A novel suboptimal method for solving polynomial filtering problems

Xue Luo \(^a\), Yang Jiao \(^b\), Wen-Lin Chiou \(^c\), Stephen S.-T. Yau \(^d,1\)

\(^a\) School of Mathematics and Systems Science, Beihang University, Beijing, 100191, PR China
\(^b\) Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Science and Engineering Offices (MC 249), 851 S. Morgan Street, Chicago, IL 60607–7045, USA
\(^c\) Department of Mathematics, Fu-Jen University, New Taipei City, Taiwan, ROC
\(^d\) Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, PR China

Abstract

In this paper we derive the stochastic differentials of the conditional central moments of the nonlinear filtering problems, especially those of the polynomial filtering problem, and develop a novel suboptimal method by solving this evolution equation. The basic idea is to augment the state of the original nonlinear system by including the original states' conditional central moments such that the augmented states form a so-called bilinear system after truncating. During our derivation, it is clear to see that the stochastic differentials of the conditional central moments of the linear filtering problem (i.e., \(f, g\) and \(h\) are all at most degree one polynomials) form a closed system automatically without truncation. This gives one reason for the existence of optimal filtering for linear problems. On the contrary, the conditional central moments form an infinite dimensional system, in general. To reduce it to a closed-form, we let all the high enough central moments to be zero, as one did in the Carleman approach (Germani et al., 2007). Consequently, a novel suboptimal method is developed by dealing with the bilinear system. Numerical simulation is performed for the cubic sensor problem to illustrate the accuracy and numerical stability.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear filtering (NLF) problem has been extensively studied since the linear one has been satisfactorily solved by Kalman in 1960s. But until now there exists no universal optimal method for the general nonlinear settings. The main goal of NLF is to get “good” estimation of the conditional expectation, or perhaps even the conditional density function of the state, given the observation history. We refer the readers to the book by Jazwinski (1970) for excellent introduction to NLF.

One possible general method to NLF is the so-called global approaches, see the survey paper (Luo, 2014) for more detailed discussion. All these methods try to solve analytically or numerically for the conditional density function. One of the most recent global approach is Yau–Yau’s on- and off-line algorithm, which is first derived in Yau and Yau (2008) and further generalized to nonlinear time-varying setting in Luo and Yau (2013). The Yau–Yau’s method works for all NLF problems theoretically, however, there are still some technical works to be done for high-dimensional states’ problem, say to overcome “the curse of dimensionality”. Therefore, certain suboptimal methods still need to be developed.

Another possible way-out to solve the general NLF problems stems from the local approaches, especially the Kalman filter and its derivatives. The basic idea is to augment the states of the original NLF problem in certain way such that the augmented states satisfy a linear or so-called bilinear system (Carravetta, Germani, & Shuakayev, 2000). Generally speaking, one cannot obtain a closed system unless it is Benes’ filter (Benes, 1981) or Yau filter (Yau, 1994). The suboptimal filtering therefore is derived by truncating the finite-dimensional system in some way. In this direction, Basin (2003) is the first paper where the conditional higher order moments were employed for suboptimal polynomial filtering (PF). Later, a series of papers, say (Basin, 2008; Basin, Shi, & Calderon-Alvarez, 2010) and references therein follow this
line. Based on the suboptimal approach introduced for the bilinear system in Carravetta et al. (2000) and Germani, Manes, and Palumbo (2007) developed a Carleman approximation approach for the NLF problems. In their paper, the higher moments are omitted to form a finite-dimensional system. However, it is as early as in 1967 that Kushner (1967) considered the moment sequences. Even in the one-dimensional problem, the moment sequence has to satisfy the following inequalities:

\[m_2 > 0, \quad m_4 > m_2^2, \quad m_6 > m_2^3 / m_2, \ldots, \]

where \(m_s \), \(s = 1, 2, \ldots \) represent the \(s \)-moment of some random variable. In particular, if the random variable is the standard Gaussian, then all the higher moments can be computed explicitly:

\[m_s = \begin{cases} 0, & \text{all odd } s \geq 1, \\ (s - 1)!! \cdot m_2^s, & \text{all even } s \geq 2, \end{cases} \]

where \((s - 1)!! = 1 \cdot 3 \cdot 5 \cdots (s - 1), \) if \(s \) is even. It is easy to see that no matter how small \(m_2 \) is, the even moments grow without bound as \(s \to \infty \). Therefore, it is inappropriate to let all the higher moments to be zero, even in the Gaussian case.

In this paper, we propose a novel suboptimal method (NSM) for the PF problems by observing the evolution of the conditional central moments of the states. Instead of augmenting the states by their higher moments as in the Carleman approach, we derive the evolution of the higher central moments, and omit the high enough ones to form a finite-dimensional system. Another novelty of this paper is that we provide an explanation why the optimal method can be derived only for the linear/bilinear filtering problems from the viewpoint of the evolution of the conditional higher central moments. According to Theorem 2, the stochastic differentials of the conditional central moments form a closed system automatically without truncation, if the linear/bilinear filtering problem is considered.

2. Filtering model and notations

The model we consider here is:

\[\begin{align*}
\dot{x}_t &= f(x_t, t) dt + g(t) v_t, \\
\dot{v}_t &= h(x_t, t) dt + w_t, \quad (2.1)
\end{align*} \]

where \(x_t, \quad v_t, \quad y_t, \) and \(w_t \) are \(\mathbb{R}^n, \quad \mathbb{R}^{p \times n}, \) \(\mathbb{R}^m, \) and \(\mathbb{R}^m \)-valued processes, respectively, and \(f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n, \quad g : \mathbb{R}^n \to \mathbb{R}^{p \times n}, \quad h : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m \) are polynomials with respect to \(x \). Assume that \(\{v_t, \ t \geq 0\} \) and \(\{w_t, \ t \geq 0\} \) are Brownian motion processes with \(\text{Var}[v_t] = Q(t) dt \) and \(\text{Var}[w_t] = R(t) dt \), respectively. Moreover, \(\{v_t, \ t \geq 0\}, \quad \{w_t, \ t \geq 0\} \) and \(x_0 \) are independent, and \(y_0 = 0 \).

The conditional expectation for certain process \(x_t \) is denoted as \(\bar{x}_t := E[x_t \mid Y_t] \) for short, where \(Y_t := \{y_s : 0 \leq s \leq t \} \) is the observation history. Also the a priori conditional expectation is denoted as \(\hat{x}_t := E[\hat{x} \mid Y_{t-} \}\), where \(Y_{t-} := \{y_s : 0 \leq s < t \} \).

In this paper, we shall use the Kronecker algebra for conciseness. For the quick survey on the Kronecker product and its properties can be found in Carravetta, Germani, and Raimondi (1996). For the readers’ convenience, we include some simple facts of Kronecker algebra here. The Kronecker product \(\otimes \) is defined for any two matrices \(M_{r \times s} \) and \(N_{p \times q} \):

\[
M \otimes N := \begin{bmatrix}
m_{11}N & \cdots & m_{1s}N \\
\vdots & \ddots & \vdots \\
m_{r1}N & \cdots & m_{rs}N
\end{bmatrix}.
\]

Let \(M^{[i]} \) denote the \(i \)-th Kronecker power of the matrix \(M \), which is defined as

\[
M^{[0]} = 1; \quad M^{[i]} = M \otimes M^{[i-1]} = M^{[i-1]} \otimes M.
\]

The stack of the matrix \(M_{r \times s} := [m_1, m_2, \ldots, m_r] \) is defined as

\[
st(M) = \begin{bmatrix}
m_1^T \\
m_2^T \\
\vdots \\
m_r^T
\end{bmatrix}^T,
\]

where \(m_i \) is the \(i \)-th column of \(M \). The inverse operation of the stack can reduce a vector into a matrix with proper size. That is, \(M = st^{-1}.M \). The following are properties of Kronecker product and the stack operation:

\[
\begin{align*}
(A + B) \otimes (C + D) &= A \otimes C + A \otimes D + B \otimes C + B \otimes D \quad (2.2) \\
(A \otimes B) \otimes C &= A \otimes (B \otimes C) \quad (2.3) \\
(A \otimes B) \otimes (B \otimes D) &= (A \otimes B) \otimes (C \otimes D) \quad (2.4) \\
u \otimes v &= st(v^T, u^T) \quad (2.5)
\end{align*}
\]

where \(A, B, C, \) and \(D \) are matrices with suitable size, \(u \) and \(v \) are vectors. As the usual matrix multiplication, Kronecker product is not commutative. Given any two matrices \(A \in \mathbb{R}^{r \times s} \) and \(B \in \mathbb{R}^{p \times q} \), then

\[
B \otimes A = C_{p \times q}^T(b \otimes C)_{s \times t},
\]

where \(C_{a \otimes b} \) is an orthonormal commutative matrix in \([0, 1]^{ab \times ab}\) with its entry \((h, l)\) given by

\[
(C_{a \otimes b})_{h,l} = \begin{cases} 1, & \text{if } l = |(h - 1)b| \wedge (\lfloor \frac{h - 1}{b} \rfloor + 1) \\
0, & \text{otherwise}, \end{cases}
\]

where \([\cdot]\) and \(|\cdot| \) denote the integer part and \(s\)-modulo, respectively. The Kronecker power of a binomial, \((a + b)^{[i]}\) allows the following expansion:

\[
(a + b)^{[i]} = \sum_{j=0}^{i} M_{i,j} (a^{[j]} \otimes b^{[i-j]}), \quad (2.6)
\]

for any \(a, b \in \mathbb{R}^n \), where \(M_{i,j} \in \mathbb{R}^{n \times n} \) can be recursively computed

\[
M_{i,0} := M_0 = I_{n}, \\
M_{i,1} := (M_{i-1} \otimes I_{n}) + (M_{i-1} \otimes I_{n}) (I_{n \times n} \otimes G_{n-1}),
\]

and \(\{G_i\} \) is a sequence that satisfies the following equations:

\[
G_1 = C_{n,n}^{T}, \quad G_i = (I_{n \times I_{n-1}} \cdot (G_{i-1} \otimes I_{n-1})).
\]

See detailed derivation in Carravetta et al. (1996).

In the derivation of our NSM for PF problems, the Ito formula for the computation of stochastic differentials is needed (see Liptser and Shiryayev, 1977). For any vector function \(\psi(x) : \mathbb{R}^n \to \mathbb{R}^r \), we have

\[
d\psi = (\nabla x \otimes \psi) dx_t + \frac{1}{2} (\nabla^2 x^{[2]} \otimes \psi) dx_t dx_t. \quad (2.7)
\]

The differential operator \(\nabla^{[i]} \) applied to \(\psi \) is defined as

\[
\nabla x^{[i]} \otimes \psi = \psi, \quad \nabla x^{[i+1]} \otimes \psi = \nabla x \otimes (\nabla x^{[i]} \otimes \psi), \quad i \geq 1,
\]

with \(\nabla x = \left[\frac{\partial x_1}{\partial x_1} \frac{\partial x_2}{\partial x_2} \cdots \frac{\partial x_n}{\partial x_n} \right] \).

3. NSM for PF problems

3.1. Derivation of stochastic differentials for higher central moments

It is well-known from Jazwinski (1970) that the conditional mean of the process \(x_t \) satisfies

\[
d\hat{x}_t = \hat{f} dt + P^{[i]} [\hat{h}^T R^{-1} (dy - \hat{h} dt)] \\
= \left[\hat{f} + P^{[i]} [\hat{h}^T R^{-1} (dy - \hat{h})] \right] dt + P^{[i]} [\hat{h}^T R^{-1} dw_t], \quad (3.8)
\]
where $p^{[\alpha]} := (x - \hat{x})^{[\alpha]}$, for any $\alpha \geq 1$. Thus, it is not hard to get that
\[
\begin{align*}
\frac{d^{[1]} P}{dt} := & \sum_{i=0}^{\deg(f)} F_i x_i^{[1]} + \sum_{j=0}^{\deg(g)} G_{i,j} x_j^{[1]}; \\
h(x, t) := & \sum_{i=0}^{\deg(h)} H_i x_i^{[1]},
\end{align*}
\] (3.13)
where $\deg(f)$, $\deg(g)$ and $\deg(h)$ are the degrees of the polynomials f, g and h, respectively. $F_i : \mathbb{R}^+ \to \mathbb{R}^{n \times n'}$, $G_{i,j} : \mathbb{R}^+ \to \mathbb{R}^{n' \times n'}$ and $H_i : \mathbb{R}^+ \to \mathbb{R}^{m \times n'}$. For the conciseness of notations, we may omit the t-dependence in F_i, $G_{i,j}$ and H_i in the sequel.

Theorem 2. Consider the system (2.1). Assume further that $Q_i = \text{diag}(q_i)$, $i = 1, \ldots, p$, and $R = \text{diag}(r)$, $j = 1, \ldots, m$. For $\alpha \geq 1$, the stochastic differentials of the central moments $p^{[\alpha]}$ are given by
\[
\begin{align*}
\frac{d^{[\alpha]} P}{dt} := & \left\{ U_n^{[\alpha]} \left[\sum_{q=\deg(f)-\deg(g)-\deg(h)}^{\deg(f)-\deg(g)+\deg(h)} \sum_{k=0}^{\deg(f)-q-\deg(h)+1} \left(F_{q+k-\deg(g)+1} M_k^{q+k-\deg(g)+1} \otimes I_{\alpha-1} \right) \left(\hat{x}_i^{[k]} \otimes I_{\alpha-1} \right) p^{[q]} \right] \\
& + \sum_{l=0}^{\deg(f)} \left(F_{l} M_l^{[1]} \otimes I_{\alpha-1} \right) \left(\hat{x}_i^{[l]} \otimes I_{\alpha-1} \right) p^{[\alpha-1]} \right\} \\
& \left[\sum_{k=0}^{\deg(f)-\deg(g)-\deg(h)} \left(F_{k} M_k \otimes I_{\alpha-1} \right) \left(\hat{x}_i^{[k]} \otimes I_{\alpha-1} \right) p^{[\alpha-1]} \right] \\
& - U_n^{[\alpha]} \left(\frac{\partial^{[1]} P}{\partial t} \otimes I_{\alpha-1} \right) \\
& + \frac{1}{2} \sum_{k=0}^{\deg(f)-\deg(g)-\deg(h)} \left(\sum_{q=0}^{\deg(f)-\deg(g)-\deg(h)} \sum_{j=0}^{\deg(f)-q-\deg(h)+1} \frac{\partial^{[2]} P}{\partial t^{[2]} \partial v_i} p^{[\alpha-2]} \right) dt,
\end{align*}
\] (3.14)
with the convention that $p^{[\alpha]} = 0$, if $\alpha < 0$ and $p^{[0]} = 1$, where $\hat{x}_i^{[k]} := \sum_{l=0}^{\deg(h)} H_l M_k^{[1]} \left(\hat{x}_i^{[l]} \otimes I_{\alpha-1} \right) p^{[q]} (dv_l)$, and $(\cdot)_{i,j}$ denotes the ith column of the matrix (\cdot).

Proof. Direct computation of the terms on the right-hand side of (3.8) with f, g and h as polynomials (3.13) yields that
\[
\begin{align*}
\hat{f}_i := & \sum_{i=0}^{\deg(f)} F_i x_i^{[1]} = \sum_{i=0}^{\deg(f)} F_i x_i^{[1]}; \\
\hat{h}_i := & \sum_{i=0}^{\deg(h)} H_i x_i^{[1]}.
\end{align*}
\] (3.15)
and similarly,
\[
\hat{h}_i := \sum_{i=0}^{\deg(h)} H_i x_i^{[1]} \otimes I_{\alpha-1}.
\] (3.16)
The first term on the right-hand side of (3.10) can be obtained by Eqs. (3.17)–(3.19):

\[
\left(f - \bar{f}_{\nu}\right) \otimes p^{[\alpha-1]}
\]

\[
= \sum_{\nu=0}^{\deg(f)} \sum_{k=0}^{\deg(f)} \left[F_{nk} \cdot \left(\right) \otimes p^{[\alpha-1]} \right]
\]

\[
= \sum_{\nu=0}^{\deg(f)} \sum_{k=0}^{\deg(f)} \left[\left(\right) \right] \otimes p^{[\alpha-1]}
\]

Similarly, we have

\[
\text{where the last equality holds due to reordering the summation. Similarly, we have}
\]

\[
\left(h - \hat{h}_{\nu} \right) \otimes p^{[\alpha-1]}
\]

\[
= \sum_{\nu=0}^{\deg(h)} \sum_{k=0}^{\deg(h)} \left(H_{n} \otimes p^{[\alpha-1]} \right)
\]

\[
- \sum_{\nu=0}^{\deg(h)} \sum_{k=0}^{\deg(h)} \left(H_{n} \otimes p^{[\alpha-1]} \right)
\]

\[
\left(\hat{h} \right) \otimes p^{[\alpha-1]}
\]

\[
\left(\hat{h} \right) \otimes p^{[\alpha-1]}
\]

\[
\text{Notice that the summation can be reordered as}
\]

\[
\sum_{\nu=0}^{\deg(f)} \sum_{k=0}^{\deg(f)} \left(\right) \otimes p^{[\alpha-1]}
\]

\[
= \sum_{\nu=0}^{\deg(f)} \sum_{k=0}^{\deg(f)} \left(\right) \otimes p^{[\alpha-1]}
\]

\[
\text{Thus, (3.21) can be written as}
\]

\[
\text{Similarly as in (3.20), we have}
\]

\[
\text{Eq. (3.14) follows immediately from Theorem 1 and (3.17)–(3.23).}
\]

\[
\text{Remark 3. (1) If deg (f), deg (h) and deg (g) } \leq 1, \text{ the system is a linear (or so-called bilinear Caravetta et al., 2000) system, then from Theorem 2, (3.14) with arbitrary truncation } \alpha \geq 2, \text{ (3.14) forms a closed system, and consequently the optimal estimation can be obtained. However, (3.14) cannot be closed with one of the degrees of deg (f), deg (h) and deg (g) greater than one.}
\]

\[
\text{(2) (3.14) is linear with respect to } p^{[\alpha]}, \text{ with } \alpha \geq 1.
\]
Algorithm for NSM:

Step 1 Form a closed system for (3.14) by omitting the higher degree terms. For example, if the truncation is chosen to be some \(\nu \geq 2 \), then all the \(p(\alpha) \) with \(\alpha \geq \nu + 1 \) is set to be zero.

Step 2 Apply the suboptimal approach in Carravetta et al. (2000) for bilinear system.

4. Numerical experiment

We experiment our NSM on the following benchmark example, cubic sensor problem:

\[
\begin{aligned}
\frac{dx_t}{dt} &= du_t \\
\frac{dy_t}{dt} &= \frac{3}{4} dt + dw_t,
\end{aligned}
\]

where \(Q = R = 1 \). The initial state \(x_0 \) obeys the standard Gaussian. The results are obtained by using the Euler–Maruyama method (Higham, 2001), with time step \(\Delta t = 0.01 \). To form a closed system, we need to truncate the system (3.14) with some truncation mode \(\nu \). That is, we ignore all the terms \(p(\alpha) \) with \(\alpha > \nu \). In Fig. 1, we illustrate the performances corresponding to different truncation modes \(\nu = 2, 3 \) and 4. The true state is generated by randn(‘state’,1). The mean of the squared estimation error (MSE) are 0.5881, 0.3965 and 0.3934 for different \(\nu = 2, 3 \) and 4, respectively. For comparison, the result from EKF has also been plotted.

![Fig. 1. Blue solid line: the true state generated by randn(‘state’,1); green dotted line: the estimation by using NSM with \(\nu = 2 \); red dotted and dashed line: with \(\nu = 3 \); black dashed line: with \(\nu = 4 \); yellow dotted line: EKF. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image1)

The MSE for one realization is defined as:

\[
MSE(\hat{x}) = \frac{1}{N+1} \sum_{k=0}^{N} (x(t_k) - \hat{x}(t_k))^2,
\]

where \(N \) is the number of the time steps.

Fig. 2 compares the timewise MSE of our NSM with truncation mode \(\nu = 3 \) with that of extended Kalman filter (EKF) averaged over 300 simulation runs, which is generated by randn(‘state’,s), \(s = 1, 2, \ldots, 300 \). The timewise MSE is defined as

\[
\text{Timewise MSE } (\hat{x}) = \left[\frac{\alpha(t_k)}{N} - \hat{x}(t_k) \right]^2_{k=0},
\]

which is a \((N+1) \)-vector of MSE at each time step. It is clear to see that our method has the averaged timewise MSE under control, while that of EKF grows without bound.

![Fig. 2. Green solid line: the averaged timewise MSE of the true state and our NSM with \(\nu = 3 \) averaged over 300 simulation runs; Red dotted line: the averaged timewise MSE by using EKF. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image2)

Acknowledgments

X. Luo thanks the support from the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (YWF-15-SXY-006, YWF-15-SXXY-002), Beijing Natural Science Foundation (1154011) and National Natural Science Foundation of China (11501023). The research of S.S-T. Yau is supported by the start-up fund from Tsinghua University. Both X. Luo and S.S-T. Yau gratefully acknowledge the support of the National Natural Science Foundation of China (11471184).

References

Xue Luo received her first Ph.D. degree in Mathematics from East China Normal University, Shanghai, PR China in 2010 and her second Ph.D. degree in Applied Mathematics from the department of mathematics, statistics and computer science, University of Illinois at Chicago (UIC) in 2013. Around 2009 and 2010 respectively, she visited University of Connecticut and UIC as visiting scholar. Till now, she is currently an assistant professor in school of mathematics and systems science, Beihang University, Beijing, PR China.

Her research interests include analysis of partial differential equations, nonlinear filtering theory, numerical analysis of spectral methods, sparse grid algorithm and fluid mechanics.

Yang Jiao received his Bachelor’s degree in Applied Mathematics from the University of Science and Technology of China in 2006, and M.S. and Ph.D. degrees in Applied Mathematics from University of Illinois at Chicago in 2008 and 2012 respectively.

Stephen S-T. Yau received the Ph.D. degree in Mathematics from the State University of New York at Stony Brook, NY, US, in 1976. He was a member of Institute of Advanced Study at Princeton 1976–1977 and 1981–1982, and a Benjamin Pierce Assistant Professor at Harvard University during 1977–1980. After that, he joined the department of mathematics, statistics and computer science (MSCS), University of Illinois at Chicago (UIC), and served for over 30 years. He was awarded Sloan Fellowship in 1980, Guggenheim Fellowship in 2000, IEEE Fellow Award in 2003 and AMS Fellow Award in 2013. In 2005, he was entitled the UIC distinguished professor. During 2005–2011, he became a joint-professor of department of electrical and computer engineering and MSCS, UIC. In 2011, he joined Tsinghua University, Beijing, PR China as full-time professor in department of mathematical sciences.

His research interests include nonlinear filtering, bioinformatics, complex algebraic geometry, CR geometry and singularities theory.

He is the Managing Editor and founder of Journal of Algebraic Geometry from 1991, and the Editors-in-Chief and founder of Communications in Information and Systems from 2000 till now. He was the General Chairman of IEEE International Conference on Control and Information, which was held in the Chinese University of Hong Kong in 1995.