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Abstract

s It is well-known that sparse grid algorithm has been widely accepted as an efficient tool to overcome
the “curse of dimensionality” in some degree. In this note, we give the error estimate of hyperbolic
cross (HC) approximations with all sorts of Askey polynomials. These polynomials are useful in
generalized polynomial chaos (gPC) in the field of uncertainty quantification. The exponential con-
vergences in both regular and optimized HC approximations have been shown under the condition
that the random variable depends on the random inputs smoothly in some degree. Moreover, we
apply gPC to numerically solve the ordinary differential equations with slightly higher dimension-
al random inputs. Both regular and optimized HC have been investigated with Laguerre-chaos,
Charlier-chaos and Hermite-chaos in the numerical experiment. The discussion of the connection
between the standard ANOVA approximation and Galerkin approximation is in the appendix.

Keywords: generalized polynomial chaos, hyperbolic cross approximation, differential equations
with random inputs, spectral method
2000 MSC: 65M70

1. Introduction

Uncertainty is ubiquitous. It is usually related to the lack of knowledge about the processes
involved. Although this kind of uncertainty can be reduced by obtaining more observations or by
improving the accuracy of the measurements, it is quite impractical to measure at all the points, or
even at a relatively large number of points. Mathematically, one usually models the uncertainty by5

random variables or processes, with a realistic probability distribution. The main goal in the field
of uncertainty quantification is to predict the quantities of physical interest by mathematical and
computational analysis. Usually, the quantity of physical interests are the real-valued functionals
of the solution to certain partial/ordinary differential equations with random inputs. Generally
speaking, the random inputs in the system can be expanded by an infinite combinations of random10

variables, say the Karhunen-Loeve expansion [10, 11] or generalized polynomial chaos (gPC). In
particular, the gPC is one of the most popular approximation in the literature. The name polynomial
chaos (PC) is coined by N. Wiener [21] in 1938, in which he studied the decomposition of Gaussian
stochastic processes. The convergence of the Hermite-chaos expansion of arbitrary random processes
with finite second-order moments has been shown rigorously by Cameron and Martin [5]. The study15

of the original PC was started by Ghanem and his coworkers. He represented the random processes
by the Hermite polynomials and used this technique with finite element method to many different
practical problems, see [7]. Although the Hermite-chaos is mathematically sound, the convergence
rate of non-Gaussian problems are far from optimal. It is Xiu and Karniadakis [24] who for the
first time generalized the Hermite polynomials to the Wiener-Askey polynomials, and numerical20

experiments verified the optimal convergence by choosing proper polynomial basis according to the
distribution. This is so-called gPC in the literature. Later, the gPC has been further generalized to
other set of complete basis, for instance the piecewise polynomial basis [2], the wavelet basis [14],
and multi-element gPC [20].
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After choosing an appropriate set of polynomials basis, the partial/ordinary differential equations25

with random inputs yields a set of coupled deterministic equations with the stochastic Galerkin (SG)
procedure. Most of the early works are based on this method, which minimizes the error of Galerkin
projection onto the linear subspace spanned by a finite-order gPC, see [7, 25, 2, 14] and references
therein. Another alternative numerical approach is the stochastic collocation (SC) method, which
originates from the idea of deterministic sampling. Usually the nodes of the quadrature rule are30

selected to be a set of realizations of the random variables. An ensemble of repetitive deterministic
codes with the realizations has been executed, and a synchronization has been processed to get the
desired quantity of interest from the deterministic solution ensemble.

However, when the dimension of random inputs is high, no matter the SG or the SC method
will inevitably encounter the so-called “curse of dimensionality”. As in the case of SG method, if
the linear subspace is spanned by tensor product of the polynomials basis, and assume that the
first N -order polynomials are used in each direction, then the total number of polynomial basis is
M = Nd, where d is the dimension of the random inputs. Let XN be the subspace spanned by the
tensor product of polynomials basis. A typical error estimate is of the form

inf
uN∈XN

||u− uN ||L2 . N−r||u||Hr .M−
r
d ||u||Hr ,

where Hr is the Sobolev space, and the notation . represents ≤ up to a positive generic constant
independent of N . It is clear to see that the error of Galerkin projection deteriorates exponentially35

with respect to the dimension d. As in the case of SC method, the total number of the nodes grows
exponentially with respect to the dimension d. Indeed, if N represents the number of the nodes in
each direction, then the total number from the tensor product is M = Nd. It indicates that the
deterministic simulations should be executed repetitively for M times. It is almost impractical for
problems with 5 or even higher dimensional random inputs.40

One alleviation of the “curse of dimensionality” is the so-called sparse grid, which can be dated
back to Smolyak [18], and has been further investigated by many researchers, see [6, 3, 23], among
which [23] proposed a high-order SC approach. Much work after that has been focused on further
reduction of the nodes, see [13, 15] and references therein. Meanwhile, the sparse grid applied to
the SG method is to reduce the total number of polynomial basis spanning the linear subspace.45

Approximations by hyperbolic cross (HC) have recently been received much attention, see [27, 4]
and references therein which can further reduce the total number of polynomial basis. To the best of
our knowledge, the error analysis of the HC approximations based on polynomials is first investigated
in [17] to the Jacobi polynomials in spectral method. More recently, Yau and the author [12] showed
the error analysis of HC approximations based on the generalized Hermite functions and studied its50

application of solving deterministic parabolic PDEs.
The main goal of our paper is to investigate the error analysis of the HC approximation with

the orthogonal polynomials of Askey scheme. For any second order random variable u(θ), it can be
approximated by

u(θ) ≈
∑
i∈ΩN

ûiΦi(ξ(θ))=: uN (θ),

where ΩN is an index set with card(ΩN ) < ∞, ξ(θ) ∈ Rd/Nd
0 / · · · is a d−dimensional random

variables, and Φi are the orthogonal polynomials of Askey scheme. In this paper, we shall derive
the typical error estimate of the form:

inf
uN∈XN

||u− uN ||Kl = ||u− PNu||Kl . N c(l,m)|u|Km ,

for 0 ≤ l < m, where Kl is the Koborov space, XN := span{Φi : i ∈ ΩN}, PN is the projection
operator onto the linear subspace XN , and c(l,m) is a negative constant.

The paper is organized as following. The notations and the orthogonal polynomials of Askey
scheme have been introduced in section 2. For the readers’ convenience, we include the frequently55

used orthogonal polynomials of Askey scheme and their properties in appendix B. Section 3 is
devoted to the error analysis of the projection with HC approximations using Laguerre-chaos and
Charlier-chaos, as the representatives. The results of the error estimates with other orthogonal
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polynomials of Askey scheme have been stated without proofs in section 4. The applications of
the gPC to Galerkin method of ordinary differential equations with random inputs are numerically60

investigated in section 5. The conclusion is in section 6. Appendix A is devoted to discuss the
connection between the standard ANOVA approximation and Galerkin approximation. It shows in
theory that HC can be naturally combined with ANOVA approaches.

2. Preliminaries

2.1. Notations65

Let us first clarify the notations to be used throughout the paper.

� Let R(resp., N) denotes all the real numbers (resp., natural numbers), N0 = N ∪ {0}, and
NN = {0, 1, · · · , N}.

� For any d ∈ N, we use boldface lowercase letters to denote d-dimensional multi-indices and
vectors. For example, k = (k1, k2, . . . , kd) ∈ Nd0.70

� Denote 1 = (1, 1, . . . , 1) ∈ Nd, and let ei = (0, . . . , 1, . . . , 0) be the ith unit vector in Rd. For
any scalar s ∈ R, we define the component-wise operations:

α± k =(α1 ± k1, . . . , αd ± kd), α± s := α± s1 = (α1 ± s, . . . , αd ± s),
αs = (αs1, . . . , α

s
d) , αk = αk11 · · ·α

kd
d , α! = α1! · · ·αd!,

and

α ≥ k⇔ αj ≥ kj , ∀ 1 ≤ j ≤ d, α ≥ s⇔ αj ≥ s, ∀ 1 ≤ j ≤ d.

� The frequently used norms are denoted as

|k|0 = ] of nonzero elements in k, |k|1 =

d∑
j=1

kj , |k|∞ = max
1≤j≤d

kj , (2.1)

|k|min = min{kj : 1 ≤ j ≤ d}, and |k|mix =

d∏
j=1

k̄j ,

where k̄j = max{1, kj}.
� Given a multivariate function u(x), we denote the kth mixed partial derivative by

∂kxu =
∂|k|1u

∂xk11 · · · ∂x
kd
d

= ∂k1x1
· · · ∂kdxdu.

In particular, we denote ∂sxu = ∂s1x u = ∂
(s,s,...,s)
x u. Similarly, the kth mixed forward difference

is denoted by
4k
xu = 4k1x1

· · ·4kdxdu,

where the forward differences is defined as

4kxu(x) = 4x
(
4k−1
x u(x)

)
,

for k ≥ 1, where 4xu(x) = u(x+ 1)− u(x), with the convention that 40
xu(x) = u(x).

� We follow the convention in the asymptotic analysis that a . b means that there exists some
constant C > 0 such that a ≤ Cb, and N � 1 means that N is sufficiently large.

� We denote C as some generic positive constant, which may vary from line to line.75
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2.2. The orthogonal polynomials of Askey scheme and polynomial chaos

Wiener-Askey polynomials are the orthogonal polynomials which can be expressed by using
hypergeometric series. In general, a system of orthogonal polynomials {Qn(x)}∞n=0 holds the or-
thogonality relation with respect to a real positive measure ω, i.e.∫

S

Qm(x)Qn(x)dω(x) = γnδmn,

for m,n = 0, 1, 2 · · · , where δmn = 1 if m = n, otherwise δmn = 0, S is the support of the
measure ω(x), and γn are normalization constants. Besides the orthogonality relation, all orthogonal
polynomials on the real line satisfy a three-term recurrence relation:

−xQn(x) = bnQn+1(x) + anQn(x) + cnQn−1(x),

for n ≥ 1, where bn, cn 6= 0 and cn
bn−1

> 0, with Q−1(x) = 0 and Q0(x) = 1. Askey and Wilson

[1] for the first time generalized the Jacobi polynomials to the Askey polynomials. The generalized
hypergeometric series rFs is defined by

rFs(a1, · · · , ar; b1, · · · , br; z) =

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,

where bi 6= 0 for i = 1, · · · , s, and (a)n is the Pochhammer symbol defined as

(a)n =

{
1, n = 0

a(a+ 1) · · · (a+ n− 1), n = 1, 2, · · ·
. (2.2)

For details about hypergeometric polynomials and the Askey scheme, we refer interested readers to
[16]. The orthogonal polynomials of Askey scheme (namely the ones in [24]) and their properties will
be used frequently in this paper, which can be found in the appendix of [22] and references therein.
For the readers’ convenience, we include them in appendix B. The continuous ones are Hermite,80

Laguerre and Jacobi polynomials, while Charlier, Meixner, Krawtchouk and Hahn polynomials are
the discrete ones.

The gPC has been proposed for the first time in [24] to get the optimal convergence with the non-
Gaussian random inputs. It is a generalization of the Wiener PC expansion. The expansion basis is
a set of complete orthogonal polynomials of Askey scheme introduced before. For any second-order
random variable u(θ), it can be expanded as

u(θ) =a0I0 +

∞∑
i1=1

ci1I1(ξi1(θ)) +

∞∑
i1=1

i1∑
i2=1

ci1i2I2(ξi1(θ), ξi2(θ))

+

∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3I3(ξi1(θ), ξı2(θ), ξi3(θ)) + · · · ,

where In(ξi1 , · · · , ξin) denotes the PC of order n in terms of random vector ξ = (ξi1 , · · · , ξin). It is
clear to see that the more independent random variables ξij s used, the higher order of PC applied,
the more terms appear in the expansion, and intuitively the closer the expansion to the random
process u(θ) is. For the sake of conciseness, we rewrite the expansion as

u(θ) =

∞∑
|i|=0

ciΦi(ξ(θ)), (2.3)

where |i| can be |i|∞ or other norms, ξ = (ξ1, ξ2, · · · ), and Φi = Φi1(ξ1)Φi2(ξ2) · · · , where Φi are
orthogonal polynomials of Askey scheme of degree i.
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3. Multivariate orthogonal projection and approximations85

As shown in (2.3), the gPC is an expansion with infinite many terms. It is also shown that in the
standard ANOVA approximation with certain measure is exactly the expansion (2.3) with |i|0 ≤ ν,
which also contains infinite many terms, see details in appendix A. It only becomes practical when
certain truncation has been made. To be specific, suppose there are d ≥ 1 independent random
variables ξi, i = 1, · · · , d, denoted briefly as ξ = (ξ1, · · · , ξd), and we choose orthogonal polynomials
of Askey scheme Φi(ξ) of certain order such that i ∈ ΩN , where ΩN is an index set parametrized by
N ∈ N such that card(ΩN ) <∞, then the gPC (2.3) becomes an approximation with finite terms:

u(θ) ≈
∑
i∈ΩN

ciΦi(ξ(θ)).

Therefore, it is natural to ask how to choose such index set ΩN so that card(ΩN ) can be as small as
possible without sacrificing the accuracy too much, and how the error changes with respect to the
parameter N and the dimension d.

In this paper, we shall focus on the error analysis of the projection with three type of index sets:
tensor product, regular hyperbolic cross (RHC) and optimal hyperbolic cross (OHC) with parameter
γ ∈ [−∞, 1), which are defined as

ΩN,tensor :=
{
i ∈ Nd0 : |i|∞ ≤ N

}
,

ΩN,RHC :=
{
i ∈ Nd0 : |i|mix ≤ N

}
, (3.1)

ΩN,OHC,γ :=
{
i ∈ Nd0 : |i|mix|i|−γ∞ ≤ N1−γ} , −∞ ≤ γ < 1.

The typical error estimate is of the form

inf
UN∈XN

||u− UN ||l = ||u− PNu||l ≤ CN−c(l,r)||u||r,

where C is a generic constant independent of N , but it may depend on d, c(l, r) is some positive
constant depending on l and r, || · ||l is the norm of some functional space, l indicates the regularity
in some sense, XN is a linear subspace spanned by the orthogonal polynomials of Askey scheme Φi,
i.e.

XN := span {Φi : i ∈ ΩN} ,

and PN projects u onto the subspace XN , i.e.

PNu(θ) =
∑
i∈ΩN

ûiΦi(ξ(θ)).

In this section, we only include the detailed proofs of the error analysis using Laguerre polyno-
mials as a representative of the continuous ones and the Charlier polynomails as that of the discrete90

ones. All the results by using other orthogonal polynomials of Askey scheme will be stated without
proofs in section 4.

3.1. Approximation by using Laguerre polynomials

In this subsection, we shall show the approximation by Laguerre polynomials in detail. The
subspace XN is defined as

XαN = span
{
L(α)
n : n ∈ ΩN

}
, (3.2)

for some α > −1, where ΩN ⊂ Nd0 is one of the index sets ΩN,tensor, ΩN,RHC and ΩN,OHC,γ in (3.1).
Let us denote the orthogonal projection operator PαN : L2

ωα

(
Rd+
)
→ XαN , i.e., for any u ∈ L2

ωα

(
Rd+
)
,

〈(u− PαNu), v〉ωα = 0, ∀ v ∈ XαN , (3.3)
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where L2
ωα

(
Rd+
)

is the weighted L2 space, and 〈u, v〉ωα =
∫
Rd+
uvωαdx is the weighted inner product

in L2
ωα

(
Rd+
)
. Or equivalently,

PαNu(θ) =
∑
n∈ΩN

ûnL
(α)
n (ξ(θ)),

where ûn is the Fourier-Laguerre coefficient, which can be computed by

ûn =
1

ρn,α
〈u(θ), L(α)

n (ξ(θ))〉ωα ,

with ρn,α specified in (B.9) and (B.11).
We shall estimate how close the projection PαNu is to u, with respect to various norms and index95

sets ΩN .

3.1.1. Tensor product

The index set ΩN corresponding to the d-dimensional tensor product is

ΩN,tensor =
{
n ∈ Nd0 : |n|∞ ≤ N

}
,

and XαN is defined in (3.2) with ΩN = ΩN,tensor. Let us define the Sobolev-type space as

Wm
α

(
Rd+
)

=
{
u : ∂kxu ∈ L2

ωα+k

(
Rd+
)
, 0 ≤ |k|1 ≤ m

}
, ∀m ∈ N0, (3.4)

equipped with the norm and seminorm

||u||Wm
α (Rd+) =

 ∑
0≤|k|1≤m

∣∣∣∣∂kxu∣∣∣∣2ωα+k,Rd+

 1
2

,

|u|Wm
α (Rd+) =

 d∑
j=1

∣∣∣∣∣∣∂mxju∣∣∣∣∣∣2
ωα+mej

,Rd+

 1
2

.

It is clear that W0
α

(
Rd+
)

= L2
ωα

(
Rd+
)
, and

|u|2Wm
α (Rd+) =

d∑
j=1

∑
n∈Nd0

ρn−mej ,α+mej |ûn|
2
, (3.5)

where ρn,α =
∏d
j=1 ρnj ,αj , ρn,α = (α+1)n

n! , with the Pochhammer symbol (a)n defined in (2.2). It
is followed from the orthogonality of Laguerre polynomials with respect to the gamma distribution,
i.e. ∫

R+

L(α)
m (x)L(α)

n (x)ωα(x)dx =
(α+ 1)n

n!
δmn = :ρn,αδmn.

We also define the Koborov-type space as

Krα
(
Rd+
)

=
{
u : ∂kxu ∈ L2

ωα+k

(
Rd+
)
, 0 ≤ |k|∞ ≤ r

}
, ∀ r ∈ Nd0, (3.6)

equipped with the norm and seminorm

||u||Krα(Rd+) =

 ∑
0≤|k|∞≤r

∣∣∣∣∂kxu∣∣∣∣2ωα+k,Rd+

 1
2

,

|u|Krα(Rd+) =

 ∑
|k|∞=r

∣∣∣∣∂kxu∣∣∣∣2ωα+k,Rd+

 1
2

.

It is easy to see from the definitions that K0
α(Rd+) = L2

ωα

(
Rd+
)

and Wdl
α

(
Rd+
)
⊂ Klα

(
Rd+
)
⊂

W l
α

(
Rd+
)
.
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Theorem 3.1 (tensor product with Laguerre polynomials). For any 0 ≤ l < m, if u ∈
Wm
α

(
Rd+
)
, we have

|PαNu− u|Wl
α(Rd+) (3.7)

≤
[
(|α|∞ + l + 1)m−l + d(|α|∞ + 1)m max

{
1

(|α|min + 1)l
, 1

}] 1
2

(N −m+ 1)
l−m

2 |u|Wm
α (Rd+),

for N � 1. Furthermore, if u ∈ Kmα
(
Rd+
)
, for 0 ≤ l < m, we have

|PαNu− u|Klα(Rd+) ≤ d
1
2 (l + 1)

d−1
2 [(|α|∞ + l + 1)m]

d
2 (N −m+ 1)

l−m
2 |u|Kmα (Rd+). (3.8)

Proof. To obtain the estimate (3.7) in Sobolev space, we proceed as that in [17]. Let Ωc
N,tensor ={

n ∈ Nd0 : |n|∞ > N
}

. By (3.5), we have

|PαNu− u|
2
Wl
α(Rd+) =

d∑
j=1

∑
n∈Ωc

N

ρn−lej ,α+lej |ûn|
2
. (3.9)

For any 1 ≤ j ≤ d,∑
n∈Ωc

N

ρn−lej ,α+lej |ûn|
2

=
∑

n∈Λ1,j
N

ρn−lej ,α+lej |ûn|
2

+
∑

n∈Λ2,j
N

ρn−lej ,α+lej |ûn|
2

:= I1 + I2, (3.10)

where
Λ1,j
N = {n ∈ Ωc

N : nj > N}; Λ2,j
N = {n ∈ Ωc

N : nj ≤ N}. (3.11)

For I1:

I1 ≤ max
n∈Λ1,j

N

{
ρn−lej ,α+lej

ρn−mej ,α+mej

} ∑
n∈Λ1,j

N

ρn−mej ,α+mej |ûn|
2
, (3.12)

where

max
n∈Λ1,j

N

{
ρn−lej ,α+lej

ρn−mej ,α+mej

}
= max
n∈Λ1,j

N

{
ρnj−l,αj+l

ρnj−m,αj+m

}
= max
n∈Λ1,j

N

{
(αj + l + 1)m−l

(nj − l)(nj − l − 1) · · · (nj −m+ 1)

}
≤(αj + l + 1)m−l(N −m+ 1)l−m ≤ (|α|∞ + l + 1)m−l(N −m+ 1)l−m,

(3.13)

and
d∑
j=1

∑
n∈Λ1,j

N

ρn−mej ,α+mej |ûn|
2

(3.5)

≤ |u|2Wm
α (Rd+). (3.14)

For I2, if n ∈ Λ2,j
N , then there exists some k 6= j, such that nk > N .

I2 ≤ max
n∈Λ2,j

N

{
ρn−lej ,α+lej

ρn−mek,α+mek

} ∑
n∈Λ2,j

N

ρn−mek,α+mek |ûn|
2
, (3.15)
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since

max
n∈Λ2,j

N

{
ρn−lej ,α+lej

ρn−mek,α+mek

}
= max
n∈Λ2,j

N

{
ρnj−l,αj+lρnk,αk
ρnj ,αjρnk−m,αk+m

}

=


max
n∈Λ2,j

N

{
(nj − l + 1) · · ·nj

(nk −m+ 1) · · ·nk
· (αk + 1) · · · (αk +m)

(αj + 1) · · · (αj + l)

}
, if l ≥ 1

max
n∈Λ2,j

N

{
(αk + 1)m

nk · · · (nk −m+ 1)

}
, if l = 0

≤


(αk + 1)m
(αj + 1)l

· 1

(N −m+ 1) · · · (N − l)
, if l ≥ 1

(αk + 1)m
(N −m+ 1) · · ·N

, if l = 0

≤


(|α|∞ + 1)m
(|α|min + 1)l

(N −m+ 1)l−m, if l ≥ 1

(|α|∞ + 1)m(N −m+ 1)−m, if l = 0

, (3.16)

and

d∑
j=1

∑
n∈Λ2,j

N

ρn−mek,α+mek |ûn|
2 ≤

d∑
j=1

d∑
k=1

∑
n∈Λ2,j

N

ρn−mek,α+mek |ûn|
2 ≤ d|u|2Wm

α (Rd+). (3.17)

Combine (3.9)-(3.17), we obtain the result (3.7).100

To obtain the estimate (3.8) in Koborov space, we need to estimate
∣∣∣∣∂lx (PαNu− u)

∣∣∣∣
ωα+l,Rd+

, for

0 ≤ l < m. For given n ∈ Ωc
N,tensor, we split the index 1 ≤ j ≤ d into two parts

N := {j : lj ≤ nj < m, 1 ≤ j ≤ d}, N c := {j : nj ≥ m, 1 ≤ j ≤ d}. (3.18)

It is easy to see that N c cannot be empty, due to the fact that |n|∞ > N > m. We denote

ρn,l,m,α :=

∏
j∈N

ρnj−lj ,αj+lj

( ∏
i∈N c

ρni−m,αi+m

)
. (3.19)

From the orthogonality and the property that

dk

dxk
L(α)
n (x) = (−1)kL

(α+k)
n−k (x),

if n ≥ k ≥ 0, we have∣∣∣∣∂lx(PαNu− u)
∣∣∣∣2
ωα+l,Rd+

=
∑

n∈Ωc
N,tensor

ρn−l,α+l |ûn|2

≤ max
n∈Ωc

N,tensor

{
ρn−l,α+l

ρn,l,m,α

} ∑
n∈Ωc

N,tensor

ρn,l,m,α |ûn|2 . (3.20)

It remains to estimate the maximum in (3.20). Similarly as in (3.13), we get

ρn−l,α+l

ρn,l,m,α
=
∏
j∈N c

ρnj−lj ,αj+lj
ρnj−m,αj+m

=
∏
j∈N c

(αj + lj + 1)m−lj
(nj − lj) · · · (nj −m+ 1)

.
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Notice that n ∈ Ωc
N,tensor, there exists at least one j0 such that nj0 > N . Therefore, we have

max
n∈Ωc

N,tensor

{
ρn−l,α+l

ρn,l,m,α

}
(3.21)

≤ max
n∈Ωc

N,tensor

 ∏
j∈N c

(αj + lj + 1)m−lj

 max
n∈Ωc

N,tensor

 ∏
j∈N c,j 6=j0

1

(nj − lj) · · · (nj −m+ 1)


· max
n∈Ωc

N,tensor

{
1

(nj0 − lj0) · · · (nj0 −m+ 1)

}
≤
[
(|α|∞ + |l|∞ + 1)m−|l|min

]d
(N −m+ 1)|l|∞−m,

since

max
n∈Ωc

N,tensor

 ∏
j∈N c

(αj + lj + 1)m−lj

 ≤ max
n∈Ωc

N,tensor

 ∏
j∈N c

(|α|∞ + |l|∞ + 1)m−|l|min


≤
[
(|α|∞ + |l|∞ + 1)m−|l|min

]d
, (3.22)

max
n∈Ωc

N,tensor

{
1

(nj0 − lj0) · · · (nj0 −m+ 1)

}
≤(N −m+ 1)|l|∞−m,

and the fact that the second maximum on the right-hand side of (3.21) is less than or equal to 1.
Therefore, we have ∑

n∈Ωc
N,tensor

ρn,l,m,α |ûn|2 ≤
∣∣∣∣∂kxu∣∣∣∣2ωα+k,Rd+

≤ |u|2Kmα (Rd+), (3.23)

where k is a d-dimensional index consisting of lj for j ∈ N and m for j ∈ N c, with |k|∞ = m. The
result (3.8) follows immediately from (3.20)-(3.23) and the fact that

|PαNu− u|
2
Klα(Rd+) =

∑
|l|∞=l

∣∣∣∣∂lx (PαNu− u)
∣∣∣∣2
ωα+l,Rd+

,

with card ({l : |l|∞ = l}) = d(l + 1)d−1. �
It is clear that the convergence rate deteriorates rapidly with respect to the dimension d. That

is,

||PαNu− u||
2
Klα(Rd+) =

l∑
r=0

|PαNu− u|
2
Krα(Rd+) . card(ΩN,tensor)

l−m
d |u|2Kmα (Rd+),

since card(ΩN,tensor) = (N + 1)d.

3.1.2. RHC approximation

As we mentioned in the introduction, the HC approximation is an efficient tool to overcome
the “curse of dimensionality” in some degree. The index set of RHC approximation is ΩN,RHC ={
n ∈ Nd0 : |n|mix ≤ N

}
. It is known that the cardinality of ΩN,RHC is O

(
N(lnN)d−1

)
[8]. Corre-

spondingly, the finite dimensional subspace XαN is

XαN = span {Lαn : n ∈ ΩN,RHC} . (3.24)

Let the orthogonal projection operator PαN : L2
ωα

(
Rd+
)
→ XαN be defined in (3.3). The similar

result as Theorem 3.2 and 3.3 below for Jacobi polynomials have been obtained in [17] for the first105

time with a gap. Yau and the author [12] made it rigorous for generalized Hermite functions. In
this paper, the error analysis in [12] has been further simplified, see detailed discussion in Remark
3.1.

9



Theorem 3.2 (RHC with Laguerre polynomials). Given u ∈ Kmα
(
Rd+
)
, for 0 ≤ l < m, we

have∣∣∣∣∂lx (PαNu− u)
∣∣∣∣
ωα+l,Rd+

≤
[
(|α|∞ + |l|∞ + 1)m−|l|min

] d
2 m

d(2m−|l|∞)−|l|min
2 N

|l|∞−m
2 |u|Kmα (Rd+),

for N � 1.

Proof. We proceed as the second part in the proof of Theorem 3.1. For given n ∈ Ωc
N,RHC , we

split the index 1 ≤ j ≤ d into N and N c two parts as in (3.18). It is easy to see that N c cannot be
empty, otherwise, |n|mix ≤ md < N , for N � 1, which contradicts with n ∈ Ωc

N,RHC . As before,
we need to estimate the maximum in (3.20) within n ∈ Ωc

N,RHC . Similarly as in (3.13), we get

ρn−l,α+l

ρn,l,m,α
=
∏
j∈N c

ρnj−lj ,αj+lj
ρnj−m,αj+m

=
∏
j∈N c

(αj + lj + 1)m−lj
(nj − lj) · · · (nj −m+ 1)

=
∏
j∈N c

n
lj−m
j

∏
j∈N c

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1 ∏
j∈N c

(αj + lj + 1)m−lj . (3.25)

Observe that j ∈ N c implies nj ≥ m > l ≥ 0. That is, nj ≥ 1. Hence, n̄j = nj , for all j = 1, · · · , d.
Given any n ∈ Ωc

N,RHC , we deduce that∏
j∈N c

n̄j >
N∏
j∈N n̄j

>
N∏
j∈N m

≥ m−dN.

Thus,

max
n∈Ωc

N,RHC

 ∏
j∈N c

n
lj−m
j

 ≤ max
n∈Ωc

N,RHC

 ∏
j∈N c

n
|l|∞−m
j

 = max
n∈Ωc

N,RHC

 ∏
j∈N c

nj

|l|∞−m

≤

 min
n∈Ωc

N,RHC

∏
j∈N c

nj

|l|∞−m ≤ (m−dN)|l|∞−m = md(m−|l|∞)N |l|∞−m.

(3.26)

Furthermore, we have

max
n∈Ωc

N,RHC

 ∏
j∈N c

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1
 ≤ max

n∈Ωc
N,RHC

 ∏
j∈N c

(
1− m− 1

nj

)lj−m
≤
∏
j∈N c

mm−lj ≤ mdm−|l|min . (3.27)

The desired result follows immediately from (3.20), (3.25)-(3.27), (3.22) and (3.23). �110

It is clear to see that

||PαNu− u||Klα(Rd+) . N
l−m

2 |u|Kmα (Rd+) ≤ card(ΩN,RHC)
l−m

2(1+ε(d−1)) |u|Kmα (Rd+), ∀ 0 ≤ l < m,

where card(ΩN,RHC) = O
(
N(lnN)d−1

)
≤ CN1+ε(d−1), for arbitrary small ε > 0. Here, the

convergence rate deteriorates slightly with increasing d.

Remark 3.1. In [12], the authors estimate (3.20) by splitting the index set Ωc
N∑

n∈Ωc
N

=
∑

n∈Ωc
N,m

+
∑

n∈Ωc
N,l\Ω

c
N,m

=: II1 + II2,

where Ωc
N,k :=

{
n ∈ Nd0 : |n|mix > N and n ≥ k

}
, for some given k ∈ Nd0. In this paper, one

realizes that the method used to estimate II2 in [12] is also applicable to II1 with N = ∅. Therefore,
it is rebundant to analyze II1 seperately. This is also true in the proof of Theorem 3.3 for OHC115

approximation.
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3.1.3. OHC approximation

In order to alleviate the curse of dimensionality further, we consider the OHC index set introduced
in [8]:

ΩN,OHC,γ :=
{
n ∈ Nd0 : |n|mix|n|−γ∞ ≤ N1−γ} , −∞ ≤ γ < 1. (3.28)

The cardinality of ΩN,OHC,γ is O(N), for γ ∈ (0, 1), where the dependence of dimension is in the
big-O, see [8]. The family of spaces are defined as

XαN,γ := span
{
L(α)
n : n ∈ ΩN,OHC,γ

}
. (3.29)

Remark 3.2. Actually, OHC is a generalization of RHC and tensor product. In particular, XαN,0 =

XαN in (3.24) corresponds to RHC approximation, while XαN,−∞ = span
{
L

(α)
n : |n|∞ ≤ N

}
de-120

scribes the tensor product.

We denote the projection operator as PαN,γ : L2
ωα

(
Rd+
)
→ XαN,γ .

Theorem 3.3 (OHC with Laguerre polynomials). For any u ∈ Kmα
(
Rd+
)
, d ≥ 2, and 0 ≤

|l|1 < m,∣∣∣∣∂lx (PαN,γu− u)∣∣∣∣2ω
α+l,Rd

+

≤
[
(|α|∞ + |l|∞ + 1)m−|l|min

]d
mdm−|l|min |u|2Kmα (Rd+)

·


m

(d−1)(γm−|l|1)
1−γ N |l|1−m, if 0 < γ ≤ |l|1

m

m
d−1
d−γ (dm−|l|1)N−

1−γ
d−γ (dm−|l|1), if

|l|1
m
≤ γ < 1

. (3.30)

Proof. As argued in the proof of Theorem 3.2, we arrive at∣∣∣∣∂lx (PαN,γu− u)∣∣∣∣2ω
α+l,Rd

+

≤ max
n∈Ωc

N,OHC,γ

{
ρn−l,α+l

ρn,l,m,α

} ∑
n∈Ωc

N,OHC,γ

ρn,l,m,α |ûn|2 , (3.31)

where ρn,l,m,α is defined as in (3.19). To estimate the maximum in (3.31), we recall that

ρn−l,α+l

ρn,l,m,α

(3.25)
=

∏
j∈N c

n
lj−m
j

∏
j∈N c

(
1− lj

nj

)−1

· · ·
(

1− m− 1

nj

)−1 ∏
j∈N c

(αj + lj + 1)m−lj , (3.32)

where N and N c are defined in (3.18). The maximum of the last two terms in the product of the
above equality can be estimated as (3.27) and (3.22) in the proof of Theorem 3.2. It is only the first
term to be estimated. It is easily verified that

∏
j∈N c

n
lj−m
j ≤

 ∏
j∈N c

|ñ|lj∞

 ∏
j∈N c

nj

−m = |ñ||
l̃|

1∞ |ñ|−mmix ≤ |ñ|
|l|1
∞ |ñ|−mmix, (3.33)

where ñ is defined below

ñ = (n1, · · · , nd) =

{
nj , if j ∈ N c

0, otherwise
. (3.34)

Notice that for any n ∈ Ωc
N,OHC,γ , we have

N1−γ < |n|mix|n|−γ∞ ≤ md−1|ñ|mix|ñ|−γ∞ ⇒
(
|ñ|γ∞
|ñ|mix

) 1
1−γ

< m
d−1
1−γN−1, (3.35)

|ñ|∞
|ñ|mix

=
n̄j0

n̄j0
∏
j∈N c,j 6=j0 n̄j

≤1, (3.36)
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since there exists n ∈ Ωc
N,OHC,γ such that card(N c) = 1, i.e. there is only j0 such that |ñ|∞ =

n̄j0 > N and all the other js belong to N . Moreover, we have

N1−γ (3.35)
< md−1|ñ|mix|ñ|−γ∞ ≤ md−1|ñ|d−γ∞ ⇒ |ñ|∞ >

(
N1−γ

md−1

) 1
d−γ

. (3.37)

Now, we are ready to estimate the maximum of the first term on the right-hand side of (3.32). If

0 < γ ≤ |l|1m < 1, then

max
n∈Ωc

N,OHC,γ

 ∏
j∈N c

n
lj−m
j

 (3.33)
< max

n∈Ωc
N,OHC,γ


(
|ñ|γ∞
|ñ|mix

)m−|l|1
1−γ

(
|ñ|∞
|ñ|mix

) |l|1−γm
1−γ


(3.35),(3.36)

≤ m
(d−1)(γm−|l|1)

1−γ N |l|1−m. (3.38)

Otherwise, if |l|1m ≤ γ < 1, then

max
n∈Ωc

N,OHC,γ

 ∏
j∈N c

n
lj−m
j

 (3.33)
< max

n∈Ωc
N,OHC,γ

{(
|ñ|γ∞
|ñ|mix

)m
|ñ||l|1−γm∞

}
(3.35),(3.37)

≤ m
d−1
d−γ (dm−|l|1)N−

1−γ
d−γ (dm−|l|1). (3.39)

The desired result follows immediately from (3.31)-(3.39), (3.27), and (3.22)-(3.23). �
It is clear to see that∣∣∣Pα,βN,γ u− u

∣∣∣
Klα(Rd+)

. card(ΩN,OHC,γ)
l−m

2 |u|Kmα (Rd+),

where card(ΩN,OHC,γ) = O(N) ≤ CN . The convergence rate does not deteriorate with respect to
d anymore. The effect of the dimension goes into the constant in front.125

Remark 3.3. If N in the index set ΩN is the same in both RHC and OHC approximation, then
the convergence rate of RHC is better than that of OHC, for d ≥ 2. If the cardinality of ΩN is the
same in both cases, then OHC presents a faster convergence, for d ≥ 2.

3.2. Approximation by using Charlier polynomials

In this subsection, we shall give the error analysis of approximations by Charlier polynomials,130

discrete orthogonal polynomials of Askey scheme. The derivative in the continuous version is replaced
by the forward difference operator. Analogous Sobolev and Koborov norms and seminorms are
properly defined in (3.42) and (3.45), respectively.

Let us denote the orthogonal projection operator PaN : l2ωa
(
Nd0
)
→ XaN , where

XaN = span {Cn(x;a) : n ∈ ΩN} , (3.40)

for certain index set ΩN,tensor, ΩN,RHC or ΩN,OHC,γ defined in (3.1).

Theorem 3.4 (tensor product with Charlier polynomials). Assume that ΩN = ΩN,tensor in
XaN . Given u ∈ Wm

a

(
Nd0
)
, we have for any 0 ≤ l < m,

|PaNu− u|Wl
a(Nd0) ≤

(
|a|m−l∞ + d

|a|m∞
|a|lmin

) 1
2

(N −m+ 1)
l−m

2 |u|Wm
a (Nd0), (3.41)

for N � 1, where

|u|2Wm
a (Nd0) =

d∑
j=1

∣∣∣∣∣∣4mxju∣∣∣∣∣∣2
ωa,Nd0

. (3.42)
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If u ∈ Kma
(
Nd0
)
, then for any 0 ≤ l < m, we have∣∣∣∣4l

x (PaNu− u)
∣∣∣∣
ωa,Nd0

≤CaN
|l|∞−m

2 |u|Kma (Nd0) , (3.43)

where

Ca =

 |a|
dm−|l|min

2∞ , if |a|∞ ≥ 1

|a|
m−|l|1

2∞ , if |a|∞ < 1

, (3.44)

for N � 1, and

|u|2Kra(Nd0) =
∑
|k|∞=r

∣∣∣∣4k
xu
∣∣∣∣2
ωa,Nd0

. (3.45)

Proof. Let us show the estimate (3.41) in Sobolev space first. Let us look at

|PaNu− u|
2
Wl
a(Nd0) =

d∑
j=1

 ∑
n∈Λ1,j

N

+
∑
n∈Λ2,j

N

ρn,lej ,a |ûn|2 :=

d∑
j=1

(I1 + I2), (3.46)

where Λ1,j
N and Λ2,j

N are defined as (3.11) in the proof of Theorem 3.1, and

ρn,lej ,a
(B.21)

=

d∏
i=1,i6=j

ni!

anii
· Γ(nj + 1)2(nj − l)!

Γ(nj − l + 1)2a
nj+l
j

.

Let us estimate the right-hand side of (3.46) term by term:

I1 ≤ max
n∈Λ1,j

N

{
ρn,lej ,a

ρn,mej ,a

} ∑
n∈Λ1,j

N

ρn,mej ,a |ûn|
2
, (3.47)

with

max
n∈Λ1,j

N

{
ρn,lej ,a

ρn,mej ,a

}
= am−lj max

n∈Λ1,j
N

{
1

(nj −m+ 1) · · · (nj − l)

}
≤ |a|m−l∞ (N −m+ 1)l−m, (3.48)

and

I2 ≤ max
n∈Λ2,j

N

{
ρn,lej ,a

ρn,mek,a

} ∑
n∈Λ2,j

N

ρn,mek,a |ûn|
2
, (3.49)

with

max
n∈Λ2,j

N

{
ρn,lej ,a

ρn,mek,a

}
=
amk
alj

max
n∈Λ2,j

N

{
(nj − l + 1) · · ·nj

(nk +m− 1) · · ·nk

}
≤ amk

alj

(N − l + 1) · · ·N
(N −m+ 1) · · ·N

≤ |a|
m
∞

|a|lmin

(N −m+ 1)l−m. (3.50)

The result follows from (3.46)-(3.50), (3.14) and (3.17).135

To show the estimate (3.43) in Koborov space. Let us denote ρn,l,m,a similarly as in (3.19):

ρn,l,m,a :=

∏
j∈N

ρnj ,lj ,aj

( ∏
i∈N c

ρni,m,ai

)
,

then ∣∣∣∣4l
x(PaNu− u)

∣∣∣∣2
ωa,Nd0

≤ max
n∈Ωc

N,tensor

{
ρn,l,a
ρn,l,m,a

} ∑
n∈Ωc

N,tensor

ρn,l,m,a |ûn|2 , (3.51)

13



due to the fact that

max
n∈Ωc

N,tensor

{
ρn,l,a
ρn,l,m,a

}
= max
n∈Ωc

N,tensor

 ∏
j∈N c

a
m−lj
j

∏
j∈N c

1

(nj −m+ 1) · · · (nj − lj)


(3.21)

≤ max
n∈Ωc

N,tensor

 ∏
j∈N c

a
m−lj
j

 (N −m+ 1)|l|∞−m,

and

max
n∈Ωc

N,tensor

 ∏
j∈N c

a
m−lj
j

 ≤ max
n∈Ωc

N,tensor

 ∏
j∈N c

|a|m−lj∞

 ≤
{
|a|dm−|l|min
∞ , if |a|∞ ≥ 1

|a|m−|l|1∞ , if |a|∞ < 1
= :C2

a.

(3.52)

The result (3.43) follows immediately from (3.51)-(3.52) and (3.23). �

Theorem 3.5 (RHC with Charlier polynomials). Assume the index set is ΩN = ΩN,RHC .
Given u ∈ Kma

(
Nd0
)
, for 0 ≤ l < m, we have∣∣∣∣4l
x (PaNu− u)

∣∣∣∣
ωa,Nd0

≤Cam
d(2m−|l|∞)−|l|min

2 N
|l|∞−m

2 |u|Kma (Nd0) ,

where Ca is defined in (3.44).

Proof. We proceed the proof as that of Theorem 3.2. According to (B.21), we have

ρn,l,a
ρn,l,m,a

=
∏
j∈N c

a
m−lj
j

∏
j∈N c

n
lj−m
j

∏
j∈N c

(
1− m− 1

nj

)−1

· · ·
(

1− lj
nj

)−1

. (3.53)

The maximum of the three terms on the right-hand side of (3.53) have been obtained in (3.26),
(3.27) and (3.52), respectively. The conclusion follows immediately from (3.51), (3.53) and (3.23).�

Theorem 3.6 (OHC with Charlier polynomials). Assume the index set is ΩN = ΩN,OHC,γ ,
for γ ∈ (0, 1). For any u ∈ Kma

(
Nd0
)
, d ≥ 2, and 0 ≤ |l|1 < m,∣∣∣∣4l

x

(
PaN,γu− u

)∣∣∣∣
ωa,Nd0

≤Cam
dm−|l|min

2 |u|Kma (Nd0)·


m

(d−1)(γm−|l|1)

2(1−γ) N
|l|1−m

2 , if 0 < γ ≤ |l|1
m

m
d−1

2(d−γ) (dm−|l|1)N−
1−γ

2(d−γ) (dm−|l|1), if
|l|1
m
≤ γ < 1

,

where Ca is defined in (3.44).140

Proof. We can proceed as in the proof of Theorem 3.3. The maximum of the three terms on the
right-hand side of (3.53) can be obtained by (3.52), (3.27) and (3.38)-(3.39), respectively. Thus, the
result follows immediately. �

4. Results of the approximations by other orthogonal polynomials of Askey scheme

The error analysis for Laguerre polynomials and Charlier polynomials can be applied to various145

orthogonal polynomials of Askey scheme. In this section, we only state the results without proofs.
All the Sobolev and Koborov norms and seminorms in the following theorems are defined similarly
as in (3.4) and (3.6), respectively, with appropriate weight functions.
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4.1. Hermite polynomials

Theorem 4.1 (tensor product with Hermite polynomials). Assume that
XN := span {Hn : n ∈ ΩN,tensor}. Given u ∈ Wm

(
Rd
)
, we have for any 0 ≤ l ≤ m,

|PNu− u|Wl(Rd) ≤ (1 + d)
1
2 (N −m+ 1)

l−m
2 |u|Wm(Rd), (4.1)

for N � 1, where

|u|2Wm(Rd) =

d∑
j=1

∣∣∣∣∣∣∂mxju∣∣∣∣∣∣2
ω,Rd

.

If u ∈ Km
(
Rd
)
, then for 0 ≤ l < m, we have∣∣∣∣∂lx (PNu− u)

∣∣∣∣
ω,Rd ≤ (N −m+ 1)

|l|∞−m
2 |u|Km(Rd), (4.2)

where
|u|2Kr(Rd) =

∑
|k|∞=r

∣∣∣∣∂kxu∣∣∣∣2ω,Rd .
Theorem 4.2 (RHC with Hermite polynomials). Assume the index set is ΩN = ΩN,RHC .
Given u ∈ Km

(
Rd
)
, for 0 ≤ l < m, we have∣∣∣∣∂lx (PNu− u)

∣∣∣∣
ω,Rd ≤ m

d(2m−|l|∞)−|l|min
2 N

|l|∞−m
2 |u|Km(Rd),

for N � 1.150

Theorem 4.3 (OHC with Hermite polynomials). Assume the index set is ΩN := ΩN,OHC,γ ,
for γ ∈ (0, 1). For any u ∈ Km

(
Rd
)
, d ≥ 2, and 0 ≤ |l|1 < m,∣∣∣∣∂lx (PN,γu− u)

∣∣∣∣
ω,Rd ≤m

dm−|l|min
2 |u|Km(Rd)

·


m

(d−1)(γm−|l|1)

2(1−γ) N
|l|1−m

2 , if 0 < γ ≤ |l|1
m

m
d−1

2(d−γ) (dm−|l|1)N
1−γ

2(d−γ) (|l|1−dm), if
|l|1
m
≤ γ < 1,

.

4.2. Jacobi polynomials

Theorem 4.4 (tensor product with Jacobi polynomials). Assume that

Xα,βN := span
{
P

(α,β)
n : n ∈ ΩN,tensor

}
. Given u ∈ Wm

α,β

(
Id
)
, we have for any 0 ≤ l < m,∣∣∣Pα,βN u− u

∣∣∣
Wl
α,β(Id)

≤ (1 + d)
1
2 2m−l(N −m)l−m||u||Wm

α,β(Id), (4.3)

for N � 1, where Pα,βN denotes the orthogonal projection operator, and the Sobolev norm is defined
as

||u||2Wm
α,β(Id) =

∑
0≤|k|1≤m

∣∣∣∣∂kxu∣∣∣∣2ωα+k,β+k,Id
.

If u ∈ Kmα,β
(
Id
)
, then for any 0 ≤ l < m, we have∣∣∣∣∣∣∂lx (Pα,βN u− u

)∣∣∣∣∣∣
ωα+l,β+l,Id

≤ 2dm−|l|min(N −m)|l|∞−m |u|Km
α+m,β+m,Id

, (4.4)

where
|u|2Krα,β(Id) =

∑
|k|∞=r

∣∣∣∣∂kxu∣∣∣∣2ωα+k,β+k,Id
.
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Theorem 4.5 (RHC with Jacobi polynomials). Assume the index set is ΩN = ΩN,RHC . Giv-
en u ∈ Kmα,β

(
Id
)
, for 0 ≤ l < m, we have∣∣∣∣∣∣∂lx (Pα,βN u− u

)∣∣∣∣∣∣
ωα+l,β+l,Id

≤ Cα,β2dm−|l|minmd(2m−|l|∞)−|l|minN |l|∞−m |u|Km
α+m,β+m,Id

,

where

Cα,β =

 (|α+ β|min + 1)
|l|1−m

2 , if |α+ β|min ≥ 0

(|α+ β|min + 1)
|l|min−dm

2 , if |α+ β|min < 0
. (4.5)

Theorem 4.6 (OHC with Jacobi polynomials). Assume the index set is ΩN := ΩN,OHC,γ , for
γ ∈ (0, 1). For any u ∈ Kmα+m,β+m

(
Id
)
, d ≥ 2, and 0 ≤ |l|1 < m,∣∣∣∣∣∣∂lx (Pα,βN,γ u− u

)∣∣∣∣∣∣
ωα+l,β+l,Id

≤Cα,β2dm−|l|minmd(2m−|l|∞)−|l|min |u|Km
α+m,β+m,Id

·


m

(d−1)(γm−|l|1)

(1−γ) N |l|1−m, if 0 < γ ≤ |l|1
m

m
d−1

(d−γ) (dm−|l|1)N−
1−γ

(d−γ) (dm−|l|1), if
|l|1
m
≤ γ < 1

,

where Cα,β is defined in (4.5).

Remark 4.4. Compared with Laguerre-chaos and Hermite-chaos, the Jacobi-chaos has twice faster
convergence rate. It is generally believed that the slower convergence rate of Laguerre-chaos and
Hermite-chaos is due to their unbounded nature.155

4.3. Krawtchouk polynomials

Theorem 4.7 (tensor product with Krawtchouk polynomials). Assume that

Xp,NM = span {Kn(x;p,N) : n ∈ ΩM,tensor}, for some N � 1 and M ≤N . Given u ∈ Wm
p,N (NN ),

we have for any 0 ≤ l < m,∣∣∣Pp,NN u− u
∣∣∣
Wl
p,N (NN )

≤(1 + d)
1
2 2−m [|p|min(1− |p|∞)]

− l
2 |N |

m
2∞(|N |min − l + 1)−

l
2 (M −m+ 1)

l−m
2 |u|Wm

p,N (NN ),

for M � 1 and M ≤N , where

|u|2Wm
p,N (NN ) =

d∑
j=1

∣∣∣∣∣∣4mxju∣∣∣∣∣∣2
ωp,N ,NN

.

Given u ∈ Kmp,N (NN ), for 0 ≤ l < m, we have∣∣∣∣∣∣4l
x

(
Pp,NN u− u

)∣∣∣∣∣∣
ωp,N ,NN

≤2|l|1−m|N |
dm−|l|min

2∞ (M −m+ 1)
|l|∞−m

2 |u|Kmp,N (NN ) ,

for M � 1, where

|u|2Krp,N (NN ) =
∑
|k|∞=r

∣∣∣∣4k
xu
∣∣∣∣2
ωp,N ,NN

.

Theorem 4.8 (RHC with Krawtchouk polynomials). Assume the index set is ΩM = ΩM,RHC ,
for some N � 1 and M < |N |mix. Given u ∈ Kmp,N (NN ), for 0 ≤ l < m, we have∣∣∣∣∣∣4l

x

(
Pp,NN u− u

)∣∣∣∣∣∣
ωp,N ,NN

≤2|l|1−m|N |
dm−|l|min

2∞ m
d(2m−|l|∞)−|l|min

2 M
|l|∞−m

2 |u|Kmp,N (NN ) ,

for M � 1.
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Theorem 4.9 (OHC with Krawtchouk polynomials). Assume the index set is ΩM := ΩM,OHC,γ ,

for γ ∈ (0, 1), N � 1 and M < |N |
d−γ
1−γ
∞ . For any u ∈ Kmp,N (NN ), d ≥ 2, and 0 ≤ |l|1 < m,∣∣∣∣∣∣4l

x

(
Pp,NN,γ u− u

)∣∣∣∣∣∣
ωp,N ,NN

≤2|l|1−m(m|N |∞)
dm−|l|min

2 |u|Kmp,N (NN )


m

(d−1)[(γ+1)m−2|l|1]

2(1−γ) M
|l|1−m

2 , if 0 < γ ≤ |l|1
m

m
d−1

2(d−γ) (dm−|l|1)M−
1−γ

2(d−γ) (dm−|l|1), if
|l|1
m
≤ γ < 1

.

4.4. Meixner polynomials

Theorem 4.10 (tensor product with Meixner polynomials). Assume that

Xβ,cN := span {Mn(x;β, c) : n ∈ ΩN}. Given u ∈ Wm
β,c

(
Nd0
)
, we have for any 0 ≤ l < m,

∣∣∣Pβ,cN u− u
∣∣∣
Wl
β,c(Nd0)

≤

{[
(|c|∞ − 1)2

|c|∞

]l
(|β|∞ +m− 1)

−l
+ d

[
(|c|min − 1)2

|c|min

]l
|β|−lmin

} 1
2

·
[

(|c|∞ − 1)2

|c|∞

]−m2
(|β|∞ +m− 1)

m
2 (N −m+ 1)

l−m
2 |u|Wm

β,c(Nd0),

for N � 1, where

|u|2Wm
β,c(Nd0) =

d∑
j=1

∣∣∣∣∣∣4mxju∣∣∣∣∣∣2
ωβ,c,Nd0

.

Given u ∈ Kmβ,c
(
Nd0
)
, for 0 ≤ l < m, we have∣∣∣∣∣∣4l

x

(
Pβ,cN u− u

)∣∣∣∣∣∣
ωβ,c,Nd0

≤CcCβN
|l|∞−m

2 |u|Kmβ,c(Nd0) ,

for N � 1, where

C2
c :=


[

(|c|∞ − 1)2

|c|∞

]|l|min−dm

, if

[
(|c|∞ − 1)2

|c|∞

]
≤ 1[

(|c|∞ − 1)2

|c|∞

]m−|l|1
, if

[
(|c|∞ − 1)2

|c|∞

]
< 1

, (4.6)

C2
β :=

{
(|β|∞ +m− 1)dm−|l|min , if |β|∞ +m ≥ 2

(|β|∞ +m− 1)m−|l|1 , if |β|∞ +m < 2
, (4.7)

and
|u|2Krβ,c(Nd0) =

∑
|k|∞=r

∣∣∣∣4k
xu
∣∣∣∣2
ωβ,c,Nd0

.

Theorem 4.11 (RHC with Meixner polynomials). Assume the index set is ΩN = ΩN,RHC .
Given u ∈ Kmβ,c

(
Nd0
)
, for 0 ≤ l < m, we have∣∣∣∣∣∣4l

x

(
Pβ,cN u− u

)∣∣∣∣∣∣
ωβ,c,Nd0

≤CcCβm
d(2m−|l|∞)−|l|min

2 N
|l|∞−m

2 |u|Kmβ,c(Nd0) ,

for N � 1, where Cc and Cβ are defined in (4.6) and (4.7), respectively.
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Theorem 4.12 (OHC with Meixner polynomials). Assume the index set is ΩN := ΩN,OHC,γ ,
for γ ∈ (0, 1). For any u ∈ Kmβ,c

(
Nd0
)
, d ≥ 2, and 0 ≤ |l|1 < m,∣∣∣∣∣∣4l

x

(
Pβ,cN,γu− u

)∣∣∣∣∣∣
ωβ,c,Nd0

≤CcCβm
dm−|l|min

2 |u|Kmp,N (NN )


m

(d−1)(γm−|l|1)

2(1−γ) M
|l|1−m

2 , if 0 < γ ≤ |l|1
m

m
d−1

2(d−γ) (dm−|l|1)M−
1−γ

2(d−γ) (dm−|l|1), if
|l|1
m
≤ γ < 1

,

where Cc and Cβ are defined in (4.6) and (4.7), respectively.160

4.5. Hahn polynomials

Theorem 4.13 (tensor product with Hahn polynomials). Assume that

Xα,β,NM = span {Qn(x;α,β,N) : n ∈ ΩM}, for some N � 1 and M ≤N . Given u ∈ Wm
α,β,N (NN ),

we have for any 0 ≤ l < m,∣∣∣Pα,β,NN u− u
∣∣∣
Wl
α,β,N (NN )

≤ (1 + d)
1
2 [−max{|α|min, |β|min} − 1]

m−l
2 (M −m+ 1)

l−m
2 ||u||Wm

α,β,N (NN ),

for M � 1 and M ≤N , where

|u|2Wm
α,β,N (NN ) =

d∑
j=1

∣∣∣∣∣∣4mxju∣∣∣∣∣∣2
ωα,β,N ,NN

, ||u||2Wm
α,β,N (NN ) =

∑
0≤|k|1≤m

∣∣∣∣4k
xu
∣∣∣∣2
ωα,β,N ,NN

.

Given u ∈ Kmα,β,N (NN ), for 0 ≤ l < m, we have∣∣∣∣∣∣4l
x

(
Pα,β,NN u− u

)∣∣∣∣∣∣
ωα,β,N ,NN

≤ [−max{|α|min, |β|min} − |l|min − 1]
d(m−l)

2 (M −m+ 1)
|l|∞−m

2 |u|Kmα,β,N (NN ) ,

for M � 1, where

|u|2Krα,β,N (NN ) =
∑
|k|∞=r

∣∣∣∣4k
xu
∣∣∣∣2
ωα,β,N ,NN

.

Theorem 4.14 (RHC with Hahn polynomials). Assume the index set is ΩM = ΩM,RHC , for
some N � 1 and M < |N |mix. Given u ∈ Kmα,β,N (NN ), for 0 ≤ l < m, we have∣∣∣∣∣∣4l

x

(
Pα,β,NN u− u

)∣∣∣∣∣∣
ωα,β,N ,NN

≤ [−max{|α|min, |β|min} − |l|min − 1]
dm−|l|min

2 m
d(2m−|l|∞)−|l|min

2 M
|l|∞−m

2 |u|Kmα,β,N (NN ) ,

for M � 1.

Theorem 4.15 (OHC with Hahn polynomials). Assume the index set is ΩM := ΩM,OHC,γ ,

for γ ∈ (0, 1), N � 1 and M < |N |
d−γ
1−γ
∞ . For any u ∈ Kmα,β,N (NN ), d ≥ 2, and 0 ≤ |l|1 < m,∣∣∣∣∣∣4l

x

(
Pα,β,NM,γ u− u

)∣∣∣∣∣∣
ωα,β,N ,NN

≤{[−max{|α|min, |β|min} − |l|min − 1]m}
dm−|l|min

2 |u|Kmα,β,N (NN )

·


m

(d−1)(γm−|l|1)

2(1−γ) M
|l|1−m

2 , if 0 < γ ≤ |l|1
m

m
d−1

2(d−γ) (dm−|l|1)M−
1−γ

2(d−γ) (dm−|l|1), if
|l|1
m
≤ γ < 1

.
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5. Application to Galerkin method of differential equations with random inputs

Let us recall the Galerkin method to solve differential equations with random inputs:

Lu(x, t, θ) = f(x, t, θ), (5.8)

where L is differential operators in time/space, u(x, t, θ) is the solution and f(x, t, θ) is the source
term. θ is the random parameter to describe the uncertainty of the system, which may be introduced
via initial condition, boundary condition etc. The solution can be viewed as a random process with
the Wiener-Askey polynomial chaos

u(x, t, θ) =
∑
i∈ΩN

ui(x, t)Φi(Z(θ)), (5.9)

where Z = (Z1, · · · , Zd) ∈ Rd are d independent random variables, Φi =
∏d
j=1 Φij are the multi-

variable Askey polynomials, and the summation is over certain index set ΩN . Thus, it is clear that165

the total number of expansions in (5.9) depends on the cardinality of ΩN .
Substituting the expansion (5.9) into (5.8), we obtain

L

( ∑
i∈ΩN

ui(x, t)Φi(Z(θ))

)
= f(x, t, θ).

The Galerkin spectral method is to project the above equation onto the linear subspace spanned by
{Φi}i∈ΩN

: 〈
L

( ∑
i∈ΩN

ui(x, t)Φi(Z(θ))

)
,Φk

〉
ω

= 〈f(x, t, θ),Φk〉ω, (5.10)

for all k ∈ ΩN . According to the orthogonality of the polynomials, we shall arrive at a set of
card(ΩN ) possibly coupled equations for uis, i ∈ ΩN . It is easy to notice that the govening equation
of ui are deterministic. And all sorts of deterministic numerical schemes are applicable.

In the sequel, we shall consider the analogue ordinary differential equations investigated in [24]
with higher-dimensional random inputs, i.e. Z ∈ Rd with d ≥ 2:

dy(t, θ)

dt
= −|Z(θ)|1y(t), (5.11)

with the deterministic initial condition y(0). It is easy to see that the solution to this ordinary
differential equations with random inputs is

y(t) = y(0)e−|Z|1t.

Suppose Z are continuous random variables and the probability density of Z is known to be f(z),
then the mean of the stochastic solution is

E[y](t) = y(0)

∫
S

e−|z|1tf(z)dz,

where S is the support of the density function f(z). If Z are discrete and the probability distribution
P(Z = zj) = pj , where zj ∈ Rd, then

E[y](t) = y(0)
∑
j

e−|zj |1tpj .

where j sums over the support of the distribution. The Askey-chaos expansion is written as

yN (t) =
∑
i∈ΩN

yi(t)Φi(Z), (5.12)
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then testing with Φk, k ∈ ΩN , we obtain

y′k(t) = −

〈 ∑
i∈ΩN

yi(t)|Z|1Φi(Z),Φk(Z)

〉
ω

=
∑
i∈ΩN

Ak,iyi(t), (5.13)

for all k ∈ ΩN , where Ak,i ∈ Rcard(ΩN ) are from the orthogonality of the polynomials. In the
following experiments, (5.13) is solved by ode45 in Matlab. We define the error:

εmax =
maxt∈[0,T ] |y0(t)− E[y](t)|

maxt∈[0,T ] |E[y](t)|
, εL2 =

||y0(t)− E[y](t)||L2([0,T ])

||E[y](t)||L2([0,T ])

. (5.14)

Due to the similarity of Askey polynomials, we shall only solve (5.11) with Laguerre-chaos under170

the assumption of gamma distribution, Charlier-chaos with Possion distribution, and Hermite-chaos
with Gaussian distribution.

5.1. Gamma distribution and Laguerre-chaos

Assume that Z = (Z1, · · · , Zd) obeys i.i.d. gamma distributions with the parameter α =
(α1, · · · , αd). The expectation of the stochastic solution is

E[y](t) =
y(0)

(tβ + 1)α+1
.

The Laguerre-chaos is naturally employed, i.e. Φi = L
(α)
i . Let us derive the matrix Ak,i in (5.13).

According to (5.11), we have

y′(t) =
∑
i∈ΩN

y′i(t)L
(α)
i (Z) = −

∑
i∈ΩN

yi(t)
[
|Z|1L(α)

i (Z)
]

=−
∑
i∈ΩN

yi(t)

d∑
j=1

[
L

(α1)
i1

(Z1) · · ·
(
ZjL

(αj)
ij

(Zj)
)
· · ·L(αd)

id
(Zd)

]

=−
∑
i∈ΩN

yi(t)

d∑
j=1

[
L

(α1)
i1

(Z1) · · ·
(
−(ij + 1)L

(αj)
ij+1(Zj) + (2ij + αj + 1)L

(αj)
ij

(Zj)− (ij + αj)L
(αj)
ij−1(Zj)

)

· · ·L(αd)
id

(Zd)
]

=−
∑
i∈ΩN

yi(t)

d∑
j=1

[
−(ij + 1)L

(α)
i+ej

(Z) + (2ij + αj + 1)L
(α)
i (Z)− (ij + αj)L

(α)
i−ej (Z)

]
.

(5.15)

Testing L
(α)
k (Z) on both sides, we obtain that

y′k(t) =

d∑
j=1

[
kjyk−ej (t)− (2kj + αj + 1)yk(t) + (kj + αj + 1)yk+ej

]
=:

∑
i∈ΩN

Ak,iyi(t). (5.16)

If we write yk, k ∈ ΩN , in the vector form, then the above equation can be writtern in matrix
form, i.e. ~y′(t) = A~y. The matrix A is sparse. Figure 1 displays N v.s. the errors of solving175

(5.11) by Laguerre-chaos in different dimensions from 2 to 5. The ode45 in Matlab has been used to
numerically solve (5.16) with initial condition y(0) = 1. The time step is around 10−2. Thus, one
can’t expect more accurate than 10−8, due to the time marching error. Figure 1 clearly shows that
the log of the error is almost linear with respect to N in OHC approximation. Although the number
of basis of OHC with γ = 0.5 is significantly fewer than that of RHC (see Table 1 for Hermite-chaos),180

but the convergence rate of the errors are slower with RHC.

20



0 5 10 15
10

−8

10
−6

10
−4

10
−2

N

ε L 2

RHC

 

 

0 5 10 15
10

−6

10
−5

10
−4

10
−3

N

ε L 2

OHC (γ=0.5)

0 5 10 15
10

−6

10
−5

10
−4

10
−3

N

ε m
ax

0 5 10 15
10

−6

10
−5

10
−4

10
−3

N

ε m
ax

d=2
d=3
d=4
d=5

Figure 1: The N = 3, 9, 15 in ΩN v.s. the errors of Laguerre-chaos (including εmax and εL2 defined in (5.14))
are displayed for different dimensions. The plots corresponding to ΩN,RHC are in the left column, while those to
ΩN,OHC,0.5 are in the right column.

5.2. Poisson distribution and Charlier-chaos

We assume that Z = (Z1, · · · , Zd), where Zis obey i.i.d. Poisson distribution π(ai), i = 1, · · · , d,
i.e. the probability distribution is f(z) =

∑∞
i=0 e

−|a|1 az
z! , where a = (ai)

d
i=1 and z = (zi)

d
i=1. The

mean of the stochastic solution is

E[y](t) = y(0) exp
[
−(1− e−t)|a|1

]
.

The Charlier-chaos is naturally employed, i.e. Φi = Ci(·;a). With similar argument in (5.15), Ak,i
with Charlier polynomials is given by

y′k(t) =

d∑
j=1

[
ajyk−ej (t)− (kj + aj)yk(t) + (kj + 1)yk+ej (t)

]
, (5.17)

for k ∈ ΩN . Figure 2 displays N v.s. the errors of solving (5.11) by Charlier-chaos in different
dimensions from 2 to 5. Similar conclusions as those from Figure 1 can also be drawn from Figure
2.185

5.3. Gaussian distribution and Hermite-chaos

We assume that Z = (Z1, · · · , Zd), where Zis obey i.i.d. Gaussian distribution N (0, 1). The
mean of the stochastic solution is

E[y](t) = y(0) exp

(
− t

2d

2

)
.
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Figure 2: The N = 3, 9, 15 in ΩN v.s. the errors of Charlier-chaos (including εmax and εL2 defined in (5.14))
are displayed for different dimensions. The plots corresponding to ΩN,RHC are in the left column, while those to
ΩN,OHC,0.5 are in the right column.

With similar argument in (5.15), Ak,i with Hermite polynomials is given by

y′k(t) =

d∑
j=1

[
−yk−ej (t)− (kj + 1)yk+ej

]
=:

∑
i∈ΩN

Ak,iyi(t). (5.18)

The numbers of basis functions Hi, i ∈ ΩN , and the numbers of nonzero elements in the matrix A
are displayed in Table 1. It is clear to see that OHC approximations are with less basis functions
and nonzeros elements.

dimension 2 3 4

RHC
# of basis 172 700 2453

nonzero elements 564 3168 14024

OHC with γ = 0.5
# of basis 132 428 1232

nonzero elements 404 1776 6432

Table 1: The numbers of basis functions Hi, i ∈ ΩN , with N = 30, from dimension 2 to 4 are displayed, so do the
numbers of nonzeros elements in the matrix A.

In Table 2, we experiment Hermite-chaos with RHC approximation in higher dimensions, say190

d = 6, 8 and 12 with N = 3. It is observed that the error only slightly grows with respect to the
dimension.
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dimension CPU time ] of basis εmax εL2

6 20.6636s 448 3.3226× 10−2 2.4975× 10−2

8 498.6522s 2304 5.7095× 10−2 4.5479× 10−2

12 4747.61s∗ 53248 1.167× 10−1 9.7× 10−2

Table 2: The CPU times, the number of basis and the errors, with N = 3, of dimension 6, 8 and 12 are displayed.
∗ This code has been parallelled and run by 24 CPU workers.

6. Conclusion

In this paper, we simplified the error analysis in [17, 12] and applied it to gPC with the HC
approximations. The error analyses of the projection onto the linear subspace spanned by all sorts195

of Askey polynomials have been obtained. The theorems reveal that the convergence rate of Jacobi-
chaos is twice faster than any other polynomials. We believe that it is due to its continuity and the
boundedness of its support. It is illustrated by the numerical experiments that solving the ordinary
differential equations with random inputs using RHC approximation generally converges faster than
the OHC with respect to N , while the number of the nonzeros in the stiff matrix and the number200

of polynomial basis of RHC grows faster than that of OHC with respect to the dimension.
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Appendix A. Connections between Galerkin approximation and the standard ANOVA205

decomposition

It is known that there are approaches proposed to deal with the difficulties caused by high
dimensional random inputs, say the ANOVA decomposition [26] and references therein. In this
appendix, we shall discuss the connection between the standard ANOVA decomposition and the
Galerkin approximation (2.3). Moreover, the HC approximation can be naturally combined with210

the ANOVA decomposition to eliminate the effect of curse of dimensionality in theory.
Recall that the Galerkin approximation of a function f(x), x = (x1, · · · , xd) ∈ Id, is

fGal,ν(x) =
∑
i∈Ων

f̂iΦi(x), (A.1)

where I is the support of the polynomial basis Φi(x), Ων is a proper subset of index set Nd with

some parameter ν and Φi(x) =
∏d
j=1 Φij (xj) are the polynomial basis. In section 3 and 4, the

error analyses have been performed with Ων chosen to be tensor product ΩN,tensor, the RHC
approximation ΩN,RHC and the OHC approximation with γ ∈ [−∞, 1) ΩN,OHC,γ (3.1) with various215

Askey polynomial basis.
Recall also that the standard ANOVA decomposition represents a function f(x), x ∈ Id, as

f(x) = f0 +

d∑
s=1

∑
j1<···<js

fj1,··· ,js(xj1 , · · · , xjs),

or equivalently,

f(x) = f0 +
∑

1≤j1≤d

fj1(xj1) +
∑

1≤j1<j2≤d

fj1,j2(xj1 , xj2) + · · ·+ f1,··· ,d(x1, · · · , xd),

if

f0 =

∫
Id
f(x)dµ(x) (A.2)
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and ∫
I

fj1,··· ,js(xj1 , · · · , xjs)dµ(xjk) = 0, (A.3)

for 1 ≤ k ≤ s.
The terms in the ANOVA decomposition are computed recursively

fS =

∫
I](Sc)

f(x)dµ(xSc)−
∑
T⊂S

fT (xT ), (A.4)

where S = {j1, · · · , js}, ](Sc) is the number of elements in the complement set of S, T = {j1, · · · , jt}
is a proper subset of S, fT = fj1,··· ,jt and xT = (xj1 , · · · , xjt). We call

fANOV A,ν(x) = f0 +
∑

1≤j1≤d

fj1(xj1) + · · ·+
∑

1≤j1<···<jν≤d

fj1,··· ,jν (xj1 , · · · , xjν ) (A.5)

the νth degree ANOVA approximation of f(x), for some 0 ≤ ν < d. In the following proposition,
we shall show that fANOV A,ν = fGal,ν with properly chosen measure µ and the index set Ων .

Proposition A.1. The νth degree ANOVA approximation fANOV A,ν (A.5) with the measure

dµ(x) =
1

c0
Φ0(x)ω(x)dx

is exactly the Galerkin approximation fGal,ν (A.1) with the index set Ω≤ν = {n ∈ Nd0 : |n|0 ≤ ν},
where c0 is the normalization constant, i.e.,∫

Id
Φi(x)Φk(x)ω(x)dx = ciδik,

and |n|0 is the 0-norm of a vector n defined in (2.1).220

Proof. It is easy to see that

f0 =

∫
Id
f(x)dµ(x) =

1

c0

∫
Id

∑
n∈Nd0

f̂nΦn(x)

Φ0(x)ω(x)dx = f̂0. (A.6)

We claim that for any 1 ≤ l < d, let Sl = {j1, · · · , jl}, we have

fSl(xSl) =

∞∑
nj1 ,··· ,njl=1

f̂nj1ej1+···+njlejlφnj1 (xj1) · · ·φnjl (xjl), (A.7)

where ei is the ith unit vector in Rd.
In fact, by induction, for l = 1, let S1 = {j1}, it is easy to check that

fj1(xj1)
(A.4)
=

∫
Id−1

f(x)
1

c0,Sc1

Φ0,Sc1
(xSc1 )ωSc1 (xSc1 )d(xSc1 )− f0

=

∫
Id−1

∑
n∈Nd0

f̂nΦn(x)

 1

c0,Sc1

Φ0,Sc1
(xSc1 )ωSc1 (xSc1 )d(xSc1 )− f0

(A.6)
=

∞∑
nj1=0

f̂nj1ej1 Φnj1 (xj1)− f̂0 =

∞∑
nj1=1

f̂nj1ej1 Φnj1 (xj1),

where Sc1 = {1, · · · , d}/{j1}, c0,R = cr1 · · · crν , Φn,R(xR) = φn1
(xr1) · · ·φnν (xrν ) and ωR(xR) =

ωr1(xr1) · · ·ωrν (xrν ), if the index set R = {r1, · · · , rν}. Next, we assume that (A.7) holds for all
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Sm with ](Sm) = m, with m ≤ l − 1. We need to show that it is also true for Sl = {j1, · · · , jl}.
According to (A.4), we have

fSl(xSl) =

∫
Id−l

∑
n∈Nd0

f̂nΦn(x)

 1

c0,Scl

Φ0,Scl
(xSc1 )ωScl (xScl )d(xScl )−

∑
T⊂Sl

fT (xT )

=

∞∑
nj1 ,··· ,njl=0

f̂nj1ej1+···+njlejlφnj1 (xj1 ) · · ·φnjl (xjl)−
∑

Sl−1⊂{1,··· ,d}

fSl−1
(xSl−1

)− · · · − f0

(A.7),(A.6)
=

∞∑
nj1 ,··· ,njl=0

f̂nj1ej1+···+njlejlφnj1 (xj1 ) · · ·φnjl (xjl)

−
∑

{j1,··· ,jl−1}⊂{1,··· ,d}

∞∑
nj1 ,··· ,njl−1

=1

f̂nj1ej1+···+njl−1
ejl−1

φnj1 (xj1) · · ·φnjl−1
(xjl−1

)− f̂0

=

∞∑
nj1 ,··· ,njl=1

f̂nj1ej1+···+njlejlφnj1 (xj1 ) · · ·φnjl (xjl).

With this claim, for 0 ≤ ν < d, the νth degree of ANOVA approximation can be written as

fANOV A,ν =

ν∑
l=0

∑
Sl⊂{1,··· ,d},]Sl=l

fSl(xSl)

=

ν∑
l=0

∑
{j1,··· ,jl}⊂{1,··· ,d}

∞∑
nj1 ,··· ,njl=1

f̂nj1ej1+···+njlejlφnj1 (xj1 ) · · ·φnjl (xjl)

=

ν∑
l=0

∑
n∈Ωl

f̂nΦn(x) =
∑

n∈Ω≤ν

f̂nΦn(x)

where Ωl =
{
n ∈ Nd0 : |n|0 = l

}
and Ω≤ν =

{
n ∈ Nd0 : |n|0 ≤ ν

}
. �

Remark 1.5. From (A.6), the 0th degree ANOVA approximation is exactly the same as the 0th
order Galerkin approximation with the fact that Φ0 = 1.

Remark 1.6. ANOVA approximation can be naturally combined with HC approximation in the225

following way. It is clear to see that ] (Ω≤ν) = ∞ if ν 6= 0. Certain truncation needs to be used
in the νth degree ANOVA approximation, say Ω≤ν,N,tensor = {n ∈ Nd0 : |n|0 ≤ ν, |n|∞ ≤ N},
Ω≤ν,N,RHC = {n ∈ Nd0 : |n|0 ≤ ν, |n|mix ≤ N}, etc.

Appendix B. Orthogonal polynomials of Askey scheme

Appendix B.1. Hermite polynomials Hn(x) and Gaussian distribution230

The three-term recurrence of the probabilist’s Hermite polynomials are given by

Hn+1(x) = xHn(x)− nHn−1(x), (B.1)

for n = 0, 1, 2, · · · , with H−1(x) = 0 and H0(x) = 1. The {Hn}n∈N0
forms an orthogonal basis of

L2
ω(R) with the weight ω(x) = 1√

2π
e−

x2

2 :∫
R
Hn(x)Hm(x)ω(x)dx = n!δnm, (B.2)

where δnm is the Kronecker function. The derivative of Hn(x) is explicitly expressed, namely

H ′n(x) = nHn−1(x). (B.3)
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Furthermore, we have
dk

dxk
Hn(x) =

n!

(n− k)!
Hn−k(x) = :µn,kHn−k, (B.4)

if n ≥ k ≥ 0.
Now we define the d-dimensional tensorial Hermite polynomial as

Hn(x) =

d∏
j=1

Hnj (xj),

for x ∈ Rd. It verifies readily that

∂kxHn = µn,kHn−k, (B.5)

and ∫
Rd
∂kxHn(x)∂kxHm(x)ω(x)dx = µ2

n,k(n− k)!δnm = :ρn,kδnm, (B.6)

where ω(x) =
∏d
j=1 ω(xj), µn,k =

∏d
j=1 µnj ,kj and δnm =

∏d
j=1 δnjmj . Here, δnm is the tensorial

Kronecker function. It is clear to see that the weight ω is the density function of the standard
Gaussian distribution.

The Hermite polynomials {Hn(x)}n∈Nd0 form an orthogonal basis of L2
ω

(
Rd
)
. That is, for any

function u ∈ L2
ω

(
Rd
)
, it can be written in the form

u(x) =
∑
n≥0

ûnHn(x), (B.7)

with ûn = 1
n!

∫
Rd u(x)Hn(x)ω(x)dx. Hence, we have ∂kxu(x) =

∑
n≥k ûn∂

k
xHn(x). Furthermore,∣∣∣∣∂kxu∣∣∣∣2ω,Rd =

∑
n≥k

ρn,k |ûn|2 =
∑
n∈Nd0

ρn,k |ûn|2 , (B.8)

if we define conventionally µn,k = 0, for 0 ≤ n < k.235

Appendix B.2. Laguerre polynomial L
(α)
n (x) and gamma distribution

The Laguerre polynomial is given by the three-term recurrence relation:

(n+ 1)L
(α)
n+1(x)− (2n+ α+ 1− x)L(α)

n (x) + (n+ α)L
(α)
n−1(x) = 0,

with L
(α)
−1 (x) = 0 and L

(α)
0 (x) = 1, for any α > −1, x ∈ R+. The orthogonality of L

(α)
n (x) with

respect to the weight ωα(x) = xαe−x

Γ(α+1) is∫
R+

L(α)
m (x)L(α)

n (x)ωα(x)dx =
(α+ 1)n

n!
δmn = :ρn,αδmn, (B.9)

with the Pochhammer symbol (a)n defined in (2.2).
Recall that the gamma distribution has the probability density function

f(x) =
xαe−x/β

βα+1Γ(α+ 1)
,

for α > −1, β > 0. The weight function of Laguerre polynomial is the same as that of the gamma
distribution with β = 1. The derivative of Laguerre polynomial is

dk

dxk
L(α)
n (x) = (−1)kL

(α+k)
n−k (x), (B.10)
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if n ≥ k ≥ 0. The d-dimensional tensorial Laguerre polynomial is readily defined as

L(α)
n (x) =

d∏
j=1

L(αj)
nj (xj),

for x ∈ Rd+, α > −1. The orthogonality of the tensorial Laguerre polynomial follows immediately
from (B.9): ∫

Rd+
L(α)
n (x)L(α)

m (x)ωα(x)dx = ρn,αδmn, (B.11)

where ωα(x) =
∏d
j=1 ωαj (xj), ρn,α =

∏d
j=1 ρnj ,αj and δmn =

∏d
j=1 δmjnj . Furthermore, it is easy

to deduce that ∫
Rd+
∂kxL

(α)
n (x)∂kxL

(α)
m (x)ωα+k(x)dx

(B.10),(B.11)
= ρn−k,α+kδmn.

Any u(x) ∈ L2
ωα(Rd+) can be written as

u(x) =
∑
n∈Nd0

ûnL
(α)
n (x),

with

ûn =
1

ρn,α

∫
Rd+
u(x)L(α)

n (x)ωα(x)dx.

Hence, we have ∣∣∣∣∂kxu(x)
∣∣∣∣2
ωα+k,Rd+

=
∑
n≥k

ρn−k,α+k |ûn|2 =
∑
n∈Nd0

ρn−k,α+k |ûn|2 , (B.12)

if we let ρn−k,α+k = 0 when 0 ≤ n < k.

Appendix B.3. Jacobi polynomial P
(α,β)
n (x) and beta distribution

The Jacobi polynomial is given by the three-term recurrence relation:

xP (α,β)
n (x) =

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
P

(α,β)
n+1 (x) +

β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
P (α,β)
n (x)

+
2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
P

(α,β)
n−1 (x),

for n = 2, 3, · · · , with P
(α,β)
−1 (x) = 0 and P

(α,β)
0 (x) = 1, for any α, β > −1, x ∈ (−1, 1) = :I. The

orthogonality of P
(α,β)
n (x) with respect to the weight

ωα,β(x) =
Γ(α+ β + 2)

2α+βΓ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)β

is ∫
I

P (α,β)
m (x)P (α,β)

n (x)ωα,β(x)dx = h2
nδmn, (B.13)

for α, β, α+ β > −1, where Γ(◦) denotes the gamma function and

h2
n =

2Γ(α+ β + 2)Γ(n+ α+ 1)Γ(n+ β + 1)

n!(2n+ α+ β + 1)Γ(α+ 1)Γ(β + 1)Γ(n+ α+ β + 1)
. (B.14)
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It is easy to verify that letting ᾱ = α+1, β̄ = β+1 and x̄ = 1−x
2 , the weight function ωα,β is exactly

the density function of beta distribution, i.e.

f(x̄; ᾱ, β̄) =
Γ(ᾱ+ β̄)

Γ(ā)Γ(β̄)
x̄ᾱ−1(1− x̄)β̄−1,

for ᾱ, β̄ > 0, x̄ ∈ (0, 1). The derivative of Jacobi polynomial is

dk

dxk
P (α,β)
n (x) =

Γ(α+ β + n+ 1 + k)

2kΓ(α+ β + n+ 1)
P

(α+k,β+k)
n−k (x), (B.15)

if n ≥ k ≥ 0. Now we define the d-dimensional tensorial Jacobi polynomial as

P (α,β)
n (x) =

d∏
j=1

P (αj ,βj)
nj (xj),

for x ∈ Id, α,β > −1. The orthogonality of the tensorial Jacobi polynomial follows immediately
from (B.13): ∫

Id
P (α,β)
n (x)P (α,β)

m (x)ωα,β(x)dx = h2
nδmn, (B.16)

for α,β,α + β > −1, where ωα,β(x) =
∏d
j=1 ωαj ,βj (xj), δmn =

∏d
j=1 δmjnj and hn =

∏d
j=1 hnj .

Furthermore, it is easy to deduce that∫
Id
∂kxP

(α,β)
n (x)∂kxP

(α,β)
m (x)ωα+k,β+k(x)dx

(B.15),(B.16)
= ρn,k,α,βδmn, (B.17)

where ρn,k,α,β =
∏d
j=1 ρnj ,kj ,αj ,βj and

ρnj ,kj ,αj ,βj =

[
Γ(αj + βj + nj + kj + 1)

2kjΓ(αj + βj + nj + 1)

]2

h2
nj−kj . (B.18)

Any u(x) ∈ L2
ωα,β

(
Id
)

can be written as

u(x) =
∑
n∈Nd0

ûnP
(α,β)
n (x),

with

ûn =
1

h2
n

∫
Id
u(x)P (α,β)

n (x)ωα,β(x)dx.

Hence, we have ∣∣∣∣∂kxu(x)
∣∣∣∣2
ωα+k,β+k,Id

=
∑
n≥k

ρn,k,α,β |ûn|2 =
∑
n∈Nd0

ρn,k,α,β |ûn|2 , (B.19)

if we let ρn,k,α,β = 0 when 0 ≤ n < k.240

Appendix B.4. Charlier polynomial Cn(x; a) and Poisson distribution

Charlier polynomial Cn(x; a) is given by the recurrence relation:

−xCn(x; a) = aCn+1(x; a)− (n+ a)Cn(x; a) + nCn−1(x; a), a > 0,

for n ≥ 1, x ∈ N0, with C−1(x; a) = 0 and C0(x; a) = 1. The orthogonality of Charlier polynomials
with respect to the weight w(x; a) = e−a a

x

x! is

∞∑
x=0

Cn(x; a)Cm(x; a)w(x; a) = a−nn!δmn. (B.20)
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The probability function of Poisson distribution is exactly the weight w(x; a). The forward difference
of Charlier polynomial is

4kxCn(x; a) = (−1)k
Γ(n+ 1)

Γ(n− k + 1)ak
Cn−k(x; a),

if n ≥ k ≥ 0. Now we define the d-dimensional tensorial Charlier polynomial

Cn(x;a) =

d∏
j=1

Cnj (xj ; aj),

for a > 0 and x ∈ Nd0. The orthogonality of the tensorial Charlier polynomial follows immediately
from (B.20): ∑

x∈Nd0

Cn(x;a)Cm(x;a)ω(x;a) = a−nn!δnm.

Furthermore, it is easy to deduce that∑
x∈Nd0

4k
xCn(x;a)4k

xCm(x;a)ω(x;a) =
Γ(n+ 1)2(n− k)!

Γ(n− k + 1)2an+k
δnm = :ρn,k,aδnm, (B.21)

if n ≥ k ≥ 0, where Γ(n) :=
∏d
j=1 Γ(nj). Any u(x) ∈ l2ω(x;a)

(
Nd0
)

(in section 3.2 we denote

ωa = ω(x;a) for short) can be written as

u(x) =
∑
n∈Nd0

ûnCn(x;a),

with

ûn =
an

n!

∑
x∈Nd0

u(x)Cn(x;a)ω(x;a).

Appendix B.5. Krawtchouk polynomial Kn(x; p,N) and binomial distribution

Krawtchouk polynomial Kn(x; p,N) is given by the recurrence relation:

−xKn(x; p,N) = p(N −n)Kn+1(x; p,N)− [p(N −n)+n(1−p)]Kn(x; p,N)+n(1−p)Kn−1(x; p,N),

for 0 < p < 1, x ∈ NN , n ∈ NN , N ∈ N, where NN = {0, 1, · · · , N}, with K−1(x; p,N) = 0
and K0(x; p,N) = 1. The orthogonality of Krawtchouk polynomial with respect to the weight
ω(x; p,N) =

(
N
x

)
px(1− p)N−x is

N∑
x=0

Km(x; p,N)Kn(x; p,N)ω(x; p,N) =

(
1− p
p

)n
/

(
N

n

)
δmn, 0 < p < 1. (B.22)

The weight function is the probability density function of binomial distribution. The forward differ-
ence of Krawtchouk polynomial is

4kxKn(x; p,N) =
(−1)k

pk
Γ(n+ 1)Γ(N − k + 1)

Γ(n− k + 1)Γ(N + 1)
Kn−k(x; p,N − k),

if n ≥ k ≥ 0. Now we define the d-dimensional tensorial Krawtchouk polynomial

Kn(x;p,N) =

d∏
j=1

Knj (xj ; pj , Nj),
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for 0 < p < 1 and N ∈ Nd0. The orthogonality of the tensorial Krawtchouk polynomial follows
immediately from (B.22):∑

x∈NN

Km(x;p,N)Kn(x;p,N)ω(x;p,N) =

(
1− p
p

)n
/

(
N

n

)
δmn,

where NN = ⊗dj=1NNj and
(
N
n

)
=
∏d
j=1

(
Nj
nj

)
. Furthermore, it is easy to deduce that∑

x∈NN−k

4k
xKm(x;p,N)4k

xKn(x;p,N)ω(x;p,N − k)

=
(1− p)n−k

pn+k

(
Γ(n+ 1)Γ(N − k + 1)

Γ(n− k + 1)Γ(N + 1)

)2

/

(
N − k
n− k

)
δmn = :ρn,k,p,Nδmn, (B.23)

if n ≥ k ≥ 0. Any u(x) ∈ l2ω(x;p,N) (NN ) (in section 4.3 ωp,N = ω(x;p,N) for short) can be
written as

u(x) =
∑
n∈NN

ûnKn(x;p,N),

with

ûn =

(
N

n

)
/

(
1− p
p

)n ∑
x∈NN

u(x)Kn(x;p,N)ω(x;p,N).

Appendix B.6. Meixner polynomial Mn(x;β, c) and negative binomial distribution

Meixner polynomial Mn(x;β, c) is given by the recurrence relation:

(c− 1)xMn(x;β, c) = c(n+ β)Mn+1(x;β, c)− [n+ (n+ β)c]Mn(x;β, c) + nMn−1(x;β, c),

for β > 0, 0 < c < 1, x ∈ N0 and n ∈ N0, with M−1(x;β, c) = 0 and M0(x;β, c) = 1. The

orthogonality of Meixner polynomial with respect to the weight ω(x;β, c) = (β)x
x! c

x(1− c)β is

∞∑
x=0

Mm(x;β, c)Mn(x;β, c)ω(x;β, c) =
c−nn!

(β)n
δmn, (B.24)

where (β)x is the Pochhammer notation defined in (2.2). The weight function is the probability
density function of negative binomial distribution. In the case where β is an integer, it is often
called Pascal distribution. The forward difference of Meixner polynomial is

4kxMn(x;β, c) =

(
c− 1

c

)k
Γ(n+ 1)Γ(β)

Γ(n− k + 1)Γ(β + k)
Mn−k(x;β + k, c),

if n ≥ k ≥ 0. Now we define the d-dimensional tensorial Meixner polynomial

Mn(x;β, c) =

d∏
j=1

Mnj (xj ;βj , cj),

for 0 < β and 0 < c < 1. The orthogonality of the tensorial Meixner polynomial follows immediately
from (B.24): ∑

x∈Nd0

Mm(x;β, c)Mn(x;β, c)ω(x;β, c) =
c−nn!

(β)n
δmn.

Furthermore, it is easy to deduce that∑
x∈Nd0

4k
xMm(x;β, c)4k

xMn(x;β, c)ω(x;β + k, c)

=
(c− 1)2k

cn+k

Γ(n+ 1)2Γ(β)2

Γ(n− k + 1)Γ(β + k)Γ(β + n)
δmn = :ρn,k,β,cδmn, (B.25)
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if n ≥ k ≥ 0. Any u(x) ∈ l2ω(x;β,c)

(
Nd0
)

(in section 4.4ωβ,c = ω(x;β, c) for short) can be written as

u(x) =
∑
n∈Nd0

ûnMn(x;β, c),

with

ûn =
cn(β)n
n!

∑
x∈Nd0

u(x)Mn(x;β, c)ω(x;β, c).

Appendix B.7. Hahn polynomial Qn(x;α, β,N) and hypergeometric distribution

Hahn polynomial Qn(x;α, β,N) is given by the recurrence relation:

−xQn(x;α, β,N) = AnQn+1(x;α, β,N)− (An + Cn)Qn(x;α, β,N) + CnQn−1(x;α, β,N),

where 
An =

(n+ α+ β + 1)(n+ α+ 1)(N − n)

(2n+ α+ β + 1)(2n+ α+ β + 2)

Cn =
n(n+ α+ β +N + 1)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)

,

for α, β > −1 or α, β < −N , n = 0, 1, · · · , N and x ∈ NN . The orthogonality of Hahn polynomial

with respect to the weight ω(x;α, β,N) = (α+1)x(β+1)N−x
x!(N−x)! is

∞∑
x=0

Qm(x;α, β,N)Qn(x;α, β,N)ω(x;α, β,N) = h2
n(α, β,N)δmn, (B.26)

where

h2
n(α, β,N) =

(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−N)nN !
.

where (β)x is the Pochhammer notation defined in (2.2). It is easy to verify that when α, β < −N ,
(−1)Nω(x;α, β,N) > 0 and (−1)Nh2

n(α, β,N) > 0. Also when α, β < −N , if we set α = −α̃ − 1
and β = −β̃ − 1 in the weight function, we obtain

w̃ =
1(
N

N−α̃−β̃−1

) (α̃x)( β̃
N−x

)(
α̃+β̃
N

) ,

which is exactly the hypergeometric distribution, apart from the constant 1/
(

N
N−α̃−β̃−1

)
in front.

We shall restrict ourselves to the case α, β < −N , due to the close connection to the hypergeometric
distribution. The forward difference of Hahn polynomial is

4kxQn(x;α, β,N) = (−1)k
(n− k + 1)k(n+ α+ β + 1)k

(α+ 1)k(N − k + 1)k
Qn−k(x;α+ k, β + k,N − k),

if n ≥ k ≥ 0. Now we define the d-dimensional tensorial Hahn polynomial

Qn(x;α,β,N) =

d∏
j=1

Qnj (xj ;αj , βj , Nj),

for α,β > −1 or α,β < −N . The orthogonality of the tensorial Hahn polynomial follows immedi-
ately from (B.26):∑

x∈NN

Qm(x;α,β,N)Qn(x;α,β,N)ω̄(x;α,β,N) = h̄2
n(α,β,N)δmn,
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where ω̄(x;α,β,N) = (−1)Nω(x;α,β,N) > 0 and h̄2
n(α,β,N) =

∏d
j=1(−1)Njh2

nj (αj , βj , Nj) >
0. Furthermore, it is easy to deduce that∑

x∈NN

4k
xQm(x;α,β,N)4k

xQn(x;α,β,N)ω̄(x;α+ k,β + k,N − k)

=

[
(n− k + 1)k(n+α+ β + 1)k

(α+ 1)k(N − k + 1)k

]2

h̄2
n−k(α+ k,β + k,N − k)δmn = :ρn,k,α,β,Nδmn,

(B.27)

if n ≥ k ≥ 0. Any u(x) ∈ l2ω̄(x;α,β,N) (NN ) (in section 4.5 ωα,β,N = ω̄(x;α,β,N) for short) can
be written as

u(x) =
∑
n∈NN

ûnQn(x;α,β,N),

with

ûn =
1

h̄2
n(α,β,N)

∑
x∈NN

u(x)Qn(x;α,β,N)ω̄(x;α,β,N).
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