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We solve the entanglement classification under stochastic local operations and classical communication

(SLOCC) for general n-qubit states. For two arbitrary pure n-qubit states connected via local operations,

we establish an equation between the two coefficient matrices associated with the states. The rank of the

coefficient matrix is preserved under SLOCC and gives rise to a simple way of partitioning all the pure

states of n qubits into different families of entanglement classes, as exemplified here. When applied to the

symmetric states, this approach reveals that all the Dicke states j‘; ni with ‘ ¼ 1; . . . ; ½n=2� are

inequivalent under SLOCC.
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Introduction.—Entanglement, a key feature that distin-
guishes quantum information from classical information,
has applications in cryptography, teleportation and quan-
tum computation [1]. While the bipartite entanglement is
well understood, the task of classifying multipartite entan-
glement beyond two qubits becomes increasingly difficult.
To classify entangled states, some equivalence relation has
to be introduced. Of particular importance is the equiva-
lence under stochastic local operations and classical com-
munication (SLOCC) since two states belonging to the
same equivalence class can perform the same tasks of
quantum information theory.

For three qubits, in terms of the local ranks of the
reduced density matrices, it has been shown that there
are six inequivalent SLOCC classes [2]. For four or more
qubits, there exists an infinite number of inequivalent
SLOCC classes. It is highly desirable to partition the
infinite SLOCC classes into a finite number of families
such that states belonging to the same family possess
similar properties, according to some criteria for determin-
ing which family a given state belongs to. Considerable
efforts have been undertaken over the last decade for the
SLOCC entanglement classification of four-qubit states
resulting in a finite number of families [3–6] or classes
[7–12]. For more than four qubits, a few attempts have
been made for SLOCC classification for subsets of the
general n-qubit states such as the Greenberger-Horne-
Zeilinger (GHZ)-type, W-type, and GHZ-W-type n-qubit
states [13], symmetric n-qubit states [14–16], even n-qubit
states [17,18], and odd n-qubit states [19]. Despite these
efforts, a SLOCC classification for general n-qubit states is
still beyond reach.

Our aim is to solve the problem of SLOCC classification
for all multipartite pure states in the general n-qubit case.
To this end, we demonstrate that the rank of the coefficient

matrix of a pure n-qubit state is invariant under SLOCC.
SLOCC invariants for subsets of n-qubit states have been
the subject of several recent studies [17–21]. In [17,18], the
invariant element is the determinant of coefficient matrices
of even n qubits. In [19], the invariant element is the rank
of square matrices of size two constructed using three
functions defined on the space of odd n qubits.
We construct the coefficient matrices for general n-qubit

states by arranging the coefficients in lexicographical or-
der. For two states connected via local operations, their
coefficient matrices are related through an equation. In the
case where the local operations are invertible, the two
states are said to be SLOCC equivalent and the two coef-
ficient matrices have the same rank; i.e., the rank is pre-
served under SLOCC. The rank gives rise to a simple way
of partitioning all the n-qubit states into different SLOCC
families. For n-qubit symmetric Dicke states j‘; ni with ‘
(‘ ¼ 1; . . . ; ½n=2�) excitations, we show that the rank of the
coefficient matrix of j‘; ni is equal to ‘þ 1 and, therefore,
all these states are inequivalent under SLOCC. Finally,
composing the rank and permutations of qubits allows us
to define subfamilies by cutting each family in pieces.
SLOCC matrix equation and the invariance of the

rank.—We write the state jc 0i of n qubits as jc 0i ¼P
2n�1
i¼0 aijii, where jii are basis states and ai are coeffi-

cients. We associate to an n-qubit state jc 0i a 2½n=2� �
2½ðnþ1Þ=2� coefficient matrix Mðjc 0iÞ whose entries are the
coefficients a0; a1; . . . ; a2n�1 arranged in ascending lexico-
graphical order. To illustrate, we list below Mðjc 0iÞ for
n ¼ 3:

Mðjc 0iÞ ¼ a0 a1 a2 a3
a4 a5 a6 a7

� �
; (1)

and for n ¼ 4:
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Mðjc 0iÞ ¼
a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

0
BBB@

1
CCCA: (2)

We refer to the rank of the coefficient matrixMðjc 0iÞ as the
rank of the state jc 0i, denoted as rank ðjc 0iÞ. We exemplify
with the n-qubit jGHZi state 1ffiffi

2
p ðj0i�n þ j1i�nÞ, and we

find rank ðjGHZiÞ ¼ 2. It is clear that the rank of any

n-qubit state ranges over the values 1; 2; . . . ; 2½n=2�.
Theorem.—Let jc i be another state of n qubits with

jc i ¼ P
2n�1
i¼0 bijii and Mðjc iÞ be the corresponding coef-

ficient matrix constructed in the same manner as was done
for Mðjc 0iÞ. If the states jc i and jc 0i are related by

jc 0i ¼ A1 �A2 � . . . �Anjc i; (3)

where the local operators A1;A2; . . . ; and An are
not necessarily invertible, then the following matrix equa-
tion holds for general n qubits:

Mðjc 0iÞ ¼ ðA1 � . . . �A½n=2�ÞMðjc iÞ
� ðA½n=2�þ1 � . . . �AnÞT: (4)

Equation (4) holds particularly true for two SLOCC
equivalent states jc i and jc 0i which satisfy Eq. (3) along
with the local operators A1;A2; . . . ; and An being
invertible [2]. It follows from Eq. (4) that two SLOCC
equivalent states have the same rank, in other words, the
rank is invariant under SLOCC, thereby revealing that the
rank is an inherent physical property. Therefore, if two
states differ in their ranks, then they belong necessarily to
different SLOCC equivalent classes. It should be noted that
the converse does not hold; i.e., two states with the same
rank are not necessarily equivalent.

We have the following two simple results: (i) The rank
of a full separable state is always 1. (ii) The rank of a
genuinely entangled state is always greater than 1.

Remark 1. Taking the determinants of both sides of
Eq. (4) for even n yields [17,18]:

detMðjc 0iÞ ¼ detMðjc iÞ½detðA1Þ . . . detðAnÞ�2ðn�2Þ=2
:

(5)

It follows from Eq. (5) that if one of detMðjc 0iÞ and
detMðjc iÞ vanishes while the other does not, then the state
jc 0i is not equivalent to jc i under SLOCC. In view of the
fact that the determinant of a matrix is nonvanishing if and
only if it has full rank, the SLOCC invariance of the rank is
stronger than the invariance of the determinant.

SLOCC classification in terms of the rank.—We define
the family F n;r to be the set of all n-qubit states with the

same rank r. In the sequel, we will omit the subscript n and
simply write F r, whenever the number of qubits is clear

from the context. Thus, there exist 2½n=2� different SLOCC
families for any n qubits. Clearly, if two states are SLOCC
equivalent then they belong to the same family. However,
the converse does not hold: two states belonging to the

same family may be inequivalent under SLOCC. It is
further noted that when n � 4, at least one family contains
an infinite number of SLOCC classes.
For any n qubits, the following hold: (i) Family F 1

contains all the full separable states. (ii) Family F 1 con-
tains no genuine entangled states. (iii) Family F 1 contains
finite SLOCC classes. (iv) Family F 2 contains the n-qubit
jGHZi state. (v) Family F 2þr contains the following state:

1ffiffiffiffiffiffiffiffiffiffiffiffi
rþ 2

p ðj0i � j2n � 1i þ Xr

k¼1

jkð2½ðnþ1Þ=2� þ 1ÞiÞ; (6)

where 1 � r � 2½n=2� � 2.
Now we turn to the n-qubit symmetric Dicke states j‘; ni

with ‘ excitations [22]:

j‘; ni ¼ ðn‘Þ�ð1=2ÞX
k

Pkj11; 12; . . . ; 1‘; 0‘þ1; . . . ; 0ni; (7)

where ‘ ranges from 1 to n� 1 and fPkg is the set of all
distinct permutations of the spins. These states have been
featured in theoretical studies [23,24] and implemented
experimentally [25,26]. The Dicke state j1; ni is just the
n-qubit jWi state and j‘; ni is equivalent to jn� ‘; ni under
SLOCC.
As has been previously noted, all symmetric Dicke

states j‘; niwith ‘ ¼ 1; . . . ; ½n=2� are SLOCC inequivalent
[14,15]. These states, as demonstrated below, can also be
distinguished by the rank of their coefficient matrices
which depends only on the number of excitations and
is independent of the number of qubits. Since
rankðj‘; niÞ ¼ rankðjn� ‘; niÞ, we only need to compute
rankðj‘; niÞ with 1 � ‘ � ½n=2�. This can be done as fol-
lows. We first construct the coefficient matrix Mðjc 0iÞ of
state jc 0i in the same manner as discussed above. We may
write jc 0i in terms of an orthogonal basis as jc 0i ¼P

ai1i2...in ji1i2 . . . ini, where i1i2 . . . in is the n-bit binary

form of the index i. Inspection of the structure of the matrix
Mðjc 0iÞ reveals that the coefficient ai1...i½n=2�i½n=2�þ1...in is the

entry in the ði1 . . . i½n=2�Þth row and ði½n=2�þ1 . . . inÞth column

of the matrix. Here, the n bits are split into two halves,
referred to as the row bits and column bits, respectively:
bits 1 to ½n=2� are used to specify the row number, and bits
½n=2� þ 1 to n are used to specify the column number. In
view of Eq. (7), the nonzero entries of the coefficient
matrix Mðj‘; niÞ are those whose n-bit binary forms have
‘ bits equal to 1 and the rest of the bits equal to 0. We
further observe that the rows of Mðj‘; niÞ with no more
than ‘ row bits equal to 1 are nonzero rows, while the
remaining rows are identically zero. Consider the rows
with j (0 � j � ‘) row bits equal to 1. Clearly, there are
ð n2jÞ such rows ofMðj‘; niÞ that are identical. Letting j vary
from 0 to ‘ gives a total of ‘þ 1 different rows. It can be
verified that these ‘þ 1 rows are independent. This yields
rankðj‘; niÞ ¼ ‘þ 1.
Accordingly, for any n qubits, all the Dicke states j‘; ni

with ‘ ¼ 1; . . . ; ½n=2�, are inequivalent under SLOCC,
since they differ in their ranks. Further, it can readily be
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seen that the Dicke state j‘; ni with ‘ ¼ 1; . . . ; ½n=2� be-
longs to the family F ‘þ1. This gives rise to a complete
SLOCC classification of all the symmetric Dicke states.

Remark 2. It follows from the discussion above that both
the states jWi and jGHZi have the same rank, thereby
revealing that the two states have a similar algebraic struc-
ture. It is further noted that both the states jWi and jGHZi
admit a similar Frobenius algebra structure [27].

Ranks of coefficient matrices under permutations of
qubits.—In [17,18], we presented a systematic way to
find all the possible coefficient matrices for even n-qubit
states such that the determinants of these coefficient ma-
trices are invariant under SLOCC. Here we extend this
construction to general n qubits. Observe that to write a

2½n=2� � 2½ðnþ1Þ=2� matrix into binary index form, we need
½n=2� row bits and ½ðnþ 1Þ=2� column bits. In the binary
form of the coefficient matrix given in Eqs. (1) and (2), bits
1 to ½n=2� are the row bits, and bits ½n=2� þ 1 to n are the
column bits. Alternatively, we may choose any ½n=2� bits
as the row bits and the remaining ½ðnþ 1Þ=2� bits as the
column bits. This amounts to ð12Þnþ1 mod 2ð n

½n=2�Þ different

coefficient matrices, ignoring those that end up exchanging
rows or columns. The factor of 1=2 for even n arises
because exchanging the row and column bits is equivalent
to transposing the matrix. It turns out that the ranks of these
coefficient matrices are all invariant under SLOCC. To see
this, we will resort to permutations of qubits. Let � be a
permutation of qubits given by [18]

� ¼ ðq1; t1Þðq2; t2Þ . . . ðqk; tkÞ; (8)

where ðqi; tiÞ is the transposition of a pair of qubits qi and
ti with qi being a row bit and ti a column bit. Exhausting
all possible values of q1; . . . ; qk and t1; . . . ; tk such that 1 �
q1 < q2 < . . .< qk < ½ðnþ 1Þ=2�, ½n=2�< t1 < t2 <
. . .< tk � n, and letting k vary from 0 to ½ðn� 1Þ=2�
(we define� ¼ I for k ¼ 0), yields ð12Þnþ1 mod 2ð n

½n=2�Þ differ-
ent permutations of qubits. Let M�ðjc 0iÞ denote the coef-
ficient matrix of the state jc 0i under permutation�, and let
rank�ðjc 0iÞ denote its rank. We may refer to rank�ðjc 0iÞ as
the rank of the state jc 0i under permutation �. Simply
taking the permutation � to both sides of Eq. (4) yields the
following SLOCC matrix equation:

M�ðjc 0iÞ ¼ ðA�ð1Þ � . . . �A�ð½n=2�ÞÞM�ðjc iÞ
� ðA�ð½n=2�þ1Þ � . . . �A�ðnÞÞT: (9)

It follows immediately from Eq. (9) that two SLOCC
equivalent states have the same rank with respect to the
permutation �. That is, the rank with respect to the permu-
tation � is invariant under SLOCC. Conversely, if two
states differ in their ranks with respect to the permutation
�, then they belong necessarily to different SLOCC
classes. We define the family F �

r to be the set of all
n-qubit states with the same rank r with respect to the

permutation�, where r ranges from 1 to 2½n=2� and we have
omitted a subscript n. Suppose �1; �2; . . . ; �m with m �
ð12Þnþ1 mod 2ð n

½n=2�Þ is a sequence of permutations of the form

given in Eq. (8). In terms of the rank of M�1 , the n-qubit

states are divided into 2½n=2� families: F �1
r1 . Then, in terms

of the rank ofM�2 , each familyF �1
r1 can be further divided

into 2½n=2� subfamilies: F �1�2
r1;r2 ¼ F �1

r1 \F �2
r2 . Here, each

subfamily F �1�2
r1;r2 is the intersection of the families F �1

r1

and F �2
r2 . Assume that in terms of the ranks of

M�1 ;M�2 ; . . . ;M�m�1 , the n-qubit states are divided into

2ðm�1Þ½n=2� families: F �1�2...�m�1
r1;r2;...;rm�1

¼ F �1
r1 \ . . . \F �m�1

rm�1
.

Then, in terms of the rank of M�m , each family

F �1�2...�m�1
r1;r2;...;rm�1

can be further divided into 2½n=2� subfamilies:

F �1�2...�m
r1;r2;...;rm ¼ F �1�2...�m�1

r1;r2;...;rm�1
\F �m

rm ¼ F �1
r1 \ . . . \F �m

rm . This

gives a total of 2m½n=2� different SLOCC families.
We exemplify with the family La2b2 ¼ aðj0000i þ

j1111iÞ þ bðj0101i þ j1010iÞ þ j0011i þ j0110i for four
qubits presented by Verstraete et al. [3]. As shown in
Table I, the family La2b2 is further divided into four sub-

families (all other subfamilies are empty) with respect to
permutations �1 ¼ I and �2 ¼ ð1; 4Þ: F �1�2

2;1 , F �1�2

3;3 , and

F �1�2

4;2 contain only a single SLOCC class, while F �1�2

4;3

contains an infinite number of SLOCC classes. In a similar
fashion, we can further divide other families presented by
Verstraete et al. [3] into subfamilies.
Consider the family span f0k�; 0k�g ¼ j0000i þ

j1100i þ �j0011i þ �j1111i for four qubits presented by
Lamata et al. [5]. As shown in Table II, the family
f0k�; 0k�g is further divided into four subfamilies (all
other subfamilies are empty) with respect to permutations
�1 ¼ I and �2 ¼ ð1; 4Þ: F �1�2

1;2 , F �1�2

1;4 , and F �1�2

2;3 contain

only a single SLOCC class, while F �1�2

2;4 contains an

infinite number of SLOCC classes. In a similar way, other
families presented by Lamata et al. [5] can also be further
divided into subfamilies.
By using the filters, it has been shown that four five-

qubit states j�2i, j�4i, j�5i, and j�6i are in different

TABLE I. SLOCC classification of La2b2

F �1

1 F �1

2 F �1

3 F �1

4

; a ¼ b ¼ 0 ab ¼ 0 & a � b ab � 0
F �2

1 F �2

2 F �2

3 F �2

4

a ¼ b ¼ 0 a ¼ �b & a � 0 a � �b ;
F �1�2

2;1 F �1�2

3;3 F �1�2

4;2 F �1�2

4;3

a ¼ b ¼ 0 ab ¼ 0 & a � b a ¼ �b & a � 0 ab � 0 & a � �b
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orbits [28]. Letting �1 ¼ I, �2 ¼ ð1; 5Þ, and �3 ¼ ð1; 3Þ, it
can be shown that the above four states belong to
the families F �1�2�3

2;2;2 , F �1�2�3

3;3;3 , F �1�2�3

2;4;2 , and F �1�2�3

2;4;4 ,

respectively. Therefore, these five-qubit states can also be
distinguished by ranks. Furthermore, it has been shown
that five six-qubit states j�2i, j�4i, j�5i, j�6i, and j�7i
are distinguished by the six-qubit filters [28]. Letting �1 ¼
I, �2 ¼ ð1; 4Þ, and �3 ¼ ð1; 5Þ, it can be shown that the
above five states belong to the families F �1�2�3

2;2;2 , F �1�2�3

2;2;4 ,

F �1�2�3

2;4;4 , F �1�2�3

3;4;4 , and F �1�2�3

3;3;3 , respectively. Therefore,

these six-qubit states can also be distinguished by ranks.
Discussion and summary.—Chterental et al. (see

Remark 3.5 in [4]) stated that the family Lab3 is equivalent

to a subfamily of Labc2 obtained by setting a ¼ c, where

Lab3 and Labc2 are given by [3]

Lab3 ¼ aðj0000i þ j1111iÞ þ aþ b

2
ðj0101i þ j1010iÞ

þ a� b

2
ðj0110i þ j1001iÞ

þ iffiffiffi
2

p ðj0001i þ j0010i þ j0111i þ j1011iÞ; (10)

Labc2 ¼
aþ b

2
ðj0000i þ j1111iÞ

þ a� b

2
ðj0011i þ j1100iÞ

þ cðj0101i þ j1010iÞ þ j0110i: (11)

In terms of the rank, the families Lab3 and Labc2 with a ¼ c

are both divided into four subfamilies, see Table III. As
can be seen, the subfamily F 2 of Lab3 is a single class

with representative iffiffi
2

p ðj0001iþj0010iþj0111iþj1011iÞ,
whereas the subfamily F 2 of Labc2ða ¼ cÞ is a single

class with representative b
2 ðj0000i þ j1111i � j0011i �

j1100iÞ þ j0110i. In light of Theorem 1 in [20], the two
representative states are not equivalent to each other. This

reveals that Lab3 is not equivalent to a subfamily of Labc2

obtained by setting a ¼ c.
To determine if a four-qubit state belongs to a family

according to the criteria given by Verstraete et al. [3] and
Lamata et al. [5], one needs to check if the state is equiva-
lent to the representative state of that family. For the
classification scheme proposed in this Letter, to determine
if an n-qubit state belongs to a family, one needs only to
calculate the rank of the coefficient matrix of the state.
In summary, we have studied SLOCC classification for

general n-qubit states via the invariance of the rank of the
coefficient matrix and given several examples for n up to
six. We have also characterized full separable states and
genuinely entangled states in terms of the rank. We expect
that the proposed entanglement classification for general
n-qubit states may find further experimental consequences.
This work was supported by NSFC (Grant
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