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An Efficient Algorithm of Yau-Yau Method for
Solving Nonlinear Filtering Problems

Mei-Heng Yueh , Wen-Wei Lin and Shing-Tung Yau

It is well known that the nonlinear filter has important applica-
tions in military, engineering and commercial industries. In this
paper, we propose efficient and accurate numerical algorithms for
the realization of the Yau-Yau method for solving nonlinear fil-
tering problems by using finite difference schemes. The Yau-Yau
method reduces the nonlinear filtering problem to the initial-value
problem of Kolmogorov equations. We first solve this problem by
the implicit Euler method, which is stable in most cases, but costly.
Then, we propose a quasi-implicit Euler method which is feasible
for acceleration by fast Fourier transformations. Furthermore, we
propose a superposition technique which enables us to deal with
the nonlinear filtering problem in an off-time process and thus,
save a large amount of computational cost. Next, we prove that the
numerical solutions of Kolmogorov equations by our schemes are
always nonnegative in each iteration. Consequently, our iterative
process preserves the probability density functions. In addition, we
prove convergence of our schemes under some mild conditions. Nu-
merical results show that the proposed algorithms are efficient and
promising.
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1. Introduction

The nonlinear filtering problem has a variety of applications in military, en-
gineering and commercial industries [15, 13, 14]. It involves the estimation of
a stochastic process of the state x = x(t) that cannot be directly measured
during the process. Information containing x is then obtained from obser-
vation process y = y(t). The goal of the nonlinear filtering is to determine
the conditional probability density function ρ(t,x) of the state x(t) via a
given observation history of y(s), s ∈ [0, t]. In 1961, Kalman and Bucy [6]
first proposed the finite-dimensional filter, known as Kalman-Bucy filter, for
solving the linear filtering problem with Gaussian initial distribution, which
is useful in natural science and engineering [1]. Although the Kalman-Bucy
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filter is not feasible for the nonlinear filtering problem, it gives great inspi-
ration to the posterity in solving the nonlinear filtering problem. The core
issue of the nonlinear filtering problem is to solve the Duncan-Mortensen-
Zakai [3, 12, 24] (DMZ) equation in real time. Yau and Yau [21, 22, 23]
have proved that the real-time solution of the DMZ equation can be re-
duced to an off-time solution of the Kolmororov equation. Luo/Yau [10, 11]
have extended the algorithm in [23] to the most general setting of nonlinear
filterings. Based on the work of Yau and Yau [22, 23], Liu/Dong/Ding [9]
proposed a numerical method to solve the nonlinear filtering problem by
using explicit finite difference schemes. In order to improve the reliability of
the algorithm proposed in [9], in this paper, we propose an efficient and reli-
able quasi-implicit numerical scheme for solving the Kolmogorov equations
and estimate approximate states of a given signal-observation model.

The nonlinear filtering problem considered here is to determine approxi-
mate states for a given observation history of the following signal-observation
model [5, 2] {

dx(t) = f(x(t)) dt+ dv(t) x(0) = x0,
dy(t) = h(x(t)) dt+ dw(t) y(0) = 0,

(1)

where x(t) = (x1(t), . . . , xD(t))> ∈ RD and y(t) = (y1(t), . . . , yM (t))> ∈
RM are the state and the measurement/observation vectors at time t, re-
spectively, f(x) = (f1(x), . . . , fD(x))> and h(x) = (h1(x), . . . , hM (x))> are
given vector-valued functions, v ∈ RD and w ∈ RM are mutually indepen-
dent standard Brownian processes. From the main results of Yau and Yau
[20, 22, 23], the state vector x(t) can be estimated from the observation
vectors {y(s) | s ∈ [0, t]} by solving the Kolmororov equations. Specifically,
suppose that a set of observations {y(τ0), . . . ,y(τNτ )} is measured. For each
time period [τk−1, τk], k = 1, . . . , Nτ , we solve the Kolmogorov equations of
the form



∂ũk
∂t

(t, s) =
1

2
4ũk(t, s) +

D∑
d=1

pd(s)
∂ũk
∂sd

(t, s) + q(s)ũk(t, s), t ∈ [τk−1, τk],

ũk(τk−1, s) = exp


M∑
j=1

[yj(τk−1)− yj(τk−2)]hj(s)

 ũk−1(τk−1, s),

ũ1(0, s) = σ0(s) exp


M∑
j=1

yj(τ0)hj(s)

 ,

(2)
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for k = 2, . . . , Nτ and τ0 = 0, where 4 =
∑D

i=1
∂2

∂s2i
,

pd(s) = −fd(s), d = 1, . . . , D,(3)

and

q(s) = −

 D∑
d=1

∂fd
∂sd

(s) +
1

2

M∑
j=1

h2
j (s)

 .(4)

For t ∈ [τk−1, τk], k = 2, . . . , Nτ , we compute the expectation of ũk(t, s) with

respect to sd over RD by

x̂d(t) =

∫
RD
sdũk(t, s) ds,(5)

for d = 1, . . . , D. Then the state vector x(t) in (1) can be estimated by

x̂(t) = (x̂1(t), . . . , x̂D(t))>.

2. Numerical Algorithms

In order to solve the nonlinear filtering problem (1), we first generate states

and observations {xk,yk}Nτk=0 by using Euler forward difference method with

Gaussian noise. Based on the Yau-Yau’s method, we first propose an implicit

Euler method (IEM) for solving the Kolmogorov equations (2) which is

stable and reliable, but costly. Furthermore, we develop the quasi-implicit

Euler method (QIEM) for solving the Kolmogorov equations (2) which is

also stable and reliable, but much more efficient because the fast Fourier

transformation (FFT) can be applied in the QIEM.

2.1. The State and Observation Generator

Given a terminal time Γ, we generate a set of states and observations

{xk,yk}Nτk=0 by Euler forward difference method. We partition the time in-

terval [0,Γ] uniformly as

P[0,Γ] = {0 = τ0 < τ1 < · · · < τNτ = Γ} ,(6)
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where τk − τk−1 = ∆τ, k = 1, 2, . . . , Nτ . With the Euler forward discretiza-

tion, the signal observation model in (1) can be simulated byxk+1 = xk + f(xk)∆τ + v
√

∆τ ,

yk+1 = yk + h(xk)∆τ + w
√

∆τ ,

where x0 is the initial vector and y0 is zero, ∆τ is the size of the time step,

v and w are mutually independent Brownian motion with v,w ∼ N (0, 1).

The algorithm in detail is stated as follows.

Algorithm 1 State and Observation Generator
Input: a terminal time Γ, time step ∆τ , the initial state x0, the vector-valued

functions f , h
Output: the state x(t) and observation y(t) at t = τ0, . . . , τNτ
1: Nτ = Γ

∆τ + 1.
2: Set the initial state x(τ0) = x0.
3: Generate v,w ∼ N (0, 1), v ⊥⊥ w.
4: for k = 1 to Nτ do
5: x(τk) = x(τk−1) + f(x(τk−1))∆τ + v

√
∆τ .

6: end for
7: y(τ0) = 0.
8: for k = 1 to Nτ do
9: y(τk) = y(τk−1) + h(x(τk−1))∆τ + w

√
∆τ .

10: end for

2.2. Implicit Euler Method (IEM) for Kolmogorov Equations

We now propose the IEM for solving the Kolmogorov equations (2). From

the equation (5), the state vector x(t) can be estimated by the solution of the

equation (2). For each time interval, we partition [τk−1, τk], k = 1, . . . , Nτ ,

uniformly by

P[τk−1,τk] =
{
τk−1 = t

(k)
0 < t

(k)
1 < · · · < t

(k)
Nt

= τk

}
,

where t
(k)
n − t(k)

n−1 = ∆t, n = 1, . . . , Nt. Then the partition

P∗[0,Γ] =

Nτ⋃
k=1

P[τk−1,τk]
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=
{

0 = τ0 = t
(1)
0 < · · · < t

(1)
Nt

= τ1 = t
(2)
0 < · · ·

< t
(2)
Nt

= τ2 = t
(3)
0 < · · · < t

(Nτ )
Nt

= τNτ = Γ
}

forms a refinement of the partition P[0,Γ] in (6). On the other hand, the

space interval [−R,R] can be uniformly discretized by

P[−R,R] = {−R = s0 < s2 < · · · < sNs = R} ,

where sj − sj−1 = ∆s, j = 1, 2, . . . , Ns and R is a suitably large number

so that the Gaussian distribution can be ignored outside [−R,R]. For the

discretization of an D-cell [−R,R]D ⊂ RD, we consider an ordered set of

the power set of P[−R,R],

PD[−R,R] = {sj}(Ns)
D

j=1 ,

where sj =
(
s

(1)
j , s

(2)
j , . . . , s

(D)
j

)>
, s

(d)
j ∈ P[−R,R], j = 1, . . . , (Ns)

D, d =

1, . . . , D. In the discrete model of the equation (2), we set up the Dirichlet

boundary condition of the domain [−R,R]D to be zero. For the d-th dimen-

sion of the space, d = 1, . . . , D, the second order partial differential operator

can be approximated by using the Euler central difference scheme

∂2ũ

∂s2
(tn, sj) ≈

[
α

(
Un+1
j+1 − 2Un+1

j + Un+1
j−1

(∆s)2

)
+ β

(
Unj+1 − 2Unj + Unj−1

(∆s)2

)]
,

(7)

where Unj ≡ ũ(tn, sj) and α + β = 1, α, β ≥ 0. Similarly, the partial differ-

ential operator can be approximated by

∂ũ

∂s
(tn, sj) ≈

[
α

(
Un+1
j+1 − U

n+1
j−1

2∆s

)
+ β

(
Unj+1 − Unj−1

2∆s

)]
.(8)

In other words, the discretized Laplacian operator in (2) can be represented

by the matrix

Td ≡

[(
D−d⊗
k=1

INs

)
⊗ Td ⊗

(
D⊗

k=D−d+2

INs

)]
,(9)
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where ⊗ denotes the Kronecker product (or tensor product), INs is the
identity matrix of size Ns and the matrix

Td =
1

(∆s)2


−2 1
1 −2 1

1 −2
. . .

. . .
. . . 1
1 −2

 .

Similarly, the discretized partial differential operator can be represented by
the matrix

Kd ≡

[(
D−d⊗
k=1

INs

)
⊗Kd ⊗

(
D⊗

k=D−d+2

INs

)]
,(10)

where the matrix

Kd =
1

2∆s


0 1
−1 0 1

−1 0
. . .

. . .
. . . 1
−1 0

 .

For each time period t
(k)
n ∈ [τk−1, τk], the partial differential of time ∂ũk

∂t (tn, s)
in (2) can be discretized by

∂ũk
∂t

(tn, s) ≈ U (k),n+1 − U (k),n

∆t
,(11)

where U (k),n ≡
(
ũk(tn, s1), ũk(tn, s2), . . . , ũk(tn, s(Ns)D)

)>
. Hence the numer-

ical scheme can be written in the form

U (k),n − U (k),n−1

∆t
= αAU (k),n + βAU (k),n−1,(12)

where α+ β = 1, α, β ≥ 0 and the matrix

A =
1

2

D∑
d=1

Td +

D∑
d=1

PdKd + Q,(13)
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Pd ≡ diag{pd(si)}
(Ns)D

i=1 , Q ≡ diag{q(si)}(Ns)
D

i=1 are diagonal matrices. For

each t
(k)
j ∈ [τk−1, τk], j = 1, . . . , Nt, we solve the linear system

[I − α(∆t)A]U (k),n = [I + β(∆t)A]U (k),n−1,(14)

for k = 1, . . . , Nτ with the initial vector U (k),0 ≡
(
U

(k),0
1 , U

(k),0
2 , . . . , U

(k),0
(Ns)D

)>
,

in which

U
(k),0
j = exp

{
M∑
d=1

[y(τk+1)− y(τk)]hd(sj)

}
U (k−1),Nt ,(15)

j = 1, . . . , (Ns)
D.

Each vector U (k),n in (14) should be normalized such that
∑(Ns)D

j=1 U
(k),n
j = 1.

Then the vector U (k),n represents the probability distribution of the state

at time t
(k)
n . Finally, we compute the expectation

(16) x̂
(
t(k)
n

)
=

(Ns)D∑
j=1

sj U
(k),n
j

as our estimation for the real state x
(
t
(k)
n

)
. In particular, we choose the

parameter α = 1 and β = 0, since the implicit scheme is stable in most
of case while the explicit scheme (α = 0, β = 1) is usually unstable. The
algorithm in detail for solving the nonlinear filtering problem is stated in
Algorithm 2.

2.3. Quasi-Implicit Euler Method (QIEM) for Kolmogorov
Equations with Fast Fourier Transformations (FFTs)

The FFTs for the discretized Laplacian matrix is well-known. In the equation
(13), we separate the matrix A into 2 parts,

A =
1

2
4D + Af ,

where 4D =
∑D

d=1 Td and Af =
∑D

d=1 PdKd + Q. Then we slightly modify
the equation (12) into the form of the quasi-implicit scheme

U (k),n − U (k),n−1

∆t
=

1

2
4DU

(k),n + AfU (k),n−1.(17)
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Algorithm 2 IEM for Nonlinear Filter

Input: A terminal time Γ, the space interval [−R,R]D, the time step size ∆t,
the space step size ∆s, the vector-valued functions f = (f1, . . . , fD)>, h =

(h1, . . . , hM )>, the observations {yk}Nτk=1 and the initial state σ0

Output: the approximation of the state x̂(t)
1: Set the values Nτ = Γ

∆τ + 1, Nt = ∆τ
∆t + 1 and Ns = 2R

∆s + 1.
2: for j = 1 to (Ns)

D do

3: Uj ← σ0(sj) exp
{∑M

d=1 yd(τ0)hd(sj)
}
.

4: end for
5: for k = 1 to Nτ do
6: for j = 1 to (Ns)

D do

7: Uj ← exp
{∑M

d=1 [yd(τk+1)− yd(τk)]hd(sj)
}
Uj as in (15)

8: end for
9: for n = 1 to Nt do

10: Utmp = [I + β(∆t)A]U.
11: Solve the linear system [I − α(∆t)A]U = Utmp as in (14)
12: Normalize the solution U ← U∑(Ns)D

j=1 Uj
.

13: Set the approximation of state x̂
(
t
(k)
n

)
=
∑(Ns)

D

j=1 sj Uj as in (16)

14: end for
15: end for

Similarly, for each t
(k)
j ∈ [τk−1, τk], j = 1, . . . , Nt, we solve the linear system

(18)

(
I − ∆t

2
4D

)
U (k),n = [I + ∆tAf ]U (k),n−1.

Most important of all, the linear system (18) can be efficiently solved by
FFTs. For the case of D = 1 (one-dimensional case), the Laplacian matrix
in (18) satisfies 41 ≡ T1. By Fourier sine transformation, we have the
spectral decomposition

(19) T1 =
1

(∆s)2
WSW ∗,

where W ≡ [Wij ] with

Wij =

√
2

Ns + 1
sin

(
ijπ

Ns + 1

)
,

and

S = diag

{
−4 sin2

(
iπ

2(Ns + 1)

)}Ns
i=1

.
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Then the linear system of41 can be solved by calling the MATLAB function
”FFT”. The algorithm in detail for solving the D-dimensional nonlinear
filtering problem by applying the FFTs is stated in Algorithm 3.

Algorithm 3 QIEM for Nonlinear Filter with FFTs

Input: A terminal time Γ, the space interval [−R,R]D, the time step size ∆t,
the space step size ∆s, the vector-valued functions f = (f1, . . . , fD)>, h =

(h1, . . . , hM )>, the observations {yk}Nτk=1 and the initial state σ0

Output: the approximation of the state x̂(t)
1: Set the values Nτ = Γ

∆τ + 1, Nt = ∆τ
∆t + 1 and Ns = 2R

∆s + 1.
2: for j = 1 to (Ns)

D do

3: Uj ← σ0(sj) exp
{∑M

d=1 yd(τ0)hd(sj)
}
.

4: end for
5: for k = 1 to Nτ do
6: for j = 1 to (Ns)

D do

7: Uj ← exp
{∑M

d=1 [yd(τk+1)− yd(τk)]hd(sj)
}
Uj as in (15)

8: end for
9: for n = 1 to Nt do

10: Utmp ←
[
I + ∆t

(∑D
d=1 PdKd +Q

)]
U.

11: Call FFTs: U ←
(⊗D

d=1W
∗
)
Utmp.

12: for j = 1 to Ns do

13: Uj ← Uj/
[
1 + 2∆t

(∆s)2 sin2
(

jπ
2(Ns+1)

)]
.

14: end for
15: Call IFFTs: U ←

(⊗D
d=1W

)
U

16: Normalize the solution U ← U∑(Ns)D

j=1 Uj
.

17: Set the approximation of state x̂
(
t
(k)
n

)
=
∑(Ns)

D

j=1 sj Uj as in (16)

18: end for
19: end for

2.4. Higher-Order QIEM for 2-D Kolmogorov Equations with
FFTs

The Laplacian matrix in (18) is a second-order approximation of the Lapla-
cian operator. Hereafter, we consider a fourth-order accurate scheme for
Laplacian operator which reduces the size of the discretization matrix con-
siderably, but preserves the same accuracy as the second-order approxima-
tion. Since there is no general form of the higher-order scheme for Laplacian
operator, for convenience in practice, we consider the Kolmogorov equations
(2) in two-dimensional case.
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The 9-point scheme for the discretized Laplacian operator 4̃2 is defined

by

4̃2Ui,j =
1

6(∆s)2
[4Ui−1,j + 4Ui+1,j + 4Ui,j−1 + 4Ui,j+1

+Ui−1,j−1 + Ui+1,j−1 + Ui−1,j+1 + Ui+1,j+1 − 20Ui,j ](20)

which is a fourth-order approximation of Laplacian operator. The matrix

form of (20) is represented as

4̃2 =
1

(∆s)2


Σ Φ

Φ Σ
.. .

. . .
. . . Φ
Φ Σ

 ,(21)

where

Σ =
1

3


−10 2

2 −10
. . .

. . .
. . . 2
2 −10

 , Φ =
1

6


4 1

1 4
. . .

. . .
. . . 1
1 4

 .

In the following, we derive the fast Fourier transformation for solving the

linear system 4̃2U = b. Note that

4̃2 =

(
1

6
[(T1 + 6I)⊗ (T1 + 6I)]− 6I

)
=

1

6 (∆s)2 ([(WSW ∗ + 6I)⊗ (WSW ∗ + 6I)]− 36I)

=
1

6 (∆s)2 ((W ⊗W ) ((S + 6I)W ∗ ⊗ (S + 6I)W ∗)− 36I)

=
1

6 (∆s)2 ((W ⊗W ) (((S + 6I)⊗ (S + 6I))− 36(I ⊗ I)) (W ∗ ⊗W ∗)) ,

where T1 = 1
(∆s)2WSW ∗ as given in (19). Based on the QIEM Algorithm 3,

the algorithm in detail for solving the two-dimensional nonlinear filtering

problem by applying the fourth-order QIEM with FFTs is stated in Algo-

rithm 4.
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Algorithm 4 Fourth-order QIEM for 2-D Nonlinear Filter with FFTs

Input: A terminal time Γ, the space interval [−R,R], the time step size ∆t, the
space step size ∆s, the functions f = (f1, f2)>, h = (h1, h2)>, the observations{
y(τk) = (y1(τk), y2(τk))>

}Nτ
k=1

and the initial state σ0

Output: the approximation of the state x̂(t)
1: Set the values Nτ = Γ

∆τ + 1, Nt = ∆τ
∆t + 1 and Ns = 2R

∆s + 1.
2: for j = 1 to (Ns)

2 do
3: Uj = σ0(sj) exp {y1(τ0)h1(sj) + y2(τ0)h2(sj)} .
4: end for
5: for k = 1 to Nτ do
6: for j = 1 to Ns do
7: Uj = exp {[y1(τk+1)− y1(τk)]h1(sj) + [y2(τk+1)− y2(τk)]h2(sj)}Uj .
8: end for
9: for n = 1 to Nt do

10: Utmp ← [I + ∆t (P1D1 + P2D2 + Q)]U.
11: % Here the matrices W and S are defined in (19).
12: Call FFT: U ← (W ∗ ⊗W ∗)Utmp.
13: for j = 1 to Ns do

14: Uj ←
[
(I ⊗ I)− ∆t

12(∆s)2 ((S + 6I)⊗ (S + 6I)− 36(I ⊗ I))
]−1

Uj .

15: end for
16: Call IFFT: U ← (W ⊗W )U .
17: Normalize the solution U ← U∑Ns

j=1 Uj
.

18: Set the approximation of state x̂
(
t
(k)
n

)
=
∑(Ns)

2

j=1 sj Uj .

19: end for
20: end for

2.5. Superposition Technique

The computation of nonlinear filtering problems is a real time problem. Sav-
ing the computational cost becomes an essential issue. In order to solve the
nonlinear filtering problem in a more efficient way, we adopt the superposi-
tion technique. First, we use the Dirac delta functions{

δck(s) = e−η‖s−ck‖
2
∣∣∣ ck = (ck1 , . . . , ckD)> ∈ [−R,R]D

}Nδ
k=1

with s = (s1, . . . , sD)> ∈ RD, η being a suitable real number and ‖s−ck‖2 =∑D
j=1(sj−ckj )2, as various initials to compute the approximate states for the

nonlinear filtering problem, separately. Then we store all the fundamental
solutions {vk}Nδk=1 corresponding to the Dirac delta functions {δck}

Nδ
k=1.

In practice, for any given initial probability density function u0, we cal-
culate a set of coefficients {αk}Nδk=1 of the linear combination of Dirac delta
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functions satisfying

u0 ≈
Nδ∑
k=1

αkδck .

Then the approximate probability density function of the state v can be
directly obtained by computing the linear combination of the fundamental
solutions

v ≈
Nδ∑
k=1

αkvk.

This method significantly saves a large amount of computational cost.

3. Nonnegativity and Convergence of IEM/QIEM

In this section, first, we will show that the linear operator defined in (14)
is a nonnegative operator. Then, we will prove the convergence of IEM and
QIEM.

3.1. Sufficient Condition of Nonnegative Operator

In the linear system (14), the solution of each time step represents a proba-
bility distribution of the space. In order to guarantee the property that each
solution is nonnegative, we find the sufficient condition such that the matrix
(I −∆tA)−1 is a nonnegative operator. First, let us introduce the definition
of an M -matrix and its equivalence condition.

Definition. A real matrix B = [Bij ] is called an M -matrix if Bij ≤ 0, i 6= j
and B−1 exists with B−1 ≥ 0.

Lemma 1 (Equivalence Condition of M -matrix). [4] Let B be a real matrix
with Bij ≤ 0 for i 6= j. Then B is an M -matrix if and only if there is a
positive vector v > 0 such that Bv > 0.

The following theorem shows that the vector U in each iteration of step
11 in Algorithm 2 preserves nonnegativity of the probability density func-
tion.

Theorem 1 (Sufficient Condition of Nonnegative Operator). Given real-
valued functions pd, d = 1, . . . , D, q, a time step ∆t and a space step ∆s.
Let B ≡ I −∆tA, where A is defined as (13). If for each s ∈ [−R,R]D,

|pd(s)| < 1

∆s
, |q(s)| < 1

∆t
,(22)
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for d = 1, . . . , D, then B is an M -matrix. That is, B−1 ≥ 0 is a nonnegative

operator.

Proof. First we check Bij ≤ 0 for i 6= j. From the structure of the matrices

in (9) and (10), we see that for i 6= j either Bij = 0 or

Bij = −∆t

(
1

2(∆s)2
+
pd(s)

2∆s

)
= − ∆t

2(∆s)2
(1 + ∆s pd(s))

≤ − ∆t

2(∆s)2
(1−∆s |pd(s)|)

< 0.(23)

The inequality (23) follows from the first equation of (22). Next, we check

B 1 > 0, where 1 ≡ (1, 1, . . . , 1)> > 0. Note that B 1 is a vector whose entry

is the row sum of B. Hence

B 1 = 1−∆t

(
−k

2(∆s)2
+

∑k
d=1(−1)mdpd(s)

2∆s
+ q(s)

)

≥ 1−∆t

(
−k

2(∆s)2
+
kmaxd |pd(s)|

2∆s
+ q(s)

)
= (1−∆tq(s)) +

k∆t

2(∆s)2

(
1−∆smax

d
|pd(s)|

)
≥ (1−∆t|q(s)|) +

k∆t

2(∆s)2

(
1−∆smax

d
|pd(s)|

)
> 0,(24)

for some k ∈ {1, . . . , D}, md ∈ {0, 1}. The inequality (24) follows from (22).

By Lemma 1, B is an M -matrix. That is, B−1 ≥ 0.

Consequently, by Theorem 1, the vector U = [I −∆tA]−1Utmp in Step

11 of Algorithm 2 is nonnegative.

3.2. Convergence of IEM/QIEM

In this section, we prove the convergence of the IEM and the QIEM by

checking the consistency and the stability of the schemes.
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Theorem 2 (Consisteny of IEM/QIEM). The local truncation errors of

IEM (12) and QIEM (18) are O
(
∆t+ (∆s)2

)
. That is, IEM and QIEM

are consistent.

Proof. The first-order Taylor expansion of u at the point (t+ ∆t, s) implies

∂u

∂t
(t, s) =

u (t+ ∆t, s)− u (t, s)

∆t
+O (∆t) .(25)

The third-order Taylor expansions of u at the points (t, s+ ∆s) and (t, s−
∆s), respectively, lead to

u (t, s+ ∆s) = u (t, s) + ∆s
∂u

∂s
(t, s) +

(∆s)2

2

∂2u

∂s2
(t, x)(26)

+
(∆s)3

6

∂3u

∂s3
(t, s) +O

(
(∆s)4

)
,

and

u (t, s−∆s) = u (t, s)−∆s
∂u

∂s
(t, s) +

(∆s)2

2

∂2u

∂s2
(t, s)(27)

−(∆s)3

6

∂3u

∂s3
(t, s) +O

(
(∆s)4

)
.

By adding the equations (26) and (27), we obtain

∂2u

∂s2
(t, s) =

u (t, s+ ∆s)− 2u (t, s) + u (t, s−∆s)

(∆s)2 +O
(

(∆s)2
)
.(28)

Similarly, by subtracting the equation (27) from (26), we obtain

∂u

∂s
(t, s) =

u (t, s+ ∆s)− u (t, s−∆s)

2∆
+O

(
(∆s)2

)
.(29)

Hence, according to the equations (7), (8) and (11), respectively, the equa-

tions (28), (29) and (25) show the local truncation error of (12) isO
(
∆t+ (∆s)2

)
.

Theorem 3 (Sufficient Condition for Stability of IEM). The IEM (12) is
stable if the function f in (1) satisfies

(30) ∇ · f ≥ 0.
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Proof. We claim that IEM (12) is stable by applying von Neumann stability
analysis. Let Unj = ξ(k)neıkj(∆s), where ı ≡

√
−1 and ξ(k) is known as the

amplification factor. Substituting Unj into the scheme (12), we obtain

ξ(k)− 1

∆t
=

ξ(k)

2 (∆s)2

(
eıkj(∆s) − 2 + e−ıkj(∆s)

)
+
ξ(k)

2∆s

(
eıkj(∆s) − e−ıkj(∆s)

)
p (x) + ξ(k)q (s) .

That is,

1

ξ(k)
= 1−∆t

(
eıkj(∆s) − 2 + e−ıkj(∆s)

2 (∆s)2 +
eıkj(∆s) − e−ıkj(∆s)

2∆s
p (s) + q (s)

)
= 1 +

∆t

(∆s)2 (1− cos(kj (∆s)))− (∆t) q (s)− ı∆t
∆s

sin (kj (∆s)) p (s) .

If ∇ · f ≥ 0, then q(s) ≡ −
[
∇ · f + 1

2

∑M
j=1 h

2
j (s)

]
≤ 0. It follows that

1

|ξ(k)|2
=

(
1 +

∆t

(∆s)2 (1− cos(kj (∆s)))− (∆t) q (s)

)2

+

(
∆t

∆s
sin (kj (∆s)) p (s)

)2

≥ (1− (∆t) q (s))2 ≥ 1.

That is, |ξ(k)|2 ≤ 1. This implies that IEM (12) is stable under the assump-
tion that ∇ · f ≥ 0.

Theorem 4 (Sufficient Condition for Stability of QIEM). The QIEM (18)
is stable if both the step size of time ∆t and the step size of space ∆s are
sufficient small. More precisely, ∆t and ∆s satisfy

(31) (∆s)2
(
2q(s) + q(s)2∆t

)
+ ∆tp(s)2 ≤ 2.

Proof. As in the proof of Theorem 3, we substitute Unj = ξ(k)neıkj(∆s) into
the scheme (18) and obtain

ξ(k)− 1

∆t
=

ξ(k)

2 (∆s)2

(
eıkj(∆s) − 2 + e−ıkj(∆s)

)
+

1

2∆s

(
eıkj(∆s) − e−ıkj(∆s)

)
p (s) + q (s) .
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That is,

ξ(k) =
1 + ∆tq (s) + ∆t

∆s ı sin (kj (∆s)) p (s)

1− ∆t
(∆s)2

(cos (kj (∆s))− 1)
.

If ∆s and ∆t satisfy (∆s)2
(
2q(s) + q(s)2∆t

)
+ ∆tp(s)2 ≤ 2, then

(∆s)2
(
2q(s) + q(s)2∆t

)
+ ∆tp(s)2 ≤ 2 +

∆t

(∆s)2
.

Multiplying both side by ∆t
(∆s)2 , we have

2q(s)∆t+ q(s)2(∆t)2 +
(∆t)2

(∆s)2
p(s)2 ≤ 2∆t

(∆s)2
+

(∆t)2

(∆s)4
.

Adding both side by 1, we obtain

(1 + ∆tq (s))2 +

(
∆t

∆s
p (s)

)2

≤
(

1 +
∆t

(∆s)2

)2

.

It follows that

|ξ(k)|2 =
(1 + ∆tq (s))2 +

(
∆t
∆s sin (kj (∆s)) p (s)

)2(
1− ∆t

(∆s)2
(cos (kj (∆s))− 1)

)2

≤
(1 + ∆tq (s))2 +

(
∆t
∆sp (x)

)2(
1 + ∆t

(∆s)2

)2 ≤ 1.

This implies QIEM (18) is stable under the given assumption.

Theorem 5 (Sufficient Conditions for Convergence of IEM/QIEM). The
IEM and QIEM converge if the conditions of (30) and (31) hold, respectively.

Proof. From the consistency of IEM/QIEM in Theorem 2 as well as the
stabilities of IEM and QIEM in Theorem 3 and Theorem 4, respectively,
the convergence of IEM/QIEM follows by the Lax-Richtmyer equivalence
theorem [8] immediately.

4. Numerical Experiments

In this section, we first show some numerical results by applying IEM/QIEM
to 1-D and 2-D nonlinear filtering problems. Then we compare the accuracy
of IEM/QIEM with the extended Kalman filtering method [16, 7, 17].
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4.1. Numerical Results of IEM/QIEM

First, we consider the 1-D cubic sensor problem [19, 18] which is important
and widely used in the nonlinear filtering control. The associated functions
f and h in (1) for the 1-D cubic sensor problem are given by

(32) f(s) = 0, h(s) = s3.

The parameters ∆s = 0.01, ∆t = 0.0001, R = 10 and Nδ = 201. Figure
1(a)(b) show the numerical results by QIEM for the 1-D cubic sensor prob-
lem starting with two different random generators. The black and blue lines
show the real states and the approximation for the real states, respectively.
We see that two lines in Figure 1(a)(b) match very well.

(a) (b)

Figure 1: The numerical results by QIEM for 1-D cubic sensor problems

We now consider a 2-D nonlinear filtering problem with the associated
functions f and h in (1) being given by

f(s1, s2) = (− cos(s1)− sin(s2), cos(s1) + sin(s2)) ,(33)

h(s1, s2) = (s1 − s2, s1 + s2) .

Figure 3(a)(b) show the numerical results by QIEM for the 2-D nonlinear
filtering problem starting with two different random generators. The black
and blue lines show the real states and the approximation, respectively. We
see that two lines in Figure 3(a)(b) still match well. In Figure 2, we show
the density functions of the 2-D nonlinear filtering problem at t = 0 and
t = 1.2, respectively.
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Figure 2: The density functions of the 2-D nonlinear filtering problem at
t = 0 (left) and t = 1.2 (right), respectively.

(a) left: x1 component, right: x2 component

(b) left: x1 component, right: x2 component

Figure 3: The numerical results of QIEM for the 2-D nonlinear filtering
problems
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According to our numerical experience, QIEM has the same accuracy as

IEM, but QIEM has higher efficiency (less computational cost) than IEM for

both 1-D and 2-D nonlinear filtering problems. Here, we ignore presenting

the numerical results of IEM.

4.2. Comparison between Extended Kalman Filter and QIEM

The extended Kalman filter (EKF) [16, 7, 17] is a well-known method of

dealing nonlinear filtering problem by using linear approach. We consider a

1-D nonlinear filtering problem in (1) with the associated functions f(x) =

cos(x) and h(x) = xn, for n = 2, . . . , 6.

In Figure 4, we show the comparison of numerical results between EKF

and QIEM. The black, blue and red lines show the real states, the approxi-

mate states by QIEM and by EKF, respectively. We see that the approximate

states by QIEM match much better than the approximate states by EKF.

In order to compare the accuracy of QIEM with EKF, we compute

the root-mean-square error ERMS between the approximate state x̂(t) =

(x̂(t1), . . . , x̂(tNτ ))> and the real state x(t) = (x(t1), . . . , x(tNτ ))> by

ERMS(x̂(t)) =

√∑Nτ
i=1 (x̂(ti)− x(ti))2

Nτ
.

In Table 1, we show the root-mean-square error ERMS of two methods. We

see that the ERMS of EKF increases from 0.64 to 1.33 when n of h(x) grows

from 2 to 6, while ERMS of QIEM is between 0.43 to 0.56.

4.3. Numerical Results of Superposition Technique

In this subsection, we show some numerical results of the superposition

technique (SPT) proposed in Section 2.5. We consider the 1-D cubic sensor

problem and 2-D nonlinear filtering problem with f and h defined in (32) and

(33), respectively. The initial probability density functions for 1-D and 2-D

problems are chosen by u0(s) = es and u(s1, s2) = e−5(s21+s22), respectively.

Figure 5(a)(b) and 6 show numerical results of SPT for 1-D cubic sensor

problem and 2D nonlinear filtering problem, respectively. The black, blue

and red lines show the real states, the approximate states by QIEM and by

SPT, respectively. We see that SPT matches well as long as QIEM works

well. Nevertheless, SPT saves a lot of computing time.
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(a) n = 2 (b) n = 3

(c) n = 4 (d) n = 5

(e) n = 6

Figure 4: Comparison of real states and approximate states between EKF
and QIEM with f(x) = cosx, h(x) = xn, n = 2, . . . , 6, respectively.
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Table 1: The comparison of ERMS between EKF and QIEM
hhhhhhhhhhhhhhhFunction Types

Methods
EKF QIEM

quadratic h(x) = x2 0.6364 0.4630
cubic h(x) = x3 0.6677 0.3600

quartic h(x) = x4 0.9298 0.5089
quintic h(x) = x5 1.2140 0.4279
sextic h(x) = x6 1.3314 0.5597

(a) (b)

Figure 5: The numerical results for 1-D cubic sensor problem with initial
u0(s) = es

5. Conclusions

In this paper, we propose efficient numerical algorithms, namely, IEM/
QIEM/SPT for solving the nonlinear filtering problem by using the Yau-
Yau method. QIEM is more efficient than IEM because the linear systems
in QIEM is feasible by FFT-acceleration. SPT is an off-time process which
saves a lot of computational cost. The solution of the initial-value prob-
lem of the Kolmogorov equations (2) forms a probability density function
which must be nonnegative. We first show that the iterative matrix of the
proposed schemes is an M -matrix whose inverse is a nonnegative opera-
tor and guarantees the nonnegativity of the solution in each iteration. Fur-
thermore, we prove that the proposed numerical schemes converge to the
initial-value problem (2) under some mild conditions. At the present stage,
IEM/QIEM/SPT are capable for solving 1-D and 2-D nonlinear filtering
problems efficiently and accurately. To make our algorithms feasible for solv-
ing the higher dimensional problems efficiently is our next goal and under
investigation.
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left: x1 component, right: x2 component

Figure 6: The numerical results for 2-D nonlinear filtering problem with
initial u(s1, s2) = e−5(s21+s22)
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