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Multilevel programming is used to model a decentralized planning problem with multiple decision
makers in a hierarchical system. This paper aims at providing an uncertain multilevel programming
model that is a type of multilevel programming involving uncertain variables. Besides, a genetic
algorithm is employed to solve the model. As an illustration, the uncertain multilevel programming
model is applied to a product control problem.
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1. Introduction no samples. In this case, we have to invite some domain experts to
Multilevel programming was first proposed by Bracken and
McGill (1973) to model a decentralized noncooperative decision
system with one leader and multiple followers of equal status in
1973. It finds many applications in daily life such as strategic-force
planning (Bracken & McGill, 1974), resource allocation (Aiyoshi &
Shimizu, 1981), and water regulation (Anandalingam & Apprey,
1991). In 1990, Ben-Ayed and Blair (1990) showed that multilevel
programming is an NP-hard problem. In order to solve the model
numerically, many algorithms have been proposed such as
extreme point algorithm (Candler & Towersley, 1982), kth best
algorithm (Bialas & Karwan, 1984), branch and bound algorithm
(Bard & Falk, 1982), descent method (Savard & Gauvin, 1994),
and intelligent algorithm (Liu, 1998).

However, in many cases, the parameters in the multilevel pro-
gramming are indeterminate. Multilevel programming involving
random variable was first proposed by Patriksson and Wynter
(1999) in 1999. In addition, Gao, Liu, and Gen (2004) proposed
some new stochastic multilevel programming models in 2004.
Multilevel programming involving fuzzy set was first proposed
by Lai (1996) in 1996, and then developed by Shih, Lai, and Lee
(1996), and Lee (2001). Especially, Gao and Liu (2005) proposed a
new fuzzy multilevel programming model, and defined a Stackel-
berg–Nash equilibrium.

As we know, a premise of applying probability theory is that the
obtained probability distribution is close enough to the true
frequency. In order to get it, we should have enough samples.
But due to economical or technical difficulties, we sometimes have
evaluate the belief degree that each event happens. However, a lot
of surveys showed that human beings usually estimate a much
wider range of values than the object actually takes (Liu, 2015).
This conservatism of human beings makes the belief degrees devi-
ate far from the frequency. As a result, the belief degree cannot be
treated as probability distribution, otherwise some counterintui-
tive phenomena may happen (Liu, 2012). In order to deal with
the belief degree mathematically, an uncertainty theory was
founded by Liu (2007) in 2007, and refined by Liu (2010) in
2010. A concept of uncertain variable is used to model uncertain
quantity, and belief degree is regarded as its uncertainty distribu-
tion. As a type of mathematical programming involving uncertain
variables, uncertain programming was founded by Liu (2009) in
2009. So far, uncertain programming has been applied to many
fields such as project scheduling, vehicle routing, facility location,
and system design.

In this paper, we will propose a framework of uncertain multi-
level programming. The rest of the paper is organized as follows. In
Section 2, we review some concepts and theorems in uncertainty
theory. In Section 3, we introduce the basic form of uncertain
programming. The uncertain multilevel programming is proposed
in Section 4, and its equivalent model is obtained and a genetic
algorithm to solve the model is introduced in Section 5. In order
to illustrate the efficiency of the algorithm, an example of
production control is proposed in Section 6. At last, some remarks
are made in Section 7.
2. Preliminary

In order to model human’s belief degree, an uncertainty theory
was founded by Liu (2007) in 2007 and refined by Liu (2010) in
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2010 as a branch of axiomatic mathematics. Nowadays, it has been
widely applied to mathematical programming, and has brought
out a branch of uncertain programming (Liu, 2009) which is a spec-
trum of mathematical programming involving uncertain variables.
So far, uncertain programming has been applied to shortest path
problem (Gao, 2011), facility location problem (Gao, 2012; Wen,
Qin, & Kang, 2014), employment contract model (Mu, Lan, &
Tang, 2013), inventory problem (Qin & Kar, 2013), spanning tree
(Zhang, Wang, & Zhou, 2013), and so on.

The basic concept of uncertainty theory is uncertain measure,
which is used to indicate the belief degree of each event.

Definition 1 Liu, 2007. Let C be a nonempty set, and L be a r-
algebra on C. A set function M is called an uncertain measure if it
satisfies the following axioms,

Axiom 1: (Normality Axiom) MfCg ¼ 1;
Axiom 2: (Duality Axiom) MfKg þMfKcg ¼ 1 for any K 2 L;
Axiom 3: (Subadditivity Axiom) For every sequence of fKig 2 L,

we have
( )

M

[1
i¼1

Ki 6

X1
i¼1

MfKig:
In this case, the triple ðC;L;MÞ is called an uncertainty
space.

Besides, a product axiom was given by Liu (2009) for the
operation of uncertain variables in 2009.
Axiom 4: (Product Axiom) Let ðCk;Lk;MkÞ be uncertainty spaces

for k ¼ 1; 2; . . . Then the product uncertain measure
M is an uncertain measure satisfying

( )

M

Y1
i¼1

Kk ¼
1̂

k¼1

MkfKkg
where Kk are arbitrarily chosen events from Lk for k ¼ 1; 2; . . .,
respectively.

Uncertain variable is used to represent quantities in uncer-
tainty. Essentially, it is a measurable function on an uncertainty
space.
Definition 2 Liu, 2007. Let ðC; L; MÞ be an uncertainty space.
An uncertain variable n is a measurable function from C to
the set of real numbers, i.e., for any Borel set B of real numbers,
the set

fn 2 Bg ¼ fc 2 C
��nðcÞ 2 Bg

is an event.
Definition 3 Liu, 2009. The uncertain variables n1; n2; . . . ; nn are
said to be independent if

M
\n
i¼1

ðni 2 BiÞ
( )

¼
n̂

i¼1

M ni 2 Bif g

for any Borel sets B1; B2; . . . ; Bn of real numbers.
In order to describe an uncertain variable in practice, a concept

of uncertainty distribution is defined below.

Definition 4 Liu, 2007. The uncertainty distribution U of an
uncertain variable n is defined by

UðxÞ ¼M n 6 xf g

for any real number x.
If an uncertainty distribution has an inverse function, then the
inverse function is called an inverse uncertainty distribution. In
this case, the uncertainty distribution is called regular. Inverse
uncertainty distributions play an important role in the operation
of uncertain variables. Let n1; n2; . . . ; nn be independent uncertain
variables with uncertainty distributions U1; U2; . . . ; Un, respec-
tively. Liu (2010) showed that if the function f ðx1; x2; . . . ; xnÞ is
strictly increasing with respect to x1; x2; . . . ; xm and strictly
decreasing with respect to xmþ1; xmþ2; . . . ; xn, then n ¼ f ðn1; n2;

. . . ; nnÞ is an uncertain variable with an inverse uncertainty
distribution

W�1ðrÞ ¼ f ðU�1
1 ðrÞ; . . . ;U�1

m ðrÞ; U�1
mþ1ð1� rÞ; . . . ;U�1

n ð1� rÞÞ:

The expected value of an uncertain variable is an average of the
uncertain variable in the sense of uncertain measure.

Definition 5 Liu, 2007. The expected value of an uncertain vari-
able n is defined by

E½n� ¼
Z þ1

0
Mfn P xgdx�

Z 0

�1
Mfn 6 xgdx

provided that at least one of the two integrals is finite.
Assuming that n has an uncertainty distribution U, Liu (2007)

proved

E½n� ¼
Z þ1

0
ð1�UðxÞÞdx�

Z 0

�1
UðxÞdx:

Furthermore, Liu and Ha (2010) proved that the uncertain var-
iable n ¼ f ðn1; n2; . . . ; nnÞ has an expected value

E½n� ¼
Z 1

0
f ðU�1

1 ðrÞ; . . . ; U�1
m ðrÞ;U

�1
mþ1ð1� rÞ; . . . ; U�1

n ð1� rÞÞdr:

Here, the function f and the uncertain variables n1; n2; . . . ; nn are as
aforementioned.

3. Uncertain programming – basic form

Assume that x is a decision vector, and n is an uncertain vector.
Since an uncertain objective function f ðx; nÞ cannot be directly
maximized, we may maximize its expected value, i.e.,

max
x

E ½f ðx; nÞ�:

In addition, since the uncertain constraints gjðx; nÞ 6 0; j ¼ 1;
2; . . . ; p do not define a crisp feasible set, it is naturally desired that

the uncertain constraints hold with confidence levels a1; a2;

. . . ; ap. Then we have a set of chance constraints,

M gjðx; nÞ 6 0
� �

P aj; j ¼ 1; 2; . . . ; p:

In order to obtain a decision with maximum expected objective
value subject to a set of chance constraints, Liu (2009) proposed
the following uncertain programming model,

max
x

E ½f ðx; nÞ�

subject to :

Mfgjðx; nÞ 6 0gP aj; j ¼ 1; 2; . . . ; p:

8><
>: ð1Þ
Definition 6. A vector x is called a feasible solution to the
uncertain programming model (1) if

Mfgjðx; nÞ 6 0gP aj

for j ¼ 1; 2; . . . ; p.
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Definition 7. A feasible solution x� is called an optimal solution to
the uncertain programming model (1) if

E ½f ðx; nÞ� 6 E ½f ðx�; nÞ�

for any feasible solution x.
Assume that n ¼ ðn1; n2; . . . ; nnÞwhere n1; n2; . . . ; nn are inde-

pendent uncertain variables with uncertainty distributions
U1; U2; . . . ; Un, respectively. Without loss of generality, we also
assume that f is monotone increasing with respect to n1; n2;

. . . ; nk, and strictly decreasing with respect to nkþ1; nkþ2; . . . ; nn,
and gj is strictly increasing with respect to n1; n2; . . . ; nkj

, and
strictly decreasing with respect to nkjþ1; nkjþ2; . . . ; nn for j ¼ 1; 2;
. . . ; p. Then the uncertain programming model (1) is equivalent

to a crisp model as follows,

max
x

R 1
0 f x; U�1

1 ðrÞ; . . . ; U�1
k ðrÞ; U

�1
kþ1ð1� rÞ; . . . ; U�1

n ð1� rÞ
� �

dr

subject to :

gj x; U�1
1 ðajÞ; . . . ; U�1

kj
ðajÞ;U�1

kjþ1ð1�ajÞ; . . . ; U�1
n ð1�ajÞ

� �
60;

j¼1; 2; . . . ; p:

8>>>>><
>>>>>:
4. Uncertain multilevel programming

Now, consider a decentralized two-level decision system with
one leader and m followers as shown in Fig. 1. Let x be the control
vector of the leader, and yi be that of the ith followers,
i ¼ 1; 2; . . . ; m, respectively. Assume that the objective function
of the leader is Fðx; y1; . . . ; ym; nÞ, where n is an uncertain vector.
Since the objective function is an uncertain variable, it cannot be
directly maximized. Instead, we maximize its expected value, i.e.,

max
x

E½Fðx; y1; . . . ; ym; nÞ�:

Assume that the objective functions of the ith followers are
f iðx; y1; . . . ; ym; nÞ; i ¼ 1; 2; . . . ; m, respectively. Similarly, we
have

max
x

E ½f iðx; y1; . . . ; ym; nÞ�; i ¼ 1; 2; . . . ; m:

Assume that the constraint of the leader is

Gðx; y1; y2; . . . ; ym; nÞ � 0 ð2Þ

where G is a vector-valued function and 0 is a zero vector. Since
Gðx; y1; y2; . . . ; ym; nÞ is an uncertain variable, the inequality (2)
generally does not hold identically. Instead, we hope the inequality
(2) holds with a given confidence level a. Then the feasible set of the
leader’s control vector x is defined by the chance constraint

MfGðx; y1; y2; . . . ; ym; nÞ 6 0gP a:

For each decision x chosen by the leader, the feasibility of control
vectors yi of the ith followers should be dependent on not only x
but also y1; . . . ; yi�1; yiþ1; . . . ; ym. Assume that the constraints of
the ith followers are giðx; y1; y2; . . . ; ym; nÞ 6 0, where gi are vec-
tor-valued functions, i ¼ 1; 2; . . . ; m, respectively. Similarly, it is
represented by the chance constraints

Mfgiðx; y1; y2; . . . ; ym; nÞ 6 0gP ai

where ai are given confidence levels for i ¼ 1; 2; . . . ; m.
Fig. 1. A decentralized decision system.
Assume that the leader first chooses his control vector x, and
the followers determine their control array ðy1; y2; . . . ; ymÞ after
that. In order to maximize the expected objectives of the leader
and the followers, we have the following uncertain multilevel
programming,

max
x

E½Fðx; y�1; y�2; . . . ; y�m; nÞ�

subject to :

MfGðx; y�1; y�2; . . . ; y�m; nÞ 6 0gP a
ðy�1; y�2; . . . ; y�mÞ solves problems ði ¼ 1; 2; . . . ;mÞ

max
yi

E½f iðx; y1; y2; . . . ; ym; nÞ�

subject to :

Mfgiðx; y1; y2; . . . ; ym; nÞ 6 0gP ai:

8>><
>>:

8>>>>>>>>>>>>><
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ð3Þ
Definition 8. Let x be a feasible control vector of the leader. A Nash
equilibrium of followers is the feasible array ðy�1; y�2; . . . ; y�mÞ with
respect to x if

E ½f iðx; y�1; . . . ; y�i�1; yi; y�iþ1; . . . ; y�m; nÞ�
6 E ½f iðx; y�1; . . . ; y�i�1; y�i ; y�iþ1; . . . ; y�m; nÞ�

for any feasible array ðy�1; . . . ; y�i�1; yi; y�iþ1; . . . ; y�mÞ and
i ¼ 1; 2; . . . ; m.
Definition 9. Suppose that x� is a feasible control vector of the lea-
der and ðy�1; y�2; . . . ; y�mÞ is a Nash equilibrium of followers with
respect to x�. We call the array ðx�; y�1; y�2; . . . ; y�mÞ a Stackel-
berg–Nash equilibrium to the uncertain multilevel programming
(3) if

E½Fðx; y1; y2; . . . ; ym; nÞ� 6 E½Fðx�; y�1; y�2; . . . ; y�m; nÞ�

for any feasible control vector x and the Nash equilibrium
ðy1; y2; . . . ; ymÞ with respect to x.
5. Equivalent crisp model

From the mathematical viewpoint, there is no difference
between deterministic mathematical programming and uncertain
programming except for the fact that there exist uncertain variables
in the latter. In fact, the uncertain multilevel programming model
(3) is equivalent to a deterministic multilevel programming model.

Let n1; n2; . . . ; nn be independent uncertain variables with
uncertainty distributions U1; U2; . . . ; Un, respectively. Without
loss of generality, we assume that F is a real function, and strictly
increasing with respect to n1; n2; . . . ; nk, and strictly decreasing
with respect to nkþ1; nkþ2; . . . ; nn. Then we have

E ½Fðx; y1; . . . ; ym; n1; . . . ; nnÞ�¼
Z 1

0
F x; y1; . . . ;ym; U

�1
1 ðrÞ; . . . ;

�
U�1

k ðrÞ;U
�1
kþ1ð1�rÞ; . . . ;U�1

n ð1�rÞ
�

dr:

Assume f i is a real function, and strictly increasing with respect to
n1; n2; . . . ; nki

, and strictly decreasing with respect to
nkiþ1; nkiþ2; . . . ; nn for i ¼ 1; 2; . . . ; m. Then

E½f iðx; y1; . . . ; ym; n1; . . . ; nnÞ�¼
Z 1

0
f i x;y1; . . . ;ym;U

�1
1 ðrÞ; . . . ;

�
U�1

ki
ðrÞ;U�1

kiþ1ð1� rÞ; . . . ;U�1
n ð1� rÞ

�
dr:

Assume G is a real function, and strictly increasing with respect to
n1; n2; . . . ; ns, and strictly decreasing with respect to
nsþ1; nsþ2; . . . ; nn. Then MfGðx; y1; y2; . . . ; ym; nÞ 6 0gP a is
equivalent to
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G x;y1;y2; . . . ;ym;U
�1
1 ðaÞ; . . . ;U

�1
s ðaÞ;U

�1
sþ1ð1�aÞ; . . . ;U�1

n ð1�aÞ
� �

60:

Assume gi is a real function, and strictly increasing with respect to
n1; n2; . . . ; nsi

, and strictly decreasing with respect to nsiþ1; nsiþ2;

. . . ; nn for i ¼ 1; 2; . . . ; m. Then Mfgiðx; y1; . . . ; ym; nÞ 6 0gP ai

is equivalent to

gi x;y1; . . . ;ym;U
�1
1 ðaiÞ; . . . ;U�1

si
ðaiÞ;U�1

siþ1ð1�aiÞ; . . . ;U�1
n ð1�aiÞ

� �
60:

Thus the uncertain multilevel programming model (3) is equivalent
to

max
x

R 1
0 F x;y1; . . . ;ym;U

�1
1 ðrÞ; . . . ;U

�1
k ðrÞ;U

�1
kþ1ð1� rÞ; . . . ;U�1

n ð1� rÞ
� �

dr

subject to :

G x;y�1;y
�
2; . . . ;y

�
m;U

�1
1 ðaÞ; . . . ;U

�1
s ðaÞ;U

�1
sþ1ð1�aÞ; . . . ;U�1

n ð1�aÞ
� �

60

ðy�1;y�2; . . . ;y�mÞ solves problems ði¼1;2; . . . ;mÞ

max
yi

R 1
0 f i x;y1; . . . ;ym;U

�1
1 ðrÞ; . . . ;U

�1
ki
ðrÞ;U�1

kiþ1ð1� rÞ; . . . ;U�1
n ð1� rÞ

� �
dr

subject to :

gi x;y1; . . . ;ym;U
�1
1 ðaiÞ; . . . ;U�1

si
ðaiÞ;U�1

siþ1ð1�aiÞ; . . . ;U�1
n ð1�aiÞ

� �
60:

8>>><
>>>:
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ð4Þ

In order to solve uncertain programming models (3), we just
need find a numerical method for solving the deterministic math-
ematical programming (4). So far, many algorithms have been pro-
posed such as extreme point algorithm (Candler & Towersley,
1982), kth best algorithm (Bialas & Karwan, 1984), branch and
bound algorithm (Bard & Falk, 1982), descent method (Savard &
Gauvin, 1994), and genetic algorithm (Liu, 1998).

Here, we introduce the genetic algorithm to solve multilevel
programming by Liu (1998):

Step 0: Input parameters such as population size, crossover prob-
ability and mutation probability.

Step 1: Initialize chromosomes randomly in the feasible set.
Step 2: Update the chromosomes by the crossover and mutation

operations.
Step 3: For each chromosome, determine the Nash equilibrium of

the followers via genetic algorithm.
Step 4: Calculate the objective values of the leader for each chro-

mosomes with respect to the Nash equilibrium.
Step 5: Compute the fitness of each chromosome based on the

objective values.
Step 6: Select the chromosomes by spinning the roulette wheel.
Step 7: Repeat the second to sixth steps for a given number of

cycles.
Step 8: Report the best chromosome as the optimal solution.

In order to illustrate the effectiveness of genetic algorithm in
solving uncertain multilevel programming model, we give two
numerical examples.

Example 1. Assume there is one leader and one follower in
the uncertain multilevel programming model whose control
vectors are x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ, respectively. Suppose that
the uncertain multilevel programming model is formulated as
follows,

max E½n1x1 sin y�1 þ n2y�2 sin x2�
subject to :

x1 þ x2 6 p; x1 P 0; x2 P 0
ðy�1; y�2Þ solves the problem

max E½n1x1 cos y1 � n2y2 cos x2�
subject to :

0 6 y1 6 x1; 0 6 y2 6 x2

8><
>:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ
where n1 � Nð1;3Þ and n2 � Nð2;4Þ are normal uncertain variables.
Set the population size as 30, the probability of crossover as 0.2, and
the probability of mutation as 0.1. A run of genetic algorithm with
100 generations shows that the Stackelberg–Nash equilibrium is

x ¼ ð0:9339;2:0304Þ; y ¼ ð0;2:0304Þ;

and the objective values of the leader and the follower are 3.6394
and 2.7354, respectively. Note that the Stackelberg–Nash
equilibrium is not unique. For example, another Stackelberg–Nash
equilibrium is x ¼ ð0:7113;2:0342Þ; y ¼ ð0;2:0342Þ with the
objective values 3.6393 and 2.5300 for the leader and the follower,
respectively.

In addition, in order to illustrate the robustness of the genetic
algorithm for uncertain programming model, a further study is
carried out. When the population size (pop size), probability of
crossover (Pc) and probability of mutation (Pm) vary, the obtained
optimal solution via genetic algorithm also varies, and the values
are shown in Table 1. The percent error, i.e.,

maximum objective value�minimum objective value
ðmaximum objective valueþminimum objective valueÞ=2

�100%

is just only

3:6394� 3:6393
ð3:6394þ 3:6393Þ=2

� 100% ¼ 0:0027%;

and that means the genetic algorithm is robust to the parameters, and
can solve this uncertain multilevel programming model effectively.
Example 2. Assume there is one leader and two followers in the
uncertain multilevel programming model whose control vectors
are x ¼ ðx1; x2Þ; y1 ¼ ðy11; y12Þ and y2 ¼ ðy21; y22Þ, respectively.
Suppose that the uncertain multilevel programming model is for-
mulated as follows,

max E½x1ðy�11 þ y�12Þ=n1 þ x2ðy�21 þ y�22Þ=n2�
subject to :

Mfx2
1 þ x2

2 6 n2
1 þ n2

2gP 0:9
x1 P 0; x2 P 0
ðy�11; y

�
12; y

�
21; y

�
22Þ solves the problems

max E½n1y11 þ n2y12�
subject to :

Mf2y11 þ y12 6 n1 þ x1g � 0:9
y11 � 0; y12 � 0

8>>><
>>>:

max E½n1y21 þ n2y22�
subject to :

Mfy21 þ 2y22 6 n2 þ x2g � 0:9
y21 � 0; y22 � 0

8>>><
>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

where n1 � Lð1;3Þ and n2 � Lð2;4Þ are linear uncertain variables. Set
the population size as 30, the probability of crossover as 0.2, and the
probability of mutation as 0.1. A run of genetic algorithm with 100
generations shows that the Stackelberg–Nash equilibrium is

x ¼ ð4:3643;1:7168Þ; y1 ¼ ð0;7:1643Þ; y2 ¼ ð5:5168;0Þ

and the optimal objective values of the leader and the two followers
are 20.4579, 21.4929, and 11.0337, respectively.

Table 2 shows the different objective values when the param-
eters in the genetic algorithm vary. The percent error is

20:6248� 20:4119
ð20:6248þ 20:4119Þ=2

� 100% ¼ 1:04%;

and it also illustrates that the genetic algorithm is robust, and plays
an effective role in solving uncertain multilevel programming model.



Table 1
Comparison of solutions in Example 1.

No. pop size Pc Pm Stackelberg–Nash equilibrium Objective value

Leader Follower Leader Follower

1 30 0.2 0.1 (0.9339, 2.0304) (0, 2.0304) 3.6394 2.7354
2 30 0.2 0.2 (0.4962, 2.0287) (0, 2.0287) 3.6394 2.2896
3 30 0.1 0.2 (0.7150, 2.0230) (0, 2.0230) 3.6393 2.4830
4 50 0.1 0.2 (1.0138, 2.0287) (0, 2.0287) 3:6394 2.8074
5 50 0.2 0.1 (0.7889, 2.0357) (0, 2.0357) 3.6393 2.6143

Table 2
Comparison of solutions in Example 2.

No. pop size Pc Pm Stackelberg–Nash equilibrium Objective value

Leader Follower 1 Follower 2 Leader Follower 1 Follower 2

1 30 0.2 0.1 (4.3643, 1.7168) (0, 7.1643) (5.5168, 0) 20.4579 21.4929 11.0337
2 30 0.2 0.2 (4.1299, 2.2653) (0, 6.9299) (6.0653, 0) 20.4828 20.7897 12.1306
3 30 0.1 0.2 (4.2945, 1.9511) (0, 7.0945) (5.7511, 0) 20.6248 21.2835 11.5022
4 50 0.1 0.2 (4.2254, 2.0876) (0, 7.0254) (5.8876, 0) 20.5656 21.0761 11.7751
5 50 0.2 0.1 (4.3420, 1.7544) (0, 7.1420) (5.5544, 0) 20.4119 21.4261 11.1089
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6. Applications

In this section, we apply the uncertain multilevel programming
to a product control problem. Consider an enterprise with a center
and two factories. Assume the center supplies two types of resources
to the factories and sell the products to the markets, and the factories
produce two types of products with the resources. The center makes
a decision on the allocation of the resources to maximize the profit in
the markets, and each factory desires to guarantee the efficiency and
quality. The notations are introduced as follows,
xij
 amount of resource i allocated to factory j; i; j ¼ 1;2

yij
 amount of product i produced by factory j; i; j ¼ 1;2

Yi
 total amount of product i, i.e., Yi ¼ yi1 þ yi2; i ¼ 1;2

n1; n2
 unit-prices of product 1 and product 2 which are

uncertain variables,

n1 � Lð195;205Þ; n2 � Lð145;175Þ
FðY1;Y2Þ
 total profit of marketing FðY1;Y2Þ ¼ n1Y1 þ n2Y2
f jðy1j; y2jÞ
 objective function of factory

j; f 1ðy11; y21Þ ¼ ðy11 � 4:0Þ2 þ ðy21 � 13:0Þ2,
f 2ðy12; y22Þ ¼ ðy12 � 35:0Þ2 þ ðy22 � 2:0Þ2.
Then an uncertain multilevel programming model of product
control is given as follows,

max
x11 ;x12 ;x21 ;x22

E½n1ðy�11 þ y�12Þ þ n2ðy�21 þ y�22Þ�

subject to :

x11 þ x12 þ x21 þ x22 6 40

0 6 x11 6 10; 0 6 x12 6 15

0 6 x21 6 5; 0 6 x22 6 20

ðy�11; y
�
21; y

�
12; y

�
22Þ solves the problems

min
y11 ;y21

ðy11 � 4:0Þ2 þ ðy21 � 13:0Þ2

subject to :

4y11 þ 7y21 6 10x11; 6y11 þ 3y21 6 10x21

0 6 y11; y21 � 20

8>>>>><
>>>>>:

min
y12 ;y22

ðy12 � 35:0Þ2 þ ðy22 � 2:0Þ2

subject to :

4y12 þ 5y22 6 10x12; 6y12 þ 7y22 6 10x22

0 6 y12; y22 � 40:

8>>>>><
>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ
The model (7) has a Stackelberg–Nash equilibrium x ¼ ð7:9356;
11:6823; 4:1880; 16:1941Þ; y1¼ð1:8363; 10:2873Þ; y2¼ð26:9902; 0Þ,
and an objective value 6473 by the genetic algorithm. So the center
supplies 7.9356 amounts of source 1 and 11.6823 amounts of source
2 to factory 1, and supplies 4.1880 amounts of source 1 and 16.1941
amounts of source 2 to factory 2. In addition, the optimal amounts of
the product 1 and product 2 for factory 1 are 1.8363 and 10.2873,
and the optimal amounts of the product 1 and product 2 for factory
2 are 26.9902 and 0, respectively. In this case, the supply center has
a profit 6473.

7. Conclusions

This paper proposed an uncertain multilevel programming
model that is a type of multilevel programming involving uncer-
tain variables. It was transformed into a crisp multilevel model,
and genetic algorithm was employed to solve it. The efficiency of
the algorithm was illustrated by some numerical examples. Finally,
the uncertain multilevel programming was applied to a product
control problem. Further researches may cover modified intelligent
algorithms for uncertain multilevel programming model, and
applications of the model in various areas.
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