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Abstract. Manifold parameterizations have been applied to various fields of commercial industries. Several
efficient algorithms for the computation of triangular surface mesh parameterizations have been pro-
posed in recent years. However, the computation of tetrahedral volumetric mesh parameterizations
is more challenging due to the fact that the number of mesh points would become enormously large
when the higher resolution mesh is considered and the bijectivity of parameterizations is more difficult
to guarantee. In this paper, we develop a novel volumetric stretch energy minimization algorithm
for volume-preserving parameterizations of simply connected 3-manifolds with a single boundary
under the restriction that the boundary is a spherical area-preserving mapping. In addition, our
algorithm can also be applied to compute spherical angle- and area-preserving parameterizations of
genus-zero closed surfaces, respectively. Several numerical experiments indicate that the developed
algorithms are more efficient and reliable compared to other existing algorithms. Numerical results
on applications of the manifold partition and the mesh processing for three-dimensional printing are
demonstrated thereafter to show the robustness of the proposed algorithm.
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1. Introduction. A manifold parameterization refers to a bijective mapping between the
manifold and the domain of a simple canonical shape. The mapping induces a canonical coor-
dinate system on the manifold, which can be used to simplify the issues arising from geometry
processing and computer graphics. In particular, surface (2-manifold) parameterizations have
been widely studied and applied in various tasks of computer vision, such as surface regis-
tration, remeshing, morphing, and texture mapping. Several numerical algorithms for the
computation of surface parameterizations have been developed by different research groups in
recent years. Most of the parameterization algorithms for surfaces are based on minimizing
the distortions of angle or area, or balancing between them. An angle-preserving parameteri-
zation is called a conformal parameterization, which has been applied in the texture mapping
of surfaces [40, 50] and the image analysis of proximal femur surfaces [55]. On the other
hand, an area-preserving parameterization is called an authalic or equiareal parameterization,
which has been applied in the surface registration and the remeshing [18, 76]. More details
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for methods and applications of surface parameterizations can be found in the survey papers
[31, 64, 42, 11, 33, 39].

In the past, most of the related works merely consider the surface data in three-dimensional
(3D) space, which is mathematically a 2D object that can be bijectively mapped onto a planar
domain. With the development of 3D imaging technology, such as computed tomography scans
and magnetic resonance imaging, 3D images in the real world can be obtained easily. Such
a 3D image is mathematically equivalent to a simply connected 3-manifold in R3 that can
be bijectively mapped into a unit solid ball while preserving the local volume. To realize the
volume-preserving parameterization, Su et al. [67] proposed a useful algorithm based on the
discrete optimal mass transportation (OMT) [34]. However, it is usually very time-consuming
to compute a required parameterization for 3-manifolds, especially when high-resolution mesh
data are considered, e.g., it would cost more than 15 hours1 using the OMT algorithm to
compute a spherical volume-preserving mapping of a volumetric mesh of 290K tetrahedrons.
In addition, the bijectivity of a volumetric mapping is more difficult to guarantee [30, 32].

1.1. Contributions. In this paper, we develop a novel volumetric stretch energy mini-
mization (VSEM) for the computation of a volume-preserving parameterization that maps
a simply connected volumetric mesh with a single boundary into a unit solid ball. First,
the boundary of the 3-manifold is mapped conformally into a unit sphere by minimizing the
Dirichlet energy. Then, the boundary mapping is deformed to an equiareal mapping by min-
imizing the stretch energy. Finally, the volume-preserving parameterization is computed by
minimizing the volumetric stretch energy. The contribution of this paper can be separated
into three areas.

• Universality: The proposed energy minimization algorithm can be used to compute
(i) angle-preserving (conformal) and area-preserving (equiareal) parameterizations, re-
spectively, of genus-zero closed surfaces, and (ii) volume-preserving parameterizations
of simply connected 3-manifolds with a single boundary.
• Improved effectiveness and accuracy: The effectiveness and the accuracy of parame-
terizations computed by the proposed volume-preserving parameterization algorithm
are significantly improved compared to the OMT algorithm [67].
• Applications: Applications on the manifold partition for 3-manifolds and the mesh
processing for 3D printing can be performed robustly by the proposed parameterization
algorithm.

1.2. Notation and overview. The following notation is used in this paper. Other notation
will be clearly defined whenever they appear.

• Bold letters, e.g., u, v, w, denote (complex) vectors.
• Capital letters, e.g., A, B, C, denote matrices.
• Typewriter letters, e.g., I, J, K, denote ordered sets of indices.
• vi denotes the ith entry of the vector v.
• vI denotes the subvector of v composed of vi for i ∈ I.
• |v| denotes the vector with the ith entry being |vi|.
• diag(v) denotes the diagonal matrix with the (i, i)th entry being vi.

1See the computational cost of the OMT algorithm for the Bimba mesh model in Table 6.3.
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• Ai,j denotes the (i, j)th entry of the matrix A.
• AI,J denotes the submatrix of A composed of Ai,j for i ∈ I and j ∈ J.
• Sn := {x ∈ Rn+1 | ∥x∥ = 1} denotes the n-sphere in Rn+1.
• Bn := {x ∈ Rn | ∥x∥ ≤ 1} denotes the solid n-ball in Rn.
• [v0, . . . , vm] denotes the m-simplex determined by the points v0, . . . , vm.
• |[v0, . . . , vm]| denotes the volume of the m-simplex [v0, . . . , vm].
• i denotes the imaginary unit

√
−1.

• In denotes the identity matrix of size n× n.
• 0 denotes the zero vectors and matrices of appropriate sizes.

This paper is organized as follows. First, we introduce the related previous works and
background in sections 2 and 3, respectively. Then, we propose a novel VSEM algorithm in
section 4. The bijectivity of volume-preserving parameterizations is discussed in section 5.
Numerical comparisons between our algorithm and the OMT algorithm are presented in sec-
tion 6. Applications on the manifold partition and the mesh processing for 3D printing are
demonstrated in section 7. Concluding remarks are given in section 8.

2. Previous works. In this section, we briefly review the related previous works on com-
putational algorithms for surface and volumetric parameterizations, respectively.

2.1. Surface parameterizations. The major categories of surface parameterizations con-
tain conformal parameterizations, equiareal parameterizations, and balancing parameteriza-
tions between angle and area distortions.

A conformal parameterization aims to minimize the angular distortion. Numerical meth-
ods for surface conformal parameterizations have been widely developed because the confor-
mal parameterization preserves the local shape well. The existence of conformal mappings
between surfaces is guaranteed by the Poincaré–Klein–Koebe uniformization theorem of 100
years ago. In particular, for a genus-zero closed surface, some feasible numerical methods
including the linear Laplace–Beltrami equation [12], the nonlinear heat diffusion [35, 43], and
the fast landmark aligned spherical harmonic (FLASH) algorithm [19] have been proposed to
map it conformally to a unit sphere. In addition, for a simply connected open surface, some
efficient numerical methods including the fast disk mapping [20], the linear disk mapping [17],
and the conformal energy minimization (CEM) [75] have been recently developed to map it
conformally to a unit disk. Furthermore, classical methods including discrete conformal pa-
rameterization [22], least-squares conformal mapping [50], angle-based flattening [62, 63, 77],
discrete conformal equivalence [66], spectral conformal parameterization [53, 44], and orbifold
Tutte embedding [9, 10, 8] have been proposed for the conformal parameterization of topolog-
ical disks with free or mild shape constraints of boundaries. For conformal parameterizations
of higher genus surfaces, some well-known methods have been developed, including the holo-
morphic one-form [36, 37, 46], the discrete Ricci flow [45, 78], and the discrete Calabi flow
[79].

On the other hand, an equiareal parameterization aims to minimize the area distortion.
Numerical methods for computing surface equiareal parameterizations have been gradually
getting much more attention in recent years because equiareal mappings preserve the density of
the vertices well. Some efficient numerical methods, including the stretch-minimizing method
[60, 74], the Lie advection method [81], discrete OMT [80, 68], the density-equalizing mapping
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[18], and the stretch energy minimization (SEM) [76] have been developed to achieve this
purpose.

Additionally, for parameterizations of balancing distortions, some well-developed numer-
ical methods, including the as-rigid-as-possible surface parameterization [51, 72], the most
isometric parametrization [41, 21], the isometric distortion minimization [59], and boundary
first flattening [61], have been proposed to reach a trade-off between minimizing the angle and
area distortions.

2.2. Volumetric parameterizations. The computation of 3-manifold parameterizations
is more challenging due to the fact that the number of vertices would become enormously
large when the high-resolution volumetric mesh is considered. In addition, the bijectivity
of the volumetric mapping is more difficult to guarantee because convex combination map-
pings in 3D space do not need to be bijective [32]. Note that conformal mappings between
3-manifolds, in general, do not exist. Still, volumetric mappings with small angular distortion
are frequently adopted. Paillé and Poulin [56] and Chern, Pinkall, and Schröder [16] proposed
conformal-based volumetric mapping methods by applying the Cauchy–Riemann equation to
each canonical orthogonal plane in R3 and a low shear distortion on the decoupling of scaling
and rotation, respectively. Kovalsky et al. [48, 49] developed methods to deform a given
volumetric mapping into a bijective one with bounded distortion. Paillé et al. [57] proposed a
spectral method based on the dihedral angle representation for computing the locally injective
mapping of tetrahedral meshes. Jin et al. [47] proposed a method for computing the volu-
metric parameterization balancing between angle and volume distortions by minimizing the
stretch-distortion energy. Naitsat, Saucan, and Zeevi [54] and Rabinovic et al. [59] proposed
deformation methods for volumetric meshes based on the quasi-conformal homeomorphism
and minimizing a linear combination of local isometric distortion measures [65], respectively.
The above methods have mainly been developed for the computation of bijective volumetric
mappings of 3-manifolds by minimizing angular or isometric distortions so that the qualities
on angles and local shapes of tetrahedral meshes are well-preserved, but in general they are
not volume-preserving.

On the other hand, it is worth noting that only a few of the existing algorithms consider
the volumetric parameterizations for prescribed shapes that minimize the volume distortion.
On the basis of OMT, Su et al. [67] developed a pioneering algorithm of volume-preserving
parameterizations for tetrahedral meshes that maps a simply connected 3-manifold with a
single boundary into a unit solid ball, which has advantages on manifold resampling and
registration.

3. Discrete manifolds and parameterizations. A 3-manifold refers to a 3D topological
space in which each point of the manifold has a neighborhood homeomorphic to a subset of
R3. In this paper, we consider simply connected discrete 3-manifolds with a single boundary
that are embedded in R3. In practice, a discrete 3-manifold is represented as a tetrahedral
meshM composed of n vertices with coordinates in R3

V(M) =
{
vs ≡

(
v1s , v

2
s , v

3
s

)⊤ ∈ R3
}n

s=1
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and tetrahedrons

T (M) =
{
[vi, vj , vk, vℓ] ⊂ R3 for some vertices {vi, vj , vk, vℓ} ⊂ V(M)

}
.

Here the bracket [vi, vj , vk, vℓ] denotes the convex hull (3-simplex) of the affinely independent
points {vi, vj , vk, vℓ}. Furthermore, we denote the set of triangular faces and edges of the
meshM by

F(M) = {[vi, vj , vk] | [vi, vj , vk, vℓ] ∈ T (M) for some vℓ ∈ V(M)}

and
E(M) = {[vi, vj ] | [vi, vj , vk] ∈ F(M) for some vk ∈ V(M)} ,

respectively. The union of T (M), F(M), E(M), and V(M) forms a homogeneous simplicial
3-complex. Similarly, a 2-manifold is called a surface, which is represented as a triangular
mesh composed of vertices and triangular faces.

A piecewise affine mapping f :M→ R3 can be represented as a matrix

(3.1) f =
[
f(v1) · · · f(vn)

]⊤ ≡ [
f1 · · · fn

]⊤ ∈ Rn×3.

Note that for the point v ∈ M which is not a vertex, v must belong to a tetrahedron
[vi, vj , vk, vℓ] ∈ T (M). Then, the value f(v) can be represented as a linear combination
of fi, fj , fk, and fℓ with coefficients being the barycentric coordinates of v in [vi, vj , vk, vℓ],
that is,

f |[vi,vj ,vk,vℓ](v) = λi(v) fi + λj(v) fj + λk(v) fk + λℓ(v) fℓ,

where λi(v) =
|[v,vj ,vk,vℓ]|
|[vi,vj ,vk,vℓ]| , λj(v) =

|[vi,v,vk,vℓ]|
|[vi,vj ,vk,vℓ]| , λk(v) =

|[vi,vj ,v,vℓ]|
|[vi,vj ,vk,vℓ]| , and λℓ(v) =

|[vi,vj ,vk,v]|
|[vi,vj ,vk,vℓ]| .

Here the absolute value |[v0, . . . , vm]| denotes the volume of the m-simplex [v0, . . . , vm]. In
particular, |[vi, vj , vk, vℓ]|, |[vi, vj , vk]|, and |[vi, vj ]| denote the volume, area and length of the
tetrahedron [vi, vj , vk, vℓ], triangle [vi, vj , vk], and interval [vi, vj ], respectively.

Remark. The matrix f represents the unique piecewise affine mapping satisfying f(vs) = fs
for every vs ∈ V(M).

In this paper, the considered parameterization of a 3-manifold M ⊂ R3 is a bijective
piecewise affine mapping f that maps M to the unit solid ball B3. A parameterization

f :M→ B3 is said to be volume-preserving if the Jacobian matrix Jf−1 =
[
∂f−1

∂u1
∂f−1

∂u2
∂f−1

∂u3

]
satisfies

det
(
Jf−1(u1, u2, u3)

)
= 1.

In other words, f preserves the local volume.
In addition, for a genus-zero closed triangular mesh S, a parameterization f : S → S2 is

said to be conformal or angle-preserving if the first fundamental form If−1 satisfies

If−1(u1, u2) = λ(u1, u2)I2

for some positive scaling function λ, i.e., f preserves local angles. A parameterization f :
S → S2 is said to be equiareal or area-preserving if the first fundamental form If−1 satisfies
det

(
If−1(u1, u2)

)
= 1, i.e., f preserves the local area.
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4. The novel algorithm. In this section, we develop a novel energy minimization al-
gorithm for the computation of a volume-preserving parameterization that maps a simply
connected 3-manifold with a single boundary to a unit solid ball. Given a simply connected
tetrahedral meshM with the boundary ∂M = S being a genus-zero closed surface, our algo-
rithm is composed of three stages as follows. First, the initial boundary mapping is chosen to
be a spherical conformal parameterization f : S → S2, which is computed by minimizing the
discrete Dirichlet energy [23]. Then, the boundary mapping is deformed into an equiareal pa-
rameterization, which is iteratively computed by minimizing the stretch energy [76]. Finally,
the volume-preserving parameterization with the prescribed boundary mapping is computed
by minimizing the volumetric stretch energy.

4.1. Initial conformal boundary parameterizations. The initial spherical conformal pa-
rameterization is carried out by applying the CEM algorithm [75]. The original CEM algo-
rithm aims to compute disk-shaped conformal parameterizations of simply connected open
surfaces by minimizing the discrete Dirichlet energy functional [23, 38]

(4.1) ED(f) =
1

2
trace

(
f⊤LD f

)
,

where LD is the Laplacian matrix with

(4.2) [LD]i,j =


−wi,j ≡ −1

2(cotαi,j + cotαj,i) if [vi, vj ] ∈ E(S),∑
k ̸=iwi,k if j = i,

0 otherwise,

in which αi,j and αj,i are two angles opposite to the edge [vi, vj ]. The modified CEM algorithm
for genus-zero closed surfaces is stated as follows. First, an initial mapping h(0) : S → C is
obtained by solving the Laplace–Beltrami equation

(4.3) △Sh
(0) =

(
∂

∂x
− i

∂

∂y

)
δp,

where δp is the Dirac delta function at a selected point p on S, and (x, y) are the local
coordinates defined on a neighborhood of p. This method was originally proposed by Angenent
et al. [12] and has a benefit that the resulting spherical parameterization is bijective. A
straightforward proof for the bijectivity of the method [12] is given in Theorem 5.3. The
algorithm for solving (4.3) is summarized in Algorithm 4.1.

Unsatisfactorily, the angular distortion of the mapping computed by Algorithm 4.1 would
be relatively large at the neighborhood of p. To remedy this drawback, we improve the
conformality of the mapping by iteratively minimizing the Dirichlet energy

(4.6)

{
△Sh

(k)(v) = 0 if
∣∣Inv ◦ h(k−1)(v)

∣∣ < r,

h(k)(v) = Inv ◦ h(k−1)(v) otherwise,

where Inv denotes the inversion Inv(z) = 1
z . Once the iteration (4.6) converges, the desired

spherical conformal parameterization is obtained by the inverse stereographic projection Π−1
S2 :
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Algorithm 4.1 Spherical conformal parameterizations [12]

Input: A genus-zero closed mesh S.
Output: A spherical conformal parameterization f.
1: Let n be the number of vertices of S.
2: Find the most regular triangular face by

[va, vb, vc] = argmin
[vi,vj ,vk]∈F(S)

∥∥∥∥∥∥
|[vi, vj ]| − 1

3 (|[vi, vj ]|+ |[vj , vk]|+ |[vk, vi]|)
|[vj , vk]| − 1

3 (|[vi, vj ]|+ |[vj , vk]|+ |[vk, vi]|)
|[vk, vi]| − 1

3 (|[vi, vj ]|+ |[vj , vk]|+ |[vk, vi]|)

∥∥∥∥∥∥ .
3: Set B = {a, b, c} and I = {1, . . . , n}\B.
4: Set α = (vc−va)⊤(vb−va)

∥vb−va∥22
and

(4.4) hB =


−1

∥vb−va∥2
1

∥vb−va∥2
0

+ i


1−α

∥vc−(va+α(vb−va))∥2
α

∥vc−(va+α(vb−va))∥2
−1

∥vc−(va+α(vb−va))∥2

 .

5: Compute h by solving the linear system

(4.5) [LD]I,IhI = −[LD]I,BhB,

where LD is defined as in (4.2).
6: The spherical parameterization f is obtained by Π−1

S2 (hℓ) in (4.7), ℓ = 1, . . . , n.

C→ S2 defined by

(4.7) Π−1
S2 (z) =

(
2Re z

|z|2 + 1
,
2 Im z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

The improved algorithm derived by (4.6) for the computation of spherical conformal pa-
rameterizations is summarized in Algorithm 4.2.

Remark. In fact, the FLASH algorithm [19] for spherical conformal parameterization is
satisfactory with high accuracy and effectiveness. However, the accuracy and effectiveness of
Algorithm 4.2 are slightly better than those of the FLASH algorithm [19]. Numerical compar-
isons between the FLASH algorithm [19] and Algorithm 4.2 are demonstrated in Appendix C.

4.2. Equiareal boundary parameterizations. The boundary spherical equiareal parame-
terization is carried out by applying the SEM algorithm [76]. The original SEM algorithm [76]
aims to compute disk-shaped equiareal parameterizations of simply connected open surfaces
by minimizing the stretch energy functional

(4.8) ES(f) =
1

2
trace

(
f⊤LS(f) f

)
,
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Algorithm 4.2 CEM for spherical conformal parameterizations

Input: A genus-zero closed mesh S, a tolerance ε, a radius r (e.g., ε = 10−6, r = 1.2).
Output: A spherical conformal parameterization f.
1: Let n be the number of vertices of S.
2: Compute a spherical conformal parameterization g using Algorithm 4.1.
3: Perform the stereographic projection hℓ ←

gℓ,1

1−gℓ,3
+ i

gℓ,2

1−gℓ,3
, ℓ = 1, . . . , n.

4: Let δ ←∞.
5: while δ > ε do
6: Perform the inversion h← diag(|h|)−2h.
7: Update the index sets I = {i | |hi| < r} and B = {1, . . . , n}\I.
8: Update h by solving the linear system

[LD]I,IhI = −[LD]I,BhB,

where LD is defined as in (4.2).
9: Set fℓ ← Π−1

S2 (hℓ) as in (4.7), ℓ = 1, . . . , n.
10: Update δ ← ED(g)− ED(f).
11: Update g← f.
12: end while
13: return The spherical parameterization f.

where LS(f) is the stretch Laplacian matrix with

(4.9) [LS(f)]i,j =


−wi,j(f) ≡ −1

2

(
cot(αi,j(f))

σf−1 ([vi,vj ,vk])
+

cot(αj,i(f))
σf−1 ([vj ,vi,vℓ])

)
if [vi, vj ] ∈ E(S),∑

ℓ̸=iwi,ℓ(f) if j = i,

0 otherwise

in which σf−1([vi, vj , vk]) =
|[vi,vj ,vk]|

|f([vi,vj ,vk])| is the stretch factor of f on the triangular face

[vi, vj , vk]. The modified SEM algorithm for genus-zero closed surfaces is stated as follows.
First, the initial mapping f(0) is a spherical conformal parameterization computed by Al-

gorithm 4.2 and let h
(0)
ℓ =

f
(0)
ℓ,1

1−f
(0)
ℓ,3

+ i
f
(0)
ℓ,2

1−f
(0)
ℓ,3

, ℓ = 1, . . . , n. Then, the stretch energy (4.8) is

iteratively minimized by

(4.10) [LS(f
(k))]I(k),I(k)h

(k+1)

I(k)
= −[LS(f

(k))]I(k),B(k)h
(k)

B(k)
,

where LS is defined in (4.9),

I(k) =
{
ℓ
∣∣∣ |(diag(|h(k)|)−2h(k))ℓ| < r

}
and B(k) = {1, . . . , n}\I(k).

In practice, the radius r is chosen to be 1.2. Once h(k) in the iteration (4.10) converges to
h(∗), the desired spherical equiareal parameterization f is obtained by the inverse stereographic
projection operates on h(∗).

The algorithm for the computation of spherical equiareal parameterizations by (4.10) is
summarized in Algorithm 4.3.
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Algorithm 4.3 SEM for spherical equiareal parameterizations

Input: A genus-zero closed mesh S, a tolerance ε, a radius r (e.g., ε = 10−6, r = 1.2).
Output: A spherical equiareal parameterization f.
1: Let n be the number of vertices of S.
2: Compute a spherical conformal parameterization g using Algorithm 4.2.
3: Perform the stereographic projection hℓ =

gℓ,1

1−gℓ,3
+ i

gℓ,2

1−gℓ,3
, ℓ = 1, . . . , n.

4: Let δ ←∞.
5: while δ > ε do
6: Update the matrix A← LS(f), where LS(f) is defined as in (4.9).
7: Perform the inversion h← diag(|h|)−2h.
8: Update the index sets I = {i | |hi| < r} and B = {1, . . . , n}\I.
9: Update h by solving the linear system AI,IhI = −AI,BhB.

10: Set fℓ ← Π−1
S2 (hℓ) as in (4.7), ℓ = 1, . . . , n.

11: Update δ ← ES(g)− ES(f).
12: Update g← f.
13: end while
14: return The spherical parameterization f.

4.3. Volume-preserving parameterizations. Let M be a tetrahedral mesh of n vertices
in R3 and let f : M → R3 be a piecewise affine mapping on M. The volumetric Dirichlet
energy functional [69, 70, 71] is defined by

(4.11) ED(f) =
1

2
trace

(
f⊤LD f

)
,

where LD ∈ Rn×n is the volumetric Laplacian matrix with

(4.12) [LD]i,j =


−wi,j if [vi, vj ] ∈ E(M),∑

k ̸=iwi,k if j = i,

0 otherwise,

in which wi,j is the cotangent weight on the edge [vi, vj ] given by

(4.13) wi,j =
1

6

∑
τ∈T (M)

[vi,vj ]∪[vk,vℓ]⊂τ
[vi,vj ]∩[vk,vℓ]=∅

|[vk, vℓ]| cot θk,ℓi,j ,

where θk,ℓi,j is the dihedral angle between [vi, vk, vℓ] and [vj , vℓ, vk] in the tetrahedron τ on the
edge [vk, vℓ], as illustrated in Figure 4.1.

Similarly as [58, 73, 76], the cotangent formula (4.13) can be fairly changed according to
the image of a mapping f by

(4.14) wi,j(f) =
1

6

∑
τ∈T (M)

[vi,vj ]∪[vk,vℓ]⊂τ
[vi,vj ]∩[vk,vℓ]=∅

|f([vk, vℓ])| cot θk,ℓi,j (f),
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θk,ℓi,j

p

vi

vℓ

vk

vj

Figure 4.1. An illustration for the dihedral angle between [vi, vk, vℓ] and [vj , vℓ, vk] in the tetrahedron
[vi, vj , vk, vℓ].

where θk,ℓi,j (f) is the dihedral angle between the triangular faces f([vi, vk, vℓ]) and f([vj , vℓ, vk])
in the tetrahedron f(τ). We now define the stretch factor of f on a tetrahedron τ ∈ T (M) as

(4.15) σf−1(τ) =
|τ |
|f(τ)|

.

In addition, for the purpose of the volume-preserving parameterization, the condition |f(τ)| =
|τ |, for each τ ∈ T (M), is required to be satisfied. We now impose the stretch factor σf−1(τ)
into wi,j(f) and modify the formula as

(4.16) wi,j(f) =
1

6

∑
τ∈T (M)

[vi,vj ]∪[vk,vℓ]⊂τ
[vi,vj ]∩[vk,vℓ]=∅

|f([vk, vℓ])| cot θk,ℓi,j (f)

σf−1(τ)
,

where σf−1 is the stretch factor as in (4.15), which is equivalent to the Jacobian determinant
(see Appendix A).

The volumetric stretch energy functional onM is defined as

(4.17) ES(f) =
1

2
trace

(
f⊤LS(f) f

)
,

where LS(f) is the stretch volumetric Laplacian matrix with

(4.18) [LS(f)]i,j =


−wi,j(f) if [vi, vj ] ∈ E(M),∑

ℓ̸=iwi,ℓ(f) if j = i,

0 otherwise,

in which wi,j(f) is the modified weight given in (4.16).

Suppose an equiareal spherical boundary mapping f
(0)
B is computed by Algorithm 4.3.

Then, the volume-preserving parameterization is computed by minimizing the volumetric



VOLUME-PRESERVING PARAMETERIZATIONS 11

stretch energy (4.17) via the iteration

(4.19) [LS(f
(k))]I,If

(k+1)
I = −[LS(f

(k))]I,Bf
(0)
B

for solving the sequential quadratic programmings, where the matrix LS is defined in (4.18),
B = {s | vs ∈ ∂M} and I = {1, . . . , n}\B.

The VSEM algorithm for the computation of volume-preserving parameterizations by
(4.19) is summarized in Algorithm 4.4.

Remark. A mapping f is volume-preserving if and only if the stretch factor σf−1(τ) = 1
for every τ ∈ T (M). As a result, f is a fix point of the iteration (4.19), i.e., a critical point of
the energy functional ES in (4.17). However, it is not obvious the other way around since the
energy functional (4.17) is highly nonlinear. So, it is reasonable to numerically check whether
the resulting stretch factor σf−1(τ) is very close to 1 for every τ ∈ T (M). The distributions
of σf−1 for various benchmark mesh models are demonstrated later in Figure 6.4.

Algorithm 4.4 VSEM for volume-preserving parameterizations

Input: A simply connected tetrahedral meshM, a tolerance ε (e.g. ε = 10−6).
Output: A volume-preserving parameterization f.
1: Let n be the number of vertices ofM.
2: Let B = {s | vs ∈ ∂M} and I = {1, . . . , n}\B.
3: Compute a spherical equiareal parameterization gB by Algorithm 4.3.
4: Compute g by solving the linear system

[LD]I,IgI = −[LD]I,BgB,

where LD is defined as in (4.12).
5: Let δ ←∞.
6: Let fB ← gB.
7: while δ > ε do
8: Update A← LS(g), where LS(g) is defined as in (4.18).
9: Update f by solving the linear system AI,IfI = −AI,BfB.

10: Update δ ← ES(g)− ES(f).
11: Update g← f.
12: end while
13: return The volumetric mapping f.

5. Bijectivity of the parameterizations. The bijectivity is one of the most important in
the parameterization process. In the following, we first show that the spherical conformal
parameterization of a genus-zero closed mesh produced by Algorithm 4.1 is bijective under
the Delaunay assumption.

For convenience, we give the definition of an M-matrix [13] and a related lemma.

Definition 5.1. A matrix A ∈ Rm×n is nonnegative (positive) if all entries of A are non-
negative (positive). A squared matrix A ∈ Rn×n is an M-matrix if A = sI − B with B being
nonnegative and s ≥ ρ(B), where ρ(B) is the spectral radius of B.
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Lemma 5.2 (Theorems 1.4.7 and 1.4.10 in [52]). Suppose A ∈ Rn×n is a singular, irre-
ducible M-matrix. Then each principal submatrix Â of A other than A itself is a nonsingular
M-matrix and Â−1 is nonnegative.

Theorem 5.3. Given a genus-zero closed Delaunay triangular mesh M of n vertices, the
spherical conformal parameterization ofM produced by Algorithm 4.1 is bijective.

Proof. The Delaunay property guarantees that the weights wi,j of LD in (4.2) are positive.

Let D = diag
(
(
∑n

j=1w1,j , . . . ,
∑n

j=1wn,j)
⊤
)
. Then[

D−1LDh
]
i
=

∑
vj∈N(vi)

wi,j∑n
j=1wi,j

(hj − hi) , i = 1, . . . , n,

where N(vi) is the set of neighboring vertices of vi. Since
∑

vj∈N(vi)
wi,j∑n
j=1 wi,j

= 1, D−1LDh =

0 is equivalent to

(5.1) hi =
∑

vj∈N(vi)

wi,j∑n
j=1wi,j

hj , i = 1, . . . , n.

It is known that LD is a singular, irreducible M-matrix [75]. From Lemma 5.2, the matrix
[LD]I,I in (4.5) is invertible and −[LD]

−1
I,I[LD]I,B is nonnegative. Therefore, from (5.1), the

unique mapping hI = [LD]
−1
I,I[LD]I,BhB obtained by solving the linear system (4.5) is a convex

combination mapping with the boundary hB in (4.4) being a triangle. From the result in
[30], the interior mapping hI in (4.5) is bijective. Hence, the bijectivity of the spherical
conformal parameterization f in step 6 of Algorithm 4.1 follows from the bijectivity of the
inverse stereographic projection.

On the other hand, the bijectivity of the spherical conformal parameterization computed
by the CEM algorithm, Algorithm 4.2, can be theoretically guaranteed if the boundary map-
ping hB in step 8 forms a convex polygon. Unfortunately, the polygon formed by hB is not
necessarily convex, so the result in [30] cannot be applied. However, from the construction of
the index set B in step 7 of Algorithm 4.2, the polygon formed by hB is nearly convex, i.e.,
there exists a circle γ : S1 → C with radius r satisfying

(5.2) sup
x∈S1,j∈B

|γ(x)− hj | < sup
[vi,vj ]∈E(S)

i/∈B,j∈B

|hi − hj |.

It is reasonable to demonstrate the bijectivity of the spherical conformal parameterization
via numerical checking of the resulting mapping computed by Algorithm 4.2. The method
for checking the bijectivity of a discrete spherical mapping f : S → S2 can be found in
Appendix B.1.

As we will see in Table C.2, the spherical conformal parameterization computed by the
CEM algorithm, Algorithm 4.2, is bijective, for each tested benchmark mesh model.

In addition, for the SEM algorithm, Algorithm 4.3, the resulting mapping seldom fails to
be bijective, e.g., for the boundary mapping of the Bunny model,2 the image of the resulting

2Among all 17 tested surface mesh models, the Bunny model is the only one for which the resulting spherical
mapping by the SEM algorithm, Algorithm 4.3, is not bijective.
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spherical mapping f contains three overlapped triangular faces. It is not surprising since the
stretch cotangent weights in (4.9) are not necessarily positive so that the resulting mapping
is not inevitably a convex combination mapping. To remedy this drawback, we unfold the
overlapped triangular faces on the image of f by the procedures in Appendix B.2.

Furthermore, for the simply connected tetrahedral mesh with a single boundary, the convex
combination property of the mapping follows similarly to Theorem 5.3.

Corollary 5.4. Given a simply connected tetrahedral meshM of n vertices with the boundary
and interior indices being B and I, respectively, suppose L is a Laplacian matrix as in (4.18)
with positive weights and f : M → R3 is a piecewise affine mapping satisfying that the
boundary mapping {fs := f(vs) | s ∈ B} forms a convex polyhedron. Then LI,I is invertible
and the mapping

(5.3) fI = −L−1
I,ILI,BfB

is a convex combination mapping.

Remark. The bijectivity of the volume-preserving parameterization of tetrahedral meshes,
in general, is not guaranteed even if the mapping is a convex combination mapping with the
boundary mapping being convex. An elegant counterexample has been given in [32].

6. Numerical experiments. In this section, we demonstrate numerical experiments of the
VSEM algorithm for volume-preserving parameterizations of simply connected tetrahedral
meshes. All linear systems in our algorithms are solved by the backslash operator (\) in
MATLAB. Some of surface and tetrahedral mesh models are obtained from TurboSquid [7],
the AIM@SHAPE shape repository [3], the Stanford 3D scanning repository [6], a project
page of ALICE [1], and Gu’s website [2]. Some of tetrahedral mesh models are generated
using JIGSAW mesh generators [24, 27, 25, 28, 26].

In order to better understand the shape of the mesh models and the image of the volume-
preserving parameterizations computed by the VSEM algorithm, Algorithm 4.4, we first show
the tetrahedral meshes of David Head and Human Brain and their volume-preserving param-
eterizations in Figures 6.1 and 6.2, respectively.

Then, we compare the effectiveness and accuracy of the VSEM algorithm, Algorithm 4.4,
to the state-of-the-art OMT algorithm [67]. The executable program files of the OMT algo-
rithm are obtained from Gu’s website [2].

We now introduce the volume distortion to measure the accuracy of a volume-preserving
parameterization by the total volume distortion as well as the mean and standard deviation
(SD) of local volume ratios. The total volume distortion of a mapping f on a mesh M is
defined as

(6.1) DM(f) =
1

4

∑
v∈V(M)

∣∣∣∣∣
∑

τ∈N (v) |τ |
|M|

−
∑

τ∈N (v) |f(τ)|
|f(M)|

∣∣∣∣∣ ,
where N (v) = {τ ∈ T (M) | v ⊂ τ} is the set of neighboring tetrahedrons of the vertex v,
and |M| and |f(M)| denote volumes of M and its image, respectively. A mapping f is
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volume-preserving if DM(f) = 0. The local volume ratio Rf on a vertex v is defined as

(6.2) Rf (v) =

∑
τ∈N (v) |τ |/|M|∑

τ∈N (v) |f(τ)|/|f(M)|
.

The mean and SD of Rf (v), for all v ∈ V(M), are used to measure the local volume distortion.
A mapping f is volume-preserving if the mean is 1 and the SD is 0.

In Tables 6.1 and 6.2 and Figure 6.3, we show the total volume distortion as well as
the mean and SD of local volume ratios of volume-preserving parameterizations of various
tested benchmark mesh models obtained by OMT and the VSEM algorithm, Algorithm 4.4,
respectively. We see that the VSEM has much smaller total volume distortions and local
volume ratios than those of OMT. In addition, we show the execution time of OMT and the
VSEM in Table 6.3, which indicates that the effectiveness of the VSEM outperforms the OMT
by several hundreds of times.

Furthermore, in Figure 6.4, we show histograms of the stretch factors σf−1(τ), for τ ∈
T (M), of volume-preserving parameterizations f computed by the VSEM algorithm, Algo-
rithm 4.4. It indicates that the stretch factors of most tetrahedrons are closed to 1, as we
desired.

Recall that the bijectivity of convex combination mappings on 3-manifolds is, in general,
not guaranteed [32]. It is reasonable to numerically check the bijectivity of volume-preserving
parameterizations computed by the VSEM algorithm, Algorithm 4.4. The method for checking
the bijectivity of a volumetric mapping can be found in Appendix B.3. In Table 6.4, we show
the percentages of bijective tetrahedrons of volume-preserving parameterizations by OMT and
VSEM, respectively. We observe that most of tetrahedrons are mapped bijectively by OMT
and VSEM, and the bijectivity of the VSEM is much better than that of OMT.

Remark. Thanks to the large-scale bounded distortion mapping [4, 49], for each tested
tetrahedral volumetric mesh model listed in Table 6.4, the overlapped tetrahedrons can be
unfolded into a 100% bijective volume-preserving parameterization, slightly sacrificing the
total volume distortion and the spherical boundary.

In summary, the proposed VSEM algorithm, Algorithm 4.4, has better accuracy and ef-
fectiveness than OMT that would cost less than 10 seconds for computing volume-preserving
parameterizations of meshes of 100,000 tetrahedrons. It should be quite satisfactory in prac-
tical applications.

7. Applications. In this section, we present sample applications of volume-preserving
parameterizations for 3-manifolds, namely, the manifold partition and the mesh processing
for 3D printing.

7.1. Manifold partitions. The aim of the manifold partition problem is to find an optimal
partition of a manifold in terms of minimizing a certain energy functional [15, 14]. In the
previous works, the considered manifolds are usually of simple shapes, e.g., a disk, a sphere, a
solid ball, and a cube. It is worth noting that the optimal partition usually has the property
that each part has a similar volume. With aid of the VSEM algorithm, Algorithm 4.4, for
volume-preserving parameterizations, a manifold can be easily partitioned into several simply
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Table 6.1
The total volume distortion (6.1) of volume-preserving parameterizations by OMT and VSEM algorithm,

Algorithm 4.4. Here ”—” means the executable program file of OMT does not work.

Model # Tetrahedrons OMT [67] VSEM

Bunny 84,787 0.0627 0.0322
Fandisk 88,374 0.0645 0.0506
David Head 90,575 0.0627 0.0142
Lion 97,131 0.0666 0.0262
Max Planck 115,767 0.0400 0.0086
Venus 130,429 0.0346 0.0052
Apple 169,888 0.0300 0.0030
Bimba 290,353 0.0500 0.0184
Human Brain 852,565 — 0.0790

Table 6.2
The mean and SD of local volume ratios of volume-preserving parameterizations by OMT and VSEM

algorithm, Algorithm 4.4. Here ”—” means the executable program file of OMT does not work.

Model # Tetrahedrons OMT [67] VSEM
Mean SD Mean SD

Bunny 84,787 1.5015 42.5488 1.1044 1.4497
Fandisk 88,374 1.3520 6.3902 1.2468 2.8231
David Head 90,575 1.0621 0.6465 1.0323 0.6634
Lion 97,131 1.0417 3.1432 1.0246 0.1215
Max Planck 115,767 1.0568 1.6567 1.0235 0.7186
Venus 130,429 1.0183 0.4585 1.0066 0.3662
Apple 169,888 1.0048 0.0564 1.0002 0.0086
Bimba 290,353 1.0342 1.6458 1.0066 0.4764
Human Brain 852,565 — — 1.0266 0.8850

Table 6.3
The computational cost (second) of volume-preserving parameterizations by OMT and VSEM algorithm,

Algorithm 4.4. Here ”—” means the executable program file of OMT does not work.

Model # Tetrahedrons OMT [67] VSEM
Time #Iter. Time #Iter.

Bunny 84,787 24438.40 231 6.26 10
Fandisk 88,374 8542.10 61 6.35 10
David Head 90,575 6911.32 24 6.13 10
Lion 97,131 13716.90 50 6.95 10
Max Planck 115,767 6679.72 47 9.81 10
Venus 130,429 5558.35 40 13.35 10
Apple 169,888 5599.84 37 20.08 10
Bimba 290,353 54856.90 193 33.09 10
Human Brain 852,565 — — 157.79 10
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Figure 6.1. The tetrahedral mesh of David Head (left) and its volume-preserving parameterization (right)
by VSEM algorithm, Algorithm 4.4.

connected submanifolds with a similar volume that could be good initially for solving the
partition problem [15, 14].

First, a 3-manifold M is mapped into a unit solid ball B3 by f using VSEM. Then,
the partition of M can be achieved by slicing B3 with suitable cutting planes. The uniform
sampling of B3 can be controlled by using the spherical coordinate system, and the tetrahedral
mesh can be constructed by the Delaunay triangulation algorithm (delaunayTriangulation)
in MATLAB due to the fact that B3 is convex.

Figure 7.1 shows the equal-volume partition of the David Head model M. The cutting
planes are chosen to be x = 0, y = 0 and z = 0 so that the uniform tetrahedral mesh of a ball
B3 is partitioned into eight equal-volume partitions. Then, each partition of B3 is mapped to
M via f−1 and the corresponding volume is shown in Table 7.1. Note that, here, the volume
ofM is normalized to be 1. From Table 7.1, we see that each partition of the manifold has a
volume around 1/8 with SD less than 2.73× 10−4, which is quite satisfactory.

7.2. Mesh processing for 3D printing. Nowadays, 3D printing is a popular topic. Issues
arising from the data processing for 3D printing are getting much attention. In order to save
printing material, it is common to hollow out the interior of the model when a solid object is
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Figure 6.2. The tetrahedral mesh of Human Brain (left) and its volume-preserving parameterization (right)
by VSEM algorithm, Algorithm 4.4.
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Figure 6.3. The total volume distortion (6.1) of volume-preserving parameterizations by OMT and VSEM
algorithm, Algorithm 4.4.
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Figure 6.4. Histograms of stretch factors σf−1(τ) of volume-preserving parameterizations obtained by
VSEM algorithm, Algorithm 4.4.

Table 6.4
The percentages of bijective tetrahedrons for volume-preserving parameterizations by OMT and VSEM

algorithm, Algorithm 4.4. Here ”—” means the executable program file of OMT does not work.

Model # Tetrahedrons OMT [67] VSEM

Bunny 84,787 99.19% 99.90%
Fandisk 88,374 98.79% 99.94%
David Head 90,575 99.90% 99.99%
Lion 97,131 99.58% 99.97%
Max Planck 115,767 99.91% 99.99%
Venus 130,429 99.96% 99.99%
Apple 169,888 99.96% 100.00%
Bimba 290,353 99.29% 99.96%
Human Brain 852,565 — 99.81%

Front View Left Side View Back View Right Side View

Figure 7.1. The partition of the David Head model in four views.
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Table 7.1
The partition of the David Head model and their volumes. The total volume is normalized to be 1.

Part Volume Part Volume Part Volume Part Volume

0.1249 0.1247 0.1257 0.1247

0.1248 0.1250 0.1255 0.1247

SD of volumes: 2.7227× 10−4

printed. With aid of volume-preserving parameterizations, the thickness of the model can be
easily controlled. First, a 3-manifold M is mapped into the ball B3 with VSEM. Then, the
uniform tetrahedral mesh of B3 is constructed by the spherical coordinate system as before.

In Figure 7.2, we show the hollowed David Head and Max Planck models in three views.
The capacity of the interior is roughly 63% of the volume of the original solid manifold. From
Figure 7.2, we see that the thickness of each hollowed model is almost equally distributed with
a smooth interior surface.

8. Concluding remarks. In this paper, we develop a novel algorithm by minimizing the
volumetric stretch energy, which can be used to compute volume-preserving parameterizations
for simply connected tetrahedral meshes with a single boundary. In addition, we generalize
the CEM [75] and SEM [76] algorithms to compute the spherical conformal and equiareal pa-
rameterizations of genus-zero closed triangular meshes, respectively. Numerical experiments
indicate that the proposed VSEM algorithm for volume-preserving parameterizations outper-
forms the state-of-the-art OMT algorithm [67] with better effectiveness and accuracy. Appli-
cations of the manifold partition and the mesh processing for 3D printing are demonstrated
to show the practicality of our algorithm.

Acknowledgments. The authors want to thank Prof. Xianfeng David Gu, Prof. Lok Ming
Ronald Lui and Mr. Gary Pui-Tung Choi for useful discussions and the executable program
files of the OMT and the FLASH algorithms, respectively.
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Appendix A. Equivalence of the volumetric stretch factor.

Theorem A.1. Let f :M→ R3 be a piecewise affine mapping on the tetrahedral mesh M
and Jf−1 =

[
∂f−1

∂u1
∂f−1

∂u2
∂f−1

∂u3

]
. Suppose σf−1 is the volumetric stretch factor defined as in

(4.15). Then

σf−1(τ) = det
(
Jf−1 |f(τ)

)
for every τ ∈ T (M).

Proof. Let fs = f(vs) ≡ (f1s , f
2
s , f

3
s )

⊤ as in (3.1). In the tetrahedron τ = [vi, vj , vk, vℓ], we
have

f |τ (v) =
|[v, vj , vk, vℓ]|fi + |[vi, v, vk, vℓ]|fj + |[vi, vj , v, vℓ]|fk + |[vi, vj , vk, v]|fℓ

|[vi, vj , vk, vℓ]|
.

The inverse mapping via the barycentric coordinate is written as

f−1|f(τ)(u) =
|[u, fj , fk, fℓ]|vi + |[fi, u, fk, fℓ]|vj + |[fi, fj , u, fℓ]|vk + |[fi, fj , fk, u]|vℓ

|[fi, fj , fk, fℓ]|
.

Note that the derivatives are translation invariant. Without loss of generality, we assume that
vℓ = 0 and fℓ = 0. Then the partial derivatives of f−1 are written as

∂f−1

∂uα

∣∣∣∣
f(τ)

=
(fα+1

j f
α+2
k − f

α+2
j f

t+1
k )vi + (fα+1

k f
α+2
i − f

α+2
k f

t+1
i )vj + (fα+1

i f
α+2
j − f

α+2
j f

t+1
i )vk

6|[fi, fj , fk, fℓ]|

for α = 1, 2, 3 and α+ 1, α+ 2 ∈ {1, 2, 3} are of module 3. A direct computation yields that

det(Jf−1 |f(τ)) =
v3i (v

1
j v

2
k − v2j v

1
k)− v2i (v

1
j v

3
k − v3j v

1
k) + v1i (v

2
j v

3
k − v3j v

2
k)

f3i (f
1
j f

2
k − f2j f

1
k)− f2i (f

1
j f

3
k − f3j f

1
k) + f1i (f

2
j f

3
k − f3j f

2
k)

= σf−1(τ).

Appendix B. Bijectivity checking and correction.

B.1. Bijectivity checking for spherical parameterizations. The bijectivity of a discrete
spherical mapping f : S → S2 can be checked as follows:

1. Compute the face normal n : F(S)→ R3 of each triangle τ = [v1, v2, v3] on the image
of f by

(B.1) n(τ) =
(f(v2)− f(v1))× (f(v3)− f(v1))

∥(f(v2)− f(v1))× (f(v3)− f(v1))∥
.

2. Compute the face center c : F(S) → R3 of each triangle τ = [v1, v2, v3] on the image
of f by c(τ) = 1

3

∑3
j=1 f(vj).

3. Compute the inner product n(τ) · c(τ) for every τ ∈ F(S).
4. Compute the number of overlapped faces |{τ ∈ F(S) |n(τ) · c(τ) ≤ 0}|.

When the number of overlapped faces is zero, the discrete spherical mapping f is bijective.
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φ1
i,j(f)φ2

i,j(f)

fi

fj

fℓfk

Figure B.1. An illustration for the mean value weight.

B.2. Bijectivity correction for spherical parameterizations. The overlapped triangular
faces on the image of a spherical mapping f can be unfolded by the following procedures:

1. Construct the Laplacian matrix LM with the mean value weight [29]

(B.2) wi,j =
tan

φ1
i,j(f)

2 + tan
φ2
i,j(f)

2

∥vj − vi∥
,

where φ1
i,j(f) and φ2

i,j(f) are the angles ∠fℓfifj and ∠fjfifk, respectively, as illustrated
in Figure B.1.

2. For each overlapped triangular face f(τ), we update the coordinates of the vertices in
f(τ) by solving the linear system [LM ]I,IfI = −[LM ]I,BfB, where I is the index set of
the three vertices in f(τ) and B is the index set of the remaining vertices.

3. The vertices in f(τ) are projected to the unit sphere so that the resulting mapping is
still a spherical mapping.

The above procedures are consecutively performed until there is no overlapped triangular face.
It is worth noting that the mean value weight (B.2) is always positive so that the updated
mapping would be a convex combination mapping.

B.3. Bijectivity checking for volumetric parameterizations. The bijectivity of a volu-
metric tetrahedral mesh mapping f :M→ B3 can be checked as follows:

1. Compute the face normals nk : T (M) → R3, k = 1, . . . , 4, for each face of the
tetrahedron τ ≡ [v1, v2, v3, v4] on the image of f by

n1(τ) = n([v2, v3, v4]), n2(τ) = n([v1, v4, v3]),

n3(τ) = n([v1, v2, v4]), n4(τ) = n([v1, v3, v2]),

where n is the face normal defined as (B.1).
2. Compute the face centers ck : T (M) → R3, for each face of the tetrahedron τ ≡

[v1, v2, v3, v4] on the image of f by

ck(τ) =
1

3

4∑
j=1
j ̸=k

f(vj)

for k = 1, . . . , 4.
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(a) Max Planck (b) Bulldog

Figure C.1. The mesh models of (a) Max Planck and (b) Bulldog as well as their spherical conformal
parameterizations by the CEM algorithm, Algorithm 4.2.

3. Compute the tetrahedron center t : T (M)→ R3 of each tetrahedron τ ≡ [v1, v2, v3, v4]
on the image of f by t(τ) = 1

4

∑4
j=1 f(vj).

4. Compute the inner products nk(τ) · (ck(τ)− t(τ)), k = 1, . . . , 4, for every τ ∈ T (M).
5. Compute the number of overlapped tetrahedrons

|{τ ∈ T (M) |nk(τ) · (ck(τ)− t(τ)) ≤ 0 for some k ∈ {1, . . . , 4}}| .

Appendix C. Numerical comparison for spherical conformal parameterizations. In
this section, we demonstrate numerical results of spherical conformal parameterizations com-
puted by the modified CEM algorithm, Algorithm 4.2. Also, we compare the effective-
ness and accuracy of Algorithm 4.2 to other state-of-the-art algorithms, namely, the quasi-
implicit Euler method (QIEM) for heat diffusion [43] and the FLASH algorithm [19]. The
MATLAB codes of QIEM are reproduced by the authors. The MATLAB codes of FLASH
(spherical conformal map) are obtained from the MATLAB File Exchange website [5].

In Figure C.1, we show the genus-zero mesh models of Max Planck and Bulldog, and their
spherical conformal parameterizations by the CEM algorithm. In Table C.1 and Figure C.2,
we show the mean and SD of angular distortions of parameterizations produced by QIEM,
FLASH, and Algorithm 4.2 for spherical conformal parameterizations, respectively. From
Figure C.2, we observe that the mean and SD of the CEM algorithm for most of the tested
models are slightly smaller than those of QIEM and FLASH. For the model of Bunny, QIEM
would produce relatively larger mean and SD of angular distortions.

On the other hand, Table C.2 and Figure C.3 show the execution time of QIEM, FLASH,
and the CEM algorithm, Algorithm 4.2, respectively. From Table C.2, we observe that for the
mesh models with around 100,000 faces, Algorithm 4.2 would cost roughly 1 second for the
computation of a spherical conformal parameterization, while QIEM would cost more than 20
seconds.

In summary, Algorithm 4.2 has a similar effectiveness and accuracy to FLASH but out-
performs the QIEM.
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Table C.1
The angular distortion (degree) of the spherical conformal parameterizations by QIEM, FLASH, and the

CEM algorithm, Algorithm 4.2, with maximal number of iterations being 5.

Model # Faces
QIEM [43] FLASH [19] CEM
Mean SD Mean SD Mean SD

Heart 15,358 0.9713 1.6089 0.8646 1.5991 0.7988 1.6044
Venus 28,602 1.0045 0.8582 0.7650 0.7282 0.6947 0.6990
Arnold 29,056 1.2167 1.1614 0.9338 0.9428 0.9163 0.9359
Apple 35,674 0.2792 0.2464 0.2231 0.2306 0.2186 0.2277
Bulldog 99,590 1.0822 1.7948 1.0654 1.7860 1.0298 1.7906
Lion Statue 100,000 1.4776 1.4933 1.3638 1.2240 1.2897 1.1908
Max Planck 102,212 0.4114 0.5271 0.4272 0.5157 0.4079 0.5117
Bunny 111,364 2.5941 8.6253 0.6618 0.8314 0.6621 0.8306
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Figure C.2. The (a) mean and (b) SD of angular distortions of the conformal parameterizations by QIEM,
FLASH, and the CEM algorithm, Algorithm 4.2, with maximal number of iterations being 5.
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Table C.2
The computational cost (second) of the spherical conformal parameterizations by QIEM, FLASH, and the

CEM algorithm, Algorithm 4.2, with maximal number of iterations being 5.

Model # Faces QIEM [43] FLASH [19] CEM
Time Time Time #Iter. #Overlap

Heart 15,358 0.45 0.21 0.20 5 0
Venus 28,602 5.97 0.31 0.25 5 0
Arnold 29,056 8.26 0.31 0.22 5 0
Apple 35,674 1.34 0.40 0.34 5 0
Bulldog 99,590 29.28 1.15 0.94 5 0
Lion Statue 100,000 34.11 1.22 1.04 5 0
Max Planck 102,212 31.78 1.21 0.93 5 0
Bunny 111,364 24.27 1.54 1.24 5 0
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Figure C.3. Computational cost (second) vs number of faces by QIEM, FLASH, and the CEM algorithm,
Algorithm 4.2, with maximal number of iterations being 5.
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