
Communications in Information and Systems

Volume 14, Number 4, 243–262, 2014

An efficient numerical method for solving
high-dimensional nonlinear filtering problems

Mei-Heng Yueh , Wen-Wei Lin and Shing-Tung Yau

In this paper, a brief introduction of the nonlinear filtering prob-
lems and a review of the quasi-implicit Euler method are pre-
sented. The major contribution of this paper is that we propose a
nonnegativity-preserving algorithm of Yau-Yau method for solving
high-dimensional nonlinear filtering problems by applying quasi-
implicit Euler method with discrete sine transform. Furthermore,
our algorithms are directly applicable on the compact difference
schemes, so that the number of spatial points can be substan-
tially reduced and retain the same accuracy. Numerical results
indicate that the proposed algorithm is capable of solving up to
six-dimensional nonlinear filtering problems efficiently and accu-
rately.
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1. Introduction

The nonlinear filtering problem (NFP) is originated from the problem of
tracking and signal processing [10]. The theory of filtering has been widely
studied for more than 60 years. One of the most influential work on the filter-
ing theory is the Kalman-Bucy filter [9]. It provided an iterative way to solve
the linear filtering problem for the discrete data with Gaussian initial distri-
bution, which is useful in science and engineering industries [1, 17, 15, 16].
In order to break out the restriction to the linear dynamical system with
Gaussian initial distribution, the problem of nonlinear filtering is gradually
getting much more attention. A significant progress on the nonlinear filter-
ing theory is the Yau-Yau filter [21, 22, 23], which reduces the stochastic
differential equations of NFP into the Kolmogorov partial differential equa-
tion. Few years later, Luo/Yau have further extended the Yau-Yau filter
to the general setting of NFP [12]. Also, they proposed a spectral method

243

http://www.intlpress.com/CIS/


244 M.-H. Yueh, W.-W. Lin and S.-T. Yau

for solving one-dimensional NFP [13] in the same year. Based on the the-
ory of Yau-Yau filter, Liu/Dong/Ding proposed an explicit finite difference
method for solving NFP with one and two dimensions [11]. In order to
improve the efficiency and the reliability of the algorithm proposed in [11],
Yueh/Lin/Yau proposed a numerical scheme based on the quasi-implicit Eu-
ler method (QIEM) [24] for solving the Kolmogorov equations. Under some
mild conditions, QIEM has been proved to be convergent and to preserve
the conditional probability density functions [24]. However, the efficiency of
QIEM can be further improved when we consider the higher-dimensional
NFP. In this paper, we develop an efficient algorithm of Yau-Yau method
for solving high-dimensional NFP by applying QIEM [24] with discrete sine
transform (DST) [7, Chapter 4.8] and present the numerical experiment on
up to six-dimensional NFPs. Furthermore, DST is directly applicable on
the higher-order difference schemes, so that the number of spatial points
can be substantially reduced. This indicates that we can further save more
computational costs and retain the same accuracy.

In the following, we consider the classical discrete-time NFP for an RD-
valued signal-observation model [8, 2]. The RD-valued signal/state process
x = x(t) satisfies the equation

(1) dx(t) = f(x(t)) dt+ dv(t),

where f(x(t)) is an RD-valued drift term, v is an RD-valued standard Wiener/
Brownian process. In addition, the RM -valued observation/measurement
process y = y(t) satisfies the equation

(2) dy(t) = h(x(t)) dt+ dw(t),

where h(x(t)) is an RM -valued observation function, w is an RM -valued
standard Wiener/Brownian process, which is mutually independent of v. To
solve the NFP, specifically, we suppose that the value of measurement y
at time t = τ0, . . . , τNτ can be observed. Then, by applying the theory of
Yau-Yau method [20, 22, 23], the NFP can be reduced into a Kolmogorov
partial differential equation in RD of the form

(3)
∂u

∂t
(t, s) =

1

2
4u(t, s) + p(s) · ∇u(t, s) + q(s)u(t, s),

where p(s) = −f(s), q(s) = −
(
∇ · f(s) + 1

2 ‖h(s)‖22
)

, u vanishes at infinity,

and the initial u(0, s) = σ0(s) is a given probability density function over
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RD. Once a new measurement y(τk) is observed, we correct our solution
u(τk, s) at time t = τk by

exp {[y(τk)− y(τk−1)] · h(s)}u(τk, s).

In the whole process, we use the normalized vector ũ(t, s) of the solution
u(t, s) representing the probability density function for the state x at time
t. In other words, suppose the random variable Xt with respect to the state
at time t is defined by Xt(s) = s. As a consequence of the Yau-Yau filter
theory, we have the probability P [Xt = s] = ũ(t, s). Hence we compute the
expectation E(Xt) as an estimate of the state x(t).

2. Numerical Algorithms for Solving Kolmogorov Equations

In this section, we briefly review the QIEM for solving the Kolmogorov
equation (3). Then, the state x(t) in (1) can be estimated by the solution of
(3) at each time t. Let a terminal time T be given. We discretize the time
interval [0, T ] by taking a uniform partition

P[0,T ] = {0 = τ0 < τ1 < · · · < τNτ = T} ,(4)

where τk − τk−1 = ∆τ , and assume that the information of y at each time
step τk can be observed, for k = 1, . . . , Nτ . Furthermore, for each time
interval [τk−1, τk], k = 1, . . . , Nτ , we partition it uniformly as

P[τk−1,τk] =
{
τk−1 = t

(k)
0 < t

(k)
1 < · · · < t

(k)
Nt

= τk

}
,

where t
(k)
n − t(k)

n−1 = ∆t, n = 1, . . . , Nt. Then the partition

P∗[0,T ] =

Nτ⋃
k=1

P[τk−1,τk]

=
{

0 = τ0 = t
(1)
0 < · · · < t

(1)
Nt

= τ1 = t
(2)
0 < · · ·

< t
(2)
Nt

= τ2 = t
(3)
0 < · · · < t

(Nτ )
Nt

= τNτ = T
}

of [0, T ] forms a refinement of the partition P[0,T ] in (4). Our goal is to
compute the estimate of the state at each time step t ∈ P∗[0,T ].

For the sake of computations, we restrict the domain RD of the Kol-
mogorov equation (3) to a D-cell Ω ≡ [−R,R]D, where R is a suitably large
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number so that the Gaussian distribution can be ignored outside the ball of

radius R with center zero. Then we partition the considered space region on

a coordinate axis [−R,R] uniformly by

P[−R,R] = {−R = s1 < s2 < · · · < sN = R} ,

where sj−sj−1 = ∆s, j = 1, 2, . . . , N . Then the D-cell Ω can be represented

by the power set of the partition P[−R,R],

PD[−R,R] =

{
sj =

(
s

(1)
j , s

(2)
j , . . . , s

(D)
j

)>∣∣∣∣ s(d)
j ∈ P[−R,R], d = 1, . . . , D

}ND

j=1

.

2.1. Standard Stencil of QIEM

In the discrete model of the equation (3), we set up the boundary condition of

the domain Ω satisfying the Dirichlet boundary condition. That is, u(t, s) =

0 on [0, T ] × ∂Ω. For the d-th dimension of the space, d = 1, . . . , D, by

using the QIEM, the second order differential operator ∂2u
∂s2 (t

(k)
n , sj) in (3) is

approximated by the second-order discretization

∂2u

∂s2
(t(k)
n , sj) ≈

u(t
(k)
n+1, sj+1)− 2u(t

(k)
n+1, sj) + u(t

(k)
n+1, sj−1)

(∆s)2
,(5)

which is an implicit form. The first order differential operator ∂u
∂s (t

(k)
n , sj) in

(3) is approximated explicitly by the second-order discretization

∂u

∂s
(t(k)
n , sj) ≈

u(t
(k)
n , sj+1)− u(t

(k)
n , sj−1)

2(∆s)
.(6)

We define the matrices

LN =


−2 1

1 −2
. . .

. . .
. . . 1
1 −2

 and KN =


0 1

−1 0
. . .

. . .
. . . 1
−1 0

 .(7)
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Then, the discretized Laplacian operator 4 in (3) can be represented by the

matrix 1
(∆s)2 L

(D)
N , where [7, Chapter 4.8]

L
(D)
N =

D∑
d=1

[(
D−d⊗
k=1

IN

)
⊗ LN ⊗

(
D⊗

k=D−d+2

IN

)]
,(8)

in which ⊗ denotes the Kronecker tensor product, IN is the identity matrix

of size N and LN is given in (7). Similarly, the discretization of the term p·∇
in (3) can be represented by the matrix 1

2(∆s)K
(D)
N , where [7, Chapter 4.8]

K
(D)
N =

D∑
d=1

{
Pd

[(
D−d⊗
k=1

IN

)
⊗KN ⊗

(
D⊗

k=D−d+2

IN

)]}
,(9)

in which the matrix Pd = diag {pd(sj)}N
D

j=1, d = 1, . . . , D and KN is given

in (7). For each time step t
(k)
n ∈ [τk−1, τk], the partial differential operator

∂u
∂t (t

(k)
n , s) of (3) with respect to time is approximated explicitly by the first-

order discretization

∂u

∂t
(t(k)
n , s) ≈

u(t
(k)
n+1, s)− u(t

(k)
n , s)

∆t
.(10)

Then, QIEM for solving (3) can be written in the form

u(t
(k)
n+1, s)− u(t

(k)
n , s)

∆t
(11)

=
1

2(∆s)2
L

(D)
N u(t

(k)
n+1, s) +

(
1

2(∆s)
K

(D)
N + Q

(D)
N

)
u(t(k)

n , s),

where the matrix Q
(D)
N = diag{q(sj)}N

D

j=1. Therefore, we can obtain the so-

lution of (3) at each time step t
(k)
n+1 ∈ [τk−1, τk], n = 0, . . . , Nt−1, by solving

the linear system iteratively in time[
IND − ∆t

2(∆s)2
L

(D)
N

]
u(t

(k)
n+1, s)(12)

=

[
IND + (∆t)

(
1

2(∆s)
K

(D)
N + Q

(D)
N

)]
u(t(k)

n , s),
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with the initial vector

u(t
(k)
0 , s) = exp {[y(τk+1)− y(τk)] · h(s)}u(t

(k−1)
Nt

, s),(13)

for k = 1, . . . , Nτ . Each vector u(t
(k)
n , s) in (12) should be normalized to

ũ(t
(k)
n , s) such that

ND∑
j=1

ũ(t(k)
n , sj) = 1.

Then the normalized vector ũ(t
(k)
n , s) represents the probability distribution

of the state at time t
(k)
n . The QIEM (12) for solving the NFP is proven in

[24] to be consistent and stable as long as both ∆s and ∆t are sufficiently
small.

2.2. Compact Stencils of Laplacian Operator

The accuracy of the scheme (12) is O
(
(∆s)2 + ∆t

)
. In order to obtain a

higher accuracy, we can further consider the compact stencils for Laplacian
operator. Suppose the spatial step size of each axis are the same as ∆s.
The compact difference scheme [18, 6] for the D-dimensional discretized
Laplacian operator 4(D) can be written by

(14) 4(D)u(s) =
1

(∆s)2

D∑
j=0

|k|=
√
j∆s

k∈Qs

αju(s + k),

where s, k ∈ RD, Qs is the cube with the center at s and the side length of
2∆s, αj are the suitable constant coefficients, j = 0, . . . , D. The coefficients
αj can be taken by αj = 22−D−j , j = 1, . . . , D with

α0 = −
D∑
j=1

(
αj#

{
k ∈ Qs

∣∣∣|k| = √j∆s}) .
(See [18, 6].) Then the matrix representation of the compact scheme (14)

can be written by the matrix 1
(∆s)2 L

(D)
N , where

(15) L
(D)
N = S

(1,...,D)
N ,
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where the matrix S
(1,...,D)
N is recursively defined by

(16) S
(i,...,k)
N = IN ⊗ S

(i,...,k−1)
N + JN ⊗ S

(i+1,...,k)
N ,

for k = i+ 1, . . . , D, in which the matrices JN and S
(j)
N are defined by

JN =


0 1

1 0
. . .

. . .
. . . 1
1 0

 and S
(j)
N =


αj−1 αj

αj αj−1
. . .

. . .
. . . αj
αj αj−1

 ,
respectively, j = 1, . . . , D. A diagram regarding the construction of a com-
pact Laplacian matrix is shown in Figure 1. Similar to (12), the linear system
of the compact scheme can be formulated by[

IND − ∆t

2(∆s)2
L

(D)
N

]
u(t

(k)
n+1, s)(17)

=

[
IND + (∆t)

(
1

2(∆s)
K

(D)
N + Q

(D)
N

)]
u(t(k)

n , s).

In addition, according to the recursive construction of the matrix S
(1,...,D)
N ,

we can write down an explicit form of L
(D)
N , which is shown in the following

theorem.

Theorem 1 (Explicit Form of Compact Laplacian Matrices). The matrix

L
(D)
N in (15) can be written explicitly by

(18) L
(D)
N =

D∑
d=1

 ∑
#{i|Xi=IN}=D−d
#{i|Xi=JN}=d−1

 D−1⊗
i=1

Xi∈{IN ,JN}

Xi

⊗ S
(d)
N

 .
Proof. We observe that each arrow in the diagram of Figure 1 is performed
exactly once in the construction of the compact discrete Laplacian matrix

L
(D)
N . In Figure 1, we take S

(d)
N as the starting point and go to the end point

S
(1,...,D)
N along the arrows. Each path from S

(d)
N to S

(1,...,D)
N determines a term

of L
(D)
N . Note that each path passes through the arrow ”

IN⊗−→” and the arrow

”
JN⊗
↗ ” for exactly D−d times and d−1 times, respectively. Hence, all terms
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S
(1)
N

IN⊗−→ S
(1,2)
N

IN⊗−→ · · · IN⊗−→ S
(1,...,D−1)
N

IN⊗−→ S
(1,...,D)
N

JN⊗
↗

JN⊗
↗

JN⊗
↗

JN⊗
↗

S
(2)
N

IN⊗−→ S
(2,3)
N

IN⊗−→ · · · IN⊗−→ S
(2,...,D)
N

JN⊗
↗

JN⊗
↗

JN⊗
↗

...
...

...
... . .

.

JN⊗
↗

JN⊗
↗

S
(D−1)
N

IN⊗−→ S
(D−1,D)
N

JN⊗
↗

S
(D)
N

Figure 1: Diagram for construction of the D-dimensional compact Laplacian
matrix.

related to S
(d)
N are given by the sum of the Kronecker products for all possible

permutations of the matrix sequence (IN , . . . , IN︸ ︷︷ ︸
D−d

, JN , . . . , JN︸ ︷︷ ︸
d−1

), that is,

∑
#{i|Xi=IN}=D−d
#{i|Xi=JN}=d−1

 D−1⊗
i=1

Xi∈{IN ,JN}

Xi

⊗ S
(d)
N .

Therefore, (18) follows.

3. Nonnegativity of Numerical Solutions

According to the Yau-Yau filter algorithm, the solution u(t
(k)
n , s) of the linear

system (12) or (17) represents the probability density function of the state

x(t
(k)
n ) over Ω. Therefore, it is essential to guarantee the nonnegativity of

each numerical solution, so that the probability density function at each time

makes sense. In the following, we prove that the numerical solution of the

Kolmogorov equation by using QIEM is nonnegative. That is, we prove the

matrix
[
IND − ∆t

2(∆s)2 L
(D)
N

]−1
is a nonnegative operator, so that the solution

of the linear system (17) is always nonnegative.
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Definition 1. A real matrix B = [Bij ] is called an M -matrix if Bij ≤ 0,
i 6= j and B−1 exists with B−1 ≥ 0.

Lemma 1 (Equivalence Condition of M -matrix). [14] Let B be a real matrix
with Bij ≤ 0 for i 6= j. Then B is an M -matrix if and only if there is a
positive vector v > 0 such that Bv > 0.

Theorem 2 (Nonnegativity for Compact Scheme). For each pair of natural

numbers N and D, the matrix
[
IND − ∆t

2(∆s)2 L
(D)
N

]
in (17) is an M -matrix.

In other words,
[
IND − ∆t

2(∆s)2 L
(D)
N

]−1
is a nonnegative matrix.

Proof. Let N and D be arbitrarily given two natural numbers, and

A =

[
IND − ∆t

2(∆s)2
L

(D)
N

]
.

First, we claim that Aij ≤ 0 for i 6= j. That is to show that
[
L

(D)
N

]
ij
≥ 0

for i 6= j. Note that αj ≥ 0 for j = 1, . . . , D. By definition, the entries of

the matrix S
(d)
N are nonnegative, for d = 2, . . . , D. From (18), we have the

equation

(19) L
(D)
N = IND−1 ⊗ S

(1)
N +

D∑
d=2

 ∑
#{i|Xi=IN}=D−d
#{i|Xi=JN}=d−1

 D−1⊗
i=1

Xi∈{IN ,JN}

Xi

⊗ S
(d)
N

 ,

where the entries of S
(d)
N are nonnegative for d = 2, . . . , D. In addition, the

matrix S
(1)
N = α0IN + α1JN where α1 ≥ 0. From the equation (19), the

only negative coefficient α0 will appear merely on the diagonal entries of

L
(D)
N . Now, we claim that A 1ND > 0, where 1ND = (1, 1, . . . , 1︸ ︷︷ ︸

ND

)>. Accord-

ing to the definition of α0, the row sum of the compact Laplacian matrix

L
(D)
N 1ND ≤ 0. Hence A 1ND = 1ND − ∆t

2(∆s)2 L
(D)
N 1ND > 0. Therefore, by

Lemma 1, A is an M -matrix.

Corollary 1 (Nonnegativity for Standard Scheme). For each pair of natural

numbers N and D, the matrix
[
IND − ∆t

2(∆s)2 L
(D)
N

]
in (12) is an M -matrix.

In other words,
[
IND − ∆t

2(∆s)2 L
(D)
N

]−1
is a nonnegative operator.
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Proof. The statement follows directly by picking α0 = −2D, α1 = 1 and
αj = 0, for j = 2, . . . , D, as in Theorem 2.

It is natural to consider applying the spectral method with Chebyshev

polynomial basis [19] for solving (3) by replacing the Laplacian matrix L
(D)
N

in (8) by

(20) L(D)
N =

D∑
d=1

[(
D−d⊗
k=1

IN

)
⊗ (DN )2 ⊗

(
D⊗

k=D−d+2

IN

)]
,

and the matrix K
(D)
N in (9) by

(21) K(D)
N =

D∑
d=1

{
Pd

[(
D−d⊗
k=1

IN

)
⊗DN ⊗

(
D⊗

k=D−d+2

IN

)]}
,

where the Chebyshev differentiation matrix DN is defined in page 53 of
[19]. In general, the advantage of the spectral method is to handle a small-
sized discretization model. However, the probability density function of the
Kolmogorov equation in each step computed by (20) and (21) may fail to
be nonnegative. Thus, by using the spectral method, the estimates cannot
match the real states well because the expectations cannot be precisely esti-
mated. In Figure 2, we observe that the probability density function of the
Kolmogorov equation computed by Chebyshev spectral method not all are
nonnegative. But the probability density function computed by the finite
difference method can be guaranteed to be nonnegative (see Theorem 2).
Therefore, throughout this paper, we are motivated to consider the QIEM
(12) only.

4. High-Dimensional DST for Accelerating QIEM

In order to further improve the efficiency of QIEM, we apply the high-
dimensional discrete sine transformation (DST) for solving the Kolmogorov
equations.

4.1. Discrete Sine Transform

It is well known that the DST can be used for solving Poisson equations
with the Dirichlet boundary condition [5]. Suppose the number of discretized
spatial points is N . The one-dimensional discretized Laplacian operator can
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(a) Chebyshev Spectral Method (b) Finite Difference Method

Figure 2: The numerical solution of the Kolmogorov equation

be represented by the matrix LN in (7). The DST matrix regarding LN is
defined by [7, Chapter 4.8]

(22) WN =

[√
2

N + 1
sin

(
ijπ

N + 1

)]N
i,j=1

,

so that the spectral decomposition of the matrix LN is given by [7, Chap-
ter 4.8]

(23) LN = WNΛNW∗
N ,

where the diagonal matrix ΛN is of the form [7, Chapter 4.8]

(24) ΛN = diag

(
−4 sin2

(
iπ

2 (N + 1)

))
.

Then, we can express the solution of the linear system LNu = b as

u =
(
W∗

N

(
Λ−1
N (WNb)

))
.

Therefore, solving u can be reduced to matrix-vector products of WN and
W∗

N , respectively, and the inverse of the diagonal matrix Λ−1
N . Furthermore,

the matrix-vector products of WN and W∗
N can be done efficiently by calling

the built-in function directly.
For D-dimensional problems, we suppose the number of discretized spa-

tial points in k-th axis is Nk, k = 1, . . . , D. Then, the D-dimensional dis-
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cretized Laplacian operator can be represented by the matrix [7, Chapter 4.8]

(25) L
(D)
N1,...,ND

=

D∑
d=1

[(
D−d⊗
k=1

INk

)
⊗ LND−d+1

⊗

(
D⊗

k=D−d+2

INk

)]
.

For A(j) ∈ Rpj×qj and B(j) ∈ Rqj×rj , j = 1, . . . , d. It is well-known by the

multiplication rule for Kronecker products [3] that

(26)

 d⊗
j=1

A(j)

 d⊗
j=1

B(j)

 =

d⊗
j=1

A(j)B(j).

Then, from (23)-(25) and (26), we have the following useful theorem imme-

diately.

Theorem 3 (D-dimensional DST for Laplacian). [7, Chapter 4.8] [4] Let

the number of partition points in k-th axis be Nk, k = 1, . . . , D. The spectral

decomposition of the D-dimensional Laplacian matrix L
(D)
N1,...,ND

in (25) can

be written by

(27) L
(D)
N1,...,ND

= W
(D)
N1,...,ND

Λ
(D)
N1,...,ND

W
(D)∗
N1,...,ND

,

where W
(D)
N1,...,ND

=
(⊗D

k=1 WNk

)
, W

(D)∗
N1,...,ND

=
(⊗D

k=1 W∗
Nk

)
and Λ

(D)
N1,...,ND

is the diagonal matrix of the form

Λ
(D)
N1,...,ND

=

[
D∑
d=1

(
D−d⊗
k=1

INk

)
⊗ ΛND−d+1

⊗

(
D⊗

k=D−d+2

INk

)]
.

4.2. The DST on Compact Stencils

In order to reduce the number of spatial points for discretization and retain

the same accuracy, we apply the DST on compact QIEM stencils. By doing

so, we can further save the computational costs.

In the following, we simply derive an explicit form of the spectrum of

the compact Laplacian matrix L
(D)
N , so that the DST can be applied in

the compact stencils directly. For convenience, we suppose the numbers of

partition points in each axis are the same.
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Theorem 4 (D-Dimensional DST for Compact Laplacian Stencils). Let the
number of partition points in each axis be N . The spectral decomposition of

L
(D)
N in (15) can be written by

(28) L
(D)
N = W

(D)
N Λ

(D)
N W

(D)∗
N ,

where W
(D)
N =

(⊗D
d=1WN

)
, W

(D)∗
N =

(⊗D
d=1W

∗
N

)
and Λ

(D)
N is the diago-

nal matrix of the form

(29) Λ
(D)
N =

D∑
d=1

 ∑
#{i|Xi=IN}=D−d
#{i|Xi=ΓN}=d−1

 D−1⊗
i=1

Xi∈{IN ,ΓN}

Xi

⊗Θ
(d)
N

 ,

where Θ
(d)
N = αdΛN + (2αd + αd−1) IN , d = 1, . . . , D and ΓN = ΛN + 2 IN .

Proof. Note that

S
(d)
N = αdLN + (2αd + αd−1) IN(30)

= WN [αdΛN + (2αd + αd−1) IN ] W∗
N = WNΘ

(d)
N W∗

N ,

d = 1, . . . , D, and

(31) JN = LN + 2 IN = WN (ΛN + 2 IN ) W∗
N = WNΓNW∗

N .

Plugging (30) and (31) into (18), we obtain

L
(D)
N =

D∑
d=1

∑
#{i|Xi=WN INW∗

N}=D−d
#{i|Xi=WNΓNW∗

N}=d−1

 D−1⊗
i=1

Xi∈{WN INW∗
N ,WNΓNW∗

N}

Xi

(32)

⊗
(

WNΘ
(d)
N W∗

N

)
.

By applying (26) to (32), the theorem is proved.

Remark. (i) Theorem 4 implies that the matrices L
(D)
N and L

(D)
N are simul-

taneously diagonalizable since L
(D)
N = W

(D)
N Λ

(D)
N L

(D)∗
N . (ii) In (29), since

Λ
(D)
N is diagonal, the inverse of Λ

(D)
N is easily to compute.
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5. Numerical Experiments

In this section, we demonstrate numerical experiments for the cubic sensor
problem of dimension D, for D = 1, . . . , 6, and test the efficiency of our
algorithm for solving NFP. The process for generating data of states and
observations for the cubic sensor problem is described in Section 5.1. The
numerical results are shown in Section 5.2.

5.1. Generating Data of the States and Observations

In order to simulate numerical examples of (1) and (2), we use the Eu-
ler forward difference method to generate a set of states and observations
{xk,yk}Nτk=0 of the formxk+1 = xk + f(xk)∆τ + v

√
∆τ ,

yk+1 = yk + h(xk)∆τ + w
√

∆τ ,

where x0 is a given initial vector and y0 is zero, ∆τ is the size of the time
step, v and w are mutually independent Wiener/Brownian processes with
mean to be zero and variance to be one. The vector-valued functions f and
h in the cubic sensor problem of (1) and (2) are chosen to be

f(x1, . . . , xD) = (cos(x1), . . . , cos(xD)) and h(x1, . . . , xD) =
(
x3

1, . . . , x
3
D

)
.

5.2. Numerical Results

We use the laptop of Sony VIAO (SVS13137PW) with 12GB memory as
our computing device. In order to check the accuracy of our algorithm for
solving NFP, we compute both the mean error (L1-error) EL1 and the root-
mean-square error (L2-error) EL2 between the estimates x̂ = (x̂1, . . . , x̂D)
and the real state x = (x1, . . . , xD) by

EL1(x̂,x) =

∑Nτ
i=1

∑D
d=1 |x̂d(ti)− xd(ti)|
DNτ

and

EL2(x̂,x) =

√∑Nτ
i=1

∑D
d=1 |x̂d(ti)− xd(ti)|

2

DNτ
,
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Dimension Execution Time L1-Error L2-Error

1 3.0929 sec. 0.2641 0.3410
2 4.7645 sec. 0.3647 0.4254
3 23.4864 sec. 0.3538 0.3930
4 80.7798 sec. 0.3643 0.4024
5 105.1858 min. 0.4364 0.4816
6 131.0143 min. 0.4011 0.4205

Table 1: The execution time and RMS error of QIEM with DST

respectively. Table 1 shows the execution time of 20,000 steps, L1-error and
L2-error for the cubic sensor problem of dimensions D = 1, . . . , 6, respec-
tively. We take the terminal time T = 20, the size of time steps for generating
data of signals (1) and observations (2) ∆τ = 0.01, the size of time steps for
solving the Kolmogorov equation (3) ∆t = 0.001, the size of spatial steps
∆s = 0.5, and the initial vector σ0(s) = exp

{
−10|s|2

}
. According to the

experimental results, QIEM with DST is capable for solving up to 4-D NFP
efficiently. For solving the 5-D and 6-D NFP, QIEM with DST is reason-
able fast. The accuracy of QIEM with DST is satisfactory since both the
L1-error and L2-error are less than the spatial mesh size ∆s = 0.5. Figure
3, 4, 5, 6, 7 and 8 show the numerical results of QIEM with DST for solving
D-dimensional cubic sensor problems, D = 1, . . . , 6, respectively. We can see
that the overall trend of the estimates in each figure match the real states
well.

6. Concluding Remarks

In this paper, we apply the QIEM with the high-dimensional DST accelera-
tion for solving the high-dimensional NFP. In addition, we derive an explicit
form of spectrum of the compact Laplacian matrix, so that the DST is di-
rectly applicable on compact difference schemes. Furthermore, we prove that
our algorithm preserves the probability density functions. Several numerical
experiments are demonstrated in detail. The numerical results indicate that
QIEM with the DST acceleration is capable of solving up to six-dimensional
NFP efficiently and accurately.
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