the inverse map of the parameteri-
zation, which can be applied to simplify various tasks in computer graphics, such as surface
registration, resampling, remeshing, fusion, and texture mapping.

Classical computational methods for surface conformal parameterizations include the cir-
cle packing method [36, 24], the linear Laplace–Beltrami equation [6, 20], the angle-based
flattening method [33, 34], the least squares conformal map [27], the holomorphic 1-form
method [16, 17, 26], spectral conformal parameterization [29, 23], heat diffusion [15, 22], the
discrete Ricci flow [25, 39], the quasi-conformal approach [10], and boundary first flattening
[32]. More details about the development of algorithms and applications of surface param-
eterization can be found in several classical survey papers [13, 35, 21, 5, 14, 19]. Recently,
Choi et al. [8] proposed an efficient parallelizable algorithm for the computation of conformal
parameterizations. In this paper, we focus on the development of CPU-based algorithms.

In particular, for a simply connected open Riemann surface, the uniformization theorem

∗Submitted to the editors DATE.
Funding: The work of the authors was partially supported by the Ministry of Science and Technology, the

National Center for Theoretical Sciences, the ST Yau Center in Taiwan, the Nanjing Center for Applied Mathematics,
and the Center of Mathematical Sciences and Applications at Harvard University.
†Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, Taiwan (yckuo@nuk.edu.tw).
‡Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, and Nanjing

Center for Applied Mathematics, Nanjing 211135, People’s Republic of China (wwlin@math.nctu.edu.tw).
§Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan (yue@ntnu.edu.tw).
¶Department of Mathematics, Harvard University, Cambridge, MA 02138, and Nanjing Center for Applied Math-

ematics, Nanjing 211135, People’s Republic of China (yau@math.harvard.edu).

1

mailto:yckuo@nuk.edu.tw
mailto:wwlin@math.nctu.edu.tw
mailto:yue@ntnu.edu.tw
mailto:yau@math.harvard.edu


2 Y.-C. KUO, W.-W. LIN, M.-H. YUEH, and S.-T. YAU

guarantees that the shape of the domain can be a unit disk. The map is known as the Riemann
mapping. The computation of the Riemann mapping is a fundamental issue that has been
widely studied. Gu and Yau [18, Section 10.4] first proposed a computational algorithm
via heat diffusion with the double covering technique. Huang et al. [22] further improved the
efficiency of heat diffusion by applying the quasi-implicit Euler method. A year later, Choi and
Lui [11] proposed a fast disk conformal parameterization (FDCP) algorithm with improved
conformality distortion and computational efficiency based on the composition of two quasi-
conformal mappings with the same Beltrami differential. To further improve the efficiency of
computations, Choi and Lui [9] developed a linear disk conformal parameterization (LDCP)
algorithm based on the double covering technique and the composition of quasi-conformal
maps. Noting that the double covering technique would double the size of linear systems
and cause computational inefficiency, Yueh et al. [38] developed an efficient algorithm based
on the conformal energy minimization (CEM) under the circle boundary constraint with the
existence of nontrivial accumulation points guaranteed that does not involve linear systems
that are doubled in size. Although the CEM algorithm is effective in computing disk-shaped
conformal parameterizations, the convergence of the CEM algorithm has not been completely
proved.

In this paper, we aim to develop a convergent CEM (CCEM) algorithm via the line-
search gradient descent method with a quadratic approximation for the computation of the
conformal map and propose a convergence theory for this new algorithm. The contributions
and advantages of the CCEM algorithm are threefold:

• The convergence of the CCEM algorithm is theoretically guaranteed to satisfy the
Wolfe and Zoutendijk conditions under some mild assumptions on the Delaunay tri-
angular mesh.
• The existence of a nontrivial local minimizer for the CEM problem having a distinct

angle partition on the boundary of the unit disk is proved by keeping the first-order
perturbation of Dirichlet energy at zero.
• The computational effectiveness and the conformality accuracy in terms of the confor-

mal energy of the CCEM algorithm are competitive and improved compared to those
of other state-of-the-art algorithms.

The notation used in this paper is defined as follows. Bold letters f , p, q denote (complex-
valued) vectors; fi denotes the ith entry of f ; Capital letters A, C, L denote matrices; Li,j
denotes the (i, j)th entry of L; Typewriter letters B, I denote ordered index sets of vertices;
fI, fB denote the subvectors of f composed of fi for i ∈ I and i ∈ B, respectively; LI,J denotes
the submatrix of L composed of Li,j for i ∈ I and j ∈ J; ej is the jth column of an identity
matrix; diag(f) maps a (complex-valued) vector f to a diagonal matrix with the (i, i)th entry
being fi; i denotes the imaginary unit

√
−1; nI is the number of elements of the set I; 0 and

0 denote zero vectors and zero matrices, respectively, of appropriate sizes; 1 denotes a vector
with all entries being 1.

The remainder of this paper is organized as follows. In Section 2, we introduce the
background knowledge of conformal maps and conformal energy. In Section 3, we introduce the
discretization of Riemann surfaces and mappings by Delaunay triangular meshes and derive
the discrete version of the CEM. Then, in Section 4, we develop a line-search gradient descent
method with quadratic approximation, called the CCEM algorithm, for the CEM problem
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and illustrate its convergence. A proof of the existence of the nontrivial local minimum of the
proposed CCEM algorithm is demonstrated in Section 5. We compare the numerical results of
the CCEM algorithm and other state-of-the-art algorithms in Section 6. Finally, concluding
remarks are given in Section 7.

2. Conformal maps and CEMs. Let S1 = r1(u1, v1) and S2 = r2(u2, v2) be two 2D
Riemann surfaces with I1 and I2 being the associated first fundamental forms, respectively.
A diffeomorphism f : S1 → S2 is said to be conformal (i.e., angle-preserving) if it satisfies
f∗I2 = λ2I1, where f∗I2 is the pullback metric induced by f [37]. Here, the positive scalar
factor λ2 is known as the conformal factor with respect to the conformal map f . The renowned
Poincare–Klein–Koebe uniformization theorem asserts that a simply connected 2D Riemann
surface is conformally equivalent to one of the following three canonical Riemann surfaces (i)
C = C ∪ {∞}; (ii) C; (iii) D = {z ∈ C | |z| 6 1}.

Let M = r(u, v) be a 2D Riemann surface with a single boundary ∂M. From the uni-
formization theorem, it holds that there is a conformal map f ≡ (f1, f2) : M → D. If we
choose orthogonal coordinate systems for M and D such that the first fundamental forms of
M and D become I1 = du2 + dv2 and I2 = (df1)2 + (df2)2, respectively, then

f∗I2 = [du,dv]J

[
1 0
0 1

]
J>
[

du
dv

]
= |fu|2du2 + 2fu · fvdudv + |fv|2dv2,(2.1)

where J =

[
∂f1

∂u
∂f2

∂u
∂f1

∂v
∂f2

∂v

]
≡
[
f1
u f2

u

f1
v f2

v

]
. From the computational perspective, we define the

Dirichlet energy as

ED(f) =
1

2

∫
M

(|∇f1|2 + |∇f2|2)dudv =
1

2

∫
M

(|fu|2 + |fv|2)dudv(2.2)

and let A(f) be the area of the image of f . Then, we have

π = A(f) =

∫
M
|fu × fv|dudv 6

∫
M
|fu||fv|dudv 6

1

2

∫
M

(|fu|2 + |fv|2)dudv

= ED(f).(2.3)

We define the conformal energy EC(f) as the difference between ED(f) and A(f) by

EC(f) = ED(f)−A(f) > 0.(2.4)

Then, EC(f) = 0, i.e., the equalities in (2.3) hold. This is equivalent to |fu| = |fv| and
fu · fv = 0. From (2.1), we obtain that f∗I2 = λ2(du2 + dv2) = λ2I1 with λ2 = |fu|2. This
implies that f is conformal. Hence, finding a conformal map f : M → D is equivalent to
solving the optimization problem.

min
f :M→D

{EC(f) | f is bijective}.(2.5)
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Every conformal map is harmonic [13]. Once the boundary condition f |∂M = fb : ∂M→ ∂D
is given, the map can be uniquely determined by solving the following Laplace–Beltrami
equation [31]. {

4Mf = 0 on M\∂M,
f |∂M = fb.

(2.6)

Since there are infinitely many possible choices for boundary map fb, it is, in general, difficult
to find the optimal boundary condition fb.

3. Discrete version of CEMs. A discretized version of a 2D Riemann surface M is a
Delaunay triangular mesh [18, Chapter 10] composed of an ordered vertex set V(M), an edge
set E(M) and a triangular face set F(M) such that (i) the circumcircle of any triangle does
not enclose vertices other than the three vertices of the triangle; (ii) the subgraph on all
interior vertices/boundary vertices is connected and every boundary vertex is connected to
at least one interior vertex. Furthermore, hereafter, the triangular mesh M we consider is a
simply connected open surface with a single boundary that satisfies (i) and (ii).

Let V(M) = {vs ∈ R3 | s ∈ I∪B} be ñ ordered vertices ofM, where I and B are index sets
of interior and boundary vertices, respectively, and ñ = nI + n ≡ #(I) + #(B). A piecewise
linear map f :M→ D can be expressed by a complex-valued vector

(3.1) f = f1 + i f2 = [f(v1), . . . , f(vñ)]> ≡ [f1, . . . , fñ]> ∈ Cñ,

where fs = f1
s + i f2

s , s = 1, . . . , ñ. The discrete Dirichlet energy [11] on f is given by

ED(f) = −1

2

∑
[vi,vj ]∈E(M)

wij |fi − fj |2 =
1

2
fHL f ,(3.2a)

where L = [wij ],

wij =


− cot θij , [vi, vj ] ∈ E(∂M),
−1

2(cot θij + cot θji), [vi, vj ] ∈ E(M\∂M),
−
∑

`∈Ni wi`, i = j,Ni = {` | [vi, v`] ∈ E(M)},
(3.2b)

and θij , θji are two angles opposite to the edge [vi, vj ]. Note that L in (3.2) is referred to
as a discrete Laplacian operator. Since M is a Delaunay triangular mesh, θij + θji < π for
[vi, vj ] ∈ E(M). Therefore,

wij = −1

2
(cot θij + cot θji) = − sin(θij + θji)

2 sin θij sin θji
< 0.(3.3)

It follows that matrix L in (3.2) is a singular and irreducible M-matrix with L1 = 0. Hence,
matrix L has rank ñ− 1. Similar to (2.4), the discrete conformal energy is defined by

EC(f) = ED(f)−A(f),(3.4)
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where

A(f) =
1

2

∑
[vi,vj ]∈E(∂M)

|f1
i f

2
j − f1

j f
2
i |.(3.5)

Furthermore, by means of a suitable reordering of the indices of vertices, matrix L in (3.2)
and the complex-valued vector f can be written as

L =

[
LI,I LI,B

L>I,B LB,B

]
and f =

[
fI
fB

]
,(3.6)

respectively, where fI ∈ CnI , fB ∈ Cn. For a given boundary condition fB ⊆ ∂D, the discrete
Laplace–Beltrami equation associated with (2.6) can be expressed as the linear system

LI,IfI = −LI,BfB,(3.7)

where LI,I is known as a nonsingular irreducible M-matrix. From (3.2b) and (3.7), it follows
that

wii = −
∑
j∈Ni

wij ⇔ fi ≡ f(vi) =
∑
j∈Ni

(
−wij
wii

)
fj ,(3.8)

for i ∈ I and fi ∈ D\∂D. Thus, f : V(M)→ V(D) is a piecewise linear and convex combination
mapping. From [12], it follows that f is one-to-one.

From (3.4), (3.5), and (3.8), the discrete version of the optimization problem (2.5) can be
formulated as the CEM problem

min{EC(f) | f : V(M)→ V(D) is bijective}.(3.9)

Let θ = (θ1, . . . , θn)> with 0 6 θ1 6 · · · 6 θn 6 2π and let

fI = f1
I + if2

I ∈ CnI , fB = f1
B + if2

B ∈ Cn(3.10a)

with

f1
B ≡ p = cosθ ≡ [cos θ1, . . . , cos θn]>, f2

B ≡ q = sinθ ≡ [sin θ1, . . . , sin θn]>.(3.10b)

From (3.5), we see that the area of the inscribed polygon formed by the boundary points
{(cos θj , sin θj)}nj=1 is

A(f) =
1

2

n∑
j=1

sin(θj+1 − θj)

=
1

2


cos θ1

cos θ2
...

cos θn


>


0 1 −1

−1
. . .

. . .
. . .

. . . 1
1 −1 0




sin θ1

sin θ2
...

sin θn

 ≡ 1

2
p>Cq,(3.11)
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where θn+1 := θ1. According to (3.1), (3.2a), (3.4), (3.6), and (3.10)–(3.11), the conformal
energy can be rewritten as

EC(f) ≡ EC(f1
I , f

2
I ,θ) =

1

2
fHLf − 1

2
p>Cq

=
1

2

(
f1>
I LI,If

1
I + f2>

I LI,If
2
I + p>LB,Bp + q>LB,Bq− p>Cq

)
+ f1>

I LI,Bp + f2>
I LI,Bq.(3.12)

Then, ∇EC(f1
I , f

2
I ,θ) = 0 can be calculated as
LI,I 0 LI,B 0

0 LI,I 0 LI,B

−diag(q)L>I,B diag(p)L>I,B
−diag(q)LB,B

+1
2diag(p)C

diag(p)LB,B

+1
2diag(q)C




f1
I

f2
I

p
q

 = 0.(3.13)

This implies

f1
I = −L−1

I,ILI,Bp, f2
I = −L−1

I,ILI,Bq,(3.14a)

and

−diag(q)L>I,Bf
1
I + diag(p)L>I,Bf

2
I − diag(q)LB,Bp + diag(p)LB,Bq

+
1

2
diag(p)Cp +

1

2
diag(q)Cq = 0.(3.14b)

Let

(3.15) A = LB,B − L>I,BL−1
I,ILI,B ∈ Rn×n.

Since L in (3.6) is a singular irreducible M-matrix, it is easy to check that A is also a singular
irreducible M-matrix and the null space of A is span{1}. Equation (3.14b) can be written as

−diag(q)Ap + diag(p)Aq +
1

2
diag(p)Cp +

1

2
diag(q)Cq = 0.(3.16)

By substituting (3.14a) into (3.12), the conformal energy can be simplified to

EC(θ) := EC(f) =
1

2
p>Ap +

1

2
q>Aq− 1

2
p>Cq,(3.17)

where p = cosθ and q = sinθ. Then, the CEM problem in (3.9) becomes

min{EC(θ) | 0 6 θ1 < · · · < θn < 2π}.(3.18)

The complex-valued vector f in (3.9) is a vector representation of the piecewise linear map
f : M → D. From the first-order approximation of the conformal energy in (2.4), it follows
that f∗ is a conformal map if and only if there exists θ∗ = (θ∗1, . . . , θ

∗
n)> with 0 6 θ∗1 < θ∗2 <
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· · · < θ∗n < 2π such that θ∗ = argminEC(θ) > 0 as in (3.18) (or f∗ = argminEC(f) as in
(3.9)).

Suppose EC(θ) in (3.17) has a local minimum θ∗ with 0 6 θ∗1 < θ∗2 < · · · < θ∗n < 2π and
let 0 < ε < min16j6n |θ∗j+1 − θ∗j |. Then, from the Karush–Kuhn–Tucker (KKT) condition, it
holds that

∇θEC(θ∗) +
n∑
j=1

µ∗j∇θ(θ∗j+1 − (θ∗j + ε)) = 0(3.19a)

and

µ∗j (θ
∗
j+1 − (θ∗j + ε)) = 0, j = 1, . . . , n.(3.19b)

From the complementary condition (3.19b), it follows that µ∗j = 0 for j = 1, . . . , n. Equation
(3.19a) then becomes

∇θEC(θ∗) = −diag(q∗)Ap∗ + diag(p∗)Aq∗ +
1

2
diag(p∗)Cp∗ +

1

2
diag(q∗)Cq∗ = 0,(3.20)

where p∗ = [cos θ∗1, . . . , cos θ∗n]> and q∗ = [sin θ∗1, . . . , sin θ
∗
n]>.

Thus, to find a local minimum θ∗ for EC(θ) in (3.18), we can solve the optimization
problem minEC(θ) without considering the constraint of the increasing order of the partition
angles.

4. Line-search gradient method and its convergence. We now develop a line-search
gradient descent method with a quadratic approximation for solving (3.18). For a given
p+ iq = cosθ + i sinθ ≡ eiθ, as in (3.20), we compute the negative gradient of EC(θ) at θ by

dθ = −∇θEC(θ) = diag(q)Ap− diag(p)Aq− 1

2
diag(p)Cp− 1

2
diag(q)Cq.(4.1)

Let α be a suitable step-length to be determined. The next iterative angles are given by

θα = θ + αdθ.(4.2)

The corresponding correction vectors then become

pα + iqα = eiθ · eiαdθ = (p + iq) · (cos(αdθ) + i sin(αdθ))

= (p · cos(αdθ)− q · sin(αdθ)) + i(q · cos(αdθ) + p · sin(αdθ)),(4.3)

where u · v = [u1v1, . . . , unvn]>. Consider the Taylor expansions in the vector forms

cos(αdθ) = 1− 1

2
α2d2

θ +O(α4),(4.4a)

sin(αdθ) = αdθ +O(α3),(4.4b)



8 Y.-C. KUO, W.-W. LIN, M.-H. YUEH, and S.-T. YAU

where d2
θ = dθ · dθ. According to (4.3) and (4.4), the energy EC(θα) in (3.17) becomes

EC(θα) =
1

2
p>αApα +

1

2
q>αAqα −

1

2
p>αCqα

= EC(θ) + α

[
−p>A(q · dθ) + q>A(p · dθ)− 1

2
p>C(p · dθ) +

1

2
(q · dθ)>Cq

]
+
α2

2

[
(q · dθ)>A(q · dθ)− p>A(p · d2

θ) + (p · dθ)>A(p · dθ)− q>A(q · d2
θ)

+(q · dθ)>C(p · dθ) +
1

2
p>C(q · d2

θ) +
1

2
(p · d2

θ)>Cq

]
+O(α3)

≡ EC(θ) + αc1 + α2c2 +O(α3).(4.5)

The optimal step-length for (4.2) is selected as

α = − c1

2c2
(4.6)

which solves the minimal value of the quadratic function q(α) = EC(θ) + αc1 + α2c2 in (4.5).
We summarize (4.1)–(4.6) as the following Algorithm 4.1.

Theorem 4.1 (Convergence Theorem). The line-search gradient method with quadratic
approximation in Algorithm 4.1 converges globally.

Proof. Step 6 in Algorithm 4.1 implies that for 0 6 α 6 α′, it holds that

EC(θk + αdθk) 6 EC(θk) + αγ1∇EC(θk)
>dθk .(4.7)

Specifically, inequality (4.7) also holds for α = 0. According to the mean value theorem, there
is an α′′ ∈ (0, α′) such that

EC(θk + α′dθk)− EC(θk) = α′∇EC(θk + α′′dθk)>dθk .

This implies from 0 < γ1 < γ2 < 1 and ∇EC(θk)
>dθk < 0 that

∇EC(θk + α′′dθk)>dθk = γ1∇EC(θk)
>dθk > γ2∇EC(θk)

>dθk(4.8)

and there is an open interval I ⊆ (0, α′) containing α′′ for which αk determined by Steps
10–20 must exist and lie in I satisfying

∇EC(θk + αkdθk)>dθk > γ2∇EC(θk)
>dθk .(4.9)

Therefore, the step-length αk computed in Algorithm 4.1 satisfies the Wolfe conditions (4.7)
and (4.9). From (3.17) and (4.1), it is easily seen that EC(θ) is bounded below and that
∇EC(θ) is Lipschitz continuous. Hence, the Zoutendijk condition [30, Section 3.2]∑

k>0

cos2 φk‖∇EC(θk)‖2 <∞

holds, where cosφk =
−∇EC(θk)>dθk
‖∇EC(θk)‖‖dθk

‖ . Since dθk = −∇EC(θk), it holds that cosφk = 1.

Therefore, we prove the global convergence of the sequence of vectors {∇EC(θk)}∞k=1 as
limk→∞ ‖∇EC(θk)‖ = 0.
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Algorithm 4.1 Line-search gradient descent method with quadratic approximation

Input: An initial vector θ0 = (θ0
1, . . . , θ

0
n)> with 0 = θ0

1 < · · · < θ0
n < 2π, 0 < γ1 < γ2 < 1,

ρ = 0.99, and a tolerance τ > 0.
Output: A vector θ.

1: for k = 0, 1, 2, . . . do
2: pk = cosθk;
3: qk = sinθk;
4: dθk = dθ as in (4.1);
5: αk = − c1

2c2
as in (4.6);

6: Let α′ be the smallest intersecting value of αk with

EC(θk + α′dθk) = EC(θk) + α′γ1∇EC(θk)
>dθk ;

7: if αk > α′ then
8: αk = α′;
9: end if

10: while ∇EC(θk + αkdθk) 6 γ2∇EC(θk)
>dθk do

11: αk ← ραk;
12: if αk ≈ 0 then
13: while ∇EC(θk + αkdθk)>dθk 6 γ2∇EC(θk)

>dθk do
14: αk ← αk

ρ ;

15: if αk > α′ then
16: αk = α′;
17: end if
18: end while
19: end if
20: end while
21: θk+1 = θk + αkdθk ;
22: if EC(θk)− EC(θk+1) < τ then
23: break;
24: end if
25: end for
26: return θ = θk+1.

Remark 4.2. To accelerate Algorithm 4.1, the searching gradient direction dθk in Step 4
can be replaced by the quasi-Newton method [7, Chapter 18] as Algorithm 4.2, which is locally
convergent, with a convergence rate of 1.618.

5. Existence of the nontrivial local minimum of CEM. In this section, we aim to show
the existence of the nontrivial local minimum of CEM having distinct partition angles. Now,
we define the energy function with a parameter β > 0

EC(θ;β) =
1

2
p>Ap +

1

2
q>Aq− β

2
p>Cq,(5.1)
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Algorithm 4.2 Quasi-Newton method

Input: Initial vectors θk = (θk1 , . . . , θ
k
n)> with 0 = θk1 < · · · < θkn < 2π, k = 0, 1.

Output: A vector θ.
1: s1 = θ1 − θ0;
2: y1 = ∇EC(θ1)−∇EC(θ0);

3: δ1 =
y>1 s1
s>1 s1

;

4: H1 = δ1I;
5: for k = 2, 3, . . . do
6: sk = θk − θk−1;
7: yk = ∇EC(θk)−∇EC(θk−1);
8: ρk = 1

y>k sk
;

9: Hk = (I − ρksky>k )Hk−1(I − ρkyks>k ) + ρksks
>
k ;

10: dθk = −Hk∇EC(θk); . the quasi-Newton direction
11: θk+1 = θk + dθk ;
12: if EC(θk)− EC(θk+1) < τ then
13: break;
14: end if
15: end for
16: return θ = θk+1.

where p = cos(θ) and q = sin(θ). Note that EC(θ; 1) is the conformal energy EC(θ) in (3.17).
For each β > 0, it is easy to check that EC(θ;β) is invariant under the rotation of θ by a
constant, i.e., EC(θ;β) = EC(θ + c1;β), where c ∈ R. Then, we consider the optimization
problem

h(β) := min{EC(θ;β) | 0 = θ1 6 θ2 6 · · · 6 θn 6 2π}.(5.2)

Note that the feasible region of (5.2) is compact; hence, the minimal value of EC(θ;β) exists
for each β > 0. The following lemma shows that EC(θ;β) has a global minimum at 0 when
β is sufficiently small.

Lemma 5.1. The trivial state θ = 0 is a strict local minimizer of (5.2) for all β > 0. In
addition, there is a β0 > 0 such that h(β) = 0 for β ∈ [0, β0].

Proof. We choose θ = 0 and then p = 1 and q = 0. Since A1 = 0, we have EC(0;β) = 0
for β > 0. We consider a small perturbation of 0 as 0η = (θ1, . . . , θn)> with

0 = θ1 6 θ2 = η2 6 · · · 6 θ` = η` < θ`+1 = 2π − η`+1 6 θn = 2π − ηn 6 2π

where ηj > 0 are sufficiently small. Let η = max{η`, η`+1} > 0. Then, ηj 6 η and

pη = cos(0η) = [1, 1− 1
2η

2
2, . . . , 1− 1

2η
2
n]> +O(η4),

qη = sin(0η) = [0, η2, . . . , η`,−η`+1, . . . ,−ηn]> +O(η3).
(5.3)
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Substituting (5.3) into (5.1), for each β > 0, since qη /∈ span{1}, we have

EC(0η;β) =
1

2
p>η Apη +

1

2
q>η Aqη −

β

2
p>η Cqη

=
1

2
q>η Aqη +O(η3) > 0.(5.4)

This result shows that θ = 0 is a strict local minimizer of (5.2) for all β > 0.
For β = 0, the energy function becomes EC(θ; 0) = 1

2p
>Ap + 1

2q
>Aq. Since matrix A in

(3.15) is semipositive and the null space of A is span{1}, we obtain that θ = 0 is the unique
global minimizer of (5.2) with β = 0. Using the fact that θ = 0 is a strict local minimizer of
(5.2) with β > 0, there exists β0 > 0 such that h(β) = 0 for β ∈ [0, β0].

Now, we want to show under some mild conditions that the energy function EC(θ;β) has
a nontrivial local minimum θ∗ = (θ∗1, . . . , θ

∗
n)> with 0 = θ∗1 < θ∗2 < · · · < θ∗n < 2π. Let

Θ = {(θ1, . . . , θn)> | 0 = θ1 6 θ2 6 · · · 6 θn 6 2π and θi < θi+1 for some i}(5.5)

be the set of all angle partitions in nondecreasing order with at least one neighboring pair
being distinct. Let θ̂ = (θ̂1, . . . , θ̂n)> ∈ Θ, for s = 1, . . . , n; we define

θ(s) ≡ (θ1, . . . , θn)> ∈ Θ with

θ1 = θ̂s − θ̂s, . . . , θr−1 = θ̂n − θ̂s, θr = 2π + θ̂1 − θ̂s, . . . , θn = 2π + θ̂s−1 − θ̂s,
(5.6)

where r ≡ n−s+2 (mod n). Note that θk ≡ θ̂s−1+k− θ̂s (mod 2π). For θ0 = (θ1, . . . , θn)> ∈ Θ
and ` ∈ {1, . . . , n}, we denote the perturbation of the angle at θ` as

θ±η(`) =

{
(θ1, . . . , θ`−1, θ` ± η, θ`+1, . . . , θn)> ∈ Θ, if ` 6= 1
(θ1, θ2 ∓ η, . . . , θn ∓ η) ∈ Θ if ` = 1,

(5.7)

where η > 0. Notably, θ±η(`) ∈ Θ and EC(θ±η(1), β) = EC(θ0 ± ηe1, β) for all β > 0. We
need the following lemma to prove our main results.

Lemma 5.2. Let θ0 = (θ1, . . . , θn)> ∈ Θ. Let 0 < η � 1 and θ±η(`) ∈ Θ in (5.7) be an
angle partition in nondecreasing order. Then,

(5.8a) p>±ηAp±η + q>±ηAq±η = p>0 Ap0 + q>0 Aq0 ± 2η(sin(θ0 − θ`1))>a` +O(η2),

(5.8b) p>±ηCq±η = p>0 Cq0 + η[∓ cos(θ`+1 − θ`)± cos(θ` − θ`−1)] +O(η2),

where p±η = cos(θ±η(`)), q±η = sin(θ±η(`)) and a` is the `-th column of A.

Proof. p±η and q±η can be expanded by Taylor expansion as

p±η = [cos θ1, . . . , cos θ`−1, cos(θ` ± η), cos θ`+1, . . . , cos(θn)]>

= cosθ0 ∓ η[0, . . . , 0, sin θ`, 0, . . . , 0]> +O(η2),(5.9a)

q±η = [sin θ1, . . . , sin θ`−1, sin(θ` ± η), sin θ`+1, . . . , sin(θn)]>

= sinθ0 ± η[0, . . . , 0, cos θ`, . . . , 0]> +O(η2),(5.9b)
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where η > 0. Let p0 = cosθ0 and q0 = sinθ0; we then obtain

p>±ηAp±η + q>±ηAq±η = p>0 Ap0 + q>0 Aq0 + 2η(±q>0 a` cos θ` ∓ p>0 a` sin θ`) +O(η2)

= p>0 Ap0 + q>0 Aq0 ± 2η[sin(θ1 − θ`), . . . , sin(θn − θ`)]a` +O(η2)

and

p>±ηCq±η = p>0 Cq0 + η[± cos θ`p
>
0 Ce` ∓ sin θ`e

>
` Cq0] +O(η2)

= p>0 Cq0 + η[∓ cos(θ`+1 − θ`)± cos(θ` − θ`−1)] +O(η2),

where a` is the `-th column of A. Hence, (5.8) holds.

Let θ̂ = (θ̂1, . . . , θ̂n)> ∈ Θ, where Θ is defined in (5.5). For each s ∈ {1, . . . , n}, we set
θ0 ≡ θ(s) = (θ1, . . . , θn)> ∈ Θ as in (5.6) and r ≡ n−s+2 (mod n). For k ∈ {1, . . . , n}\{r, r+
1}modn , we set θ0 = θn − 2π, θn+1 = 2π and define

Is+ =

{
k | θk <

θk−1 + θk+1

2

}
, Is− =

{
k | θk >

θk−1 + θk+1

2

}
,(5.10)

and

ωk(θ0) = (sin(θ0 − θk1))>ak.(5.11)

Here, {·}modn denotes the set of a (mod n) for each a ∈ {·}. It is easily seen that for each
k ∈ Is+ (or k ∈ Is−), the area of the perturbed polygon of p>η Cqη (or p>−ηCq−η) increases,
where p±η = cos(θ±η(k)), q±η = sin(θ±η(k)) and θ±η(k) is given in (5.7).

Now, we make some assumptions about the matrix A. For convenience, we use (·)j for
(·)i, where the subscript i ≡ j (mod n), if j /∈ {1, . . . , n}.

Assumption 5.3. Suppose that θ̂ = (θ̂1, . . . , θ̂n)> ∈ Θ with 0 = θ̂1 = θ̂2 < θ̂3 < · · · < θ̂n <
2π and for each s ∈ {1, . . . , n}, ωr+1(θ0) > 0 and ωr(θ0) < 0, where θ0 ≡ θ(s) in (5.6) and
r ≡ n−s+2 (mod n). Then, there is a s ∈ {1, . . . , n} such that one of the following conditions
holds

(i) there exists k ∈ Is+ (or k ∈ Is−) such that ωk(θ0) < 0 (or ωk(θ0) > 0); or
(ii) there exists k ∈ Is+ such that 0 < ωr+1(θ0) < ωk(θ0) and

1− cos(θr+2 − θr+1) > cos(θk − θk−1)− cos(θk+1 − θk); or

(iii) there exists k ∈ Is− such that 0 > ωr(θ0) > ωk(θ0) and

1− cos(θr − θr−1) > cos(θk+1 − θk)− cos(θk − θk−1).

In the following Remark 5.4 (a), (b) and (c), we explain that Assumption 5.3 exists
generically and depends strongly on the structure of matrix A. The reader can skip this
remark and go directly to Theorem 5.5.

Remark 5.4. (a) Is+ and Is− in (5.10) cannot both be empty sets. If Is+ = Is− = ∅, then
p̄ = cos(θ̄), q̄ = sin(θ̄) with θ̄ := (0, 2π

n , . . . , (n− 1)2π
n )> must satisfy equation (3.20)

and p̄ · p̄ + q̄ · q̄ = 1. However, the solutions of these equations, in general, form
an isolated set. Thus, p̄ and q̄, generally, cannot satisfy the equation (3.20) with a
general M-matrix A.
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(b) For each θ̂ = (θ̂1, . . . , θ̂n)> ∈ Θ with 0 = θ̂1 = θ̂2 < θ̂3 < . . . < θ̂n < 2π and
s ∈ {1, . . . , n}, we set θ0 = θ(s) = (θ1, . . . , θn)> ∈ Θ in (5.6). Then, we have
θk ≡ θ̂s−1+k − θ̂s (mod 2π); hence, θ0 − θk1 = (θ1 − θk, . . . , θn − θk)>, where

θi − θk ≡ θ̂s−1+i − θ̂s−1+k (mod 2π).(5.12)

It follows from (5.11) that

ωk(θ0) = [sin(θ̂s − θ̂s−1+k), sin(θ̂s+1 − θ̂s−1+k), . . . , sin(θ̂s+n−1 − θ̂s−1+k)]ak.(5.13)

Let r ≡ n − s + 2 (mod n); it follows from (5.13) that ωr+1(θ0) > 0, ωr(θ0) < 0 can
be rewritten as

[sin(θ̂s − θ̂2), sin(θ̂s+1 − θ̂2), . . . , sin(θ̂s+n−1 − θ̂2)]an−s+3 > 0,

[sin(θ̂s − θ̂1), sin(θ̂s+1 − θ̂1), . . . , sin(θ̂s+n−1 − θ̂1)]an−s+2 < 0.(5.14)

Let S ∈ Rn×n be the permutation with

(5.15)

{
Si,i+1 = Sn,1 = 1,

0, otherwise,
and Φ =

[
(S>)na1, (S

>)n−1a2, · · · , S>an
]
.

Here, Φ is dependent on only matrix A. Since θ̂1 = θ̂2 = 0, (5.14) becomes[
−Φ>

Φ>S

]
sin θ̂ > 0.(5.16)

Note that (5.16) shows that there is a hyperplane with normal vector sin θ̂ such that
the 2n column vectors of [−Φ, S>Φ] lie in the halfspace determined by this plane.
Assumption 5.3 states that if there is a θ̂ ∈ Θ with 0 = θ̂1 = θ̂2 such that (5.16) holds,
then we need one of the additional conditions (i), (ii), or (iii).

(c) Suppose that θ̂ = (θ̂1, . . . , θ̂n)> ∈ Θ with 0 = θ̂1 = θ̂2 < θ̂3 < . . . < θ̂n < 2π. For
` ∈ {3, 4, . . . , n}, we set θ̂n+1 = 0 and define

I+ =

{
` | θ̂` <

θ̂`−1 + θ̂`+1

2

}
, I− =

{
` | θ̂` >

θ̂`−1 + θ̂`+1

2

}
,(5.17)

From the vector θ(s) in (5.6), we have θ`−s+1 ≡ θ̂` − θ̂s (mod 2π); hence,

Is± = I± − (s− 1) := {`− s+ 1 | ` ∈ I±}modn ,(5.18)

where Is± is defined in (5.10). According to (5.13), (5.14), and matrix S in (5.15),
those three additional conditions in Assumption 5.3 can be rewritten as for some
s ∈ {1, . . . , n},

(i) there exists ` ∈ I+ (or ` ∈ I−) such that

a>`−s+1S
s−1 sin(θ̂ − θ̂`1) < 0 (or a>`−s+1S

s−1 sin(θ̂ − θ̂`1) > 0).
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(ii) there exists ` ∈ I+ such that

0 < a>n−s+3S
s−1 sin θ̂ < a>`−s+1S

s−1 sin(θ̂ − θ̂`1) and

1− cos θ̂3 > cos(θ̂` − θ̂`−1)− cos(θ̂`+1 − θ̂`).

(iii) there exists ` ∈ I− such that

0 > a>n−s+2S
s−1 sin θ̂ > a>`−s+1S

s−1 sin(θ̂ − θ̂`1) and

1− cos θ̂n > cos(θ̂`+1 − θ̂`)− cos(θ̂` − θ̂`−1).

Theorem 5.5. Assume that the CEM problem in (5.2) has a nontrivial local minimizer
θ ∈ Θ and Assumption 5.3 holds. Then, θ has distinct angle partitions.

Proof. We prove the assertion by contradiction. Without loss of generality, we suppose
that θ̂ = (θ̂1, . . . , θ̂n)> ∈ Θ with 0 = θ̂1 = θ̂2 < θ̂3 < . . . < θ̂n < 2π is a nontrivial local
minimum. Since any rotation of θ̂ by a constant is also a local minimal solution of EC(θ;β),
for any fixed s ∈ {1, . . . , n}, θ0 ≡ θ(s) = (θ1, . . . , θr, θr+1, . . . , θn)> ∈ Θ in (5.6) is also a local
minimum. Note that θr = θr+1 and r ≡ n− s+ 2 (mod n).

We now consider the perturbation of angles at θr+1 (or θr) with sufficiently small η > 0
(or −η < 0), i.e., θη(r + 1) (or θ−η(r)), as in (5.7), and denote

θη ≡ θη(r + 1) and θ−η ≡ θ−η(r).(5.19)

Let

p±η = cos(θ±η) and q±η = sin(θ±η).(5.20)

Using the fact that θr = θr+1, it follows from (5.8b) of Lemma 5.2 that

p>±ηCq±η − p>0 Cq0 = c±η +O(η2),(5.21)

where c+ = 1− cos(θr+2 − θr+1) > 0 and c− = 1− cos(θr − θr−1) > 0.
Plugging p±η, q±η in (5.20) into EC(θ±η;β), from (5.21) and (5.8a) of Lemma 5.2, we

have

EC(θη;β) =
1

2
p>η Apη +

1

2
q>η Aqη −

β

2
p>η Cqη

=
1

2
(p>0 Ap0 + q>0 Aq0 − βp>0 Cq0) + ηωr+1(θ0)− βc+

2
η +O(η2);(5.22a)

or

EC(θ−η;β) =
1

2
p>−ηAp−η +

1

2
q>−ηAq−η −

β

2
p>−ηCq−η

=
1

2
(p>0 Ap0 + q>0 Aq0 − βp>0 Cq0)− ηωr(θ0)− βc−

2
η +O(η2),(5.22b)

where ωr+1(θ0), ωr(θ0) are defined in (5.11) and c± > 0 are given in (5.21). Next, we consider
the following cases.
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Case I. There is an s ∈ {1, . . . , n} such that ωr+1(θ0) 6 0 (or ωr(θ0) > 0):
It follows from (5.22) that

EC(θη;β) = EC(θ0;β)− cη +O(η2) with c = −ωr+1(θ0) + βc+/2 > 0

or EC(θ−η;β) = EC(θ0;β)− cη +O(η2) with c = ωr(θ0) + βc−/2 > 0.

For sufficiently small η > 0, we have EC(θη;β) < EC(θ0;β) (or EC(θ−η;β) < EC(θ0;β)),
which is contradictory to stating that θ0 is a local minimum for EC(θ;β).

Case II. Suppose that for each s ∈ {1, . . . , n}, we have ωr+1(θ0) > 0 and ωr(θ0) < 0:
We now consider two perturbations of angles at θr = θr+1 and θk, with sufficiently small η > 0
and |ξk| = O(η), to be determined as

θη ≡ θη(r + 1, k) = (θ1, . . . , θr−1, θr, θr + η, . . . , θk + ξk, . . . , θn)>,(5.23a)

θ−η ≡ θ−η(r, k) = (θ1, . . . , θr−1, θr − η, θr, . . . , θk + ξk, . . . , θn)>.(5.23b)

Let p±η = cos(θ±η) and q±η = sin(θ±η). By plugging p±η, q±η into EC(θ±η;β), it follows
from Lemma 5.2 that

EC(θη;β) =
1

2
p>η Apη +

1

2
q>η Aqη −

β

2
p>η Cqη

=
1

2
(p>0 Ap0 + q>0 Aq0 − βp>0 Cq0) + ηωr+1(θ0) + ξkωk(θ0)

− (
βc+

2
η +O(ξk)) +O(η2 + ξ2

k);(5.24a)

or

EC(θ−η;β) =
1

2
p>−ηAp−η +

1

2
q>−ηAq−η −

β

2
p>−ηCq−η

=
1

2
(p>0 Ap0 + q>0 Aq0 − βp>0 Cq0)− ηωr(θ0) + ξkωk(θ0)

− (
βc−

2
η +O(ξk)) +O(η2 + ξ2

k),(5.24b)

where ωr(θ0), ωr+1(θ0), ωk(θ0) are defined in (5.11) and c± > 0 are defined in (5.21).
(i) Assume that Assumption 5.3 (i) holds:

Suppose that there is a k ∈ Is+ such that ωk(θ0) < 0. Since k ∈ Is+, we need to
choose ξk > 0 to increase the area of the perturbed polygon. Under the condition
that ωr+1(θ0) > 0, ξk = O(η) > 0 can be solved by ηωr+1(θ0) + ξkωk(θ0) = 0, as in
(5.24a), to make it zero. Thus, for sufficiently small η > 0, it follows from (5.24a) that
EC(θη;β) < EC(θ0;β). This is a contradiction.
Similarly, if there is a k ∈ Is− such that ωk(θ0) > 0, a ξk < 0 must be chosen to increase
the size of the perturbed polygon. Using the condition that ωr(θ0) < 0, ξk = O(η) < 0
can be solved by −ηωr(θ0) + ξkωk(θ0) = 0, as in (5.24b). It follows from (5.24b) that
EC(θ−η;β) < EC(θ0;β). This is also a contradiction.
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(ii) Assume that Assumption 5.3 (ii) holds:
Suppose that there are s ∈ {1, . . . , n} and k ∈ Is+ such that 0 < ωr+1(θ0) < ωk(θ0).
We consider ξk = −η in (5.23a); then,

pη = cos(θ0)− η sin θrer+1 + η sin θkek,

qη = sin(θ0) + η cos θrer+1 − η cos θkek.

Since p0 = cos(θ0), q0 = sin(θ0) and θr = θr+1, it follows from Lemma 5.2 that

p>η Cqη = p>0 Cq0 + ηρk +O(η2),

where ρk = 1− cos(θr+2 − θr+1) + cos(θk+1 − θk)− cos(θk − θk−1) > 0, as in Assump-
tion 5.3 (ii). Then, equation (5.24a) becomes

EC(θη;β) =EC(θ0;β) + η(ωr+1(θ0)− ωk(θ0))− β

2
ρkη +O(η2).(5.25)

Since ωr+1(θ0)−ωk(θ0) < 0 and ρk > 0, from (5.25), we have EC(θη;β) < EC(θ0;β).
This is a contradiction.

(iii) Assume that Assumption 5.3 (iii) holds:
We also obtain a contradiction for this case, and the proof is similar to the proof in
(ii).

We prove that under assumption Assumption 5.3, the local minimum of EC(θ;β) must have
distinct angle partitions.

Theorem 5.6. Assume that Assumption 5.3 holds. There exists β̂ > 0 such that the CEM
problem with β > β̂ in (5.2) has a local minimizer θ ∈ Θ with all partition angles being
distinct.

Proof. Let θ̄, p̄ and q̄ be defined as in Remark 5.4 (a). From (3.11), it follows that

p̄>Cq̄ =

n∑
j=1

sin(θj+1 − θj) = n sin

(
2π

n

)
> 0.(5.26)

Using the definition of EC(θ;β) in (5.1), we have h(β) < 0 for some sufficiently large β.
Lemma 5.1 shows that θ = 0 is the global minimizer of (5.2) and h(β) = EC(0;β) = 0 for
sufficiently small β . Hence, there exists a β0 > 0 such that

h(β) =

{
0, if β 6 β0,
< 0, if β > β0.

(5.27)

Lemma 5.1 also shows that the trivial state θ = 0 is a strict local minimizer of (5.2) with
energy EC(0;β) = 0 for all β > 0. From (5.27), it follows that there is a nontrivial global
minimizer θβ0 ∈ Θ of (5.2) with h(β0) = EC(θβ0 ;β0) = 0. According to Theorem 5.5, the
nontrivial minimizer θβ0 has a distinct angle partition. This result implies that EC(θ;β0)
forms a double well function having two local minima and bifurcated at β = β0.
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Since θ = 0 is a strict local minimizer of (5.2) with β = β0, there is a δ0 > 0 with
δ0 < ‖θβ0‖2 such that EC(θ;β0) > 0 for θ ∈ Θδ0 := Θ ∩ {θ ∈ Rn | ‖θ‖2 = δ0}. Let

ε0 = min
θ∈Θδ0

EC(θ;β0) > 0.

Denote Θ>δ0 := Θ ∩ {θ ∈ Rn | ‖θ‖2 > δ0} and let cl(Θ>δ0) be the closure of Θ>δ0 . Then,
θβ0 ∈ Θ>δ0 . Since cl(Θ>δ0) is compact and EC(θβ0 ;β0) = 0 < ε0, there exists a positive

number β̂ < β0 such that for each β ∈ (β̂, β0] the CEM problem in (5.2) has a nontrivial local
minimizer θβ ∈ cl(Θ>δ0) and 0 6 EC(θβ;β) < ε0. For the parameter β > β0, since EC(θ;β)
is continuous, cl(Θ) is compact, and h(β) < 0, EC(θ;β) has a nontrivial local minimizer
θβ ∈ cl(Θ) and h(β) = EC(θβ;β) < 0. Applying Theorem 5.5, the nontrivial minimizer

θβ ∈ Θ has a distinct angle partition for β > β̂.

Remark 5.7. The conformal energy EC(θ) in (3.17) is the energy function EC(θ, β) in (5.1)
with β = 1. Theorem 5.6 shows that if 1 > β̂, then the CEM problem in (3.18) has a local
minimizer with a distinct angle partition. In this case, Theorem 4.1 shows that Algorithm 3.1
proposed in this paper converges globally.

6. Numerical experiments. In this section, we present numerical results of the proposed
CCEM algorithm for the computation of disk-shaped conformal parameterizations of several
benchmark mesh models. All experiments are performed in MATLAB on a personal computer
with a 3.60 GHz CPU and 32 GB RAM. The triangular mesh models are obtained from the
AIM@SHAPE shape repository [1], the Stanford 3D scanning repository [2], and Sketchfab
[3]. Some of the mesh models are resampled or modified such that no triangle is composed of
merely boundary vertices.

In the following experiments, the initial map is computed by the previous CEM algorithm
[38] with a maximum number of iterations of 20 and a tolerance for energy differences of 10−6.
To address efficiency concerns, the maximum number of iterations of the CCEM algorithm is
set to 20 and the tolerance for energy differences is 10−7.

In Figure 1, we show the circle patterns mapped from the image of parameterizations to the
models Buddha and Max Planck by the inverse map of the disk conformal parameterizations
computed by the CCEM algorithms. The circle patterns are well-preserved, which means the
parameterization is conformal.

In Figure 2, we show the disk-shaped conformal parameterizations of the mesh models
Human Brain, David Head, Buddha and Nefertiti Statue computed by the CCEM algorithm.
The histograms of their angular distortions are also illustrated. Most of the angular distortions
are less than 5 degrees, even when the shape of the surface is complicated, as for Human Brain,
which is satisfactory.

6.1. Convergence behavior. To illustrate the convergence behavior of the gradient de-
scent iterations with the quadratic approximation in the proposed CCEM algorithm, we set
the number of iterations to 100. In Figure 3, we show the relationship between the number of
iterations and the conformal energy of the mappings for the mesh models Cat Face, Human
Brain, Left Hand, Stanford Bunny, Femur, and Nefertiti Statue. In Figure 3 (b), we observe
a substantial drop in energy in the 73rd iteration. Apparently, this step of gradient descent
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Figure 1. The circle patterns mapped from the disk to the models Buddha and Max Planck by the inverse
map of the conformal parameterization computed by the CCEM algorithms.

shifts from a saddle point to another potential local minimizer with considerably lower confor-
mal energy. Similar phenomena occur at the 36th and 60th iterations in Figure 3 (f). Notably,
in all the tested mesh models, the conformal energy strictly decreases as the number of iter-
ations increases, which indicates the proposed CCEM algorithm is effective in decreasing the
conformal energy. Moreover, the resulting conformal mappings for the demonstrated mesh
models are bijective.

6.2. Comparison with state-of-the-art algorithms. In this subsection, we compare the
effectiveness and accuracy of the proposed CCEM algorithm with those of two state-of-the-art
CPU-based algorithms for computing disk-shaped conformal parameterizations: the FDCP
[11] and the LDCP [9]. The MATLAB programs of FDCP and LDCP are obtained from Choi’s
website [4]. The maximal number of iterations of the CCEM algorithm is set to 20. Moreover,
the iteration process is terminated when the difference between the conformal energies of two
consecutive iteration steps is less than 10−7.

The conformal energy of the mappings produced by the FDCP, LDCP, and CCEM al-
gorithms and their computational time costs are presented in Table 1. To ensure a fair
comparison, the time cost of the CCEM algorithm includes the computation of the initial
mapping by the CEM algorithm [38] and the line-search gradient descent with a quadratic
approximation. For the models with a larger number of vertices, the initial map computed by
the previous CEM algorithm [38] is already sufficiently satisfactory such that the difference
between the conformal energies of the initial and first iteration step is less than 10−7. For
better visualization of these data, we present the conformal energy and the computational
time costs in Figure 4. In Figure 4 (a), we see that among all the tested mesh models, the
conformal parameterizations of the CCEM algorithm have the best, or near the best, con-
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Figure 2. The disk-shaped conformal parameterizations of the mesh models Cat Face, Human Brain, David
Head, Buddha and Nefertiti Statue computed by the CCEM algorithm and the histograms of their angular
distortions.
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Figure 3. The relationship between the number of iterations and the conformal energy of the parameteriza-
tion obtained by the CCEM algorithm for (a) Cat Face, (b) Human Brain, (c) Left Hand, (d) Stanford Bunny,
(e) Femur, and (f) Nefertiti Statue.

formality in terms of conformal energy. From Figure 4 (b), we see that the efficiency of the
CCEM algorithm is similar to that of the LDCP and significantly better than that of the
FDCP.

In addition, in Figure 5, we present the mean and standard deviation (SD) of the moduli
of angular distortions (in degrees). The angular distortion is the difference between the angles
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Table 1
The computational time cost (sec.) and conformal energy of conformal parameterizations by the FDCP [11],

LDCP [9], and CCEM algorithms. The maximum number of iterations of the CCEM algorithm is 20, and the
tolerance for energy differences is 10−7. The time cost of the CCEM algorithm includes the computation of the
initial mapping by the CEM algorithm [38] and the line-search gradient descent with a quadratic approximation.

Model #Vertices
FDCP [11] LDCP [9] CCEM

EC Time EC Time EC Time #Iter.

Ear 367 0.1653 0.03 0.2079 0.01 0.1415 0.01 20
Bourbon Bottle 6,569 0.0110 0.26 0.0110 0.13 0.0110 0.07 2
Foot 10,010 0.0128 0.35 0.0164 0.23 0.0113 0.22 20
Chinese Lion 17,334 0.0139 1.32 0.0141 0.47 0.0139 0.35 15
Femur 21,699 0.0058 1.51 0.0058 0.63 0.0058 0.42 8
Hat 22,118 0.0001 2.18 0.0001 0.75 0.0001 0.51 9
Stanford Bunny 31,593 0.0104 2.26 0.0100 0.94 0.0100 1.06 20
Cat Face 33,185 0.0052 2.89 0.0054 1.06 0.0051 0.92 20
Max Planck 41,588 0.0082 2.46 0.0079 1.28 0.0079 1.52 20
Human Brain 48,463 0.0213 3.48 0.0244 1.44 0.0209 1.57 20
Left Hand 53,011 0.0098 6.60 0.0094 1.98 0.0095 1.72 20
Knit Cap Man 59,561 0.0059 8.04 0.0061 2.47 0.0058 1.89 17
David Head 101,146 0.0044 14.36 0.0045 4.93 0.0044 4.35 20
Bimba Statue 216,873 0.0010 43.54 0.0011 12.59 0.0010 4.41 1
Buddha 473,362 0.0007 87.88 0.0007 30.74 0.0007 11.56 1
Nefertiti Statue 996,838 0.0017 212.45 0.0042 58.69 0.0017 19.74 1

on the triangular mesh model and that on the image. Furthermore, in Figure 6, we present
the mean and SD of the moduli of the Beltrami coefficients [28]: a conformal map has zero
Beltrami coefficients [28]. We observe that the conformality distortions in terms of both
angular distortion moduli and Beltrami coefficient moduli are consistent with the conformal
energy. In summary, under the above three classical conformality measurements, the CCEM
algorithm has the best, or near the best, conformality.

Furthermore, the relationship between the number of vertices and the computational time
cost is illustrated in Figure 7. As the number of vertices increases, the computational time
cost increases rapidly for the FDCP, increases approximately linearly for the LDCP, and does
not increase substantially for the CCEM algorithm. This result indicates that the proposed
CCEM algorithm is significantly more efficient than the FDCP and LDCP, so it is suitable for
the computation of conformal parameterizations of mesh models with extremely large numbers
of vertices.

In summary, compared to the state-of-the-art algorithms FDCP and LDCP, the proposed
CCEM algorithm has competitive accuracy and significantly better efficiency.

6.3. Efficiency of the CCEM Algorithm. The computational time cost of the CCEM
algorithm is dominated by the cost of the Cholesky decomposition

(6.1) R>R = P>LI,IP,
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Figure 4. The (a) conformal energy of the conformal parameterization by the FDCP, LDCP, and CCEM
algorithms, and (b) their computational time costs (sec.).
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Figure 5. The (a) mean and (b) SD of the angular distortions (in degrees) of the conformal parameterization
by the FDCP, LDCP, and CCEM algorithms.

where R is an upper triangular matrix and P is a permutation matrix. Linear systems
of the form LI,Ix = b are efficiently solved by the backward substitutions R>y = P>b,
Rz = y, and x = Pz. In practice, we compute the Cholesky decomposition (6.1) when
computing the initial map via the CEM algorithm [38]. Then, we reuse the decomposition for
the matrix product of A in (3.15) when performing the line-search gradient descent method
with a quadratic approximation so that the additional computational time cost is relatively
small. Specifically, for a triangular mesh model of roughly 1 million vertices, a conformal
parameterization can be computed by the proposed CCEM algorithm in 20 seconds with
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Figure 6. The (a) mean and (b) SD of the moduli of the Beltrami coefficients of the conformal parameter-
ization by the FDCP, LDCP, and CCEM algorithms.
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Figure 7. The relationship between the numbers of vertices and the computational time costs for the
conformal parameterization by the FDCP, LDCP, and CCEM algorithms.

an average angular distortion of 0.32, which is satisfactory. A demonstration of MATLAB
executables of the CCEM algorithm can be obtained at http://tiny.cc/DiskCCEM.

7. Concluding remarks. In this paper, we have developed a CCEM algorithm via line-
search gradient descent with a quadratic approximation to compute disk-shaped conformal
parameterizations of simply connected open triangular meshes. The global convergence of
the CCEM algorithm is theoretically guaranteed. Additionally, the existence of the nontrivial
local minimum of the CEM with bijective boundary map is guaranteed under some mild

http://tiny.cc/DiskCCEM
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assumptions.
Numerical experiments indicate that the CCEM algorithm has competitive accuracy and

highly improved efficiency compared to state-of-the-art algorithms. Such encouraging results
indicate that the CCEM algorithm is promising for real-time conformal parameterization
applications.
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