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We propose a method of classifying n-qubit states into stochastic local operations and classical communication
inequivalent families in terms of the rank of the square matrix C(iσy)⊗kCT , where C is the rectangular coefficient
matrix of the state and σy is the Pauli operator. The rank of the square matrix C(iσy)⊗kCT is capable of
distinguishing between n-qubit Greenberger-Horne-Zeilinger and W states. The determinant of the matrix gives
rise to a family of polynomial invariants for n qubits which include as special cases well-known polynomial
invariants in the literature. In addition, explicit expressions can be given for these polynomial invariants and this
allows us to investigate the properties of entanglement measures built upon the absolute values of polynomial
invariants for product states.
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I. INTRODUCTION18

Quantum entanglement is an essential resource in quantum19

teleportation, quantum cryptography, and quantum compu-20

tation [1]. A crucial task in entanglement theory is the21

classification of entanglement. To classify entangled states,22

some equivalence relation has to be introduced. Of particular23

importance is the equivalence under stochastic local operations24

and classical communication (SLOCC). If two states are25

SLOCC equivalent then they can perform the same tasks26

in quantum information theory [2]. As equivalence under27

SLOCC induces a natural partition of quantum states, the key28

point of SLOCC classification is to classify quantum states29

according to a criterion that is invariant under SLOCC. While30

entanglement classification of two and three qubits is well31

understood, the task of classifying entanglement beyond three32

qubits becomes increasingly difficult. For four or more qubits,33

there exists an infinite number of inequivalent SLOCC classes.34

It is highly desirable to partition the infinite SLOCC classes35

into a finite number of families such that states belonging to36

the same family possess similar properties, according to some37

criteria for determining to which family a given state belongs.38

Considerable efforts have been undertaken over the last decade39

for SLOCC entanglement classification of four-qubit states,40

resulting in a finite number of families or classes [3–10]. For41

more than four qubits, a few attempts have been made for42

SLOCC classification [11–16]. Despite these efforts, a SLOCC43

classification for general n-qubit states which results in a finite44

number of families with Greenberger-Horne-Zeilinger (GHZ)45

and W states belonging to different families is still beyond46

reach.47

This paper is organized as follows. We first construct a48

matrix for an n -qubit state and we show that the rank of49

the matrix is preserved under SLOCC. The rank provides50

a simple way of classifying n-qubit states into a number of51

SLOCC-inequivalent families. We then exemplify the use of52

the rank in distinguishing n-qubit GHZ and W states as well53

as some four-, five-, and six-qubit states. The determinant54

of the matrix gives rise to a polynomial invariant of degree55

2k (k � n/2 + 1) for n qubits and this construction allows56

one to derive the expressions for these polynomial invariants 57

explicitly. Intriguingly, the even n-qubit concurrence, the 58

even n-tangle, the odd n-tangle, and polynomial invariants 59

of degree 2n/2 for even n qubits all turn out to be special cases 60

of polynomial invariants of degree 2k . We also discuss the 61

properties of entanglement measures built upon the polynomial 62

invariants of degree 2k for product states. 63

II. THE INVARIANCE OF THE RANK 64

We follow the notation of [14]. Let |ψ ′〉 = ∑2n−1
k=0 ak|k〉 be 65

any pure state of any n qubits. We let C
(n)
1,2,...,i(|ψ ′〉) be the 66

2i × 2n−i coefficient matrix of the state |ψ ′〉, whose entries 67

are the coefficients a0,a1, . . . ,a2n−1 of the state |ψ ′〉 arranged 68

in ascending lexicographical order. Here the bits 1 to i and 69

i + 1 to n are referred to as the row bits and column bits, 70

respectively. In particular, when i = 0, C
(n)
∅ (|ψ ′〉) reduces to 71

the row vector (a0, . . . ,a2n−1) and, when i = n, C
(n)
1,...,n(|ψ ′〉) 72

reduces to the column vector (a0, . . . ,a2n−1)T . Note that qubits 73

q1,q2, . . . ,qi can also be chosen as row bits. 74

Recall that two n-qubit states |ψ〉 and |ψ ′〉 are SLOCC 75

equivalent if and only if there are local invertible operators 76

A1, A2, . . ., and An such that [2] 77

|ψ ′〉 = A1 ⊗ A2 ⊗ · · · ⊗ An|ψ〉. (1)

When qubits q1,q2, . . . ,qi are chosen as row bits, the coeffi- 78

cient 2i × 2n−i matrix C(n)
q1,q2,...,qi

(|ψ ′〉) satisfies the following 79

matrix equation [13,14]: 80

C(n)
q1,q2,...,qi

(|ψ ′〉)
= (Aq1 ⊗ · · · ⊗ Aqi

)C(n)
q1,q2,...,qi

(|ψ〉)(Aqi+1 ⊗ · · · ⊗ A
qn

)T .

(2)
1

Taking the transpose of both sides of Eq. (2) and after some 81

algebra, we obtain 82

C(n)
q1,q2,...,qi

(|ψ ′〉)υ⊗(n−i)[C(n)
q1,q2,...,qi

(|ψ ′〉)]T

= (Aq1 ⊗ · · · ⊗ Aqi
)C(n)

q1,q2,...,qi
(|ψ〉)
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×(
AT

qi+1
υAqi+1 ⊗ · · · ⊗ AT

qn
υA

qn

)
×[

C(n)
q1,q2,...,qi

(|ψ〉)]T
(Aq1 ⊗ · · · ⊗ Aqi

)T , (3)

where υ = √−1σy and σy is the Pauli operator.83

We let84

�(n)
q1,q2,...,qi

(|ψ ′〉
= C(n)

q1,q2,...,qi
(|ψ ′〉)υ⊗(n−i)

[
C(n)

q1,q2,...,qi
(|ψ ′〉)]T

. (4)

It is clear that �(n)
q1,q2,...,qi

(|ψ ′〉 is a square matrix of order 2i for85

n qubits. Invoking the fact that AT
k υAk = (detAk)υ, we may86

rewrite Eq. (3) as87

�(n)
q1,q2,...,qi

(|ψ ′〉)
= (

�n
k=i+1 detAqk

)
(Aq1 ⊗ · · · ⊗ Aqi

)

×�(n)
q1,q2,...,qi

(|ψ〉)(Aq1 ⊗ · · · ⊗ Aqi
)T . (5)

In the following, we will omit the state |ψ ′〉 and simply88

write �(n)
q1,q2,...,qi

whenever the state is clear from the context.89

It immediately follows from Eq. (5) that the rank of the square90

matrix �(n)
q1,q2,...,qi

of an n-qubit state is invariant under SLOCC.91

This leads to the following theorem.92

Theorem. If two n-qubit states are SLOCC equivalent then93

their square matrices �(n)
q1,q2,...,qi

given above have the same94

rank.95

Restated in the contrapositive the theorem reads: If two96

square matrices �(n)
q1,q2,...,qi

associated with two n-qubit states97

differ in their ranks, then the two states belong necessarily to98

different SLOCC classes.99

III. APPLICATIONS TO SLOCC CLASSIFICATION100

A. Classification of four-qubit states101

Verstraete et al. partitioned four-qubit states into nine102

SLOCC-inequivalent families, two of which are Labc2 and103

Lab3 [3]. Later, it was pointed out that Lab3 is equivalent104

to the subfamily Labc2 (a = c) of Labc2 obtained by setting105

a = c [6]. In [13], we showed that Lab3 (a = b = 0) is106

inequivalent to Labc2 (a = c) using the rank of coefficient107

matrices. Alternatively, Sharma et al. proved that Labc2 (a = c)108

and Lab3 are not SLOCC equivalent using negativity fonts [17].109

Here by elaborating further on the relationship between Lab3110

and Labc2 (a = c), we show by using the rank of the square111

matrix that, when a �= 0, Lab3 is contained in Labc2 . In Table I112

we list the rank of �
(4)
1,2 for Lab3 and Labc2 (a = c).113

It follows from Table I that, when a = 0, Lab3 and Labc2 (a =114

c) are inequivalent to each other. Furthermore, Lab3 (a = 0)115

and Lab3 (a �= 0) are inequivalent to each other. Likewise,116

Labc2 (a = c = 0) and Labc2 (a = c �= 0) are inequivalent to117

TABLE I. The rank of �
(4)
1,2 for Lab3 and Labc2 (a = c).

a = 0 a = 0 a �= 0 a �= 0
b = 0 b �= 0 b = 0 b �= 0

Lab3 1 2 3 4
Labc2 (a = c) 0 1 3 4

TABLE II. SLOCC classification of some five-qubit and six-qubit
states.

Five-qubit Rank of Rank of Six-qubit Rank of Rank of
state �

(5)
1 �

(5)
3 state �

(6)
1,2 �

(6)
1,2,3,4

|�2〉 2 2 |�2〉 2 2
|�4〉 0 0 |�4〉 0 2
|�5〉 0 1 |�5〉 0 3
|�6〉 1 1 |�6〉 1 3

|�7〉 2 3

each other. It turns out that, when a �= 0, Lab3 and Labc2 (a = c) 118

are equivalent to each other. This can be seen as follows. A 119

tedious calculation shows that, when a �= 0, Labc2 (a = c) and 120

Lab3 satisfy the following equation: 121

Labc2 (a = c) = A1 ⊗ A2 ⊗ A3 ⊗ A4 Lab3 , (6)

where A1, A2, A3, and A4 are invertible local operators given 122

by 123

A1 =
(

1
2a3/2 0

0 1
2
√

2a2

)
, A2 =

(
0 1

−√
2a 0

)
,

A3 =
(−√

2a 0
−i

√
2 2a

)
, A4 =

( −i
√

2a

−√
a 0

)
.

Therefore, when a = 0, Lab3 and Labc2 (a = c) are inequivalent 124

to each other, whereas when a �= 0, Lab3 and Labc2 (a = c) are 125

equivalent to each other. In particular, when a �= 0, we have 126

SLOCC equivalence between Lab3 and Labc2 (a = c) for the 127

following cases: (i) a = b; (ii) a = −b; (iii) b = 3a; (iv) b = 128

−3a; (v) b = 0; (vi) ab �= 0 and a �= ±b and b �= ± − 3a. 129

B. Classification of some five-qubit and six-qubit states 130

We list in Table II the rank of �(n)
q1,q2,...,qi

for the five-qubit 131

states and six-qubit states introduced in [18]. Consulting 132

the table, the five-qubit states |�2〉, |�4〉, |�5〉, and |�6〉 133

are inequivalent to one another under SLOCC and they can 134

be distinguished via the rank of �
(5)
1 and �

(5)
3 . Similarly, 135

the six-qubit states |�2〉, |�4〉, |�5〉, |�6〉, and |�7〉 are 136

inequivalent to one another under SLOCC and they can be 137

distinguished via the rank of �
(6)
1,2 and �

(6)
1,2,3,4. 138

C. Classification of n-qubit states 139

We exemplify the classification with n-qubit GHZ and W 140

states. We find that �
(n)
1 has rank 2 for n-qubit GHZ states, 141

rank 1 for 3-qubit W states, and rank 0 for n-qubit W states 142

for n � 4. Hence n-qubit GHZ states can be distinguished 143

from n-qubit W states under SLOCC via the rank of �
(n)
1 . In 144

addition, one may also distinguish cluster states from GHZ 145

(W ) states using the ranks of �(n)
q1,q2,...,qi

. For example, the 146

cluster state of four qubits can be readily distinguished from 147

a four-qubit GHZ (four-qubit W ) state using the ranks of �
(4)
1 148

and �
(4)
1,2. 149

More generally, let σ denote the sequence q1,q2, . . . ,qi 150

and Fσ
r be the set of n-qubit states with the rank of �(n)

q1,q2,...,qi
151

being equal to r . Thus, n-qubit states are partitioned into 2i + 1 152

002300-2
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TABLE III. The polynomial invariant | det �(n)
∅ | of degree 2.

Qubits Expressions Polynomial invariants

n = 2 | det �(2)
∅ | Concurrence [29]

even n | det �(n)
∅ | n-qubit concurrence [28,30]

odd n | det �(n)
∅ | = 0 a

aNote that for odd n, | det �(n)
∅ | = 0. This reveals that no such

nontrivial polynomial invariant of degree 2 exists for odd-n qubits.

SLOCC-inequivalent families by the theorem above, i.e., Fσ
0 ,153

Fσ
1 , . . ., and Fσ

2i .154

IV. POLYNOMIAL INVARIANTS OF DEGREE 2k
155

Several approaches have been proposed to construct poly-156

nomial invariants [19–23]. However, the computational com-157

plexity grows very rapidly as the number of qubits increases158

(e.g., some methods are not readily generalized to more159

complicated Hilbert spaces). Accordingly, the expressions of160

polynomial invariants have thus far been given only up to five161

qubits. Recently, a few attempts have been made to construct162

polynomial invariants with explicit expressions [24–28].163

Corollary 1. Let |ψ〉 and |ψ ′〉 be two SLOCC-equivalent164

states of n qubits, then the following equation holds for 0 �165

i � n:166

det �(n)
q1,q2,...,qi

(|ψ ′〉)
= det �(n)

q1,q2,...,qi
(|ψ〉)(�n

k=1 detAk

)2i

. (7)

Proof. Taking the determinant of both sides of Eq. (5) yields167

the desired result. �168

As an immediate consequence of Corollary 1, det �(n)
q1,q2,...,qi

169

is a polynomial invariant of degree 2i+1, where 0 � i � n/2.170

Otherwise, �(n)
q1,q2,...,qi

is not full rank.171

Polynomial invariants constructed above include as special172

cases several well-known polynomial invariants in the litera-173

ture. Below are some examples.174

Example 1. Set i = 0. Then | det �(n)
∅ | is a polynomial175

invariant of degree 2. See Table III.176

Example 2. We set i = 1. Then det �(n)
1 is a polynomial177

invariant of degree 4. In particular, 4| det �(3)
1 | is equal to the 3-178

tangle [25,31]. Furthermore, 4| det �(n)
1 | is a natural extension179

of the 3-tangle to general n qubits. See Table IV.180

We remark that for n even, det �(n)
1 (i.e., even n-tangle) is181

invariant under permutations [33]. For n odd, we may choose182

qubit j , j = 1, . . . ,n, as the row bit for the coefficient matrix183

TABLE IV. The polynomial invariant det �(n)
1 of degree 4.

Qubits Expressions Polynomial invariants

n = 3 4
∣∣ det �(3)

1

∣∣ 3-tangle [25,31]

even n 4
∣∣ det �(n)

1

∣∣ even n-tangle [32]

odd n 4
∣∣ det �(n)

1

∣∣ odd n-tangle [25]

C
(n)
j . This yields n polynomial invariants det �(n)

j of degree 4 184

for odd n (�5) qubits (for five qubits, see [23]) [25,33,34]. 185

We emphasize that these n polynomial invariants det �(n)
j 186

of degree 4 for any odd n � 5 qubits are linearly independent 187

(this is particularly true for five qubits [23]). This can be proved 188

by resorting to the following properties of det �(n)
j for n-odd 189

qubits [34]: 190

(1) (i,j ) det �(n)
j = det �(n)

i , where (i,j ) is the transposition 191

of qubits i and j . 192

(2) det �(n)
j is invariant under any permutation of qubits not 193

involving qubit j . 194

Example 3. Let n be even and i = n/2. Then C
(n)
1···(n/2) is a 195

square matrix. In view of Eqs. (4) and (7), we have 196

det C(n)
1···(n/2)(|ψ ′〉)

= det C(n)
1···(n/2)(|ψ〉)(�n

k=1 detAk

)2(n−2)/2

. (8)

As an immediate consequence, det C(n)
1···(n/2) is a determinant 197

invariant of degree 2n/2 and we recover the result in [26] (in 198

particular we recover the polynomial invariants of degree 4 for 199

four qubits given in [19]). 200

In light of Eq. (7), we may determine whether two n-qubit 201

states are inequivalent to each other under SLOCC via the 202

vanishing or not of their associated polynomial invariants 203

det �(n)
q1,q2,...,qi

. More precisely, we have the following result. 204

Corollary 2. For any two SLOCC-equivalent pure states 205

|ψ〉 and |ψ ′〉 of n qubits, either both det �(n)
q1,q2,...,qi

(|ψ ′〉) and 206

det �(n)
q1,q2,...,qi

(|ψ〉) vanish or neither vanishes. In other words, 207

if one of det �(n)
q1,q2,...,qi

(|ψ ′〉) and det �(n)
q1,q2,...,qi

(|ψ〉) vanishes 208

while the other does not, then the two states |ψ〉 and |ψ ′〉 are 209

SLOCC inequivalent. 210

For example, the n-qubit GHZ and W states can also be 211

distinguished under SLOCC as det �(n)
∅ = 0 for the W state 212

and det �(n)
∅ �= 0 for the GHZ state. 213

V. INVARIANT-BASED ENTANGLEMENT MEASURES 214

The explicit expressions of these polynomial invariants 215

det �(n)
q1,q2,...,qi

make it possible for us to investigate the 216

properties of det �(n)
q1,q2,...,qi

. We next explore the properties 217

of | det �(n)
q1,q2,...,qi

| by use of the product state |ψ〉1···n = 218

|φ〉j1···j

⊗ |ϕ〉j
+1···jn

, where |φ〉j1···j

is a state of 
 qubits, 219

j1, . . . ,j
, and |ϕ〉j
+1···jn
is a state of the remaining (n − 
) 220

qubits, j
+1, . . . ,jn. We let C(n)
q1,...,qi

(|ψ〉1···n) be the coefficient 221

matrix associated with the state |ψ〉1···n, where q1, . . . and qi are 222

chosen as row bits. We let C
(
)
q∗

1 ,...,q∗
s
(|φ〉j1···j


) be the 2s × 2
−s
223

coefficient matrix associated with the 
-qubit state |φ〉j1···j

. 224

Here {q∗
1 , . . . ,q∗

s } = {q1, . . . ,qi} ∩ {j1, . . . ,j
} are the row 225

bits. We let C
(n−
)
q ′

1,...,q
′
t
(|ϕ〉j
+1···jn

) be the 2t × 2n−
−t coefficient 226

matrix associated with the (n − 
)-qubit state |ϕ〉j
+1···jn
. Here 227

{q ′
1, . . . ,q

′
t } = {q1, . . . ,qi} ∩ {j
+1, . . . ,jn} are the row bits. 228

Note that s + t = i. From [14], we have 229

C(n)
q1,...,qi

(|φ〉j1···j

⊗ |ϕ〉j
+1···jn

)

= C
(
)
q∗

1 ,...,q∗
s
(|φ〉j1···j


) ⊗ C
(n−
)
q ′

1,...,q
′
t
(|ϕ〉j
+1···jn

). (9)

002300-3
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Using the notation of Eq. (4), a simple calculation yields230 ∣∣ det �(n)
q1,...,qi

(|φ〉j1···j

⊗ |ϕ〉j
+1···jn

)
∣∣

= ∣∣ det �(
)
q∗

1 ,...,q∗
s
(|φ〉j1···j


)
∣∣2t ∣∣ det �(n−
)

q ′
1,...,q

′
t
(|ϕ〉j
+1···jn

)
∣∣2s

.

(10)

Clearly, the absolute value of the SLOCC polyno-231

mial invariant det �(n)
q1,q2,...,qi

is not additive for product232

states. Note that it vanishes for product states with s >233


/2 or t > (n − 
)/2. Consider, for example, a prod-234

uct state of four qubits |ψ〉1234 = |φ〉13 ⊗ |ϕ〉24. Then a235

straightforward calculation yields that det �(4)
12 (|ψ〉1234) =236

[det �(2)
1 (|φ〉13)]2[det �(2)

2 (|ϕ〉24)]2.237

Recently, it was shown that a positive homogeneous238

SLOCC polynomial invariant defines an n-qubit entanglement239

monotone if and only if the homogeneous degree is less240

than or equal to 4 [35]. Accordingly, the absolute value of241

the polynomial invariant det �(n)
q1,q2,...,qi

with degree �4 is242

an entanglement monotone and it can be considered as an243

entanglement measure for n qubits.244

VI. CONCLUSION 245

We have constructed a matrix whose rank is preserved under 246

SLOCC and given examples of classifying n-qubit states via 247

the rank for n up to 6. Polynomial invariants in the form 248

of determinants of the square matrix not only have explicit 249

expressions but also, as special cases, recover several existing 250

polynomial invariants in the literature. We have also studied 251

the properties of the entanglement measures built from the 252

absolute values of polynomial invariants on product states. 253

We expect that the proposed approach for classifying n-qubit 254

states and constructing polynomial invariants may find further 255

applications. 256
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