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Morphing is the process of changing a geometric model or an im-
age into another. The process generally involves rigid body mo-
tions and non-rigid deformations. It is well known that there ex-
ists a unique conformal mapping from a simply connected surface
into a unit disk by the Riemann mapping theorem. On the other
hand, a 3D surface deformable model can be built via various ap-
proaches such as mutual parameterization from direct interpolation
or surface matching using landmarks. In this paper, a numerical
methods of 3D surface morphing based on deformable model and
conformal mapping is demonstrated. We take the advantage of the
unique representation of 3D surfaces by the mean curvatures H
and the conformal factors λ associated with the Riemann mapping
and build up the deformation model by consistently registering the
landmarks on the conformal parametric domains. As a result, the
correspondence of the (H,λ) between two surfaces can be defined
and a 3D deformation field can be reconstructed. Furthermore,
by composition of the Möbius transformation and the 3D defor-
mation field, a smooth morphing sequence can be generated over
a consistent mesh structure via the cubic spline homotopy. Sev-
eral numerical experiments on the face morphing are presented to
demonstrate the robustness of our approach.

Keywords and phrases: conformal mapping, surface morphing, sur-
face registration.

1. Introduction

The metamorphosis between two objects is commonly called morphing. It is
the process of changing a geometric model or an image into another. In this
paper, we consider surface morphing: the morphing between two surfaces in
R3. Thanks to the advance of the three-dimensional image scanning tech-
nology, the geometric and the texture information of a surface can be easily
obtained by scanners and image morphing techniques in 3D have recently
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attracted more attentions in the fields of image registration and digital ani-

mation, etc. However, even though 2D image morphing technique has pretty

matured, 3D image morphing remains challenging, especially, when realis-

tic morphing effects are desired. To achieve a realistic 3D facial morphing

effects, Decarlo et al. [9] introduced an anthropometric face model using

variational techniques, Obaid et al. [28] proposed a quadratic deformation

model based on MPEG-4 animation standard, Mattos et al. [26] employed

a model driven approach based on structure registration, and Yang et al.

[35] propose a morphing target method in which realistic textures can be

rendered on a digital model in real time.

The main challenge in 3D surface morphing is that not only important

geometric features shall be kept in the morphing process, but also the tex-

ture images need to be generated with high accuracy and quality in order to

achieve a satisfactory visual effect. Technically, the difficulties arise due to

(i) lack of consistent meshes between two surfaces, (ii) ambiguous correspon-

dence between interpolated geometry and texture and (iii) expensive cost in

computing a smooth 3D deformation path. For creating consistent meshes,

the process of landmarks selection is not only time consuming, but also sub-

jected to manual error. Various automatic landmark selection algorithms

are developed. For example, Lipman and Funkhouser [22] proposed an au-

tomatic algorithm for finding surface correspondences by using conformal

flattening and Möbius transformations. Zanella et al. [36] use the so-called

Active Shape Models [8] to find the facial features. For creating geometri-

cally consistent texture mapping, Guo et al. [18] proposed a landmark-based

morphing technique to render the surface light fields of the objects in the

morphing sequence based on spherical embedding of meshes. Kurtek et al.

[20] developed a framework for computing full correspondence between two

surfaces by using a constrained optimization with a sparse set of landmarks.

Ma et al. [25] proposed a multi-scales polynomial deformation map to syn-

thesize facial performance with dynamic winkles and fine scale facial details.

In this work, we simply assume the landmarks are prescribed on the given

surfaces and render the texture of the interpolated images based on Guo’s

light field blending. We shall focus on computing a smooth 3D deformation

path which preserves geometrical features with high accuracy and quality.

Since the deformation field is mainly determined by surface registration:

finding the spatial correspondence of two surfaces. We briefly review some

of the techniques that is related to this key issues in the following.

Many techniques have been developed to achieve a desired morphing ef-

fect in 2D. Warping [30, 33, 34] via finding the correspondence between two
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images is one of the classical techniques. By partitioning each image into sev-
eral blocks based on a given set of landmarks, the correspondence between
each pair of blocks can be obtained by a local transformation such as affine
or polynomial mappings, etc. Inspired by the warping method, Lee et al.
proposed a technique, called deformable surface model [21], that generates
a C1-continuous and one-to-one deformation from matching a set of posi-
tional constraints, hereafter called landmarks, in the given two-dimensional
images. The transition behavior can also be controlled by assigning transi-
tion curves for selected points on an image. Similarly, Bookstein proposed
the thin-plate spline model (TPS) [3] for landmarks registration in which
the deformation is controlled by the biharmonic basis functions. To deal
with large deformation occurs in landmark matching, Camion and Younes
[4], proposed to compute the geodesic spline via a diffeomorphism in which
a prescribed elastic energy is minimized. Younes et al. further applied the
method to match the magnetic resonance images (MRIs) and the method is
known as the large deformation diffeomorphic metric mapping (LDDMM)
[5] in the field of MRIs’ registration. For preserving local properties of 2D
images during the morph, recently, Chen et al. [6] proposed a shape inter-
polation scheme by using conformal deformations.

The warping technique can be naturally extended to surfaces in R3.
A geometrical morphing method is proposed by Gregory et al. [12] where
landmarks on each surface are connected to form consistent meshes, surfaces
are decomposed into several regions by the meshes, and then the correspon-
dence between each pair of regions are obtained via harmonic mappings. Liu
et al. [24] proposed a morphing method based on affine transformations and
translations that works well even when two input 3D triangle meshes have
very different shapes. The morph can be made more realistic by constructing
the morphing path based on physical laws which characterizes the intrinsic
deformation of the surface. Verbeek et al. [32] and Bao et al. [1] proposed
methods of determining the morphing paths by optimizing the bending en-
ergy and elastic strain energy, respectively, on a deformable closed surface.
Schröder et al. [23] proposed a variational approach based on minimizing
bending and stretching on the parameter domains in which corresponding
landmarks and line segments are matched.

1.1. Contribution

In this study, we propose an efficient way to generate the warp of 3D human
faces. First, we align and scale the 3D faces by applying the iterative clos-
est point (ICP) algorithm on those landmark points that only subjected to
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rigid motion. Next, conformal mappings are then used to parameterize the
aligned 3D surfaces. With the help of the unique conformal representation
(H,λ) of surfaces, instead of computing a three dimensional deformation
field, we compute the deformation field on the conformal parametric do-
main. A Möbius transformation and a deformation based on the landmark
matching are computed to achieve high accurate landmark correspondence.
The landmark points are selected according to the facial action codes in
MPEG-4 [28] and a consistent mesh that connected those landmark points
is created to control digital models so that the deformation path of one face
can be transformed to another face. As a result, one can drive the face of
a digital model via the facial performance of a real agent. A desired facial
performance can also be obtained by morphing among given facial expres-
sions via a smooth homotopy path of the deformation fields. In addition, our
approach also allow video compression by combining the key frames extrac-
tion and standard JPEG compression on the images that associated with
the mean curvature H and conformal factor λ.

In the following, we briefly review the computation of the Riemann con-
formal mapping and surface reconstruction by using the mean curvature and
conformal factor in section 2. Then we present our surface registration tech-
nique in section 3 and introduce cubic spline homotopy in section 4. After
that, we demonstrate some morphing results in section 5.

2. Surface parameterization and reconstruction

The Riemann conformal mapping plays an important role in the surface pa-
rameterization. The following celebrated Riemann mapping theorem guar-
antees the existence of such mapping.

Theorem 2.1 (Uniformization theorem). [29, 11, 19] SupposeM is a closed
Riemann surface of genus zero. Then there exists a conformal diffeomor-
phism ϕ :M→ S2 that maps M onto the unit sphere S2.

In this section, we briefly review the numerical algorithm for computing
Riemann conformal mapping.

2.1. Conformal parameterization

The spherical conformal mapping, illustrated in Figure 1, is first computed
by Gu and Yau [15] in 2003. The idea is based on minimizing the harmonic
energy through a nonlinear heat diffusion process as following: Suppose the
desired map is ϕ :M→ S2. Let ϕ(v) and n(ϕ(v)) denote the image of the
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ϕ

Figure 1: An illustration of the spherical conformal mapping that maps a
closed surface of a lion onto a unit sphere.

vertex v ∈M and the normal at ϕ(v), respectively. The normal and tangent
components of 4ϕ are defined as

(4ϕ(v))⊥ = 〈4ϕ(v),n(ϕ(v))〉n(ϕ(v))

and

(4ϕ(v))‖ = 4ϕ(v)− (4ϕ(v))⊥,

respectively. The harmonic map is then computed by minimizing the har-
monic energy associated with ϕ through the nonlinear heat diffusion process

dϕ

dt
= −(4ϕ)‖,

with the constraint ϕ(M, t) ∈ S2. The equation can be rewritten in the
following form,

dϕ

dt
= −(4ϕ)‖

= − (4ϕ− 〈4ϕ,n(ϕ)〉n(ϕ))

= − (4ϕ− 〈4ϕ,ϕ〉ϕ) ,

discretized by linear finite element, and solved iteratively by using the quasi-
implicit Euler method (QIEM) [13],[

I + δt(m)
(
L−D(m)

)]
ϕ(m+1) = ϕ(m),

where, L is the discrete Laplacian, D(m) is a diagonal matrix with(
D(m)

)
ii

=
〈(
Lϕ(m) (vi)

)
, ϕ(m) (vi)

〉
.
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Riemann mapping

double covering stereographic projection

& Möbius transform

spherical harmonic

Figure 2: An illustration of the flow chart for computing the Riemann con-
formal mapping for an open surface.

The initial map ϕ(0) for the above iterative formula can be obtained from
the Gauss map, which maps a vertex v to the unit surface normal n(v). It
is known that the efficiency of the explicit scheme is usually not satisfactory
since the time step is generally very small due to the diffusive nature. The
quasi-implicit Euler method [13] proposed by Lin et al. is shown to be very
robust on solving the nonlinear diffusion equation.

Remark. An open surface M can be turned into a closed surface M by
double covering [17]. Then the closed surfaceM can be mapped conformally
onto a unit sphere S2. After computing the spherical conformal mapping
ϕ :M→ S2, we cut out the semi-sphere ϕ(M) along the equator and map
it onto the unit disk D conformally by using the stereographic projection ΠS,
as shown in Figure 2. As a result, an open surfaceM can be parameterized
on D conformally by ΠS ◦ ϕ|M : M → D, which is known as the Riemann
mapping. In the following, we denote the Riemann mapping by ϕ.

2.2. Surface reconstruction from Laplace-Beltrami equations

Let (u1, u2) ∈ D be a conformal parameterization of a surfaceM. The metric
onM can be determined by its first fundamental form ds2 = λ(u1, u2)( du21+
du22), where λ(u1, u2) represents the factor of stretching at the point (u1, u2),
which is known as the conformal factor. Theorem 2.2 in the following, proved
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by Gu and Yau, states that any surface M in R3 can be determined by its
conformal factor λ and mean curvature H uniquely up to rigid motions
[14, 16].

Theorem 2.2. (1) A closed surface M(u1, u2) in R3 with conformal pa-
rameter (u1, u2) is determined by its conformal factor λ(u1, u2) and
its mean curvature H(u1, u2) uniquely up to rigid motions.

(2) A simply connected surface M(u1, u2) with a boundary in R3 with
conformal parameter (u1, u2) is determined by its conformal factor
λ(u1, u2) and its mean curvature H(u1, u2) and the boundary position.

This theorem guarantees that one can define an operator Ψ : R →
C2(D)×C2(D) that maps a Riemann surfaceM to its (H,λ) representation
by

Ψ(M) = (H,λ).

Here R denotes the set of all the Riemann surfaces. Gu and Yau not only
show that the operator Ψ is an one-to-one functional, but also the inversion
of Ψ(M) can be realized by solving the following Laplace-Beltrami equations

(1)


4sM(u1, u2) = 2H(u1, u2)n(u1, u2)

∂M
∂u1

× ∂M
∂u2

= λ2(u1, u2)n(u1, u2)M|∂D
,

where

4s :=
1

λ2(u1, u2)

(
∂2

∂u21
+

∂2

∂u22

)
,

and n(u1, u2) is the normal of the surface M. In other words, a unique
surface M in R3 can be reconstructed from the given mean curvature and
the conformal factor (H,λ). The detail algorithm for solving the Laplace-
Beltrami equations can be seen in Algorithm 1.

2.3. Numerical results

In the following, for convenience, we abuse the notation to denoteM as the
surface discretized by a triangular mesh. The discrete mean curvature H of
the surface M is computed by [27]

H(xi) =
1

4Area(N1(xi))

∑
j∈N1(xi)

(cotαij + cotαji)(xi − xj) · n,
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Algorithm 1 Laplace-Beltrami Surface Reconstruction

Input: the mean curvature and the conformal factor (H,λ) of the surface M and
the boundary ∂M of the surface M.

Output: the surface M.
1: Set the initial surface normal n(0).
2: repeat
3: Solve the boundary value problem

4sM(j+1) = 2Hλ2n(j),

where boundary ∂M is known.
4: Update the surface normal

n(j+1) =
∂u1M(j+1) × ∂u2M(j+1)

λ2
.

5: until convergence

where N1(xi) is the the one-ring neighborhood of the vertex xi ∈ M. The
discrete conformal factor λ at xi is computed by

λ(xi) =
Area(N1(xi))

Area(ϕ(N1(xi)))
,

where ϕ is the Riemann conformal mapping. Then, by solving the equation
(1), a reconstructed surface M̂ := Ψ−1(H,λ) can be obtained. In the follow-

ing, we would like to check how close the reconstructed surface M̂ is to the
discrete surfaceM. We call the error between the surfaceM and the recon-
structed surface M̂ the reconstruction error. We compute the reconstruction
error in L1-norm, L2-norm and L∞-norm as following,

‖M− M̂‖1 :=

∫∫
D ‖M(u1, u2)− M̂(u1, u2)‖0

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2∫∫
D

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2
,

‖M− M̂‖2 :=

∫∫D ‖M(u1, u2)− M̂(u1, u2)‖20
∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2∫∫
D

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2


1

2

,

and

‖M− M̂‖∞ := max
(u1,u2)∈D

∥∥∥M(u1, u2)− M̂(u1, u2)
∥∥∥
0
,
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M0 (H0, λ0) M̂0

Ψ Ψ−1

M1 (H1, λ1) M̂1

Ψ Ψ−1

(a) (b) (c)

Figure 3: (a) The original surfaces of two human faces. (b) The mean curva-
ture and the conformal factor of the original surfaces. (c) The reconstructed
surfaces obtained from Algorithm 1.

respectively. Here ‖ · ‖0 denotes the vector 2-norm in R3.
The Riemann mapping of two different facial expressions, denoted by

M0 andM1, and the associated reconstructed surfaces are shown in Figure
3. The conformality of the numerical Riemann conformal mapping ϕ can
be visualized via the angular change between a checkerboard pattern on D
and its image of the inverse map ϕ−1 on M as illustrated in Figure 4 (a)
and (b). We check whether the right angle at each corner point p of the
checkerboard pattern is retained on the tangent plane TpM by computing
the angle distortion after the mapping. Figure 4 (c) shows the histograms of
the angle distortion resulted from the numerical Riemann conformal map.
Table 1 shows the reconstruction error in L1-norm, L2-norm and L∞-norm.
Our numerical results indicate that the Riemann conformal map obtained
by using QIEM algorithm preserves angle nicely and the surface reconstruc-
tion algorithm, Algorithm 1, indeed recovers the surface from its (H,λ)
representation with a very small error.

3. Surface registration on parametric domain

For 3D surface registration, the positional and scaling differences of the
images should be excluded. The scaling differences can be corrected by nor-
malizing each surface using its diameter. The positional difference can be
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ϕ−10

ϕ−11

(a) (b) (c)

Figure 4: (a) The Riemann conformal mappings of two human faces and the
checkerboard pattern. (b) The checkerboard pattern mapped by the inverse
of the Riemann conformal mapping. (c) Histograms of the angle distortions
of the Riemann conformal mappings.

````````````````̀
relative
reconstruction error

error
measurement

L1-norm L2-norm L∞-norm

‖M0 − M̂0‖ 5.5775× 10−3 6.7193× 10−3 2.0351× 10−2

‖M1 − M̂1‖ 1.9626× 10−3 2.4743× 10−3 2.0737× 10−2

Table 1: The relative reconstruction errors between the real surfaces (M0

and M1) and the reconstructed surfaces (M̂0 and M̂1).
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M0

f := ϕ−11 ◦ f ◦ ϕ0

M1

ϕ0 ϕ1

f

Figure 5: An illustration of the framework for surface registration. The choice
of facial landmarks, marked in green, is based on a tree-based shape model
[31]. Here f is a registration map from ϕ0(M0) to ϕ1(M1), and f is the
registration map from M0 to M1 obtained by ϕ−11 ◦ f ◦ ϕ0.
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corrected by applying a sequence of rigid translations to the 3D surfaces.
Algorithms, such as the iterative closest point (ICP) [7, 2, 37], can be ap-
plied. Finally, a registration map between two normalized 3D surfaces can
be computed based on a deformable model between the two surfaces. Since,
from Section 2, 3D surfaces can be uniquely represented on the conformal
parametric domain D, in the following, we would like to register two 3D hu-
man facial images,M0 andM1 by computing the deformation map between
ϕ(M0) and ϕ(M1). We assume that the correspondence of the boundary
points ofM0 andM1 are known. The assumption can be realized by putting
markers on the boundary of the human faces during scanning. We first map
each surface conformally to a unit disk D by using the Riemann mappings

ϕ0 :M0 → D and ϕ1 :M1 → D,

respectively. Suppose m landmarks are selected manually for each facial
expression, due to the bijectivity of the Riemann mapping, we have the cor-
responding landmark sets on D, hereafter denoted by P =

{
p(i) ∈ D

}m
i=1

and

Q =
{
q(i) ∈ D

}m
i=1

, respectively, as illustrated in Figure 5. In the following,
we would like to compute the registration maps of MT and DMT via reg-
istrating the landmark set P and Q, here the DMT registration map is the
composition of the Möbius transformation and the elastic deformation field
obtained from a modified thin-plate spline model. A brief introduction of
the modified thin-plate spline model is introduced in the following.

In the thin-plate model, the deformation field is usually approximated
by a linear combination of the biharmonic kernel basis{

ψj(x) := rj(x)2 log rj(x)
}n
j=1

at each point in a prescirbed set C := {c(j) ∈ D | c(j) = (c
(j)
1 , c

(j)
2 )>}nj=1, where

rj(x) := ‖x−c(j)‖0 is the Euclidean distance between point c(j) and x. Taking
the conformal factors into account, we slightly modified the basis function at
the point c(j) to be ψ̃j := [λ20(c

(j))]−1λ21(c
(j))ψj , where λ0(c

(j)) and λ1(c
(j))

are the conformal factors resulted from the Riemann conformal mappings
ϕ0 and ϕ1 at c(j), respectively, for j = 1, . . . , n. Therefore, the registration

map f of the thin-plate model on D is defined by f (x) :=
(
f1 (x) , f2 (x)

)>
with x = (x1, x2)

> and

fk (x) =

n∑
j=1

α
(k)
j ψ̃j(x),
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where α
(k)
j are unknown coefficients, for k = 1, 2, and j = 1, . . . , n. By regis-

tering the landmark sets P and Q on D, these coefficients can be determined
by solving the least square problems

min
α(k)

(
m∑
i=1

∥∥∥fk(p(i))− q(i)∥∥∥2
0

)
, k = 1, 2.

The least square problems can be easily solved by QR method when n ≤ m
or solved by Tikhonov regularization [10](

εI + S>S
)
α(k) = S>qk

when n > m, where

Sij =ψ̃j(p
(i)), i = 1, . . . ,m, j = 1, . . . , n,

α(k) =
(
α
(k)
1 , . . . , α(k)

n

)>
, qk =

(
q
(1)
k , . . . , q

(m)
k

)>
.

Then the registration map betweenM0 andM1 can be obtained by taking
f = ϕ−11 ◦ f ◦ ϕ0. Figure 6 shows the deformation field of f , here the regu-
larization parameter ε = 5× 10−3. We measure the correspondence error of
the landmark sets on both parametric domain and physical domain by

ED(f) =

(
m∑
i=1

∥∥∥f(p(i))− q(i)
∥∥∥2
0

) 1

2

.(2)

and

E(f) =

(
m∑
i=1

∥∥∥f ◦ ϕ−10 (p(i))− ϕ−11 (q(i))
∥∥∥2
0

) 1

2

,(3)

respectively. Table 2 shows the comparison between MT and DMT.

Clearly, from Table 2, one can see that DMT significantly reduces the
correspondence errors. This is no surprised by all means since the facial
changes are mostly contributed by deformations. Moreover, Figure 6 shows
that the deformation map on the parametric domain is smooth without
folding and tangling.
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(a) (b) (c)

Figure 6: (a) A illustration of the landmark sets P (marked in blue circle) and
Q (marked in red asterisk) lay on a checkerboard grid. (b) The registration
map via the optimal Möbius transformation (MT). (c) The registration map
via composition of MT and the elastic deformation f .

hhhhhhhhhhhhhhhhhherror measurement

registration map
MT DMT

ED(f) 1.2559× 10−1 6.9174× 10−2

E(f) 1.2638× 10−1 8.2796× 10−2

Table 2: A comparison between MT and DMT represented in different error
measurements. The measurement ED, defined by (2), measures the distance
of each landmark pair on the parametric domain. The measurement E, de-
fined by (3), measures the distance of each landmark pair on the physical
domain.
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T ϕ0(M0)
4h T ϕ0(M0)

h T ϕ1(M1)
h

f

(a) (b) (c)

ϕ−10 ϕ−11

(d) (e)

Figure 7: (a) The coarse mesh T ϕ0(M0)
4h of the unit disk ϕ0(M0). (b) A refined

mesh of the coarse mesh T ϕ0(M0)
4h . (c) The mesh obtained from mapping

each vertex of the triangles in T ϕ0(M0)
h by the registration map f . (d) The

consistent mesh of the surface M0. (e) The consistent mesh of the surface
M1.
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4. Surface morphing via consistent meshes and homotopy

In the previous section, we have already obtained a registration map between

two surfacesM0 andM1. In order to generate a morphing sequence between

M0 and M1 efficiently, we construct a consistent mesh for both M0 and

M1. First, a coarse mesh, shown in Figure 7, is constructed by connecting

the landmarks on the unit disk using straight line segments on ϕ0(M0).

Then a finer mesh is obtained by regular mesh refinements for a few times.

Let T ϕ0(M0)
h = (V,F) denote the final mesh on ϕ0(M0), here V is the set

of all nodal points and F is the connectivity index set of all triangles. The

nodal points in T ϕ0(M0)
h are mapped to ϕ1(M1) by the registration map

f . Aa a result, a mesh on ϕ1(M1) that consists of the mesh on ϕ0(M0),

denoted by T ϕ1(M1)
h , can be defined by T ϕ1(M1)

h := (f(V),F). The detail

construction process is shown in the following. Let (F
(1)
i , F

(2)
i , F

(3)
i ) denote

the nodal indices associated with triangle τi ∈ Th, for i = 1, . . . ,#(F).

Obviously, each point q in triangle τi can be represented by

q = βi,1(q)VF (1)
i

+ βi,2(q)VF (2)
i

+ βi,3(q)VF (3)
i
,

3∑
j=1

βi,j(q) = 1, βi,j(q) ≥ 0, j = 1, 2, 3,

where (βi,1(q), βi,2(q), βi,3(q)) is the barycentric coordinate of the point q

in τi. A simple piecewise linear registration map fL : ϕ0(M0) → ϕ1(M1),

defined as following

fL (q) = βi,1(q)f(VF (1)
i

) + βi,2(q)f(VF (2)
i

) + βi,3(q)f(VF (3)
i

), q ∈ τi,

can be employed to approximate the registration map f . Similarly, thanks

to the (H,λ) unique representation of M, a piecewise linear approximation

fL of the surface registration map f can also be constructed by

fL

(
Ψ−1(H0(q), λ0(q))

)
:= Ψ−1

(
H1(fL (q)), λ1(fL (q))

)
, q ∈ ϕ0(M0).

Furthermore, thanks to the conformal parameterization, the registration

map between the texture images I0 and I1 of the surface M0 and M1,

respectively, can also be approximated by the texture mapping

I0
(
ϕ−10 (q)

)
7→ I1

(
ϕ−11 ◦ fL (q)

)
.
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In the following, we introduce how we utilize the above consistent mesh
to generate the morphing sequence through the cubic spline homotopy of
the mean curvatures Hi and the conformal factors λi, for i = 0, 1, . . . , N .
Suppose 3D images of facial expressions M0,M1 . . . ,MN , are captured at
time t0, t1, . . . , tN . Each surfaceMi is maped to the unit disk D by the Rie-
mann mapping ϕi, for i = 0, 1, . . . , N . Using the above surface registration
method, the registration maps

(fL )i : ϕi−1(Mi−1)→ ϕi(Mi)

can be easily computed, for i = 1, 2, . . . , N . For convenience, for a given
sequence of mappings {fi}Ni=1, we define a sequence of composite mappings
{[f ]i}Ni=0 by [f ]0(q) := q and

[f ]i := fi ◦ fi−1 ◦ · · · ◦ f1,

for i = 1, . . . , N . For each point q ∈ D, we employee a piecewise cubic spline
homotopy to interpolate the data set{[

fL

]
0

(q), . . . ,
[
fL

]
N

(q)
}
.

Let S [x1, . . . , xn](t) denote the piecewise cubic spline function with the
given set of data {x1, . . . , xn}. Using the registration maps {(fL )i}Ni=1 , a
morphing path D : D× [t0, tN ]→ D on the parametric domain, defined by

D(q, t) = S
[[
fL

]
0

(q), . . . ,
[
fL

]
N

(q)
]

(t),

can be created. Here D(q, t) denotes the location on the parametric domain
where a point v ∈ ϕ0(M0) is morphed at time t. Since (H,λ) is a unique
representation of a surface, the morphing path of Ψ−1(H,λ) can also be
uniquely determined by the evolution of the conformal factor and the mean
curvature. The conformal factor λ and the mean curvature H at D(q, t) can
now be evaluated by

H(D(q, t)) = S
[
H0 ◦

[
fL

]
0

(q), . . . ,HN ◦
[
fL

]
N

(q)
]

(t)

and

λ(D(q, t)) = S
[
λ0 ◦

[
fL

]
0

(q), . . . , λN ◦
[
fL

]
N

(q)
]

(t),

respectively. Similarly, suppose the texture images Ii of the surface Mi are
given, for i = 0, 1, . . . , N . The texture image associated with the surface
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(H0, λ0) (H1, λ1) (H2, λ2) (H3, λ3) (H4, λ4) (H5, λ5)

M0 M1 M2 M3 M4 M5

(fL )1 (fL )2 (fL )3 (fL )4 (fL )5

Figure 8: An illustration of the cubic spline homotopy.

along the morphing path D(q, t) can be computed by the cubic spline ho-

motopy

It := S
[
I0
(
ϕ−10 ◦

[
fL

]
0

)
, . . . , IN

(
ϕ−1N ◦

[
fL

]
N

)]
(t).

Finally, for any time t ∈ [t0, tN ], by reconstructing the 3D surfaces

Mt := Ψ−1 (H ◦D(D, t), λ ◦D(D, t))

from their (H,λ) representation and by applying the computed texture im-

age It toMt, the morphing sequence betweenM0 andMN can be obtained.

A sketch in Figure 8 illustrates this approach.

5. Numerical results of surface morphing in 3D

In the following, we show some surface morphing results via merely two

images by using the surface morphing technique which we have mentioned

above. In each demonstration, shown in Figure 9, the landmarks on each

surface are manually selected. The leftmost image is the role of initial surface

M0 while the rightmost image is the role of terminal surface M1, and the

images in the middle are the morphing sequence between M0 and M1.

It is interesting that how much DMT improves the morphing sequence.

For this purpose, we captured a 3D video of little movements on human

face. The captured surface at time t is denoted by Mt, for t ∈ [0, 2]. Then

we construct the morphing sequence via 3 key frames {Mt | t = 0, 1, 2}.
The registration map constructed by using MT and DMT are denoted by

(f
MT
L )i and (f

DMT
L )i, respectively, for i = 1, 2. In order to measure the rate

of improvement, we reconstruct the surfaces M̂MT
t := Ψ−1

(
HMT
t , λMT

t

)
and
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M̂DMT
t := Ψ−1

(
HDMT
t , λDMT

t

)
where

HMT
t := S

[
H0 ◦

[
f
MT
L

]
0
, . . . ,H2 ◦

[
f
MT
L

]
2

]
(t),

λMT
t := S

[
λ0 ◦

[
f
MT
L

]
0
, . . . , λ2 ◦

[
f
MT
L

]
2

]
(t),

HDMT
t := S

[
H0 ◦

[
f
DMT
L

]
0
, . . . ,H2 ◦

[
f
DMT
L

]
2

]
(t),

and

λDMT
t := S

[
λ0 ◦

[
f
DMT
L

]
0
, . . . , λ2 ◦

[
f
DMT
L

]
2

]
(t),

for t ∈ [0, 2]. Then, we compute the relative surface difference

‖Mt−M̂MT
t ‖2 :=

∫∫D ‖Mt(u1, u2)− M̂MT
t (u1, u2)‖20

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2∫∫
D

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2


1

2

,

and

‖Mt−M̂DMT
t ‖2 :=

∫∫D ‖Mt(u1, u2)− M̂DMT
t (u1, u2)‖20

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2∫∫
D

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2


1

2

,

The rate of improvement is defined by

(4) Ratet :=
‖Mt − M̂MT

t ‖2 − ‖Mt − M̂DMT
t ‖2

‖Mt − M̂MT
t ‖2

.

Table 3 indicates that DMT improves approximately 50% of the surface
difference.

Moreover, extrapolation can also be achieved by using this homotopy
technique. In the following numerical experiment, the real surface at time
t is denoted by Mt and the reconstructed surface at time t is denoted by
M̂t := Ψ−1(Ht, λt) where

Ht := S
[
H0.6, H1 ◦

[
f
DMT
L

]
1
, H1.3 ◦

[
f
DMT
L

]
2

]
(t)
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M0 M0.6 M1 M1.3 M2

t ‖Mt − M̂MT
t ‖2 ‖Mt − M̂DMT

t ‖2 Ratet

0.3 1.4980× 10−2 8.6761× 10−3 42.08%
0.4 2.0554× 10−2 1.1229× 10−2 45.37%
0.5 2.3328× 10−2 1.0679× 10−2 54.22%
1.3 4.1535× 10−2 1.8688× 10−2 55.01%
1.4 3.9139× 10−2 1.9036× 10−2 51.36%

Table 3: A comparison between MT and DMT represented in different error
measurements. Here Ratet, defined by (4), is the rate of improvement.

M1.4 M1.5 M1.6 M1.7

t ‖Mt − M̂t‖2 ‖Mt − M̂t‖∞
1.4 1.3639× 10−2 8.7590× 10−2

1.5 1.2816× 10−2 9.0388× 10−2

1.6 2.6365× 10−2 7.1989× 10−2

1.7 3.2057× 10−2 7.1733× 10−2

Table 4: The extrapolation error between the real surface and the recon-
structed surface represented in different error measurements.
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(a)

(b)

(c)

(d)

Figure 9: (a) A morphing sequence of an eye blinking motion of a girl. (b)
A morphing sequence of a mouth opening motion of a girl. (c) A morphing
sequence of a face transformation from a girl’s face into another girl’s face.
(d) A morphing sequence of a face transformation from a girl’s face into a
boy’s face.
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and

λt := S
[
λ0.6, λ1 ◦

[
f
DMT
L

]
1
, λ1.3 ◦

[
f
DMT
L

]
2

]
(t).

Table 4 shows the relative surface difference between the real surface Mt

and the reconstructed surface M̂t := Ψ−1(Ht, λt) in L2-norm

‖Mt−M̂t‖2 :=

∫∫D ‖Mt(u1, u2)− M̂t(u1, u2)‖20
∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2∫∫
D

∣∣∣∂ϕ−1

∂u1
∧ ∂ϕ−1

∂u2

∣∣∣ du1 du2


1

2

,

and in L∞-norm

‖Mt − M̂t‖∞ := max
(u1,u2)∈D

∥∥∥Mt(u1, u2)− M̂t(u1, u2)
∥∥∥
0
,

at time t = 1.4, 1.5, 1.6 and 1.7, respectively.

6. Conclusion

In this paper, we proposed a 3D surface morphing method for simply con-
nected surfaces with a single boundary in which smooth transitions on both
geometric characteristics and texture of the surfaces are considered. Similar
to the traditional morphing approaches based on boundary representation,
a wrap has to be created via the feature correspondence and interpolation
between shapes based on the wrap is employed to generate the morphing
sequence. By taking the advantages of the conformal parameterization and
the unique surface representation of the conformal factor and the mean cur-
vature, the wrap can be easily obtained by the composition of deformations
from the Möbius transformation and the thin-plate registration function.
To mimic the non-isomorphic risk that usually occurs in registering largely
deformed surfaces, a consistent mesh based on wrapping is employed. As
a result, the correspondence, including geometric information and texture
information, of the whole surface can be defined and interpolation among
the source surface and the target surface can be computed by the usual
cubic spline homotopy on a disk parametric domain. Finally, the morph-
ing sequence can be generated from the surface reconstruction algorithm
in section 2.2. To make the proposed morphing approach more attractive
in real applications, we improve the efficiency in computing the conformal
parameterization. Also, we propose a nonlinear iterative surface reconstruc-
tion algorithm (Algorithm 1) that can be accelerated by using the multigrid
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method on a consistent mesh by which multi-resolution surfaces can also be
obtained. Several morphing results among different 3D facial expressions are
presented to demonstrate the feasibility of the proposed surface morphing
method.
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