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An Efficient Energy Minimization for Conformal Parameterizations

Mei-Heng Yueh · Wen-Wei Lin · Chin-Tien Wu ·
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Abstract Surface parameterizations have been widely applied to digital geometry processing. In this paper,
we propose an efficient conformal energy minimization (CEM) algorithm for computing conformal param-
eterizations of simply-connected open surfaces with a very small angular distortion and a highly improved
computational efficiency. In addition, we generalize the proposed CEM algorithm to computing conformal
parameterizations of multiply-connected surfaces. Furthermore, we prove the existence of a nontrivial accu-
mulation point of the proposed CEM algorithm under some mild conditions. Several numerical results show
the efficiency and robustness of the CEM algorithm comparing to the existing state-of-the-art algorithms.
An application of the CEM on the surface morphing between simply-connected open surfaces is demon-
strated thereafter. Thanks to the CEM algorithm, the whole computations for the surface morphing can be
performed efficiently and robustly.
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Surfaces · Surface Morphing
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1 Introduction

A surface parameterization is a bijective mapping that maps a surface to a simply shaped domain, which
is called the parametric domain. The surface parameterization has been widely applied to tasks of digital
geometry processing, such as surface registration, surface resampling, surface remeshing and surface textur-
ing. It is usually difficult and time-consuming to carry out a task of geometry processing on a surface of a
complicated geometrical structure. An appropriate parameterization for a surface can be applied to simplify
the task via the one-to-one correspondence between the surface and the parametric domain. More details
for methods and applications of surface parameterizations can be found in survey papers [7, 25, 14].

A good parameterization usually minimizes the distortion of either angles or areas. In particular, an
angle-preserving map is also called a conformal parameterization. Some classical approaches for conformal
parameterizations are:

1. Harmonic energy minimization [11, 21, 16, 17];
2. Laplacian operator linearization [1, 13];
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3. Angle-based flattening method [26, 24];
4. Circle packing method [27, 18].

In recent years, several efficient numerical methods for the computation of conformal parameterizations
have been developed by different research groups. In the following, we briefly review the most related works
for computing disk-shaped conformal parameterizations of simply-connected open surfaces. Gu and Yau
[11] proposed an algorithm for computing conformal parameterizations via the heat diffusion on the double
covered surface. Huang et al. [16] further improved the efficiency for convergence of the heat diffusion by
applying the quasi-implicit Euler method. Choi and Lui [4] proposed an algorithm for computing conformal
parameterizations based on the composition of Cayley transforms and quasiconformal maps. To further
improve the efficiency of computations, Choi and Lui [5] developed a linear algorithm for computing confor-
mal parameterizations based on the composition of a spherical conformal map [3, 10] of the double covered
surface and a quasiconformal map. A detailed overview of previous works on different types of algorithms
for computing conformal parameterizations can be found in [4, 5].

1.1 Contributions

In this paper, we propose an efficient conformal energy minimization (CEM) algorithm for computing
conformal parameterizations of simply-connected open surfaces with a very small angular distortion and
a highly improved computational efficiency. The contributions can be divided into three parts. First, we
improve the conformality of the CEM by introducing a boundary iteration scheme. After the convergence
of the boundary iteration, the conformal parameterization can be obtained by solving a harmonic map with
the converged boundary map. Second, thanks to the technique of matrix computations, the proposed CEM
is more efficient than the current existing state-of-the-art algorithms. As a result, the whole computational
process of our developed algorithm is fast enough to be used in real applications. Third, we prove the
existence of a nontrivial (nonconstant) accumulation point of the CEM under some mild conditions.

1.2 Notations and Overview

The following notations are frequently used in this paper. Other notations will be clearly defined whenever
they appear.

• Bold letters, e.g. u, v, w, denote vectors.
• Capital letters, e.g. A, B, C, denote matrices.
• Typewriter letters, e.g. i, j, k, denote ordered sets of indices.
• i denotes the imaginary unit

√
−1.

• nv denotes the number of elements of a vector v.
• nA denotes the number of rows of a square matrix A.
• ni denotes the number of elements of an ordered index set i.
• In denotes the identity matrix of size n× n.
• 1n denotes the vector of length n with all entries being one.
• 0 denotes the zero vectors and matrices of appropriate sizes.
• vi denotes the i-th entry of the vector v.
• vi denotes the subvector of v composed of vi, for i ∈ i.
• |v| denotes the vector with the i-th entry being |vi|.
• diag(v) denotes the diagonal matrix with the (i, i)-th entry being vi.
• Ai,j denotes the (i, j)-th entry of the matrix A.
• Ai,j denotes the submatrix of A composed of Ai,j , for i ∈ i and j ∈ j.

This paper is organized as follows. First, we introduce the discrete conformal maps in Section 2. Then,
we describe the CEM algorithm in Section 3. We prove the existence of a nontrivial accumulation point
for the CEM algorithm in Section 4. We present numerical results and comparisons with other methods
in Section 5. Finally, we demonstrate an application of CEM on the surface morphing in Section 6. A
concluding remark is given in Section 7.
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2 Discrete Conformal Maps

A diffeomorphism f :M→N between two Riemann surfaces is said to be conformal if it satisfies f∗ ds2N =
λds2M with some positive scalar function λ, where ds2M and ds2N are the first fundamental forms of surfaces
M and N , respectively, and f∗ ds2N is the pullback metric induced by f . Here, the scaling factor λ is known
as the conformal factor with respect to the conformal map f . The uniformization theorem [28] tells that
every simply-connected open surfaceM is conformally equivalent to a unit disk D ⊂ C. That is, there exists
a conformal map f that maps the surface M to a unit disk D. Our goal is to efficiently compute such a
conformal map f with small angular distortions.

In the following, we briefly describe the computations of conformal maps via the Dirichlet energy min-
imization. Let M be a Riemann surface in R3. The Dirichlet energy functional [11] for a smooth map
f :M→ D is defined by

ED (f) =
1

2

∫
M
‖∇f‖2 dvM, (1)

where dvM is the area element of the surface M. Let A(f) measure the area of the image f(M). The
conformal energy of f is defined by

EC (f) = ED (f)−A (f) . (2)

It is known that ED (f) ≥ A (f), and the equality holds if and only if f is a conformal map [19, 6]. When
the image f(M) is the unit disk D, the area of the image would be a constant A (f) = π. As a result, a
conformal map to the unit disk is actually a minimizer for the Dirichlet energy functional defined by Eq.
(1) under a circular boundary constraint. In other words, the desired conformal map f is a minimizer for
the optimization problem

f = argmin
g:M→D

{ED (g) | g|∂M : ∂M→ ∂D and g(M) = D} . (3)

It is well-known that every conformal map is harmonic [7]. Once the boundary condition f |∂M = fb : ∂M→
∂D is given, the map f can be obtained by solving a Laplace-Beltrami equation{

4Mf = 0 on M\∂M,

f |∂M = fb,
(4)

where 4M is the Laplace-Beltrami operator [22, 23]. Hence the map f is uniquely determined by the
boundary condition fb in Eq. (4). However, in general, it is difficult to find the optimal boundary condition
fb, since there are infinitely many possible choices for boundary maps.

Remark 1 The solution to Eq. (4) is known as a harmonic map, which is a minimizer of the Dirichlet energy
functional (1) under a given boundary constraint f |∂M = fb.

In the linear discretization, the surface M we considered is a Delaunay triangulation mesh [11] with
n vertices in a certain order. A triangular mesh usually satisfies the conditions stated in Definition 1.
Otherwise, a remeshing process can be applied to reach the conditions.

Definition 1 (Well-conditioned mesh) A triangular mesh M for a simply-connected open surface is
said to be well-conditioned if it satisfies the following conditions:

(i) The graph of M is connected.
(ii) The subgraph on all the interior vertices is connected.
(iii) The subgraph on all the boundary vertices is connected.
(iv) Every boundary vertex is connected to at least one interior vertex.

Hereafter, we suppose that M is a well-conditioned Delaunay triangulation mesh. A piecewise linear ap-
proximation of the map f : M → D can be expressed by a complex-valued vector f = (f1, . . . fn)> ∈ Cn,
where fk = uk + ivk, for k = 1, . . . , n. Then the discrete Dirichlet energy [11] can be written as

ED (f) =
1

2

∑
[i, j] ∈edges

cotαij + cotαji
2

|fi − fj |2 =
1

2
f∗Lf , (5)
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where αij and αji are the two angles opposite to the edge [i, j] connecting vertices i and j on the meshM,
and L is the discrete Laplacian matrix defined by

Li,j =


−1

2 (cotαij + cotαji) if [i, j] is an edge, j 6= i,

−
∑
k 6=i Li,k if j = i,

0 otherwise.

(6)

Note that for a Delaunay triangular mesh, the entry Li,j < 0 if [i, j] is an edge.
Similarly, the discrete conformal energy is defined by

EC (f) = ED (f)−A (f) , (7)

where the area of the image A (f) is defined by

A (f) =
1

2

∑
[i,j]∈∂M

(uivj − ujvi) . (8)

By a certain reordering of the indices of vertices, the matrix L and the complex-valued vector f can be
written as

L =

[
Li,i Li,b

L>i,b Lb,b

]
and f =

[
fi
fb

]
, (9)

respectively, where i and b denote the ordered index sets of the interior vertices and the boundary vertices
of the triangular meshM, respectively. Then the discrete Laplace-Beltrami equation can be expressed as a
linear system

Li,ifi = −Li,bfb, (10)

where fb is a given boundary condition. More details on topics of theoretical and computational conformal
geometry can be found in [9, 11, 12].

3 Conformal Energy Minimization Algorithm

In this section, we describe our CEM algorithm for computing a conformal parameterization f of a simply-
connected open surface M. In Section 3.1, we introduce an appropriate initial boundary map obtained by
computing a harmonic map with a fixed triangle as a constraint. To minimize the conformal energy of the
map f defined in Eq. (2), we introduce an iteration scheme to improve the boundary map in Section 3.2.
When a satisfactory boundary map is convergent, the conformal parameterization of the surface M can be
obtained by solving a Laplace-Beltrami equation of the form (4) with a certain boundary condition.

3.1 Initial Boundary Maps for CEM Algorithm

The initial boundary map fb in Eq. (4) can be obtained by solving the Laplace-Beltrami equation proposed
by Angenent et al. [1, 13]

4Mf =

(
∂

∂u
− i

∂

∂v

)
δp, (11)

where δp is the Dirac delta function at p. Here, p is a selected point onM and (u, v) is the local coordinate
defined on a neighborhood of p. This method is originally designed for the computation of the conformal
equivalence f : Σ\{p} → C for the genus-zero closed surface Σ. Similarly, for the simply-connected open
surface M, a map

f :M\{p} → C\Ω (12)

can be obtained by solving Eq. (11). Here ∂Ω is the natural boundary resulted from Eq. (11). Although the
map f in (12) is not guaranteed to be conformal, several numerical experiments indicate that the angular
distortion of the map f in (12) is relatively large around the neighborhood of p. Based on these observations,
the point p can be automatically selected closest to the mass center of the mesh M so that the angular
distortion is relatively small on the boundary ∂M.
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In the linear discretization, the neighborhood of p is given by a triangular element [a, b, c] with respect
to the vertices {pa, pb, pc} on the meshM. The Laplace-Beltrami equation (11) can be efficiently solved by
the linear system

Lf = b, (13)

where the matrix L is the discrete Laplacian matrix defined by Eq. (6), and the vector b = (b1, . . . ,bn)>

is given by

bk :=


0 if k /∈ {a, b, c},
−1

‖pb−pa‖2 + i 1−α
‖pc−(pa+α(pb−pa))‖2 if k = a,

1
‖pb−pa‖ + i α

‖pc−(pa+α(pb−pa))‖2 if k = b,

i −1
‖pc−(pa+α(pb−pa))‖2 if k = c

(14)

with α = 〈pc−pa,pb−pa〉
‖pb−pa‖22

. Then, the new initial discrete boundary map can be updated by the original fb

after performing the centralization

fb ←

(
Inb −

1nb1
>
nb

nb

)
fb (15)

and the normalization
fb ← (diag (|fb|))−1 fb. (16)

Note that the discrete Laplacian matrix L is singular. So the linear system (13) is a singular system that has
infinitely many solutions. In fact, according to the definition of a discrete Laplacian matrix in (6), it is clear
that ker(L) = span{1n} since the sum of each row of L is zero. As a result, if g is a solution to the linear
system (13), g + z1n is also a solution, for every z ∈ C. Intuitively, it is expected that the singular linear
system (13) can be reduced into a nonsingular one by fixing one point of the solution. In the following, we
give a concrete statement in Theorem 1. For convenience, we give the definition of an M-matrix [2] and the
related lemma.

Definition 2 (i) A matrix A ∈ Rm×n is said to be nonnegative (positive) if all entries of A are nonnegative
(positive).

(ii) A matrix A ∈ Rn×n is said to be an M-matrix if A = sI −B, where B is nonnegative and s ≥ ρ(B).

Lemma 1 (Theorem 1.4.10 in [20]) Suppose A ∈ Rn×n is a singular, irreducible M-matrix. Then each
principal submatrix of A other than A itself is a nonsingular M-matrix.

Lemma 2 The n× n matrix L defined in (6), is a singular M-matrix.

Proof By the definition of the matrix L in (6), each row sum of L is zero. Hence L1n = 0, and therefore
L is singular. To show that L is an M-matrix, we write L = sIn − B, where s = max1≤i≤n(Li,i) and
B = sIn −L. According to the definition of L, it holds that Li,i = −

∑
k 6=i Li,k, for i = 1, . . . , n. Hence, by

the Gershgorin circle theorem [8], we have s ≥ ρ(B). Therefore, the matrix L is an M-matrix by Definition
2 (ii). ut

In practice, for solving a Laplacain linear system of (13), the technique stated in the following theorem can
be applied.

Theorem 1 Let L be an n× n Laplacian matrix of the mesh M as in (6). Then the linear system Lf = b
in (13) can be reduced into a nonsingular one by removing the k-th entries of the vectors f and b, and the
k-th row and column of L, respectively. Here the index k can be chosen as any number in {1, . . . , n}.

Proof Without loss of generality, we set k = n. Let g = (g1, . . . gn)> be a solution to (13). Then g − gn1n
is also a solution. That is, [

Lu,u Lu,n

L>u,n Ln,n

] [
gu − gn1nu

0

]
=

[
bu

bn

]
, (17)

where u is the index set {1, . . . , n− 1}. From (17) we have

Lu,u(gu − gn1nu) = bu, (18)

L>u,n(gu − gn1nu) = bn. (19)
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Because of the connectivity of the mesh M and Lemma 2, L is an irreducible and singular M-matrix. By
applying Lemma 1, the matrix Lu,u is nonsingular. So the solution to the linear system (18) is unique. Hence
Eq. (19) would always hold and can be removed. Therefore, solving the singular system Lf = b is equivalent
to solving the nonsingular system Lu,ufu = bu by setting fn = 0. ut

On the other hand, the vector b in the linear system (13) contains only three nonzero entries. As a
result, the linear system (13) can be written as[

Lv,v Lv,w

L>v,w Lw,w

] [
fv
fw

]
=

[
0
bw

]
, (20)

where the index sets w = {a, b, c} and v = {1, . . . , n}\{a, b, c}, respectively. Note that the matrix L can be
decomposed as [

Lv,v Lv,w

L>v,w Lw,w

]
=

[
Inv Lv,wL

−1
w,w

Inw

] [
SLw,w

Lw,w

] [
Inv

L−1
w,wL

>
v,w Inw

]
,

where SLw,w
= Lv,v−Lv,wL

−1
w,wL

>
v,w is the Schur complement of the block Lw,w. By applying the inverse formula

for block matrices, the inverse of the matrix L can be expressed as[
Lv,v Lv,w

L>v,w Lw,w

]−1

=

[
Inv

−L−1
w,wL

>
v,w Inw

] [
S−1
Lw,w

L−1
w,w

] [
Inv −Lv,wL

−1
w,w

Inw

]
.

Therefore, the solution f can be written as[
fv
fw

]
=

[
Inv

−L−1
w,wL

>
v,w Inw

] [
S−1
Lw,w

L−1
w,w

] [
Inv −Lv,wL

−1
w,w

Inw

] [
0
bw

]

=

[
−S−1

Lw,w
Lv,wL

−1
w,wbw

L−1
w,w

(
bw + L>v,wS

−1
Lw,w

Lv,wL
−1
w,wbw

)]

=

[
−S−1

Lw,w
Lv,wL

−1
w,wbw

L−1
w,w

(
bw − L>v,wfv

) ] .
Consequently, the linear system (20) can be reduced into the form as

SLw,w
fv = −Lv,wL

−1
w,wbw. (21)

Here the linear system (21) can be solved by the Sherman-Morrison-Woodbury formula. After fv is obtained
by (21), fw can then be computed by solving the linear system

Lw,wfw = bw − L>v,wfv.

In general, the linear systems (18) and (21) are mathematically equivalent. However, in our numerical
experiences, solving Eq. (18) is slightly more efficient than Eq. (21). So, in our CEM algorithm, we adopt
Eq. (18) instead of Eq. (21).

3.2 Boundary Iteration Scheme for CEM Algorithm

To further improve the boundary map, we propose a boundary iteration scheme. First, the map of interior
vertices is updated by solving the linear system

Li,if
(k)
i = −Li,bf

(k)
b . (22)

Then the map of boundary vertices is updated by solving the linear system

Lb,bf
(k+1)
b = −Lb,if

(k)
i . (23)

To guarantee the boundary map is always on the unit circle, we perform the centralization

f
(k+1)
b ←

(
Inb −

1nb1
>
nb

nb

)
f
(k+1)
b , (24)
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and the normalization to the boundary map

f
(k+1)
b ←

(
diag

(∣∣∣f (k+1)
b

∣∣∣))−1
f
(k+1)
b . (25)

Equivalently, the iterations (22)-(25) for the boundary map can be expressed as

f
(k+1)
b =

(
N

(k)
b

)−1
CKf

(k)
b , (26)

where K is defined by
K = L−1

b,bL
>
i,bL

−1
i,iLi,b, (27)

the centralization and the normalization matrices C and N
(k)
b are, respectively, given by

C = Inb −
1nb1

>
nb

nb
(28)

and
N

(k)
b = diag

(∣∣∣CKf
(k)
b

∣∣∣) . (29)

Remark 2 The algebraic meaning for the centralization matrix C is actually a deflating transformation on
the matrix K, i.e., the matrix C deflates the eigenvalue 1 of K to 0 while preserving the other eigenvalues
unchanged. On the other hand, C transforms each eigenvector v of K to Cv. That is,

(CK)1nb = 0,

and
(CK)(Cv) = λCv,

for every eigenvalue λ 6= 1.

Remark 3 Numerical experiments indicate that an inversion for modifying f
(k)
i in Eq. (23) by

(
diag

(∣∣∣f (k)i

∣∣∣))−2
f
(k)
i

would have a better convergence in the iterations (22)-(25). In practice, Eq. (23) is replaced by the equation

Lb,bf
(k+1)
b = −Lb,i

(
diag

(∣∣∣f (k)i

∣∣∣))−2
f
(k)
i . (30)

Then, the conformal energy of the map EC(f
(k)
b ) in the iterations (22), (30), (24) (25) would become

monotonically decreasing.

The CEM algorithm is summarized in Algorithm 1 in detail.

Algorithm 1 Conformal Energy Minimization (CEM)

Input: A triangular mesh M of a simply-connected open surface.
Output: A conformal parameterization f :M→ D.
1: Classify the vertices of M into two groups:

i = {indices of interior vertices} and b = {indices of boundary vertices}.

2: Solve the linear system Lf = b by setting fn = 0, where L and b are defined by Eq. (6) and Eq. (13), respectively.

3: Centralize fb ←
(
Inb −

1nb
1>
nb

nb

)
fb.

4: Normalize fb ← (diag (|fb|))−1 fb.
5: Solve the linear system Li,ifi = −Li,bfb.
6: while not convergent do
7: Solve the linear system Lb,bfb = −Lb,i (diag (|fi|))−2 fi.

8: Centralize fb ←
(
Inb −

1nb
1>
nb

nb

)
fb.

9: Normalize fb ← (diag (|fb|))−1 fb.
10: Solve the linear system Li,ifi = −Li,bfb.
11: end while
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3.3 Generalization of CEM to Multiply-Connected Surfaces

To generalize the proposed CEM algorithm, we apply Koebe’s method proposed by Zeng et al. [29, 30] for
computing conformal parameterizations of multiply-connected surfaces. Given a surface M with multiple
holes, the generalized CEM algorithm is aimed to find a conformal map f that mapsM to a unit disk with
circular holes. The existence of such a conformal map f is guaranteed by Koebe’s uniformization theory. To
illustrate the procedure of the generalized CEM algorithm, we suppose a surface M has 4 boundaries

∂M = γ0 − γ1 − γ2 − γ3,

as shown in Fig. 1 (a). Each boundary γi except γ3 is filled by a patch Pi composed of a vertex ci at the
centroid of γi and the edges connecting the vertex ci to the vertices on γi, for i = 0, 1, 2. Then

M(3) ≡M∪P0 ∪ P1 ∪ P2

is a simply-connected open surface so that a conformal map f3 : M(3) → D can be obtained by the CEM
algorithm. The image of f3(M) is shown in Fig. 1 (b). Next, we map the centroid of γ2 to the infinity by
an inversion ϕ2(z) = (z − c2)−1, as shown in Fig. 1 (c). Similarly, we fill up all holes except γ2 and form a
simply-connected open surface M(2) so that a conformal map f2 :M(2) → D can be obtained by the CEM
algorithm, as shown in Fig. 1 (d). Continue these steps as illustrated in Fig. 1 (e)-(h) until every boundary
is mapped to a circle. The desired conformal parameterization of the multiply-connected surfaceM is then
given by

f ≡ f0 ◦ ϕ0 ◦ f1 ◦ ϕ1 ◦ f2 ◦ ϕ2 ◦ f3.
We summarize the generalized CEM algorithm for multiply-connected surfaces in Algorithm 2.

Algorithm 2 Generalized CEM for Multiply-Connected Surfaces
Input: A triangular mesh M of a multiply-connected surface.
Output: A conformal parameterization f :M→ D.
1: Find the boundaries ∂M = γ0 −

∑n
i=1 γi.

2: Fill up all holes except γn and obtain a simply-connected open surface M(n).
3: Compute f :M(n) → D by CEM algorithm 1.
4: Open all holes f ← f(M).
5: for i = n− 1, . . . , 0 do
6: Compute the centroid ci of the boundary γi.
7: Do inversion fj ← (fj − ci)−1, j = 1, . . . , nf .

8: Fill up all holes except γi and obtain a simply-connected open surface M(i).
9: Compute f :M(i) → D by CEM algorithm 1.

10: Open all holes f ← f(M).
11: end for

4 Existence of a Nontrivial Accumulation Point

The aim of this section is to prove the existence of a nontrivial (nonconstant) accumulation point of the

sequence {f (k)b }k∈N, defined by (26), when the initial vector f
(0)
b 6= z1nb for any z ∈ C. To exclude the

rotations that may occur in the iteration (26), we set (f
(k)
b )1 = 1, for every k ∈ N. We first introduce some

useful lemmas related to M-matrices.

Lemma 3 (Theorem 1.4.7 in [20]) If A ∈ Rn×n is a nonsingular M-matrix, then A−1 is a nonnegative
matrix. Moreover, if A is irreducible, then A−1 is a positive matrix.

Lemma 4 (Perron Theorem [15]) Let A ∈ Rn×n be a positive matrix. Then

(i) ρ(A) is an eigenvalue of A, and all the other eigenvalues are strictly smaller than ρ(A) in modulus.
(ii) ρ(A) is the only eigenvalue that has a positive eigenvector.

(iii) ρ(A) has algebraic multiplicity one.

The following theorem plays a crucial role in the geometric understanding of the iteration matrix defined
by Eq. (27).
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γ0

γ1

γ2 γ3

γ0 γ1

γ2

γ3

(a) M (b) f3(M)

γ0

γ1

γ2

γ3

γ0γ1

γ2

γ3

(c) ϕ2 ◦ f3(M) (d) f2 ◦ ϕ2 ◦ f3(M)

γ0

γ1

γ2
γ3

γ0

γ1

γ2 γ3

(e) ϕ1 ◦ f2 ◦ ϕ2 ◦ f3(M) (f) f1 ◦ ϕ1 ◦ f2 ◦ ϕ2 ◦ f3(M)

γ0

γ1

γ2 γ3

γ0
γ1

γ2 γ3

(g) ϕ0 ◦ f1 ◦ ϕ1 ◦ f2 ◦ ϕ2 ◦ f3(M) (h) f0 ◦ ϕ0 ◦ f1 ◦ ϕ1 ◦ f2 ◦ ϕ2 ◦ f3(M)

Fig. 1 (a) The model of Ho’s Face with Holes. (b)-(h) The procedure of Koebe’s method proposed by Zeng et al. [29, 30].
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Theorem 2 Let

L =

[
A B

B> D

]
satisfy the following conditions.

(i) L is a singular and irreducible M-matrix;
(ii) L1nL = 0;

(iii) B has no zero column vector;
(iv) Both A and D are irreducible.

Let K = D−1B>A−1B. Then K is positive with ρ (K) = 1 being the unique largest eigenvalue of K in
modulus.

Proof Applying Lemma 1 to the assumption (i), both A and D are nonsingular M-matrices. Then, by the as-
sumption (iv) and Lemma 3, both A−1 and D−1 are positive. The assumption (iii) and the positivity of A−1

guarantee that B>A−1B is positive. Moreover, the positivity of D−1 guarantees that K = D−1(B>A−1B)
is positive. On the other hand, note that L1nL = 0. That is, B1nA = −A1nA and B>1nK = −D1nK . It
follows that

K1nK = D−1B>A−1B1nK

= −D−1B>A−1A1nK

= −D−1B>1nK

= D−1D1nK = 1nK .

That is, 1 is an eigenvalue of K associated with the eigenvector 1nK . By Lemma 4, ρ(K) = 1 is the largest
eigenvalue of K with algebraic multiplicity one, and all the other eigenvalues are strictly smaller than 1 in
modulus. ut

Remark 4 Geometrically, the matrix K, defined as in Theorem 2, maps all the entries of a vector f to their
convex hull. More explicitly, K1nK = 1nK implies that

∑nK

j=1Ki,j = 1. Also, K is a strictly positive matrix.
Hence, for i = 1, . . . , nK ,

(Kf)i =

nK∑
j=1

Ki,jfj

is a convex combination of the points {fj ∈ C}nK
j=1.

In practical applications, the triangular meshes of the simply-connected open surfaces are usually well-
conditioned as in Definition 1. Thus, Theorem 2 can be applied.

Corollary 1 Let M be a well-conditioned mesh and L be the corresponding Laplacian matrix in a certain
vertex ordering as in (9). Let K be the associated matrix defined in (27). Then

ρ (K) = 1 (31)

is the largest eigenvalue of K with algebraic multiplicity one, and all the other eigenvalues are strictly smaller
than 1 in modulus.

Proof It is shown in Lemma 2 that L is an M-matrix. Note that M is well-conditioned. The condition (i)
in Definition 1 guarantees the irreducibility of L. The conditions (ii) and (iii) in Definition 1 guarantee the
irreducibility of the matrices Li,i and Lb,b, respectively. The conditions (iv) in Definition 1 guarantees that
every column sum of Li,b is nonzero. Therefore, by Theorem 2, we obtain the desired results. ut

Remark 5 Corollary 1 can be generalized to the Laplacian matrix of weighted graphs with positive weights
that satisfies the conditions (i)-(iv) in Definition 1.

In the following, we prove the existence of the accumulation point of the boundary iteration scheme
defined by (26).

Theorem 3 The sequence {f (k)b }k∈N, defined by (26), has an accumulation point f
(∗)
b 6= 1nb provided that

rank(K) ≥ 3 and f
(0)
b 6= 1nb .
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Proof Since each entry of f
(k)
b is on the unit circle, by Bolzano-Weierstrass theorem, there exists a vector f

(∗)
b

and a convergent subsequence {f (kj)
b }j∈N such that limj→∞ f

(kj)
b = f

(∗)
b . From Remark 4, the centralization

in the iteration (26) and the assumption that rank(K) ≥ 3 guarantee that after a rotation by setting

(f
(k)
b )1 = 1 for each k ∈ N, the maximal argument satisfies

max
1≤i≤nb

Arg
(

(CKf
(k)
b )i

)
> π. (32)

Otherwise, each entry of the vector CKf
(k)
b is located on the upper half-plane of C, then the center

1
nK

∑nK

i=1(CKf
(k)
b )i 6= 0 which contradicts that the center should be zero. In particular, Eq. (32) holds

for the subsequence {kj}j∈N. Hence, the accumulation point f
(∗)
b satisfies

max
1≤i≤nb

Arg
(

(CKf
(∗)
b )i

)
≥ π.

Therefore, f
(∗)
b 6= 1nb . ut

5 Numerical Experiments

In this section, we demonstrate the numerical results of the conformal parameterizations obtained by CEM
algorithm. The maximal number of iterations for CEM algorithm is set to be 20. The linear systems in
CEM algorithm are solved using the backslash operator (\) in MATLAB. Also, we compare the efficiency
and accuracy of our CEM algorithm to three of the existing state-of-the-art algorithms of conformal param-
eterizations for simply-connected open surfaces, namely, the heat flow via the quasi-implicit Euler method
(QIEM) [16], the fast disk map (FDM) [4], and the linear disk map (LDM) [5]. The MATLAB source code
of QIEM is provided by Huang [16]. The MATLAB p-codes of FDM and LDM are obtained from Lui’s
website [33], respectively. All experiments are performed in MATLAB on a personal laptop with a 2.60GHz
CPU and 8GB RAM. Some of the mesh models are obtained from TurboSquid [35], AIM@SHAPE shape
repository [32], the Stanford 3D scanning repository [34], and a project page of ALICE [31].

Figures 2-7, respectively, show the models Left Hand, Liu’s Neutral Face, Liu’s Smile Face, Liu’s Wry
Face, Liu’s Pouting Face and Ho’s Face with Holes and their conformal parameterizations computed by
CEM algorithm. Fig. 2 indicates that no folding would occur even when the geometry of the surface is a
bit complicated. The checkerboard patterns in figures 3-7 indicate that the conformal parameterizations
computed by CEM algorithm preserve angles. In addition, Fig. 8 demonstrates the relationship between the
number of iterations and the conformal energy EC(f) for (a) Chinese Vase, (b) Bourbon Bottle, (c) David
Head and (d) Human Brain. These results indicate that the proposed boundary iteration scheme (26) for
CEM performs well in decreasing the conformal energy. Furthermore, Fig. 9 shows the histograms of the
angular distortion (counted in degree) of the conformal parameterizations obtained by CEM algorithm for
(a) Liu’s Neutral Face, (b) Liu’s Smile Face, (c) Liu’s Wry Face and (d) Liu’s Pouting Face. Here, the
angular distortion refers as to the absolute value of the difference (counted in degree) between angles of the
triangle elements on the mesh model and the corresponding angles on the conformal parameterization. As
shown in Fig. 9, most of the angular distortions are less than one degree, which is quite satisfactory.

A comparison of the computational cost between QIEM, FDM, LDM and CEM algorithm is demon-
strated in Table 1. Also, Fig. 10 illustrates the relationship between the number of faces and the the
computational cost. To measure how much CEM algorithm is more efficient than QIEM/FDM/LDM, we
define the rate of the speedup by

rate of speedup =
computational time of QIEM/FDM/LDM

computational time of CEM
− 1. (33)

A positive rate of speedup indicates that CEM algorithm is more efficient than QIEM/FDM/LDM. Ac-
cording to Table 2, CEM algorithm always has a better efficiency than QIEM/FDM/LDM with the average
rate of the speedup 8.5/17.2/4.1. In other words, CEM algorithm saves about 89%/94%/80% of the com-
putational time of QIEM/FDM/LDM in average.

Furthermore, comparisons of the conformality distortion in terms of the conformal energy and the angular
distortion for the parameterization map f are demonstrated in Table 3 and Table 4, respectively. In general,
as shown in figures 11 and 12, both the conformal energy and the standard deviation of angular distortions
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(a) (b)

(c) (d)

Fig. 2 (a) The Left Hand model. (b) The conformal parameterization obtained by CEM algorithm in which the color
represents the mean curvature of the surface. (c) The mesh of the model. (d) The mesh of the conformal parameterization
obtained by CEM algorithm.

(a) (b)

Fig. 3 (a) The model of Liu’s Neutral Face. (b) The conformal parameterization obtained by CEM algorithm.



An Efficient Energy Minimization for Conformal Parameterizations 13

(a) (b)

Fig. 4 (a) The model of Liu’s Smile Face. (b) The conformal parameterization obtained by CEM algorithm.

(a) (b)

Fig. 5 (a) The model of Liu’s Wry Face. (b) The conformal parameterization obtained by CEM algorithm.

(a) (b)

Fig. 6 (a) The model of Liu’s Pouting Face. (b) The conformal parameterization obtained by CEM algorithm.
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(a) (b)

Fig. 7 (a) The model of Ho’s Face with Holes. (b) The conformal parameterization obtained by the generalized CEM
algorithm.
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Fig. 8 The relationship between the number of iterations and the conformal energy of the parameterization obtained by
CEM algorithm for (a) Chinese Vase, (b) Bourbon Bottle, (c) David Head and (d) Human Brain.

produced by FDM, LDM and CEM are similar. On the other hand, the mean of angular distortions by
FDM and LDM are slightly better than that of CEM.

In summary, the CEM algorithm has a better efficiency than the existing state-of-the-art algorithms
[16, 4, 5] that saves more than 80% of computational cost on average while producing the similar conformal
energy and the angular distortion.
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Angular Distortion (degree) Angular Distortion (degree)
(a) Liu’s Neutral Face (b) Liu’s Smile Face

Angular Distortion (degree) Angular Distortion (degree)
(c) Liu’s Wry Face (d) Liu’s Pouting Face

Fig. 9 The histograms of the angular distortions (degree) of the conformal parameterizations obtained by CEM algorithm
for (a) Liu’s Neutral Face, (b) Liu’s Smile Face, (c) Liu’s Wry Face and (d) Liu’s Pouting Face. Note that the angular
distortion refers as to the absolute value of the difference (counted in degree) between the angle on the mesh model and the
disk.
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Fig. 10 Computational cost (sec.) vs number of faces by QIEM, FDM, LDM, and CEM.
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Geometric No. of QIEM FDM LDM CEM
Model Faces [16] [4] [5] Time #Iter.

Nefertiti 562 0.04 0.08 0.30 0.03 19
Cowboy Hat 4,604 0.35 0.35 0.13 0.02 1
Chinese Vase 5,592 0.18 0.81 0.13 0.06 12
Bourbon Bottle 13,088 1.08 0.87 0.37 0.27 20
Foot 19,966 1.49 1.05 0.54 0.35 15
Chinese Lion 34,421 3.09 4.16 1.15 0.45 13
David Head 47,280 4.47 5.33 1.63 0.98 20
Stanford Bunny 65,221 8.78 8.36 2.65 0.53 1
Human Brain 96,811 9.46 11.73 3.59 0.68 19
Ho’s Pouting Face 98,316 2.50 27.32 3.86 0.58 5
Ho’s Neutral Face 100,675 2.18 25.36 4.40 0.45 1
Left Hand 105,860 11.38 12.35 3.88 0.72 2
Statue of Liberty 190,162 15.33 − 8.03 1.38 1
Liu’s Neutral Face 193,298 15.36 32.81 9.47 2.01 2
Liu’s Smile Face 205,207 18.16 39.61 10.35 1.85 1
Liu’s Pouting Face 207,721 19.18 45.89 10.47 1.79 3
Liu’s Wry Face 208,283 20.47 41.08 10.44 2.62 3
Isis Statue 374,309 63.35 − 17.39 4.38 5
Bimba Statue 836,740 74.92 60.86 43.51 5.10 2
Knit Cap Man 1,287,579 223.58 385.70 87.28 13.27 1

Table 1 Computational cost (sec.) for computing conformal parameterizations by QIEM, FDM, LDM, and CEM algo-
rithms.

Geometric No. of No. of QIEM FDM LDM
Model Vertices Faces [16] [4] [5]

Nefertiti 299 562 0.33 1.67 9.00
Cowboy Hat 2,327 4,604 16.50 16.50 5.50
Chinese Vase 2,809 5,592 2.00 12.50 1.17
Bourbon Bottle 6,569 13,088 3.00 2.22 0.37
Foot 10,010 19,966 3.26 2.00 0.54
Chinese Lion 17,334 34,421 5.87 8.24 1.56
David Head 23,889 47,280 3.56 4.44 0.66
Stanford Bunny 32,717 65,221 15.57 14.77 4.00
Human Brain 48,463 96,811 12.91 16.25 4.28
Ho’s Pouting Face 49,596 98,316 3.31 46.10 5.66
Ho’s Neutral Face 50,779 100,675 3.84 55.36 8.78
Left Hand 53,054 105,860 14.81 16.15 4.39
Statue of Liberty 95,283 190,162 10.11 − 4.82
Liu’s Neutral Face 97,264 193,298 6.64 15.31 3.71
Liu’s Smile Face 103,230 205,207 8.82 20.41 4.59
Liu’s Pouting Face 104,497 207,721 9.72 24.64 4.85
Liu’s Wry Face 104,786 208,283 6.81 14.68 2.98
Isis Statue 187,277 374,309 13.46 − 2.97
Bimba Statue 418,951 836,740 13.69 10.93 7.53
Knit Cap Man 644,029 1,287,579 15.85 29.07 5.58

Table 2 The rate of speedup of CEM algorithm with respect to QIEM, FDM, and LDM, defined by Eq. (33).

6 Applications on Surface Morphing

Surface morphing is a process of smoothly transforming a surface into another one. In general, a good
morphing path should be smooth and shape preserving. In other words, every vertex has no weird movement
and the topology of surfaces does not change during the morphing process. Also, the selected landmarks on
each surface remain matched. Technically, as shown in Fig. 13, a morphing sequence between two discrete
surfaces M and N can be obtained by a cubic spline homotopy via a smooth bijective map r : M → N ,
which is called a registration map. However, it is usually not easy to find a registration map between
two surfaces in the space R3. Thanks to the bijectivity of conformal parameterizations f : M → D and
g : N → D, the problem can be reduced into finding a registration map between two unit disks f(M) and
g(N ). In the linear discretization, the conformal parameterizations f and g can be expressed by the vectors
f ∈ Cnf and g ∈ Cng , respectively. Suppose f and g denote ordered index sets of the selected landmarks
on f and g, respectively. When the correspondence of the landmark pairs {((ff)j , (gg)j)}nf

j=1 is taken into
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Geometric No. of QIEM FDM LDM CEM
Model Faces [16] [4] [5] Alg.

Nefertiti 562 0.0264 0.0242 0.0337 0.0278
Cowboy Hat 4,604 0.0067 0.0030 0.0039 0.0031
Chinese Vase 5,592 0.0986 0.0974 0.1141 0.0974
Bourbon Bottle 13,088 0.0110 0.0110 0.0112 0.0111
Foot 19,966 0.0228 0.0121 0.0165 0.0120
Chinese Lion 34,421 0.0139 0.0139 0.0140 0.0143
David Head 47,280 0.0309 0.0157 0.0172 0.0197
Stanford Bunny 65,221 0.0172 0.0173 0.0168 0.0172
Human Brain 96,811 0.0220 0.0213 0.0233 0.0224
Ho’s Pouting Face 98,316 0.0030 0.0028 0.0032 0.0030
Ho’s Neutral Face 100,675 0.0024 0.0023 0.0045 0.0022
Left Hand 105,860 0.0110 0.0110 0.0104 0.0102
Statue of Liberty 190,162 0.0038 − 0.0038 0.0036
Liu’s Neutral Face 193,298 0.0031 0.0031 0.0032 0.0032
Liu’s Smile Face 205,207 0.0033 0.0033 0.0035 0.0033
Liu’s Pouting Face 207,721 0.0037 0.0037 0.0038 0.0038
Liu’s Wry Face 208,283 0.0038 0.0038 0.0038 0.0038
Isis Statue 374,309 0.0374 − 0.0108 0.0101
Bimba Statue 836,740 0.0023 0.0237 0.0023 0.0024
Knit Cap Man 1,287,579 0.0108 0.0111 0.0117 0.0114

Table 3 The conformal energy EC of the parameterizations f obtained by QIEM, FDM, LDM, and CEM algorithms.
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Fig. 11 The conformal energy EC of the parameterizations f computed by QIEM, FDM, LDM, and CEM algorithms.

account, the registration map between two unit disks can be obtained by minimizing the registration energy
functional defined by

ER (f) = ED (f) + λ

nm∑
j=1

|(ff)j − (gg)j |2. (34)

An illustration for the construction of the registration maps between three human faces of different
facial expressions via the conformal parameterizations is shown in Fig. 14. Let M1, M2 and M3 be the
geometric models of Liu’s Wry Face, Liu’s Neutral Face and Liu’s Smile Face, respectively. As illustrated
in Fig. 14, the corresponding conformal parameterization maps obtained by CEM algorithm are denoted as
f1, f2 and f3, respectively. The Möbius transform m1 maps the landmark at nose to the center of the disk.
The registration maps r2 and r3 are, respectively, obtained by minimizing the registration energy functional
(34) with the given pairs of landmarks. As a result, r−1

2 ◦m1 ◦ f1 forms a registration map between M1

and M2. Similarly, r−1
3 ◦ m1 ◦ f1 and r−1

3 ◦ r2 form registration maps between M1 and M3, as well as,
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Geometric QIEM [16] FDM [4] LDM [5] CEM
Model Mean SD Mean SD Mean SD Mean SD

Nefertiti 2.53 3.38 2.48 3.36 2.79 3.46 2.65 3.35
Cowboy Hat 1.61 1.28 0.87 1.03 0.98 1.10 0.90 1.03
Chinese Vase 4.49 5.03 4.50 5.02 4.76 4.99 4.50 5.02
Bourbon Bottle 2.23 2.21 2.18 2.21 2.21 2.21 2.19 2.20
Foot 2.56 1.85 1.41 1.13 1.42 1.16 1.41 1.14
Chinese Lion 1.42 2.04 1.42 2.04 1.42 2.05 1.49 2.06
David Head 4.28 5.91 3.06 5.86 3.11 5.86 3.24 5.84
Stanford Bunny 1.68 3.83 1.08 1.79 1.08 1.79 1.08 1.79
Human Brain 1.87 1.72 1.46 1.59 1.46 1.59 1.49 1.60
Ho’s Pouting Face 0.34 1.49 0.35 1.49 0.35 1.49 0.36 1.49
Ho’s Neutral Face 0.32 1.38 0.32 1.41 0.37 1.38 0.42 1.38
Left Hand 6.41 14.71 1.21 1.31 1.21 1.31 1.23 1.32
Statue of Liberty 2.84 10.89 − − 1.22 2.59 2.38 2.57
Liu’s Neutral Face 0.25 2.01 0.25 1.99 0.25 2.01 0.35 2.01
Liu’s Smile Face 0.27 2.10 0.27 2.08 0.27 2.10 0.39 2.09
Liu’s Pouting Face 0.28 2.25 0.27 2.23 0.28 2.25 0.30 2.25
Liu’s Wry Face 0.30 2.25 0.30 2.23 0.30 2.25 0.37 2.25
Isis Statue 5.13 4.26 − − 0.41 0.62 0.43 0.63
Bimba Statue 0.45 1.00 1.50 2.13 0.34 0.97 0.42 0.97
Knit Cap Man 1.18 1.29 0.53 0.91 0.59 0.91 0.93 0.99

Table 4 The angular distortion of the conformal parameterizations obtained by QIEM, FDM, LDM, and CEM algorithms.
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(a) (b)

Fig. 12 The (a) mean and (b) standard deviation of the angular distortion of the conformal parameterizations computed
by QIEM, FDM, LDM, and CEM algorithms.

Fig. 13 An illustration of the cubic spline homotopy between human faces of three different facial expressions.
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M1 f1(M1) m1 ◦ f1(M1)

M2 f2(M2) r2(M2)

M3 f3(M3) r3(M3)

Fig. 14 An illustration to the construction of the registration maps between three human faces of different facial expressions
via the conformal parameterizations.

M2 and M3, respectively. A demo video of the surface morphing in three different views can be found at
https://youtu.be/fgcCu-pz2vY.

7 Conclusions

In this paper, we have proposed an efficient CEM algorithm for computing conformal parameterizations
of simply-connected open surfaces. Our numerical results indicate that a conformal parameterization can
be computed in less than one second for a mesh model of more than 100,000 triangular elements by CEM
algorithm. Also, we generalize the proposed CEM algorithm for the computation of conformal parameteri-
zations of multiply-connected surfaces. The existence of a nontrivial accumulation point of CEM algorithm
is guaranteed. An application to the surface morphing between simply-connected open surfaces using con-
formal parameterizations is demonstrated. Thanks to the efficiency and robustness of CEM algorithm, the
whole computation of the surface morphing can be performed efficiently. Such encouraging results build the
confidence of the power of the CEM algorithm on the real-time applications of conformal parameterizations.
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