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cross approximation and its application to differential equations with
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Abstract

s It is well-known that sparse grid algorithm has been widely accepted as an efficient tool to overcome
the “curse of dimensionality” in some degree. In this note, we give the error estimate of hyperbolic
cross (HC) approximations with all sorts of Askey polynomials. These polynomials are useful in
generalized polynomial chaos (gPC) in the field of uncertainty quantification. The exponential con-
vergences in both regular and optimized HC approximations have been shown under the condition
that the random variable depends on the random inputs smoothly in some degree. Moreover, we
apply gPC to numerically solve the ordinary differential equations with slightly higher dimension-
al random inputs. Both regular and optimized HC have been investigated with Laguerre-chaos,
Charlier-chaos and Hermite-chaos in the numerical experiment. The discussion of the connection
between the standard ANOVA approximation and Galerkin approximation is in the appendix.

Keywords: generalized polynomial chaos, hyperbolic cross approximation, differential equations
with random inputs, spectral method
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1. Introduction

Uncertainty is ubiquitous. It is usually related to the lack of knowledge about the processes
involved. Although this kind of uncertainty can be reduced by obtaining more observations or by
improving the accuracy of the measurements, it is quite impractical to measure at all the points, or
even at a relatively large number of points. Mathematically, one usually models the uncertainty by
random variables or processes, with a realistic probability distribution. The main goal in the field
of uncertainty quantification is to predict the quantities of physical interest by mathematical and
computational analysis. Usually, the quantity of physical interests are the real-valued functionals
of the solution to certain partial/ordinary differential equations with random inputs. Generally
speaking, the random inputs in the system can be expanded by an infinite combinations of random
variables, say the Karhunen-Loeve expansion [I0, [II] or generalized polynomial chaos (gPC). In
particular, the gPC is one of the most popular approximation in the literature. The name polynomial
chaos (PC) is coined by N. Wiener [2I] in 1938, in which he studied the decomposition of Gaussian
stochastic processes. The convergence of the Hermite-chaos expansion of arbitrary random processes
with finite second-order moments has been shown rigorously by Cameron and Martin [5]. The study
of the original PC was started by Ghanem and his coworkers. He represented the random processes
by the Hermite polynomials and used this technique with finite element method to many different
practical problems, see [7]. Although the Hermite-chaos is mathematically sound, the convergence
rate of non-Gaussian problems are far from optimal. It is Xiu and Karniadakis [24] who for the
first time generalized the Hermite polynomials to the Wiener-Askey polynomials, and numerical
experiments verified the optimal convergence by choosing proper polynomial basis according to the
distribution. This is so-called gPC in the literature. Later, the gPC has been further generalized to
other set of complete basis, for instance the piecewise polynomial basis [2], the wavelet basis [14],
and multi-element gPC [20].
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After choosing an appropriate set of polynomials basis, the partial/ordinary differential equations
with random inputs yields a set of coupled deterministic equations with the stochastic Galerkin (SG)
procedure. Most of the early works are based on this method, which minimizes the error of Galerkin
projection onto the linear subspace spanned by a finite-order gPC, see [7, 25, [2], [14] and references
therein. Another alternative numerical approach is the stochastic collocation (SC) method, which
originates from the idea of deterministic sampling. Usually the nodes of the quadrature rule are
selected to be a set of realizations of the random variables. An ensemble of repetitive deterministic
codes with the realizations has been executed, and a synchronization has been processed to get the
desired quantity of interest from the deterministic solution ensemble.

However, when the dimension of random inputs is high, no matter the SG or the SC method
will inevitably encounter the so-called “curse of dimensionality”. As in the case of SG method, if
the linear subspace is spanned by tensor product of the polynomials basis, and assume that the
first N-order polynomials are used in each direction, then the total number of polynomial basis is
M = N?, where d is the dimension of the random inputs. Let X be the subspace spanned by the
tensor product of polynomials basis. A typical error estimate is of the form

inf ||u—unllzz S N Mullmr S M9 ful |,
uny EXN
where H" is the Sobolev space, and the notation < represents < up to a positive generic constant
independent of N. It is clear to see that the error of Galerkin projection deteriorates exponentially
with respect to the dimension d. As in the case of SC method, the total number of the nodes grows
exponentially with respect to the dimension d. Indeed, if N represents the number of the nodes in
each direction, then the total number from the tensor product is M = N?. It indicates that the
deterministic simulations should be executed repetitively for M times. It is almost impractical for
problems with 5 or even higher dimensional random inputs.

One alleviation of the “curse of dimensionality” is the so-called sparse grid, which can be dated
back to Smolyak [I8], and has been further investigated by many researchers, see [6] 3] 23], among
which [23] proposed a high-order SC approach. Much work after that has been focused on further
reduction of the nodes, see [I3] [I5] and references therein. Meanwhile, the sparse grid applied to
the SG method is to reduce the total number of polynomial basis spanning the linear subspace.
Approximations by hyperbolic cross (HC) have recently been received much attention, see [27] [4]
and references therein which can further reduce the total number of polynomial basis. To the best of
our knowledge, the error analysis of the HC approximations based on polynomials is first investigated
in [I7] to the Jacobi polynomials in spectral method. More recently, Yau and the author [I2] showed
the error analysis of HC approximations based on the generalized Hermite functions and studied its
application of solving deterministic parabolic PDEs.

The main goal of our paper is to investigate the error analysis of the HC approximation with
the orthogonal polynomials of Askey scheme. For any second order random variable u(6), it can be
approximated by

u(f) ~ Z a;%;(£(0))=: un(0),

1€EQN
where Qy is an index set with card(Qy) < oo, £(f) € RY/N§/--- is a d—dimensional random
variables, and ®; are the orthogonal polynomials of Askey scheme. In this paper, we shall derive
the typical error estimate of the form:

inf
un E€X

lu = un|l = |lu = Pyullce S NG Julem,
N
for 0 < 1 < m, where K! is the Koborov space, Xy := span{®; : i € Qx}, Py is the projection
operator onto the linear subspace Xy, and ¢(l,m) is a negative constant.

The paper is organized as following. The notations and the orthogonal polynomials of Askey
scheme have been introduced in section 2. For the readers’ convenience, we include the frequently
used orthogonal polynomials of Askey scheme and their properties in appendix B. Section 3 is
devoted to the error analysis of the projection with HC approximations using Laguerre-chaos and
Charlier-chaos, as the representatives. The results of the error estimates with other orthogonal



polynomials of Askey scheme have been stated without proofs in section 4. The applications of

60 the gPC to Galerkin method of ordinary differential equations with random inputs are numerically
investigated in section 5. The conclusion is in section 6. Appendix A is devoted to discuss the
connection between the standard ANOVA approximation and Galerkin approximation. It shows in
theory that HC can be naturally combined with ANOVA approaches.

2. Preliminaries

es 2.1. Notations
Let us first clarify the notations to be used throughout the paper.
o Let R(resp., N) denotes all the real numbers (resp., natural numbers), Ny = N U {0}, and
Ny ={0,1,--- ,N}.
o For any d € N, we use boldface lowercase letters to denote d-dimensional multi-indices and
70 vectors. For example, k = (ky, ko, ..., kq) € N&.
o Denote 1 = (1,1,...,1) € N% and let e; = (0,...,1,...,0) be the i*" unit vector in R?. For
any scalar s € R, we define the component-wise operations:

atk=(a;xky,...,aqtky), ats=atsl=(a;ts,...,aqts),

s s k k k
a’=(af,...,ap), a"=aof"---a), al=o!---agl,

and
a>ksa; >k, Vi<j<d, a>ssa;>s V1< <d

¢ The frequently used norms are denoted as

d
|klo = # of nonzero elements in k, |k|; = z;kj, |k|oo = 121;3?(11@]-, (2.1)
J:

d
|k|min = Inin{kj 01 S] S d}v and |k|mix = H ]_gja
j=1

where k; = max{1, k;}.
o Given a multivariate function u(x), we denote the k™ mixed partial derivative by

Olkliy

Oy = oo
* dahr - Qahe

_ 9k ka
— 1. gk,

In particular, we denote d3u = 931u = 8538’5""’5)% Similarly, the k" mixed forward difference
is denoted by
A’;u = Aﬁi cee A];;lu,

where the forward differences is defined as

Afu(z) = A, (A5 (),

x

for k > 1, where Ayu(z) = u(z + 1) — u(x), with the convention that Adu(x) = u(z).
o We follow the convention in the asymptotic analysis that a < b means that there exists some
constant C' > 0 such that ¢ < Cb, and N > 1 means that IV is sufficiently large.
7 o We denote C' as some generic positive constant, which may vary from line to line.
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2.2. The orthogonal polynomials of Askey scheme and polynomial chaos

Wiener-Askey polynomials are the orthogonal polynomials which can be expressed by using
hypergeometric series. In general, a system of orthogonal polynomials {Q,(z)}>2, holds the or-
thogonality relation with respect to a real positive measure w, i.e.

/S Qo (2)Qn (€)des(2) = YaGrun,

for myn = 0,1,2---, where d,,, = 1 if m = n, otherwise d,,, = 0, S is the support of the
measure w(x), and 7, are normalization constants. Besides the orthogonality relation, all orthogonal
polynomials on the real line satisfy a three-term recurrence relation:

7‘66@”(1') = ann+1(x) + anQn(z) + CnQn—l(I)a

- _1(xz) = 0 and Qp(z) = 1. Askey and Wilson
[1] for the first time generalized the Jacobi polynomials to the Askey polynomials. The generalized
hypergeometric series ,.Fy is defined by

for n > 1, where b, c,

cFo(ar, - ap;by, - ,br;z)zzwi

where b; #0 for i =1,--- , s, and (a),, is the Pochhammer symbol defined as

1, n=0

(a)n_{a(a+1)~~(a+n1), n=12---" (22)
For details about hypergeometric polynomials and the Askey scheme, we refer interested readers to
[16]. The orthogonal polynomials of Askey scheme (namely the ones in [24]) and their properties will
be used frequently in this paper, which can be found in the appendix of [22] and references therein.
For the readers’ convenience, we include them in appendix B. The continuous ones are Hermite,
Laguerre and Jacobi polynomials, while Charlier, Meixner, Krawtchouk and Hahn polynomials are
the discrete ones.

The gPC has been proposed for the first time in [24] to get the optimal convergence with the non-
Gaussian random inputs. It is a generalization of the Wiener PC expansion. The expansion basis is
a set of complete orthogonal polynomials of Askey scheme introduced before. For any second-order
random variable u(#), it can be expanded as

(9) =agply + Z Czl-[l 511 + Z Z 02122 511 612( ))

i1=1 i1=11iy=1

+ Z Z Z Czlzgzg gzl )aglz (9)7513 (0)) +y

21 11,2 113 1

where I,(&,,- - , &, ) denotes the PC of order n in terms of random vector € = (&, -+ ,&;, ). It is
clear to see that the more independent random variables §; s used, the higher order of PC applied,
the more terms appear in the expansion, and intuitively the closer the expansion to the random
process u(#) is. For the sake of conciseness, we rewrite the expansion as

=3 i), (2.3)
li|=0

where |¢| can be || or other norms, € = (£1,&2, ), and ®; = &, (&1)P;,(&2) - -+, where P, are
orthogonal polynomials of Askey scheme of degree .
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3. Multivariate orthogonal projection and approximations

As shown in , the gPC is an expansion with infinite many terms. It is also shown that in the
standard ANOVA approximation with certain measure is exactly the expansion with |i]p < v,
which also contains infinite many terms, see details in appendix A. It only becomes practical when
certain truncation has been made. To be specific, suppose there are d > 1 independent random
variables &, i =1,--- ,d, denoted briefly as € = (&1, -+ ,&4), and we choose orthogonal polynomials
of Askey scheme ®;(&) of certain order such that ¢ € Qy, where Q is an index set parametrized by
N € N such that card(2y) < oo, then the gPC becomes an approximation with finite terms:

u(0) ~ 3 csil€(0)).

1€QN

Therefore, it is natural to ask how to choose such index set 2 so that card(Qx) can be as small as
possible without sacrificing the accuracy too much, and how the error changes with respect to the
parameter N and the dimension d.

In this paper, we shall focus on the error analysis of the projection with three type of index sets:
tensor product, regular hyperbolic cross (RHC) and optimal hyperbolic cross (OHC) with parameter
v € [~00,1), which are defined as

QN,tensor = {'L S Ng : |7f|oo < N} ,
Qn.ric = {i € Nj : [ilmix <N}, (3.1)
QN’OHCP/ = {"’ € Ng : |i|miX|i|o_o'y < Nl_'y} , —o0o<~v< 1.

The typical error estimate is of the form

inf |ju—Unlli = |lu— Pyulli < CN~"full,,
UneXnN

where C is a generic constant independent of N, but it may depend on d, ¢(l,r) is some positive
constant depending on ! and r, || - ||; is the norm of some functional space, [ indicates the regularity
in some sense, X is a linear subspace spanned by the orthogonal polynomials of Askey scheme ®;,
ie.

Xy :=span{®;: i € Qn},

and Py projects u onto the subspace Xy, i.e.
Pyu(0) = ) @®i(£(6)).
1€QN

In this section, we only include the detailed proofs of the error analysis using Laguerre polyno-
mials as a representative of the continuous ones and the Charlier polynomails as that of the discrete
ones. All the results by using other orthogonal polynomials of Askey scheme will be stated without
proofs in section 4.

3.1. Approzximation by using Laguerre polynomials

In this subsection, we shall show the approximation by Laguerre polynomials in detail. The
subspace X is defined as

X§ = span {Lgf") T me QN} , (3.2)

for some a > —1, where Qy C N{ is one of the index sets QN tensors &N, rEC and Qn omc,y in (3.1).
Let us denote the orthogonal projection operator Py : Lia (]Rff_) — X, ie., forany u € LZ;a (R+ ,

((u — Pyu),v)o, =0, Vve Xy, (3.3)



where L?‘,a (Ri) is the weighted L? space, and (u, V), = fRd uvweqdz is the weighted inner product
A +
in Lia (R‘i). Or equivalently,
PRu(6) = > inL{M(£(0)),
neQyN

where 1, is the Fourier-Laguerre coefficient, which can be computed by
1

ity = ———{u(0), L) (€(6)) o
Pr,a
with pn o specified in and (B.11)).
o We shall estimate how close the projection Pgu is to u, with respect to various norms and index
sets Q.

3.1.1. Tensor product
The index set Q2 corresponding to the d-dimensional tensor product is

QN7tensor = {n S Ng . |n|oo < N}a
and X§ is defined in (3.2) with Qx = Qp tensor. Let us define the Sobolev-type space as
Watk

we (R ={u: Bbue Ll , (R1),0< |kl <m}, YmeN, (3.4)

equipped with the norm and seminorm

HUHWQ(Ri): Z ||ak HWQM,W)

0<|k|1<m

d
m — 677l ‘
N ;‘ B
It is clear that W3 (R) = L2, (R%), and
d
L2

|u‘2 m Rd Z Z Pn—me;,a+me; ‘un| ) (35)

J=1neNg

where pp, o = H? 1Pnj,a; Pna = (atl)nv with the Pochhammer symbol (a),, defined in It
is followed from the orthogonality of Laguerre polynomials with respect to the gamma dlbtrlbutlon
ie.

/]R L (2) L) (2)wg () da = (Oézill)rlémn = :Pn.aOmn-
We also define the Koboiov—type space as
K7, (RY) = {u s okue Ll (RY), 0< |kl < r}, Vr e N, (3.6)
equipped with the norm and seminorm
3
HUHIC;(]Ri) = Z Hak ||wa+k,Rd )
0<|k|oo<r

|u

cay) = | Do 1|0%u waw

|k|oo=T

It is easy to see from the definitions that K (R%) = L2 (R%) and W (R1) c KL, (R}) C
We (RS).



Theorem 3.1 (tensor product with Laguerre polynomials). For any 0 < | < m, if u €
Wz (RL), we have

|PRu— U|Wé(Ri) (3.7)

1
1 2 l—m
< 0 l 1 m— d 0 1 m 771 N — 1) 7= m ’
<[t 24 st dlaloc b D { ot O ) g

for N > 1. Furthermore, if u € K2 (Ri), for 0 <1 < m, we have

ol

a 1 -1 l=m
|PNU*U|ICL(]R1) Sdz(l+1) 2 [(\a|oo+l+1)m} (N*m+1) 2 |U‘ICQ'(R‘1)' (38)

Proof. To obtain the estimate (3.7) in Sobolev space, we proceed as that in [I7]. Let Q% (opsor =
{neN{: |n|x > N}. By (3.5), we have

d
2 L2
|PRu— u|WL(Ri) = E Pr—ie; a+le; |Un|” (3.9)
i=1neqs,

For any 1 <j <d,

Z Pr—le; atle; \ﬁn|2 = Z Pr—lej,otle; |ﬁn|2 + Z Pn—le;,a+le; |ﬁn|2 =11 + I, (3.10)

neQy necAy’ neA?’
where , 4
AY ={neQ%: n; >N} AW ={necQ%: n; <N} (3.11)
For I;:
pnflej,a+lej ~ 12
I < ma{(j D — Z Pn—me;,a+me; |un| ) (312)
neAy pnfmej,a+mej nEA}\;j
where
{ Pn—lej,a+tle; } { Prj—la;+l1 } { (Oéj +1+ 1)m—l }
max { ———~% % = max ¢{ ———1— ) = max_
nEA}\}J Pn—me;,at+me; nGA}\;J Pnj—m,a;+m nGA}\}] (?’L] - l)(nj —l- 1) e (nJ —m+ 1)
(e + 1+ D)t (N —m+ 1™ < (|at)oo + 1+ D)y (N —m + 1)1,
(3.13)
and .
-
pn_mej)a"’_mej |un| S |u|2 m,(Ri) (3.14)
=l nealyd
For I, if n € A?\}j, then there exists some k # j, such that ng > N.
Pn—le; a+le; ~ 12
I, < max {J’J} Pr— Upn|”, 3.15
neAi}j Pn—mey,a+mey Z nomeratmer | n| ( )

2,5
neAy’



since

{ pnflej,oH»le]- } { pnjfl,aﬁ»lpnk,ak }
max —_— = Imax .

2] 2,j
neAy’ | Pn—mey,at+mey neA’ \ Pnj,a;Pnp—m,ar+m

max
2,5
neAy

(nj—l+1)---n; (+1)--- (o +m) :

1
max{ (@ & Uim }, ifl=0
nk:..

ez (g —m+1)
(et U : it>1
< (j+1); (N—m+1)---(N-1) =
B (ak + 1)m fl1=0
(N—m+1)---N’
oo+ 1)m B )
M(N*Tﬂﬁ*l)l rn7 lleI
<{ (|ofmin + 1) , (3.16)
(Jotloo + D (N —m +1)"™, if 1 =0
and
d d d
~ 2 R 2
5 5 bumeasne i €35 S pamsmine il iy 517
J=lnea?y J=1k=1pep27 o (B

w0 Combine (3.9))-(3.17]), we obtain the result (3.7]).
To obtain the estimate (3.8) in Koborov space, we need to estimate ||8% (Pgu — u)||

0 <l <m. For given n € Qf (., we split the index 1 < j < d into two parts

weatt,RE?

Ne={j: ;<nj<m,1<j<d}, N :={j: n;>m,1<j<d}. (3.18)

It is easy to see that N¢ cannot be empty, due to the fact that |n|. > N > m. We denote

Pnlm,a ‘= H Prj—Ll;,0+1; ( H pnim,ai+m> . (319)

JEN ieNe
From the orthogonality and the property that

k
d L@

L (@) = (DML @),

if n > k >0, we have

2 ~ 12
oL (PSu = e = O Putasilial
neg?\l.tensor
Pn—l,a+l o
< max LA bt ot Nl Z . i . 3.90
nen?\],tensor { pn,lﬂn‘_’a } p’n, , M, | n| ( )

nec0s

N ,tensor

It remains to estimate the maximum in (3.20). Similarly as in (3.13)), we get

Protecl _ T Pubiostt _ T (@ + 1+ Dm—i;
Prime i Pr—mastm i (g = 1) (ng —m 1)
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Notice that n € Qf ., there exists at least one jo such that nj, > N. Therefore, we have

max {p"“‘“} (3.21)

nEQY ionsor | Prjlm,a
< max H (Ozj +1; + l)m—lj max H i L

- PERR ensor JENe NENY tensor JENC 0 (n]‘ - j) T (nj —m+ 1)

(@)
. max
neQ onor L(Mjo — Ljo) -+ (njy —m + 1)
d _
S [(|a|oo+|l‘90+1)7n—‘l|mm] (N7m+1)|l|oo m7
since
negjvaimm H (aj+1i+1)m, p < nGg}Vazmr H (letoo + oo + 1) m—jt]mmim
JEN<© jEN©
d
< [(|a|oo + |l|<x> + 1)m7|”n1in:| ) (3'22)
1

max S(N,m+1)\l\oofm

nENY ensor { (njo - ljo) ce (njO —-—m+ 1) }

and the fact that the second maximum on the right-hand side of (3.21)) is less than or equal to 1.
Therefore, we have

Y. pasmalinf <|[05ull;, ee < Tl g (3.23)
neOq

N,tensor

where k is a d-dimensional index consisting of [; for j € N and m for j € N, with |k|o = m. The
result (3.8]) follows immediately from (3.20)-(3.23) and the fact that

2 _ ! 2
LA ED S LT
lloo=l

with card ({l : [l|oo =1}) = d(l +1)47L. O
It is clear that the convergence rate deteriorates rapidly with respect to the dimension d. That
is,
l
l—m

||PNU - u”)Cl R‘i Z |PNU “|icr (Rd) S Card(QN tcnsor) d
r=0

Uiz (me)
since card(Qy tensor) = (N + 1)<

3.1.2. RHC approzimation

As we mentioned in the introduction, the HC approximation is an efficient tool to overcome
the “curse of dimensionality” in some degree. The index set of RHC approximation is Qx rrc =
{n ENG: |n|mix < N} It is known that the cardinality of Qn rpc is O ( (In N)d’l) [§]. Corre-
spondlngly7 the finite dimensional subspace X§ is

Xy =span{Ly : n € Qnruct. (3.24)

Let the orthogonal projection operator Pg : L2 (Rd) — X§ be defined in . The similar
result as Theorem |3 - and [3 - 3| below for Jacobl polynomlals have been obtalned in [I7] for the first
time with a gap. Yau and the author [I2] made it rigorous for generalized Hermite functions. In
this paper, the error analysis in [I2] has been further simplified, see detailed discussion in Remark

B1
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Theorem 3.2 (RHC with Laguerre polynomials). Given v € K7 (Ri), for 0 <1 < m, we
have

| e 4 d@moileo)=ilnin \ lleg=m
||8w (PNU_U)HU.,QH,Ri < [(|a|oo+ |l|oo+1)m—|l\,,m,] m 2 ‘u|;cm(Rd)
for N> 1.
Proof. We proceed as the second part in the proof of Theorem For given n € QY pyc, we

split the index 1 < j < d into N and N¢ two parts as in . It is easy to see that N¢ cannot be
empty, otherwise, |n|mix < m? < N, for N > 1, which contradlcts with n € Q% ryo. As before,
we need to estimate the maximum in (3.20) within n € Qf pyo. Similarly as in (3.13), we get

Pn—1l,a+l _ Pnjfl o+l _ H Oz] -I-l + l)m L
Pnlm,a JENe Pnj—m,oj;+m ]GN“ (le m + 1)
L -1 m— 1\ !
=I] »y ™ I1I <1_) ...<1_ — ) H (aj +1j+ Dmyy. (3.25)
JEN<© JENC J jENC
Observe that j € N¢ implies n; > m > 1> 0. That is, n; > 1. Hence, 7, =n;, forall j =1,--- ,d.
Given any n € Qf py o, we deduce that
N
H n; > > > m~eN.
JEN HJEN nj - ljenm
Thus,
[Too—m
lJ—m < ‘”00_771 — .
”GSI%\?}I:HC H " _"eglf\(?.)}ilic . " ”egl?\?};flc H i
' JEN* ' JEN© ' JENC
[1oo —m
< min H n; < (m—dN)moo—m _ md(7n—\l|oo)N|l|oc—m
neQy pue .
s JGNL
(3.26)
Furthermore, we have
l. -1 _ 1 -1 _ 1 lj—m
max H <1J) <1m > < max H (lm )
neQ pyc Jene n; mj neQy ruc jeNe n;
< H m™ < pdm Umin (3.27)
JEN<
The desired result follows immediately from (3.20)), (3.25)-(3.27), (3.22)) and (3.23). O

It is clear to see that

m,

l—m
||PI(\3/"’U’ uHKjl (]Rd) < N u|)€2(Ri) S Card(QN’RHC)HlJre(dfl)) |’LI,|K:3(]R(1+), VO S l < m,

where card(Qy grrc) = O (N(InN)4=1) < ON'* =D for arbitrary small e > 0. Here, the
convergence rate deteriorates slightly with increasing d.
Remark 3.1. In [17], the authors estimate (3.20) by splitting the index set S,

Y= >+ > =Ih+lIb,

neQy neQy ,, neQy \Qy,,

where QY = {n € N¢: |nfmix > N and n > k}, for some given k € N&. In this paper, one
realizes that the method used to estimate Iy in [12] is also applicable to 11, with N'= (). Therefore,
it is rebundant to analyze 11y seperately. This is also true in the proof of Theorem [3.3 for OHC
approximation.

10
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3.1.3. OHC approximation
In order to alleviate the curse of dimensionality further, we consider the OHC index set introduced
in [8]:
QN,OHC,—y = {n € Ng : |’I’l|mix|’I’L|go’y < le'y} , —oo<y< 1. (328)
The cardinality of Qn omc, is O(N), for v € (0,1), where the dependence of dimension is in the
big-O, see [§]. The family of spaces are defined as

XﬁV := span {Lgf‘) i nE QN,OHCW} . (3.29)

Remark 3.2. Actually, OHC' is a generalization of RHC and tensor product. In particular, X§ o =
X§ in (3.24) corresponds to RHC approzimation, while X§ _, = span {Lg{l) DNl < N} de-
scribes the tensor product.

We denote the projection operator as P, : L2, (RL) = X§ .

Theorem 3.3 (OHC with Laguerre polynomials). For any u € K2 (RY), d > 2, and 0 <
[t <m,

2 d .
102 (PR u—w)ll, <ol + [Eoo + Do, ] m Ml
OL+l,R+ (=3
R il <y < IR
l (3.30)
m = ) = =2 am- ) e | <<l
Proof. As argued in the proof of Theorem we arrive at
2 Pn—1,a+l ~ 12
ot (P u—wu < max {} Pnl 1 3.31
H m( Ny )H“"QH,Ri neQy oncy L Pndm,a neQ%HC ™ ’m’a| n‘ ’ ( )
3 Y

where pp, i m.a is defined as in (3.19)). To estimate the maximum in (3.31)), we recall that

Pr-t,att B29) H —-m H (1_>_1...(1_mnj1)_1 H (aj + 1+ V), (3.32)

Pn,lm,a JEN® JENC JENC

where N and N are defined in (3.18). The maximum of the last two terms in the product of the
above equality can be estimated as (3.27)) and (3.22)) in the proof of Theorem It is only the first
term to be estimated. It is easily verified that

—m

l:— ~ ] ~
o< TIn] =nlmgn<mbage @)

JEN© JEN© JEN©

where n is defined below

N nj, if je N©
n=mny, - ,ng) = . 3.34
(1, ) { 0, otherwise ( )

Notice that for any n € QY 5y . we have
- TR L R S 3.35
N7 < nfmixnlos < mT R iR = Al <mi= N7, (3.35)
mix

oo Mo o (3.36)

1T 7o [Ljence jzjo M

11
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since there exists n € Qf opc ., such that card(N°¢) = 1, i.e. there is only jo such that [A|e =
nj, > N and all the other js belong to N. Moreover, we have

(3.395)
NI=7 ==

~ ~ ~ B Ni=~ gl
MR mix || < MR = 0o > (d1> . (3.37)
m
Now, we are ready to estimate the maximum of the first term on the right-hand side of (3.32)). If

0<y << then

,7 E33) nlY = 7 i
max H n;] " < max ( |:n|°° ) ( |~n|°° )
neQY onc JENe neQy omo,y ‘n|mix |n|mix

EDERD @nomotn vy m (3.38)

Otherwise, if % <~ <1, then
_ B33) RlIY ™
max H nér’ m < max {('Z?’C’o ) |ﬁ|£1_7m}
neQY oo,y JENC neQY omo,y |n|mix
EDED | ettamtt) i ami) (3.39
The desired result follows immediately from (3.31))-(3.39)), (3.27), and (3.22)-(3.23). O

It is clear to see that

‘ch,,@

< card(Qn,0HC,~) = M/@(Ri) ’

Ko (R%)
where card(Qn.omrc,y) = O(N) < CN. The convergence rate does not deteriorate with respect to
d anymore. The effect of the dimension goes into the constant in front.

Remark 3.3. If N in the index set Qy is the same in both RHC and OHC approximation, then
the convergence rate of RHC is better than that of OHC, for d > 2. If the cardinality of Q2 is the
same in both cases, then OHC presents a faster convergence, for d > 2.

3.2. Approzimation by using Charlier polynomials

In this subsection, we shall give the error analysis of approximations by Charlier polynomials,
discrete orthogonal polynomials of Askey scheme. The derivative in the continuous version is replaced
by the forward difference operator. Analogous Sobolev and Koborov norms and seminorms are

properly defined in (3.42) and (3.45)), respectively.

Let us denote the orthogonal projection operator Pg : lia (Ng) — X%, where
Xy =span{Chp(xz;a) : n € Qn}, (3.40)
for certain index set Qn tensors 2N, REC OF QN,0HC,~ defined in (3.1)).

Theorem 3.4 (tensor product with Charlier polynomials). Assume that Qn = QN tensor i1
X&. Given v € Wi (NB), we have for any 0 <1< m,

|a|%

azoo )2 (N —m+ 1) |U|Wm (Nd)> (3.41)

| min

|Pru — “|wg(Ng) < (|a|gél +d
for N > 1, where

e ) ZHA Hw " (3.42)

12
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Ifue kY (Ng), then for any 0 <1 < 'm, we have

\Hoo m

|85 (PRu—u)||,,, ya <CaN Ul (vg) - (3.43)
where
dm—|lmin
alo 2 , if lalee >1
Ca = | |m_m ol , (3.44)
|a’|00 ? ’ if |a'|oo <1
for N> 1, and
2 k
[ul n(Nd) T Z JEa “H%,Nd' (3.45)

|k|oo=T
Proof. Let us show the estimate (3.41) in Sobolev space first. Let us look at

d d

|P&u — u|Wl ) =S D2+ > | priejalinl® =D (I + I), (3.46)

Jj=1 nGA}\}j nGAi}j j=1

where A}\}j and A?\}j are defined as (3.11)) in the proof of Theorem and

B2) H Ly +1)%(n; = 1)!

Pnle;.a n;+-
i=1 'L;é] ( -+ ) J
Let us estimate the right-hand side of (3.46|) term by term:
Il S max. { pn le],a } Z Pn ,me;,a |Un‘ (347)
neAy’ | Pn,me;,a neAly
with
. 1
max {pnleJG} = a;»”fl max { } <la|™HN —m +1)17™ (3.48)
nEA}V” Pn,me;,a neA}\}J (le —m+ 1) s (nj — l)
and
Pn,le;,a
I, < max L n,mer,a |Un|” 3.49
g_neA%j{pnm% } Zp il (3.49)
with

g { 20t22 | O {14y ) (VL)
k

neny’ Prmera)  af nealy (g +m—1)---n at (N—m+1)--- N
m
< a|| (N —m+1)l=™, (3.50)

The result follows from ([3.46))-(3.50), (3.14) and (3.17).

To show the estimate (3.43) in Koborov space. Let us denote pp i m,q similarly as in (3.19)):

pn,l,m,a = H pnj,l]-,aj ( H p’ﬂz‘ymﬂ‘i) ’

JEN ieEN®
then
2 Pn,l.a ~ 2
AL (Pau — < nbae E 51
H :z:( NY U)H“’mNg - negzlvaimor {pn,l,m,a } neqns Protma |un| 7 (3 ’ )

N ,tensor

13
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due to the fact that

Pn.l,a _ m—1; 1
nég}ax { } _nESI]rgaX H aj H (TL]' —m—i—l)(nj —lj)

N.tensor \ Pn,lm,a Nitensor | s pre jEN©

< max H a7 S (N —m+ 1)lHee=m
neERY onsor . J
5 ]GNC
and
dm—|l|min if >1
. a if |a
max H a;n_l’ < max H la|m~b 3 < lalis . 7 laloe 2 =:C2.
neﬂ;\l,tensor jEN“ nen‘N,tensor jENC |a‘gi‘ |1, lf |a|oo < 1
(3.52)

The result (3.43]) follows immediately from (3.51)-(3.52)) and (3.23]). O

Theorem 3.5 (RHC with Charlier polynomials). Assume the index set is Qn = QN rHC-
Given u € K2' (Ng), for 0 <1 <m, we have
d@m—|loo)=llpmin | ltlec=m

AL (P — ) g SCam“ =5y =

Ky (Ng) o
where Cq is defined in (3.44)).
Proof. We proceed the proof as that of Theorem According to (B.21)), we have

-1 -1
pn,l,a mflj ljfm m — 1 l]
LA . ; 1-— 1= = . 3.93
powmidl | SR | IR _H( ” ) ( y (3.53)
B JEN© JEN¢© JEN<©

The maximum of the three terms on the right-hand side of (3.53) have been obtained in (3.26)),
(13.27) and (3.52)), respectively. The conclusion follows immediately from (3.51)), (3.53)) and (3.23)).00

Theorem 3.6 (OHC with Charlier polynomials). Assume the index set is Qn = Qn,0HC,y,
for v €(0,1). For any u € K (Ng), d>2,and 0 < |l|; <m,

|85 (PRyu—wu)|]

ua,Ng

<d—1)(wm—m1)Nm1_m |l|

m- 20 =, ifo<y< L
m

dm—|min

<Cam ™ g

)

a-1 1- l
mm(dm—\lll)N—ﬁ(dm—llh)’ if & <~y<1
m

where Cq is defined in (3.44]).

Proof. We can proceed as in the proof of Theorem The maximum of the three terms on the

right-hand side of 353 can be obtained by 3527 327 and 338—339 res ectively. ThllS, the
g ’ P
O

result follows immediately.

4. Results of the approximations by other orthogonal polynomials of Askey scheme

The error analysis for Laguerre polynomials and Charlier polynomials can be applied to various
orthogonal polynomials of Askey scheme. In this section, we only state the results without proofs.
All the Sobolev and Koborov norms and seminorms in the following theorems are defined similarly
as in and , respectively, with appropriate weight functions.

14
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4.1. Hermite polynomials

Theorem 4.1 (tensor product with Hermite polynomials). Assume that
Xn :=span{H, : n € Qp tensor - Given u € W™ (Rd), we have for any 0 <1 < m,

[Pru = ulyyggey < (L4 )2V —m 4 1) F ulyym oy, (4.1)

for N > 1, where

Ifue K™ (]Rd), then for 0 <1 < m, we have

oo —m

||3lm (PN“_“)Hw,Rd <(N-m+1)" 7 |u

. (4.2)

where )
|U\21cr(Rd): Z |’a§“Hu,Rd'

[k|loo=T

Theorem 4.2 (RHC with Hermite polynomials). Assume the index set is Qn = QN rHC-
Given u € K™ (Rd), for 0 <1 < m, we have

d(2m—|loo) —|tmin [Uoo —m

||3:IE(PNU*U)|| aSm 2 T |uliem ey,
w,R

for N > 1.

Theorem 4.3 (OHC with Hermite polynomials). Assume the index set is Qn = Qn,0HC,y,
for v € (0,1). For anyu e K™ (Rd), d>2,and 0 < |l|; <m,

dm—|Umin

|05 (Pnyu— U)||w,Rd <mT 2 [ufem (e
R g <y <
m
Sy Am =) g (th—am) e W
m
4.2. Jacobi polynomials
Theorem 4.4 (tensor product with Jacobi polynomials). Assume that

X]‘i‘,’ﬁ := span {P,(La’ﬁ) tne QN’tensor}. Given u € WonZﬁ (Id), we have for any 0 <1 < m,

Lom— —m
< @ +d)22" (N = m) " lullwg 19, (4.3)

for N > 1, where Pﬁ’g denotes the orthogonal projection operator, and the Sobolev norm is defined

as
2

HuH?/V;";ﬁ(Id) - Z ||8’;u||wa+k,ﬁ+k)1d'
0< k|1 <m

Ifue Ky s (Id), then for any 0 <1 < m, we have

ot (PgPu—u)| < gl (N — )t = ., SN
wa+l,ﬁ+lvld a+7n,5+7n,1d
where )
2 _ k
|U|K;ﬁ(ld) = Z Haa:“||wa+kﬁ+k,1d :
|kloo="

15
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Theorem 4.5 (RHC with Jacobi polynomials). Assume the index set is Qn = Qn ruc. Giv-
en u € ICZﬁ (Id), for 0 <1 < m, we have

ot 75

where

<C 2dm \l|mmmd(2m Uoo)— |l|mmN\l|oo—m |u|

)
Watt,p+1,1¢ K Bm.rd

[t —m
(|a+/3|m1n+1) 2 ) 1f |a+/g‘m1n20
Cap = Uiy = ' (4.5)

dm
(|a+/6|m1n+1) ) lf |a+/6‘min <O

Theorem 4.6 (OHC with Jacobi polynomials). Assume the index set is Qn := Qn,0HC,y, for
€ (0,1). For anyuelCa+mﬁ+m( ), d>2, and 0 < ||y <m,

’ o (PK??U — u)‘ SO 2dm [U min d(2m [t oo) = U min u| N
’ wa+tt,g+1,1? otm,Brm,Id
M l
I o T
m

)

= (@m— 1) = =3y (dm =) g It | <y<1

where Cq g is defined in (4.5]).

Remark 4.4. Compared with Laguerre-chaos and Hermite-chaos, the Jacobi-chaos has twice faster
convergence rate. It is gemerally believed that the slower convergence rate of Laguerre-chaos and
Hermite-chaos is due to their unbounded nature.

4.8. Krawtchouk polynomials

Theorem 4.7 (tensor product with Krawtchouk polynomials). Assume that
X]I\’/[»N = span { Ky (z;p, N) : n € Qpstensor }, for some N > 1 and M < N. Givenu € Wp'n (NN),
we have for any 0 <1 < m,

P,
~(NN)

1om LA L
<(1+d)22 Hp|min(1_|p|00)] FINIE (N i = 1+ 1) 72 (M = m+ 1) ubw v,

for M > 1 and M < N, where

‘“|Wm ~ONN) T Z HA

Given u € Ky (NN), for 0 <1 <m, we have

wp,N,NN

dm— |l|m1u

<olth=m | N| o (M —m+1)

Illoo m

l N
HA;E (PJZ\); ’U/—U)’ ’C;L,N(NN) )

wp,N,NN

for M > 1, where
2
n(NN) = > HAQ“HwP,N,Nw'

|k|oc=r

Theorem 4.8 (RHC with Krawtchouk polynomials). Assume the index set is Qp = Qs ruc,
for some N > 1 and M < |N|nix. Given u € Kp'ny (NN), for 0 <1 <m, we have

w d(2m—1]00) =t min [t]oo —m

<2\l|1 ™| N | m 2 M~ 2 |u|’CmN(NN) ,
P,

85 (7™ =)

for M > 1.

wp, N,NN

16



Theorem 4.9 (OHC with Krawtchouk polynomials). Assume the index set is Qar == Qar,0HC,~,

i
forvy€(0,1), N> 1and M < |N|x". For anyu € K'ny (NN), d > 2, and 0 < |l|; <m,

4% (P

wp N,NN

(@d=D[(y+Dm=2]tl3]  |tl—m 1)1
. m 20-7) M7, if0<y< —
min m

d
§2|l\1—m(m|N|oo) 2

Ul (Na)

P, ~

d— 1—
mmdi_lw)(dm*\”l)M*m(dm*Wl)’ if @ <~y<1
m

4.4. Meizner polynomials
Theorem 4.10 (tensor product with Meixner polynomials). Assume that
Xﬁ,’c = span {Mp(z;B,¢): n € Qn}. Givenu e Wj', (Ng), we have for any 0 <1 < m,

be (lelow — )27 T LN
‘PN uiu‘w,g,c(Ng) g{[} (IBloc +m—1)""+d {] 18I2L,

|c|00 |c|min

m
2

(Jeloo =12 o
(U] Bl - 1% =)l (g
for N > 1, where
d
2
g gy = 2 [[ 22
. 2

B, wB,chg

Given u € ICEC (Ng), for 0 <1 < m, we have

[lloo —m
g SCCaN = lulicp (ng)

|4z (PR =)
wg, e Ny

for N > 1, where

denwmmﬁi ﬁernﬁgl

2 . ‘C‘OO |C|oo
C2:= — s : (4.6)
(lel - 1? £ [ee =12 |
|€loo ’ |€|oo
o o [ (Bloc - m— 1) W, |Blog +m > 2 (4.7)
. (IBloe +m — 1)1 if Bl +m < 2 '
and ,
2 _ k
[l gy = > a%ully, ne
’ |k|ec:"‘

Theorem 4.11 (RHC with Meixner polynomials). Assume the index set is Oy = Qn ruC-
Given u € Kj', (Ng), for 0 <1 <m, we have

d(2m—|lloo)—=Illmin [too =—m

<C.Cgm 2 T |u

Al (P’G’Cu—u)H m (N
H z N wﬁyc,Ng Kﬁﬂ:(NO) ’

for N > 1, where C. and Cg are defined in (4.6) and (4.7)), respectively.
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Theorem 4.12 (OHC with Meixner polynomials). Assume the indez set is Qn := QN 0HC,
for v €(0,1). For any u € K35 e (Ng), d>2,and 0 < |l|; <m,

|45 (PR3 )]

Wﬁ,mNg

(d=D)(ym—[tl})  |tly—m | 1

m- 207 Mz, if0<y<
m

dm—|tyin

<C.Cgm™ 2 |U|l<;;fN(NN)

)

d—
s =ity amtit g M
m

where Ce and Cg are defined in ({.6) and (4.7), respectively.

4.5. Hahn polynomials

Theorem 4.13 (tensor product with Hahn polynomials). Assume that
X;‘[’ﬁ’N = span{Qn(z;,8,N) : n € Qu}, forsome N > 1 and M < N. Givenu € W 5 y (NN),
we have for any 0 <1 < m,

a,B,N 1
PNB u_u‘wl (Nw) < (1+d)2 [_ maX{|a‘min7‘/6|min} - 1] (M m+1) HuHW'”ﬁ ~(NN)»
o,B,N

for M > 1 and M < N, where

2
) Hquz/VZL)B’N(NN) = 0<|§< HA!:;’LL| ’wa,g,N,NN .
SlkRlism

d 2
2 _ m
|U|W«T,B,N(NN) - Z HAIJ'U‘ w
=

«,8,N ;NN
Given u € Kyl g n (NN), for 0 <1 <m, we have

|45 (PN

wa,8,N NN
d(m, 1) moo m

S [_ maX{|a|mina |ﬁ|rnin} - |l|min - 1] (M m + 1)

|U|ng N(NN) ’

for M > 1, where

2
N(NN) = Z HAiuna,ﬁyN,NN.

|k|oo="

Theorem 4.14 (RHC with Hahn polynomials). Assume the index set is Qp = Quar,ruc, for
some N > 1 and M < |N|nix. Given u € ICgﬂ’N (NN ), for 0 <1 < m, we have

|85 (P2 —u)

wa,6,N,NN

dm—|min d(2m—|loo) —Itmin [too =m
2

< [_ max{|a|minv |ﬁ|min} - |l|min - 1] m 2 M 2 |U|KZ’)5,N(NN) )

for M > 1.

Theorem 4.15 (OHC with Hahn polynomials). Assume the index set is Qu = Qar,0HC
d—v
fory €(0,1), N> 1 and M < |N|s". For anyu € K3 g ny (NN), d > 2, and 0 < [I[; <m,

l a,B,N dm— ‘”nnn
ot (PreNu—)|| <l max{admin [Bluin} — i — 1m} S
o,3,N NN
(d=1)(ym—]|tly) [t]y—m | |1
m  20-7 M2, if0<y<
m

= (@m =) pr= ity (dm=th) ¢ Ll <7<l
m
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5. Application to Galerkin method of differential equations with random inputs
Let us recall the Galerkin method to solve differential equations with random inputs:
Lu(z,t,0) = f(x,t,0), (5.8)

where L is differential operators in time/space, u(x,t, ) is the solution and f(x,t,6) is the source
term. 6 is the random parameter to describe the uncertainty of the system, which may be introduced
via initial condition, boundary condition etc. The solution can be viewed as a random process with
the Wiener-Askey polynomial chaos

u(@,t,0) = D ui(x, t)®:(Z(9)), (5.9)

1€QN

where Z = (Zy,---,Z4) € R? are d independent random variables, ®; = H?Zl ®;, are the multi-
variable Askey polynomials, and the summation is over certain index set €. Thus, it is clear that
the total number of expansions in (5.9) depends on the cardinality of Q.

Substituting the expansion (5.9) into (5.8]), we obtain

L ( > u,-(x,t)@i(zw))> = f(x,t,0).

1EQN

The Galerkin spectral method is to project the above equation onto the linear subspace spanned by
{q)i}'iEQN:

<£ ( Z uA.’I),t)@AZ(G))) a¢k> = <f(.’1}, t G)a (I’k:>wa (510)
1€QN w
for all k € Qn. According to the orthogonality of the polynomials, we shall arrive at a set of
card(€2y) possibly coupled equations for u;s, i € Qp. It is easy to notice that the govening equation
of u; are deterministic. And all sorts of deterministic numerical schemes are applicable.
In the sequel, we shall consider the analogue ordinary differential equations investigated in [24]
with higher-dimensional random inputs, i.e. Z € R? with d > 2:

dy(t,0)
dt

= —1Z(0)hy(?), (5.11)

with the deterministic initial condition y(0). It is easy to see that the solution to this ordinary
differential equations with random inputs is

u(t) = y(0)e 7

Suppose Z are continuous random variables and the probability density of Z is known to be f(z),
then the mean of the stochastic solution is

E[y](t) = y(0) /S el f(2)dz,

where S is the support of the density function f(z). If Z are discrete and the probability distribution
P(Z = z;) = pj, where z; € R%, then

E[y](t) = y(0) Ze“zﬂ"ltpj.

where j sums over the support of the distribution. The Askey-chaos expansion is written as

ynv(t) = Y 1) ®i(2), (5.12)

1€EQN
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180

then testing with ®, k € Qy, we obtain

Yr(t) = —< > yi(t)Z|1‘I>i(Z)a<I)k(Z)> = > Apavi(t), (5.13)

1€EQN 1€EQN

for all k € Qy, where Ag; € Reard(€2N) are from the orthogonality of the polynomials. In the
following experiments, (5.13]) is solved by ode45 in Matlab. We define the error:

maxiepo,r) [yo(t) — BRI [0 ~ EB)@llz2 o)
) L2 —
max;eo,7] |E[y](t)] EWI O L2077
Due to the similarity of Askey polynomials, we shall only solve (5.11)) with Laguerre-chaos under

the assumption of gamma distribution, Charlier-chaos with Possion distribution, and Hermite-chaos
with Gaussian distribution.

€max —

(5.14)

5.1. Gamma distribution and Laguerre-chaos

Assume that Z = (Zy,---,Z4) obeys i.id. gamma distributions with the parameter a =
(a1, ,aq). The expectation of the stochastic solution is
y(0)
Elyl(t) = —————.

The Laguerre-chaos is naturally employed, i.e. ®; = Lga). Let us derive the matrix Ag ; in ((5.13]).
According to (5.11)), we have

Y0 = 3 GOL™(2) == > ) [|ZhL{(2)]

1€EQN 1€EQN

3 o () -

i€EQN Jj=1
4 (a7) )
== 3 @Y [LE (20 (<G5 + DLEIZ) + 2 + gy + DES(Z)) = (i +0y) L
1€QN j=1

- L(Z4)]

M&

== > wlt)

=G5 + DI (2) + @i + aj + DE(Z) = (i + ;) I, (2)]

ite;
1€EQN j=1
(5.15)
Testing Léa)(Z ) on both sides, we obtain that
d
=" ke, () = (2k; + o + Dyi(t) + (ky + 05 + Dpeye, ] =0 Y Arayslt).  (5.16)

j=1 1€EQN

If we write yx, k € Qp, in the vector form, then the above equation can be writtern in matrix
form, i.e. ¢ (t) = Ay. The matrix A is sparse. Figure [I| displays N v.s. the errors of solving
by Laguerre-chaos in different dimensions from 2 to 5. The ode45 in Matlab has been used to
numerically solve with initial condition y(0) = 1. The time step is around 10~2. Thus, one
can’t expect more accurate than 1078, due to the time marching error. Figure [1| clearly shows that
the log of the error is almost linear with respect to NV in OHC approximation. Although the number
of basis of OHC with v = 0.5 is significantly fewer than that of RHC (see Table for Hermite-chaos),

but the convergence rate of the errors are slower with RHC.

20
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Figure 1: The N = 3,9,15 in Q2 v.s. the errors of Laguerre-chaos (including emax and €;2 defined in (5.14))
are displayed for different dimensions. The plots corresponding to £y rrc are in the left column, while those to
QN ,0HC,0.5 are in the right column.

5.2. Poisson distribution and Charlier-chaos

We assume that Z = (Z1,- -+, Z4), where Z;s obey i.i.d. Poisson distribution 7(a;), i =1,--- ,d,
i.e. the probability distribution is f(z) = Y 5o e~ lah ‘; , where @ = (a;)%_; and z = (2 )f: The
mean of the stochastic solution is

Ely](t) = y(0) exp [-(1 — e~ ")|al1].

The Charlier-chaos is naturally employed, i.e. ®; = C;(-;a). With similar argument in (5.15)), Ak ;
with Charlier polynomials is given by

d
Z Q5Yke— eJ (k + a])yk( ) + (k] + 1)yk+€j (t)] ) (517)

Jj=1

for k € Qy. Figure [2| displays N v.s. the errors of solving (5.11)) by Charlier-chaos in different
dimensions from 2 to 5. Similar conclusions as those from Figure [1| can also be drawn from Figure

2

5.8. Gaussian distribution and Hermite-chaos

We assume that Z = (Zy,---,Z4), where Z;s obey i.i.d. Gaussian distribution N(0,1). The
mean of the stochastic solution is
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Figure 2: The N = 3,9,15 in Qx v.s. the errors of Charlier-chaos (including emax and €j2 defined in (5.14))
are displayed for different dimensions. The plots corresponding to £y rHc are in the left column, while those to
QN ,0HC,0.5 are in the right column.

With similar argument in (5.15]), A ; with Hermite polynomials is given by

d

() = Y [~yre, () = (kj + Dymre,] = D Aravilt). (5.18)

Jj=1 i€EQN

The numbers of basis functions H;, ¢ € Qy, and the numbers of nonzero elements in the matrix A
are displayed in Table[I] It is clear to see that OHC approximations are with less basis functions
and nonzeros elements.

dimension 2 3 4
RHC # of basis 172 | 700 | 2453
nonzero elements | 564 | 3168 | 14024
. _ # of basis 132 | 428 1232
OHC with 7y = 0.5 nonzero elements | 404 | 1776 | 6432

Table 1: The numbers of basis functions H;, ¢ € Qp, with N = 30, from dimension 2 to 4 are displayed, so do the
numbers of nonzeros elements in the matrix A.

In Table 2] we experiment Hermite-chaos with RHC approximation in higher dimensions, say

d = 6,8 and 12 with N = 3. It is observed that the error only slightly grows with respect to the
dimension.
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dimension | CPU time | £ of basis Emaz €12
6 20.66365s 448 3.3226 x 1072 | 2.4975 x 102
8 498.6522s 2304 5.7095 x 1072 | 4.5479 x 102
12 4747 .61s* 53248 1.167 x 1071 9.7 x 1072

Table 2: The CPU times, the number of basis and the errors, with N = 3, of dimension 6, 8 and 12 are displayed.
* This code has been parallelled and run by 24 CPU workers.

6. Conclusion

In this paper, we simplified the error analysis in [I7, [12] and applied it to gPC with the HC
approximations. The error analyses of the projection onto the linear subspace spanned by all sorts
of Askey polynomials have been obtained. The theorems reveal that the convergence rate of Jacobi-
chaos is twice faster than any other polynomials. We believe that it is due to its continuity and the
boundedness of its support. It is illustrated by the numerical experiments that solving the ordinary
differential equations with random inputs using RHC approximation generally converges faster than
the OHC with respect to IV, while the number of the nonzeros in the stiff matrix and the number
of polynomial basis of RHC grows faster than that of OHC with respect to the dimension.
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Appendix A. Connections between Galerkin approximation and the standard ANOVA
decomposition

It is known that there are approaches proposed to deal with the difficulties caused by high
dimensional random inputs, say the ANOVA decomposition [26] and references therein. In this
appendix, we shall discuss the connection between the standard ANOVA decomposition and the
Galerkin approximation . Moreover, the HC approximation can be naturally combined with
the ANOVA decomposition to eliminate the effect of curse of dimensionality in theory.

Recall that the Galerkin approximation of a function f(z), © = (z1,--- ,x4) € I4, is
feaiw(z) = Z fi®i(), (A1)
ieQ,

where I is the support of the polynomial basis ®;(z), €, is a proper subset of index set N¢ with
some parameter v and ®;(x) = H?Zl ®;,(x;) are the polynomial basis. In section 3 and 4, the
error analyses have been performed with €2, chosen to be tensor product Qx tensor, the RHC
approximation Qy, rrc and the OHC approximation with v € [—00,1) Qn.0HC ~ with various
Askey polynomial basis.

Recall also that the standard ANOVA decomposition represents a function f(z), x € I, as

d
f($):fo+z Z fjlf'njs(wju"' vmjs)v

s=1j1<-<Js

or equivalently,

f(iE) = fo+ Z fjl(le) +

1<ji<d

Z fjhjz(leﬁmjz)+"'+f1,---,d(3317"'

1<51<j2<d

Tq),

if
fo= [ f@hin(a)
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and

/I Fiv (@ 25, ) () = 0, (A.3)

for 1 <k <s.
The terms in the ANOVA decomposition are computed recursively
fs= [ F@intes) = X frin). (A.4)

TCS

where S = {j1, - ,Js}, $(S°) is the number of elements in the complement set of S, T = {j1,- -+ ,j:}

is a proper subset of S, fr = fj, ... j, and xp = (xj,, -+ ,z;,). We call
fanovap @) =fo+ D ful@)+-+ > (@) (A5)
1<j1<d 1<1<+<ju<d

the vth degree ANOVA approximation of f(x), for some 0 < v < d. In the following proposition,
we shall show that fanova,, = fgai,» With properly chosen measure o and the index set ,.

Proposition A.1. The vth degree ANOVA approzimation fanova, (A.5]) with the measure

du(x) = éi’g(az)w(az)dac

is ezactly the Galerkin approzimation fga, (A1) with the index set Q<, = {n € N&: |n|op < v},
where cq is the normalization constant, i.e.,

/ () B (2)w(x)dw = cidin,
Id

20 and |nlg is the 0-norm of a vector n defined in (2.1)).

Proof. It is easy to see that

fo= /Id f(@)du(z) = » /Id Z fn‘I’n(w) Po(z)w(z)de = fo. (A.6)

Co
neNg

We claim that for any 1 <1 < d, let S; = {j1, -, i1}, we have

oo

sz (msz) = Z fnjl ej ++nj e; d)"jl (‘le) e ¢7ljl (Ijz)v (A7)

njy e ng, =1

where e; is the ith unit vector in R%.
In fact, by induction, for I = 1, let S; = {4j1}, it is easy to check that

A3 1
fin(@),) = s f(z) - B 5c(Tse)wse (Tse)d(xse) — fo
1

:/Id71 Z fntpn(.’ll) 1 'I>o,sf($Sf)wa(wa)d(mS§) — fo

Co,5¢
neNg L

o LS
- Z fnjlej1¢’ﬂj1 (le)_fo = Z fnjlejlq)njl (mj1)7

njy =0 njp =1

where S{ = {1,---,d}/{j1}, cor = ¢, - Cr,, Prr(TR) = Ony (r,) -~ by, (2r,) and wr(wR) =
Wy (Try) - wp, (zr,), if the index set R = {ry,---,r,}. Next, we assume that (A.7) holds for all
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Sm with #(S,,) = m, with m <1 — 1. We need to show that it is also true for S; = {j1, -, 4}
According to (A.4)), we have

7 1
fs(xs,) :/ Z fn®n(x) - DB 5¢ (w5 )wse (s )d(Tse) — Z fr(zr)
Jd—1 neng 0,55 poerd
o0
= Z fnjl ej ++nj e; ¢nj1 (xjy) """ ¢"_7‘l (.’Ejl) - Z f3171 (mslil) [ fO
Ny, ,ny, =0 Si 1AL d}
EDED 2
— Z fnjl ej;++nj ej (b”h(wjl) . an” (le)
My, g =0
o0
B Z Z fni1611+"'+njl,lejl71¢njl (l'jl) ”.¢"jl,1(wjl—1) — fO
{j1, i1 yC{1,-- d}y ngjy o my =1
o0
- Z f”h ej, ++n; ej ¢nj1(wj1) T ¢"jz (Ijl).
Mgy, ny =1

With this claim, for 0 < v < d, the vth degree of ANOVA approximation can be written as

v
fanovaw =Y > fs.(xs,)
1=0 8, C {1, d},£S,=l

o0

- Z Z Z fnn €jy oty e (bnjl (xj) """ ¢nj, (25,

1=0 {g1, i1} {1, d} njy o ymg =1

=NN fa®a@) = Y fa®alw)

1=0 neQy neQ<,
where ;= {n e N§ : |n|o =1} and Q<, = {n e N{: |n|o < v}. O

Remark 1.5. From (A.6)), the 0th degree ANOVA approximation is exactly the same as the 0th
order Galerkin approzimation with the fact that ®g = 1.

»s  Remark 1.6. ANOVA approximation can be naturally combined with HC approximation in the
following way. It is clear to see that § (Q<,) = oo if v # 0. Certain truncation needs to be used
in the vth degree ANOVA approzimation, say Q<y N tensor = {N € Ng : |n|o < v, In|e < N},
Qe nruc = {neNg: |nfo <v, |nfmix < N}, ete.

Appendix B. Orthogonal polynomials of Askey scheme

20  Appendiz B.1. Hermite polynomials Hy(x) and Gaussian distribution
The three-term recurrence of the probabilist’s Hermite polynomials are given by

H,1(z) =xH,(x) — nH,_1(x), (B.1)
forn=0,1,2,---, with H_1(z) = 0 and Hyo(z) = 1. The {H,}nen, forms an orthogonal basis of
2

L?(R) with the weight w(x) = \/%e*%:

/ H, (z)Hp(x)w(x)de = nlpm, (B.2)
R
where d,,,,, is the Kronecker function. The derivative of H,, (x) is explicitly expressed, namely

H) () =nH,_1(x). (B.3)
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Furthermore, we have
dF n!
~ (n—k)!

Hn—k(-r> = :,Udn,an—lm (B4)

ifn>k>0.
Now we define the d-dimensional tensorial Hermite polynomial as

d
Ho(@) = [ Ha (@),
j=1
for & € R?. It verifies readily that
ONHp = pin o Hpk, (B.5)
and
OFH,, ()0 H,, (x)w(x)dx = ,uf%k(n — k) 0nm = :Pn kOnm, (B.6)

Rd

where w(x) = szl w(z;), Pk = Hj:1 finj k; and Oy = H;l:1 On;m,- Here, Opnm is the tensorial
Kronecker function. It is clear to see that the weight w is the density function of the standard
Gaussian distribution.

The Hermite polynomials {Hy, ()} ene form an orthogonal basis of L2 (R%). That is, for any

function u € LZ (R?), it can be written in the form

u(x) = Z UnHp (), (B.7)

n>0
with @n = 7 [pa u(@) Hp(@)w(x)dz. Hence, we have OFu(x) = Y on>k in 88 H,,(x). Furthermore,
2 . N
(050l o = 3 bl = 3 ol ®.9)
n>k neNg
if we define conventionally u,, =0, for 0 <n < k.

Appendiz B.2. Laguerre polynomial Lgfé)(x) and gamma distribution

The Laguerre polynomial is given by the three-term recurrence relation:
(n+ DL (@) = @0+ at+ 1= 2) L (@) + (n+ ) L, () = 0,

with L(f‘l) () = 0 and Léa)(x) =1, for any o > —1, x € R;. The orthogonality of Lg{l)(z) with

x

respect to the weight w, (z) = % is
1)n
[ 1@ @@= O = s, (.9)
v, n!

with the Pochhammer symbol (a),, defined in (2.2).
Recall that the gamma distribution has the probability density function

e /B
flx) = my

for « > —1, B > 0. The weight function of Laguerre polynomial is the same as that of the gamma
distribution with 8 = 1. The derivative of Laguerre polynomial is

dk (6% (0%
@L% (@) = (~)FLEED (@), (B.10)
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if n > k > 0. The d-dimensional tensorial Laguerre polynomial is readily defined as

L (x H L (@

for x € Ri, a > —1. The orthogonality of the tensorial Laguerre polynomial follows immediately

from :
/ Lgla)(m)ng)(w)wa(x)dm = pn,a0mn, (B.11)
Rd

d d d i
where wq (x) = szl Wa, (T5), Prja = szl Pr;; and Oppp = szl Om;n, - Furthermore, it is easy

to deduce that

pn—k,a+k6mn .

/ ORL) (1) OB LY () () e BB
]R+

Any u(z) € LZ_(R%) can be written as

=) anLiY(x)
neNg
with .
in = [ u(@) L (@)wa(@)iz
Pn,a
Hence, we have
.2
Hak wa+k7 Z Pn—k,a+k |un| Z Pn—k,a+k |un‘ s (B'12)
n>k nGNg

if we let pp—_g,a+x =0 when 0 <n < k.

Appendiz B.3. Jacobi polynomial pLep) (z) and beta distribution
The Jacobi polynomial is given by the three-term recurrence relation:

(@.8) 2(n+1)(n+a+pB+1) () B —a? ()
rP " () = 2n+a+B+1D)2n+a+p+2) " (x)+(2n+a+,8)(2n+a+ﬁ+2)P" ()
2(n+a)(n+B) P(Q’B)(x)

2n+a+p)2n+a+pB+1) "1

forn = 2,3, -, with Pg”a)(m) = 0 and Péa’ﬂ)(x) =1, for any o, 8 > —1, z € (—1,1) = :I. The

(aB)( )

orthogonality of P, with respect to the weight

I'a+3+2)
Wa B( ) 2a+5r(o¢—|—1) (B"’l)

(1—2)%(1+2)?

is
P (1) PP (1) 5(x)dz = h2 6pmm, (B.13)
I
for o, B, + 8 > —1, where I'(o) denotes the gamma function and

B2 - 2l (a+B+2)T(n+a+1)'(n+ B +1)
"nl2nda+ B+ D(a+ DIB+ DI (n+a+B+1)

(B.14)
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It is easy to verify that letting @ = a+1, 3= F+1and = %, the weight function w, g is exactly
the density function of beta distribution, i.e.

_ T(@+p) 4
1@:0.5) = @)

for @, 8 >0, Z € (0,1). The derivative of Jacobi polynomial is

01— z)P 1,

dx
dzk

F(Ot +8+n+1+ k) (at+k,B+k)

(@,8) () —
G 2T (a+ f+n+1) "k

(x), (B.15)

if n > k > 0. Now we define the d-dimensional tensorial Jacobi polynomial as

ﬂ) H p(aJ ﬁ;

for € I, a,3 > —1. The orthogonality of the tensorial Jacobi polynomial follows immediately

from (B-13):

PP () PP (2)wa 5(2)d@ = h20mn, (B.16)
Id

d d d
for o, B, ¢ + B > —1, where wq g(x) = HFl Wa, 8, (T5), Omn = Hj:1 Omn; and hy = Hj:1 b -
Furthermore, it is easy to deduce that

BE PP ()85 PP (2)we 1 o ()da EBID o 80mn, (B.17)

Id

d
where pn ka8 = Hj:l Prj.kj,eg,B; and

(o + 85 +n + ki +1)]°
ks By = 2 B.18
p J?kJ? J7ﬂJ |:2kjr(a]+ﬂj+n]+1) j k}J ( )
Any u(x) € Liaﬁ (I?) can be written as
ua) = Y in PP (@),
neNg
with )
Up = —/ u(x) PP (@) we, g () de.
hgl Jd ’
Hence, we have
L2 L2
[Oku@)|[, o= Pakaslin = D Pkaslinl, (B.19)

n>k neNg
if we let pp ka3 =0 when 0 <n < k.

Appendiz B.4. Charlier polynomial C,,(x;a) and Poisson distribution
Charlier polynomial Cy,(z;a) is given by the recurrence relation:

—2Cp(z;0) = aCpy1(z;a) — (n+ a)Cp(x;a) + nCph_1(x;a), a >0,

for n > 1, x € Ny, with C_;(x;a) = 0 and Co(z;a) = 1. The orthogonality of Charlier polynomials

with respect to the weight w(z;a) = e™%; is

Z Ch(z;0)Chp(z; a)w(xz;a) = a” " nldmn. (B.20)
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The probability function of Poisson distribution is exactly the weight w(x;a). The forward difference
of Charlier polynomial is

AECuas0) = () D6 (),

(n—k+1)a*
if n > k> 0. Now we define the d-dimensional tensorial Charlier polynomial

d
Cn(x;a) = H Chn, (x5 a;5),

Jj=1

for @ > 0 and x € NZ. The orthogonality of the tensorial Charlier polynomial follows immediately

from (B.20):
Z Cn(x;0)Ch(x; a)w(x;a) = a” " nldnm.

xeNg
Furthermore, it is easy to deduce that

I'(n+1)%(n—k)!
I'(n—k+1)2antk

Z AEC, (xa)AEC,, (25 a)w(x;a) = Onm = Pn.k,aOnm, (B.21)

zeNd

2 (way (NG) (in section 3.2 we denote

itn >k > 0, where I'(n) := H?:l I'(n;). Any u(z) € 2
a

wq = w(x;a) for short) can be written as

= E Un C,
neNg

with

Up =

(i: w(x)Cr(x; a)w(z; a).

mGN‘Oi

Appendiz B.5. Krawtchouk polynomial K, (x;p, N) and binomial distribution

Krawtchouk polynomial K, (z;p, N) is given by the recurrence relation:
—2Kp(2;p, N) = p(N —n) Ky (z;p, N) = [p(N —n) +n(1 —p)| K (z;p, N) + (1 —p) Kn—1(2;p, N),

for 0 <p <1, 2z € Ny, n € Ny, N € N, where Ny = {0,1,--- , N}, with K_q(x;p,N) = 0
and Ko(z;p, N) = 1. The orthogonality of Krawtchouk polynomial with respect to the weight
w(z;p, N) = (3)p"(1 —p)N =" is

Iij:oKm(x;p, N)K(z;p, N)w(z;p, N) = (1;29)”/(:)6%, 0<p<l. (B.22)

The weight function is the probability density function of binomial distribution. The forward differ-
ence of Krawtchouk polynomial is
(-D)*T(n+1I'(N —k+1)

ARK, (250, N) =
R ¥ i g Y f

ank(x;pa N — k)»

if n > k > 0. Now we define the d-dimensional tensorial Krawtchouk polynomial

33 i, N x]an) )7

'»':l&

Jj=1
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for 0 < p < 1 and N € N¢. The orthogonality of the tensorial Krawtchouk polynomial follows

immediately from (B.22):

Y Km(a;p, N)Kn(z;p, N)w(z;p,N) = (1;p>"/<17\lr> Omn,

xzeNN

where Ny = ®?:1NN]. and (17\[) = Hd (Nj). Furthermore, it is easy to deduce that

j:1 nj

> AEKp(m;p, N)AEK, (@;p, N)w(z;p, N — k)

xeENN_k

_(A-pm* (F(n+1)F(N—k+ 1))2/(N_k

Smn = : s B.23
p'ﬂ+k F(n —k+ 1)I‘(N + ]_) n— k) mn Pn.k,p,NOmn, ( )

ifn >k >0 Any u(x) € li(m;p,N) (Nn) (in section 4.3 wp v = w(x;p,N) for short) can be
written as

u(a:): Z anKn(w;va)v

neNy
. iin, = <]:>/ (?)nw% (@) Kn(@;p, N)w(@;p, N).

Appendiz B.6. Meizner polynomial M, (x; 8, ¢) and negative binomial distribution
Meixner polynomial M, (x; 3, ¢c) is given by the recurrence relation:

(Ci 1)an(xvﬁac) = C(TL+ ﬂ)Mn—Fl(x;ﬁ?C) - [n + (n+ 6)C]Mn(£ﬂ7ﬁ,c) + nMn—l(x;ﬁac)a

for $>0,0<c< 1, 2 € Nyand n € Ng, with M_;(x;8,¢) = 0 and My(z;8,¢) = 1. The
orthogonality of Meixner polynomial with respect to the weight w(zx; 3, ¢) = @Cw(l —c)fis

z!

—n

c "n!

;Mm(w;,@,C)Mn(x;ﬁ,c)w(a:;ﬂ,c) =0,

where (), is the Pochhammer notation defined in (2.2). The weight function is the probability
density function of negative binomial distribution. In the case where ( is an integer, it is often
called Pascal distribution. The forward difference of Meixner polynomial is

c— 1)’“ T'(n+ 1)T(B)
c Fn—k+1DI(B+E)

if n > k > 0. Now we define the d-dimensional tensorial Meixner polynomial

S (B.24)

AR M, (25 B, ¢) = ( My _i(x: B+ k),

d

Mn(w;/@a C) = H M’I’Lj (:L'ja Bja cj)a

j=1

for 0 < B and 0 < ¢ < 1. The orthogonality of the tensorial Meixner polynomial follows immediately

from (B.24)):

—-n

> M (a; 8, ) My (a; 8, c)w(; B, €) = Wém”'

zeNg
Furthermore, it is easy to deduce that
> AEMp(a; 8, ¢) AE M (; 8, c)w(a; B + K, )
zeNg
(e~ 1) I(n +1)(8)*
- Omn = : g B.25
cth Tn—k+ \D(B+k)I(B+n) ™ Prkpeimn: (B.25)
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ifn>k>0. Any u(zx) € li(m;ﬁ,c) (N@) (in section 4.4wg . = w(®; 3, ¢) for short) can be written as
w@) = Y inMp(w; 8, 0),
neNg

with
Cn

Up =

(5!)71 Z u(x) My (x; B, c)w(x; B, c).

n
meNg

Appendiz B.7. Hahn polynomial Q,(x;«, 8, N) and hypergeometric distribution

Hahn polynomial @, (z;«, 3, N) is given by the recurrence relation:

—2Qn(z;0,8,N) = AnQni1(2; 0, B, N) = (A + Cn)Qn(z; 0, B, N) + CrQn-1(z; 0, B, N),
where
(n+a+pB+1)n+a+1)(N—n)
" @2nta+B+D)2n+a+B+2)
nn+a+p+N+1)(n+p)
2n+a+pB)2n+a+p+1)
for a,f > —-1ora,f<—-N,n=0,1,---,N and x € Ny. The orthogonality of Hahn polynomial

with respect to the weight w(z;a, 8, N) = % is

)

Q

n =

iQm(x;oz,ﬁ,N)Qn(af;a,ﬁ,N)w(x;a,ﬁ,N) = hi (@, B, N) &, (B.26)

=0
where
(—-D)"(n+a+ B+ 1)nt1(B+ 1),n!
2n+a+ B+ 1)(a+1),(—N), N’
where (), is the Pochhammer notation defined in (2.2)). It is easy to verify that when a, 8 < —N,
(—1)Nw(m;g,ﬁ,N) > 0 and (—1)Vh2(a, B, N) > 0. Also when o, 3 < —N, if we set @ = —@ — 1
and 8 = —f — 1 in the weight function, we obtain

hi(a,ﬂ,AU =

UN):

which is exactly the hypergeometric distribution, apart from the constant 1/( N_d]\i ﬁ—1) in front.
We shall restrict ourselves to the case «, 5 < —N, due to the close connection to the hypergeometric
distribution. The forward difference of Hahn polynomial is

m—k+1Drn+a+p+1)
(a+1)p(N —k+1)

ArQn (20, B,N) = (—1)F Y Qn n(z;a+k, B+ kN —k),

if n > k > 0. Now we define the d-dimensional tensorial Hahn polynomial
d
Qn(x;c, B,N) = [[ Qu, (x5: 05, 8, N)),
j=1

for a,3 > —1 or o, 3 < —N. The orthogonality of the tensorial Hahn polynomial follows immedi-
ately from (B.26)):
Z Qm(w, a7ﬁ7 N)Qn(ilf, «, /87 N)(:J((C, «, /Ba N) = FL?L(a7 /87 N)(;mn,

xeNN
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250

255

260

265

270

where @(x;a, 8, N) = (-1)Nw(z; o, 8, N) > 0 and h2(a, 8, N) = [[*

j:l(_l)Njhrzzj (a, 85, Nj) >
0. Furthermore, it is easy to deduce that

> AkQm(mia, B, N)ALQn(z; 0, B, N)@(z; 00+ k, B+ k, N — k)
x NN
B {(n—k—kl)k(n—&-a—i—ﬁ—i-l
L (@t De(N -k + 1)

2
)k:| ﬁifk(a +k,B8+k N — k)amn = :pn,k,a,ﬁ,Némn7
(B.27)
ifn>k>0. Any u(x) € lé(w;aﬁ’N) (Nn) (in section 4.5 wa g N = @(x; a, B, N) for short) can

be written as

’LL(ZB): Z ﬁnQn(w;a,ﬁvN)7

neNn
with
A o Y u(@)Qules B, N)@(w o, B, N)
Un = 757 5 ~nrv QL O, &, O, .
" hi(a,BN) S "
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