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Abstract

Ricci ow deforms the Riemannian metric proportionally teetcurvature, such that the curvature evolves according to
a heat diffusion process and eventually becomes constantwhliere. Ricci ow has demonstrated its great potential
by solving various problems in many elds, which can be hattndled by alternative methods so far.

This work introduces the uni ed theoretic framework for ciste Surface Ricci Flow, including all the common
schemes: Tangential Circle Packing, Thurston's CirclekPay Inversive Distance Circle Packing and Discrete Yam-
abe Flow. Furthermore, this work also introduces a novedises, Virtual Radius Circle Packing and the Mixed Type
schemes, under the uni ed framework. This work gives exipdjeometric interpretation to the discrete Ricci energies
for all the schemes with all back ground geometries, and dheesponding Hessian matrices.

The uni ed frame work deepens our understanding to the therdte surface Ricci ow theory, and has inspired
us to discover the new schemes, improved the exibility aoHustness of the algorithms, greatly simpli ed the
implementation and improved the ef ciency. Experimengdults show the uni ed surface Ricci ow algorithms can
handle general surfaces with different topologies, andlisist to meshes with different qualities, and is effectore f
solving real problems.

Keywords: Uni ed, Ricci ow, circle packing, discrete Ricci energy.éssian matrix.

1. Introduction Suppos€S;g) is a metric surface, according to the
Ricci ow was introduced by Hamilton for the pur- ~ gauss-Bonnet theorem, the total Gaussian curvature
pose of studying low dimensional topology. Ricci ow  sKdAgequalsto pc(S), whereK is the Gaussian cur-
deforms the Riemannian metric proportional to the cur- vature,c(S) the Euler characteristics & Ricci ow
vature, such that the curvature evolves according to adeforms the Riemannian metric conformally, namely,
heat diffusion process, and eventually becomes constan-g(t) = €*®g(0), whereu(t) : S! R is the conformal
t everywhere. In pure theory eld, Ricci ow has been factor. The normalized Ricci ow can be written as
used. for the proof of Pplnpare's conjecture. In engi- duit) _ 2pc(9
neering elds, surface Ricci ow has been broadly ap- “at A(0)
plied for tackling many important problems, such as pa-
rameterization in graphicsi[1], deformable surface reg- where A(0) is the initial surface area. Hamilton! [6]
istration in vision [2], manifold spline construction in  and chow [7] proved the convergence of surface Ricci
geometric modeling [3] and cancer detection in medi- ow. Surface Ricci ow is the negative gradient ow
cal imaging |ﬂ4]. More applications in engineering and of the Ricci energy. It is a powerful tool for designing

K(t): (1.1)

medicine elds can be found in[5]. 20 Riemannian metrics using prescribed curvatures, which
has great potential for many applications in engineer-
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Figure 2: Uniformization for surfaces with boundaries bgdRiow.

Figure 3: Conformal mapping preserves in nitesimal ciecle

constant curvatures.

Conformal metric deformation transforms in nites-
imal circles to in nitesimal circles as shown in Figl 3.
Intuitively, one approximates the surface by a triangulét-
ed polyhedron (a triangle mesh), covers each vertex by
a disk of nite size (a cone), and deforms the disk radii
preserving the combinatorial structure of the triangula-
tion and the intersection angles among the circles. This
deformation simulates the smooth conformal mappisg
with very high delity. Rodin and Sullivan([8] proved
that if the triangulation of a simply connected planar do-
main is subdivided in nite times, the induced discrete
conformal mappings converge to the smooth Rieman-
n mapping. The discrete version of surface Ricci ow
was introduced by Chow and Luo in [9] in 2003. It is
based on the circle packing method.

Historically, many schemes of circle packing or cir-
cle pattern have been invented. The discrete surface can
be constructed by gluing Spherical, Euclidean or Hy-
perbolic triangles isometrically along their edges. Ac-
cordingly, we say the triangle mesh has spher&al
EuclideanE? or hyperbolicH? background geometry.
Under each background geometry, there are 6 schemes,
tangential circle packing, Thurston's circle packing, in-
versive distance circle packing, discrete Yamabe ow,
virtual radius circle packing and mixed type scheme.
There are 18 combinations in total. Among them, the
hyperbolic and spherical virtual radius circle packing
and mixed type schemes are rst introduced in this
work.

Most of the existing schemes were invented and de-
veloped individually in the past. This work seeks a co-
herent theoretic framework, which can unify all the ex-
isting schemes, and predicts undiscovered ones. This
leads to deeper understandings of discrete surface Ric-
ci ow and provides approaches for further generaliza-
tion. In practice, the theoretic discovery of virtual ra-
dius circle packing gives novel computational algorith-
m; the mixed schemes improves the exibility; the u-
ni ed framework greatly simpli es the implementation;
the geometric interpretations offer better intuitions.

1.1. Contributions
This work has the following contributions:

1. This work establishes a uni ed framework for dis-
crete surface Ricci ow, which covers most exist-
ing schemes: tangential circle packing, Thurston's
circle packing, inversive distance circle packing,
discrete Yamabe ow, virtual radius circle packing
and mixed type schemes, in Spherical, Euclidean
and hyperbolic background geometry. In Eu-
clidean case, our uni ed framework is equivalen-
t to Glickenstein's geometric formulation [10].To
the best of our knowledge, the uni ed frameworks
for both hyperbolic and spherical schemes are re-
ported for the rsttime.

2. This work introduces 4 novel schemes for discrete
surface Ricci ow: virtual radius circle packing
and mixed type schemes under both hyperbolic and
Euclidean background geometries, which are nat-
urally deduced from our uni cation work. To the
best of our knowledge, these are introduced to the
literature for the rst time.

3. This work gives an explicit geometric interpreta-
tion to the discrete Ricci energy for all the 18
schemes. The geometric interpretations to 2 Yam-
abe ow schemes (both Euclidean and Hyperbolic)
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Yamabe Flow.Luo introduced and studied the combi-
born [11]. natorial Yamabe problem for piecewise at metrics on

4. This work also provides an explicit geometric in- triangulated surfaces [24]. Springborn, Schroder and
terpretation to the Hessian of discrete Ricci energy Pinkall [25] considered this combinatorial conformal
for all the 18 schemes. The interpretation in Ee change of piecewise at metrics and found an explicit
clidean case is due to Glickenstein [10]. To the best formula of the energy function. Glickenstein [26, 27] s-
of our knowledge, the interpretation in Hyperbol- tudied the combinatorial Yamabe ow on 3-dimensional
ic and Spherical cases are introduced for the rst piecewise at manifolds. Bobenko-Pinkall-Springborn
time. Recently, Glickenstein and Thomas discov- introduced a geometric interpretation to Euclidean and

ered the similar result independently [12]. 10 hyperbolic Yamabe ow using the volume of gener-
alized hyperbolic tetrahedron in [11]. Combinatorial

The paper is organized as follows: section 2 briey Yamabe ow on hyperbolic surfaces with boundary has
reviews the most related theoretic works; section 3 in- been studied by Guo in [28]. The existence of the solu-
troduces the uni ed framework for different schemes of tion to Yamabe ow with topological surgeries has been
discrete surface Ricci ow, which covers 18 schemes proved recently in [29] and [30].
in total; section 4 explains the geometric interpretation
of the Hessian matrix of discrete Ricci energy for al-
| schemes with different background geometries; sec-
tion 5 gives a geometric interpretation of Ricci energy;
Experimental results are reported in section 6, different
schemes are systematically compared. The work ¢@n-Mixed type Circle PackingThe Euclidean mixed type
cludes in section 7, future directions are discussed; Fi- circle packing appeared in [5] and Glickenstein's talk

nally, in the appendix, we give the implementation de- [31]. This work introduces hyperbolic and spherical
tails and reorganize all the formulae. mixted type schemes.

were rst made by Bobenko, Pinkall and Spring-

Virtual Radius Circle Packing.The Euclidean virtual
radius circle packing rst appeared in [5]. The hyper-
bolic and spherical virtual radius circle packing are in-
troduced in this work.

Uni ed Framework. Recently Glickenstein [10] set the
s theory of combinatorial Yamabe ow of piecewise at
Thurston's Circle Packing.In his work on constructing metric in a broader context including the theory of cir-
hyperbolic metrics on 3-manifolds, Thurston [13] stud- cle packing on surfaces. This work focuses on the hy-
ied a Euclidean (or a hyperbolic) circle packing on a perbolic and spherical uni ed frameworks.
triangulated closed surface with prescribed intersection o o o .
angles. His work generalizes Koebe's and Andreev's re- Varlatlon.al Principle. The variational ap_proach to cir-
sults of circle packing on a sphere [14, 15, 16]. Thurstsn €& packing was rst introduced by Colin de Verdiére
conjectured that the discrete conformal mapping based[18]- Since then, many works on variational princi-
on circle packing converges to the smooth Riemann PI€S on circle packing or circle pattern have appeared.
mapping when the discrete tessellation becomes ner FOr €xample, see Bragger [32], Rivin [33], Leibon
and ner. Thurston's conjecture has been proved by [34], Chow-Luo [9], Bobenko-Springborn [35], Guo-
Rodin and Sullivan [8]. Chow and Luo established tife Lu© [36], and Springborn [37]. Variational principles

intrinsic connection between circle packing and surface for Polyhedral surfaces including the topic of circle
Ricci ow [9]. packing were studied systematically in Luo [38]. Many

The rigidity for classical circle packing was proved energy functions are derived from the cosine law and its
by Thurston [13], Marden-Rodin [17], Colin de Ver- derivative. Tangent circle packing is generalized to tan-

diere [18], Chow-Luo [9], Stephenson [19], and H& gent circle packing with a family of discrete curvature.
' ’ ' For exposition of this work, see also Luo-Gu-Dai [39].
[20].

2. Previous Works

Discrete Uniformization.Recently, Gu et al established

Inversive Distance Circle PackingBowers-Stephenson  discrete uniformization theorem based on Euclidean

[21] introduced inversive distance circle packing which
generalizes Andreev-Thurston's intersection angle cir-
cle packing. See Stephenson [19] for more information.
Guo gave a proof for local rigidity [22] of inversive dis-
tance circle packing. Luo gave a proof for global rigid-
ity in [23].

[29] and hyperbolic [30] Yamabe ow. In a series of
papers on developing discrete uniformization theorem
[40],[41],[42] and [43], Sa'ar Hersonsky proved sever-
al important theorems based on discrete harmonic maps
and cellular decompositions. His approach is comple-
mentary to the work mentioned above.
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Figure 4: Smooth surfaces are approximated by discrete&esf
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3. Uni ed Discrete Surface Ricci Flow

This section systematically introduces the unied Figure 5: Different background geometry, Euclidean, sishéand
framework for discrete surface Ricci ow. The whole YPerPolic.
theory is explained using the variational principle on De nition 3.3 (Background Geometry). Suppos&is
discrete surfaces based on derivative cosine law [39]. @ discrete metric surface, if each faceSif a spherical,
The elementary concepts and some of schemes can bd Euclidean or hyperbolic ) triangle, then we s&yis

found in [38] and the chapter 4 in [5]. 225 With spherical, (Euclidean or hyperbolic) background
geometry. We us®, E2 andH? to represent spherical
3.1. Elementary Concepts Euclidean or hyperbolic background metric.

In practice, smooth surfaces are usually approximat- Triangles with different background geometries satisify
ed bydiscrete surfacediscrete surfaces are represent- different cosine laws:

ed as two dimensional simplicial complexes which are

. . . _  COsgj+ Ccosqj COSgk 2
manifolds, as shown in Fig. 4. 1 = s sng E
COSsQ;+ COsgj CO:!
cod; COSGi* COSq; oSk 2

De nition 3.1 (Triangular Mesh). Suppos& is a two sing; sing
dimensional simplicial complex, furthermore it is also a cosHi W H2
manifold, namely, for each point p & there exists a
neighborhood of p, {p), which is homeomorphic to the The discrete Gaussian curvature is de ned as angle
whole plane or the upper half plane. Theris calleda  de cit, as shown in Fig. 6.
triangular mesh.

If U (p) is homeomorphic to the whole plane, then p
is called an interior point; if Up) is homeomorphic to
the upper half plane, then p is called a boundary point.

De nition 3.4 (Discrete Gauss Curvature). The dis-
crete Gauss curvature function on a mesh is de ned on
vertices, KV! R,

(

2k
The fundamental concepts from smooth differential K(v) = 2p A qij_k; v<1fM

geometry, such as Riemannian metric, curvature and p Aaxg’; v21Im

conformal structure, are generalized to the simplicial

complex, respectively. 20 Whereg;"'s are corner angle atyvin the facelvi; vj; wl,
In the following discussion, we use= (V;E;F) to and M represents the boundary of the mesh.

denote the mesh with vertex 3ét edge seE and face

setF. A discrete surface is with Euclidean (hyperbolic

or spherical) background geometry if it is constructed

by isometrically gluing triangles if2 (H? or S?).

jKs

De nition 3.2 (Discrete Riemannian Metric). A dis-
crete metric on a triangular mesh is a function de ned
onthe edges, IE! R*,which satis es the triangle in-
equality: on each facfyi;vj; v, Ii;1j; Ik are the lengths
of edges against wj; v respectively,

Figure 6: Discrete curvatures of an interior vertex

The Gauss-Bonnet theorem still holds in the discrete
|i+|j>|k;|j+|k>|i;|k+|i>|j2 case.
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Theorem 3.5 (Discrete Gauss-Bonnet Theorem).
SupposeS is a triangular mesh with Euclidean back-
ground metric. The total curvature is a topological
invariant,

a Kv+ 4 K+ eA(S)= 2pc(S);  (3.1)
v<TS V2 1S

wherec is the characteristic Euler number, and K is the
Gauss curvature, ¢8) is the total areag= f+ 1;0; 1g

if S is with spherical, Euclidean or hyperbolic back-
ground geometry.

3.2. Uni ed Circle Packing Metrics

De nition 3.6 (Circle Packing Metric). Supposes =
(V;E;F) is a triangle mesh with spherical, Euclidean
or hyperbolic background geometry. Each vertgxsv
associated with a circle with radiug. The circle radius
function is denoted ag: V! R.(; a function de ned
onthe verticeg:V !f +1;0; 1gis calledthescheme
coef cient; a function de ned on edgeb : E! R is
called thediscrete conformal structure coef cientA
circle packing metric is a 4-tupl€S; g; h; e), the edge

In the smooth case, changing a Riemannian metric by

a scalar functiong! e?g, is called a conformal metric
deformation. The discrete analogy to this is as follows.

De nition 3.7 (Discrete Conformal Equivalence).
Two circle packing metric6Sy; g; hx; &), k= 1;2, are
conformally equivalent i5; = S, hy1 = hy, e = .
(ar may not equals tgp.)

The discrete analogy to the concept of conformal fac-

tor in the smooth case is

De nition 3.8 (Discrete Conformal Factor). Discrete
conformal factor for a circle packing metriS; g; h; e)
is a function de ned on each vertex V! R,

8
< logg E?
u=_ logtanhd H? (3.2)
logtand  S? 260

De nition 3.9 (Circle Packing Schemes).Suppose
S=(V;E;F) is triangle mesh with spherical, Euclidean
or hyperbolic background geometry. Given a circle
packing metric(S; g; h; e), for an edgevi;vj] 2 E, its

h=1e=1 0 h

l.e=1

Figure 7: Tangential circle packing, Thurston's circle kiag and
inversive distance circle packing schemes, and the gemnnatrpre-
tations to their Ricci energies.

length is determined by the 4-tuple and the background () Ya;nébe ow
geometry.

(e):/Tr:[.rad.cp

h>0e=0 h>0e= 1

(f) mixed type

h>0

e2f+1,0; 1g

Figure 8: Yamabe ow, virtual radius circle packing and nixiype
schemes, and the geometric interpretations to their Riigges.

length |; is given by
8

E |i2j = Zhijeui+uj + aezui + ejezui E2
coshij = e 1faezu0(§u+- ™) H?2
(1 qe?i)(1 ge™)
2 codij = 4" +(1 e\ af’) g
(1+ g (1+ ge™)
(3.3)

The schemes are named as follows:

[ Scheme | o g [ hyj
Tangential Circle Packing +1 +1 +1
Thurston's Circle Packing +1 +1 [0;1]
Inversive Distance Circle Packing +1 +1 >0
Yamabe Flow 0 0 >0
Virtual Radius Circle Packing -1 -1 >0
Mixed type f 1,0,+1g | f 1,0,+1g | >0
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Fig. 7 and Fig. 8 illustrate all the schemes with for

is de ned independent of the integration path. This fol-

discrete surfaces with Euclidean background geometry. lows from the following symmetry lemma, which has

Remark 3.10. From the de nition, the tangential circle,,
packing is a special case of Thurston's circle packing;
Thurston's circle packing is a special case of inversive
distance circle packing. In the following discussion, we
unify all three types as inversive distance circle packing.
290
3.3. Discrete Surface Ricci Flow
De nition 3.11 (Discrete Surface Ricci Flow). A dis-
crete surface witts?, E2 or H? background geometry,
and a circle packing metri€S; g; h; €), the discrete sur-
face Ricci ow is

du(t) _

T K Ki(t); (3.4)

wherekK; is the target curvature at the vertex v

fundamental importance. In this work, we give three
proofs. The following one is algebraic, more dif cult

to verify, but leads to computational algorithm directly.
The second one is based on the geometric interpreta-
tion to the Hessian matrix in Section 4. The third one
is based on the geometric interpretation to the discrete
Ricci energy. The later two proofs are more geometric
and intuitive.

Lemma 3.13 (Symmetry). A discrete surface witls?,
E2 or H? background geometry, and a circle packing
metric (S; g; h;e), then for any pair of verticesj\and
Vi

TK;

I TK,
fTu;

= T (3.8)

The target curvature must satisfy certain constraints to Proof 3.14. Fromthe relationin Eqn. 3.7, itis suf cient
ensure the existence of the solution to the ow, such &nd necessary to show the symmetry for each triangle

as Gauss-Bonnet equation Egn. 3.1, but also some addi{Vi; Vi; V] for all schemes,

tional ones described in [13], [17] and [9], for instances.
The discrete surface Ricci ow has exactly the same

formula as the smooth counter part Eqn. 1.1. Further-
more, similar to the smooth case, discrete surface Ricci

ow is also variational: the discrete Ricci ow is the
negative gradient ow of the discrete Ricci energy.

De nition 3.12 (Discrete Ricci Energy). A discrete
surface withS?, E2 or H? background geometry, and
a circle packing metric(S;g;h;e). For a triangle
[vi;vj;wi] with inner angles(qi; gj; qk), the discrete
Ricci energy on the face is given by

74 (ui;uj;uK)

Er(ui; uj; u) = gdu+ gjduj + gduc (3.5)

The discrete Ricci energy for the whole mesh is de ned

as

4 (ug;up; sup) D

a (K K)du:
= (3.6)

Es(ui;up;  ;un) =

From de nition, we get the relation between the surface
Ricci energy and the face Ricci energy

3 5 o]
Es= & (K 2p)u+ 3 Er: (3.7)

i=1 f2F

The description of the energy in terms of an integral re-

Ta _ T4
uj  ui’

This is proven by nding the explicit formula for the
Hessain matrix of the face Ricci energy,

T(ag:q;;a) _ 1 1n.
P - —LQL 'D; 3.9
T(ui; uj; u) 2A Q (3.9)
where .
A= 5sing (1)) (310)
the matrix L
0 1
gli) O 0
L=@ 0 ;) 0 A (3.11)
0 0 sl
and the matrixQ
1
1 cosgc cosgj
Q= @ cosgy 1 cosg A (3.12)
COsgj COsy; 1
and
0 . o1
0 t(i; ;K t(isk:j)
D= @ t(j:i:k) 0 t(j;ki) A (3.13)
t(ki;j)  t(k ;i) 0

quires the fact that the inside is a closed form so that it where $x) andt (i; j;k) are de ned as

6
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| [ (¥ | t(;i:k | furthermore,

2 (12 72 7
E2 X' 1=2(17 + g r.J ari) Tq he h; 7q; he h Ta h h
H sinhx COSHiCOSI'?Jrj coshxry W: I T;W: T |_';ﬂ_U: T |—
& [ sinx | codicofir] coskry ' o koo ' (4f2)
By symbolic computation, it is straightforward to verify ~These two .formula induces the formula for the Hessian
the symmetry of Eqn. 3.9. of the Ricci energy of the whole surface. One can treat
the circle packindS; g; h; €) as a power triangulation,
4. Geometric interpretation to Hessian which has a dual power diagra Each edgej 2 S

. . . . hasadual edgeZ S, then
This section focuses on the geometric interpretation

to Hessian matrix of the discrete Ricci energy on each TKi _ 1K _ Jé_,]

face for E;H? and S? cases. This gives the second Tui ~ Tu o jejj’ (4.3)
proof of the symmetry lemma 3.13. q
an
4.1. Euclidean Case S = A M (4.4)
Tui R

The interpretation in Euclidean case is due to Glick-
enstein [10] (Z. He [44] in the case of circle packings) This gives a geometric proof for the symmetry lemma
and illustrated in [5]. In the current work, we build 3.13in Euclidean case.
the connection to the Power Delaunay triangulationand ~ Suppose on the edde;v;], the distance fronv; to
power voronoi diagram. the perpendicular foaw is djj, the distance from; to

We only focus on one triangle;; vj; vi], with corner W is dji, thenl;; = d;; + d;;, and
anglesq;; gj; g, conformal factorsu; uj;ux and edge
lengthslij for edgel[vi;vjl, ljx for [vj;v] andly; for m - dm =d:-

[vic; vi]. Tu "
Power Delaunay TriangulationAs shown in Fig. 7  furthermore
and Fig. 8, thewowerof g with respect toy is dizj + dj2k+ @ = dii"' dl%j + dﬁ:

c) = i 2 .
OWVi; Q) = Vi eq: . . : L .
pow(vis@) = jvi - di 92 This shows the power circle interpretation is equivalent
Thepower center @f the triangle satisi es =s 10 Glikenstain's formulation.

POW(Vi;0) = POW(Vj;0) = POW(Vj;O0): 4.2. Hyperbolic Case
Let4 153 be a hyperbolic triangle whose vertices are

labeled by 12;3: Letry;rp;r3 be three positive numbers

g= powVi;0). iated to th ti e32f 1,0;1gb
Therefore, for tangential, Thurton's and inversive dis- ﬁ\sdsiggltires of?he?y\;zréﬁﬁ,e?/aeﬁ:t%é? gRe

. . . . 3!
tance circle packlng cases, t_he power circle is orthogo- - For the mixed type of discrete conformal geometry,
nal to three circles at the vertic€s Cj andC;; for Yam- the edge length of 103is given by
abe ow case, the power circle is the circumcircle of . -
the triangle; for virtual radius circle packing, the power cosfh= 4h; 7 a)f(')r;t;:?+ e e‘):(')r;r:? o+ cosiicosifi
circle is the equator of the sphere, which goes through ' R
three pointsfvi + g#n;vj + ¢#n; v + g¢ng, wheren is
' i ' = 1902

the normal to the plane. wherefi; jikg= 1,2,3: _

Through the power center, we draw line perpendicu-  Via the cosine law, the edge lengthdl; |5 determine
lar to three edges, the perpendicular feetsmrer; and the anglesy; Gz; gs. o
Wi respectively. The distance from the power certer Whenei = & = e = 0, this is the case of Yamabe

The power circle Ccentered ab with radiusg, where

to the perpendicular feet atg;h; andhy respectively. ow. There. is a_circle passing throggh the three vertices
Then it can be shown easily that of 4 153 Itis still called thepqw_er circle _ .
Whene = & = e = 1, this is the case of inversive
Ta _ Ta; _ b Tag; _ Ta_ h Ta_ Tqg _ hj. distance circle packing. Centered at each veitéhere
fup ~ Tu o N fue Tup o L Tui o fue I wo is acircle with radiusi. Then there is theower circle
(4.1) orthogonal to the three circles centered at the vertices.
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Wheneg = & = es= 1, this is the case of virtu-
al radius circle packing. Led 123 be on the equatos
plane of the ball model of the hyperbolic spat¢& For

each vertex, let i be the geodesic arc perpendicular

to the equator plane with length Assume £2%3%are

Substituting the three formulas into the equation
(4.6), we obtain a relation between the 6 numbers
[1;12;13; %Y, 2.

Substituting the equations (4.5) into this relation, we
obtain a relation betweenjl,;13;rq1;ro;r3andr.

above the equator plane. There is a hemisphere passing Solving for r, we getosHr = %; where

through £2%3% and orthogonal to the equator plane.

The power circlein this case is the intersection of the
hemisphere and the equator plane.
For a mix type, the power circle can still be de ned.
For any type, leh; be the distance from the center of
the power circle to the edde whose length ig.

Theorem 4.1. Let

i ri
Ui = —
] tanh2
Then
Ta _ T2
u  Tug
which equal to
q
tgnhhg 2coskricostf2rocoshs  cosiery costery:
sintflg

N = 1+ 2cosH;cosh,coshs cosifl; costfl, cosilg;

D = costfri(1 cosfly)+ 2coshrcoshrs(cosh,coshs  coshy)
+costfra(l  costly)+ 2coshrzcoshri(cosHzcoshy  cosHyp)

+ costfra(l costls)+ 2costrycoshry(coshicosh,  cosha):

Step 2 Since Rk is the height of the triangléd 42 with
bottom the edgé&2. By the standard formula of height
of a hyperbolic triangle, we have

1+ 2coshxcoshycoshs costfx costfy costls.
sintéls '

sinfthg =

After substituting the equations (4.5) into the above
formula, we have

costr(2costricoshrocoshz  costry  costry)

sintPl3
cosﬁr(Zcoshlcoshzcoshg ’

tantthg =
3 costr; costry)

After substituting the equatiarosifr = %; we have

This gives a geometric proof for the symmetry lemma tanf?h. = N (2c0siTicosiracostiz cosifr; costfry) D sintlsz,
3= .

3.13in hyperbolic case.

N (2coshricoshrocoshs  costry  costry)

We only need to prove the theorem for the case of After substituting the expressionsiofandD in step 1,

e = &= e3= 1. General case can be proved similarly.

Proof 4.2. Step 1 Denote the center of the power circle
by o, the radius by r. Let;¥; z be the distance from o to
the verticedl; 2;3. Then

365

coslx = cosltrcoshry
coshy = coslrcostr; (4.5)
costz = coshrcoshrs

Leta be the anglé 130 andb the anglé 230. Then
a+ b = gs: Therefore

1+ 2cosa cosb cosgz = coga + coS b + cos gs:

(4.6)
By the cosine law,
coshx+ costhecosHho
cosa = : . ;
sinhzsinhl,
coshy+ costezcosh
cosb = W - L
sinhzsinhl,
oSO = coshz+ cosHicosh, 370
S sinhiy sinhl,

we have

tantfhs =

[(cosHicoshs cosHy)coshry +( cosh,cosHs  cosHy)coshr, Sinhz|3COSh'3]2.
N (2coshicoshrocostz  costfry  costry) '

Step 3 By direct calculation, we have

To_ 1% _ 1
fuz  fuy  sing sinhl;j sinhlg
cosH;cosHz cosH,

sink I3

cosH,cosHz cosHy

cosh
( 8 sink I3

coslry coshry) =

(cosHj coshs cost)cosh1+(goshzcosH3 coshl;) coshry sinl"?l3coshs_
"N sintls '

Comparing with the last formula of step 2, we have

g _ T _ tanhhg q

= = costry:
fu,  Tur  sintls

costry

2coslry coshrycoshiz

4.3. Spherical Case

According to a general principle of the relation of hy-
perbolic geometry and spherical geometry, to obtain a
formula in spherical geometry, we onlyﬁ@ to replace
sinh and cosh in hyperbolic geometry by 1sin and
oS



375

380

385

390

395

For the mixed type of discrete conformal geometry
with spherical background geometry, the edge length of
4 1,3is given by
coshij =

sinrj

sinr
4hijj J
Y1 a)cosr

+1+ g (1 g)cosrj+ 1+ g

+cosiricosirj:

Via the cosine law, the edge lengthdy; |3 determine
the anglesh; ¢2; gs.

We can de ne power circles similarly. Lét be the
distance from the center of the power circle to the edge
ij whose length ig.

400

Theorem 4.3. Let

405

) I
e’ = tan—:
2
Then
1o _ 1%
ﬂu2 ”Ul 410
which equal to
tanhg P :
o 2c0$ir1cos2rycoslz+ coFeiry + cofery:
SIN~l3

This gives a geometric proof for the symmetry lemma
3.13in spherical case.

This theorem is also proved by using the general prin-
iple: replace sinh and cosh in hyperbolic geometry by
- 1sin and cos

Here we can give the second proof for the symméify

lemma 3.13 based on the geometric interpretation to the
Hessian, which is geometric and intuitive.

Proof 4.4. Formula 4.1 show the symmetry for al-

I schemes with Euclidean background geometry; theo-
rem 4.1 proves the symmetry for the hyperbolic cases;
theorem 4.3 for the spherical cases.

5. Geometric Interpretations to Ricci Energies

The geometric interpretation to Ricci energies of Eu-
clidean and hyperbolic Yamabe schemes were discov-
ered by Bobenko, Pinkall and Springborn in [11]. The
interpretation to Ricci energies of Euclidean schemes
(without the mixed type) are illustrated in [5]. In thg
current work, we generalize the geometric interpreta-
tions to all the schemes in all background geometries
covered by the uni ed framework, as shown in Fig. 13.

We use the upper half space model b, with Rie-
mannian metric

ds
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_ dX2+ dy?+ dZ

22

Wi

Figure 9: Generalized hyperbolic tetrahedron.

the xy-plane is the ideal boundary. Consider a trian-
gle [vi;vj; v, its Ricci energy is closely related to the
volume of a generalized hyperbolic tetrahedron whose
vertices can be i3, truncated by a horosphere or trun-
cated by a hyperbolic plane.

In Fig. 9, the generalized hyperbolic tetrahedron has
4 verticeswo; Wi; Wj; Wi: The tetrahedron vertewp is
called thetop vertex The 4 faces of the tetrahedron are
hyperbolic planes, the 6 edges are geodesics. The 6 edge
lengths of the generalized tetrahedron atg; uj; Uy
and/ jj; /I j; ! «i- The generalized tetrahedron is uniquely
determined by these 6 edge lengths.

The followings are the common principles for
constructing the generalized tetrahedron for all the
schemes,

1. For allE? schemes, the top vertax, is ideal (at
in nity) and truncated by a horosphere; for &l
schemes, the top vertex is hyperideal (exceeding
the boundary oH3) and truncated by a hyperbolic
plane; for allS? schemes, the top vertex is i?.

2. Forw;, if the corresponding vertey is of inver-
sive distance circle packing =+ 1, then it is hy-
perideal and truncated by a hyperbolic planey; if
is of Yamabe owg = 0, then it is ideal and trun-
cated by a horosphere;\f is virtual radius circle
packinge, = 1, then it is inH3. Same results
holds forw; andw.

3. The edges on the truncated tetrahedron, connecting
to the top vertex on the original tetrahedron, have
lengths u;, ujand ugrespectively.

4. For the edge lengths;, there is a uni ed formula
for three geometries: Euclidean, hyperbolic, spher-
ical,

_ 1 lijy-
hij = i(e i+ gge '): (5.1)
The triangle associated to the top vertexis the tri-
angle[vi;vj;v. Itis obtained by truncating by a horo-
sphere, truncating by a hyperbolic plane or intersecting
with a sphere. Given u; uj; U hij; hjk; hgi, using
cosine law, we can calculate the edge lengths of the tri-
angle[vi;vj;vi]. They are exactly given by the formula

Eqn. 3.3. That means the triangig; vj; v] has lengths

lij;lik; i @and anglesy; gj; Gk
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Here we can give the third proof for the symmetey 6. Experimental Results
lemma based on the geometric interpretation to the Ric-
ci energy, which is more geometric, intuitive and much  In this section, we report our experimental results
easier to verify. based on uni ed Ricci ow. We thoroughly compare
Proof5.1. As shown in Fig. 9, for a generalized hy- different schemes in terms of robustness, conformality,

perbolic tetrahedron, thd vertices can have any types.  €f ciency and initialization dif culty.

The3vertical edges have lengtha;;  uj;  uk with di-

hedral anglesy; gj; gk. The bottom edges have lengths 6.1. Experimental Environment

lij; 1 j; 1 «i with dihedral angles;j; bjx; byi. i i o i

Let V be the volume of the generalized hyperbolic ~ e implemented the unied Ricci ow algorithm-

tetrahedron. By Schli formula s using generic C++ language on Windows platform.
The method is based on optimizing the convex energy
using Newton's method. The sparse linear systems are

f475 solved using Eigen library [45]. The mesh representa-

tion is based on dynamic halfedge data structure. The

current implementation covers all schemes: tangential

circle packing, Thurston's circle packing, inversive dis-

tance circle packing, Yamabe ow, virtual radius circle

packing and mixed type schemes, for discrete surfaces

with Euclidean and hyperbolic background geometries.

dv = % uidg  ujdgj udgc+ [ijdbij + | jdbjx + | dby
(5.2
During the Ricci ow, the conformal structure co
cientshij; hix; hy are invariant, sd jj; 1 jk;/ x are xed.
Because the generalized tetrahedron is determined by
the edge lengths ui; uj; ulij; ! jk; !k, during the
ow, all dihedral anglesgi; gj; gk; bij; bjk; by are func-
tions of y;uj;ux, the volume V is also the function &f

W '(L;Jo'r?gider the function, The algorithms can handle surfaces different topologies.
WU U U) = Ua+ Uig + uede by | b b 2V The .package is accessible for the whole research com-
(5.3) munity.
hence, a8 The computational time is tested on the desktop with
dw = gidu + gjdy; + gdu 2.00GHz CPU, 3.00G RAM. The geometric data sets

+udgi + ujdgj + udgk  1ijdbij | kdbk | idgki
2dv

substitute Sckli formula Egn. 5.2, we have

are from the public databases, such as [46] and [47].
The human face surfaces were scanned from a high
speed and high resolution, phase shifting scanner, as
dW= qgidu + gjdu; + gduk w0 described in [48]. We tested our algorithm on a huge
amount of various models, including different sizes and
topology types. Some of them are without any re ne-
W= qgdu+ gduy+ gduc+ c: ment or geometric processing, in order to test the ro-

bustness of the algorithms. Some of them are re-meshed
W in fact, is the discrete Ricci energy on face in & using the algorithm in [49].

gn. 3.5. This shows the differential 1-form

therefore

gidu + gjdu; + gedug (5.4) 6.2. Generality Testing
is exact, therefore closed. Namely, the Hessian matrix Fig. 1 and 2 demonstrate the generality of Ricci ow
1(qi; 95 o) method to handle surfaces with all possible topolo-
m gies. Fig. 1 shows the uniformization for closed sur-

so faces, where surfaces are conformally mapped to the

unit sphere, Euclidean plane or the hyperbolic disk.
The formula Eqgn. 5.3 represents the Ricci energy on a Fig. 2 illustrates the uniformization for surfaces with
face as the volume of the generalized hyperbolic tetra- boundaries, where compact surface with boundaries
hedron with other terms of conformal factors and con- are mapped to constant curvature spaces, such that all
formal structure coef cients. This formula was intrees boundaries are mapped to geodesic circles. Suggested
duced rst by Bobenko, Pinkall and Springbornin [11] by Glickenstein: Although there is not currently a ro-
for Euclidean and hyperbolic Yamabe ow. In the cur- bust theory of Ricci ow with boundary in the smooth
rent work, we generalize it to all 18 schemes. The d- setting, the discrete Ricci ow can compute the canoni-
ifferential in Eqn. 5.4 is independent of the choice of cal conformal mapping with high ef cacy and ef cien-
horospheres, since the Schlai formula is independent cy. These two gures cover all the topology types of
of the choice of horospher for an ideal vertex. compact surfaces.

10

is symmetric.
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mesh qualities, tangential circle packing outperforms al-

ss | other schemes. The other schemes either crash in the
ow process, or pass through with carefully chosen s-
mall step length, therefore, the running times are much
longer.

If we allow the connectivity to be modi ed during the
(a) low quality face (b) high quality face s ow, to preserve the power Delaunay condition, then all

schemes succeed on both surfaces. This shows the pre-
serving the power Delaunay condition greatly improves
the robustness of the Ricci ow algorithms.

Conformality. Fig. 11 compares the qualities of differ-
55 ent schemes: tangential circle packing, inversive dis-

(c) low quality bimba  (d)high quality bimba tance circle packing, Yamabe ow and virtual radius
circle packing. The parameterization is denoted as
Figure 10: Robustness testing. M ! R2 We calculate each corner angle in the mesh

before and after the discrete conformal mapping. Then

The uniformization of the genus zero closed surfage we compute the ratio between two angle values, take the
can be computed using Ricci ow with spherical back- |ogarithm. The histogram of the logarithm of the angle
ground geometry, or Euclidean background geometry. ratios is a good measurement for the quality of the dis-
The spherical Ricci energy is non-convex, therefore the crete conformal mapping. If the mapping has high con-
spherical Ricci ow is not so stable as the Euclidean formality, then all angle ratios are close to 1, and the his-
Ricci ow. For surface with multiple boundaries, wgs togram is a delta function at 0. Otherwise, the histogram

used Ricci ow method with Koebe's iteration [50]. is with high standard deviation. From the histograms in
Fig. 11, we can see the tangential circle packing pro-
6.3. Comparisons Among Schemes duces mappings with lower conformity. The other three

In the following we compare different schemes of schemes produce mappings with similar conformality.

surface Ricci ow in details. )
s Convergence RateFig. 12 and table 1 show one ex-

RobustnessIn practice, the biggest challenge for Ricci  periment for comparing the convergence rates of differ-
ow algorithm is the robustness. Given a target curva- ent schemes on four different genus one surfaces. In
tureK, we need to ensure the following two points: the experiment, the curvature error threshold is set to
. . le 6 the step length in Newton's method is chosen
L The target cur'vaf[ure IS adm|SS|bIg, namely, thegg- to be ® 1. In the table 1, each item shows the run-
lution to the R_'CC' ow Eqn. 3.4 _ex'Sts' ) ning time in seconds, and iterations in the optimization.
2. The §o|ut|on is reachable. It is _po§3|ble that the Erom the table, we can see the running time and itera-
ow hits the boundary of the admissible curvature iions of different schemes are similar.

space before it hits the target curvature. In practice, tangential circle packing is more robust

For Tangential circle packing, Thurston's circle packe to lower quality mesh qualities, the step length can be
ing, there are theorems describing the admissible curva-chosen to be larger, therefore, it converges faster than
ture spaces [13] and [9]. For Euclidean (or hyperbol- other schemes.
ic) Yamabe ow, if the Delaunay condition is preserved Initialization. In practice, the discrete surfaces are giv-
during the ow by edge swapping, the admissible cur- en as triangular meshes, in the initialization stage, we
vature space is given in the recent works [29] and [38}. need to convert the edge length function to circle pack-
We test robustness to the mesh qualities of different ing metric(S; g; h;e). For different schemes, this con-
schemes. As shown in Fig. 10, the low quality meshes version has different level of dif culties.
are simpli ed from the raw data, they have many ob- For tangential circle packing and Yamabe ow, the
tuse angles and degenerated triangles; the high qualityinitializations are easy and the resulting circle packing
meshes are obtained using the method in [49]. We sisemetrics are unique. The initialization is dif cult for
different schemes to compute Riemann mappings. For Thurston's circle packing, which requires the intersec-
surfaces with high mesh qualities, all schemes succeedtion angles between two vertex circles are acute, fur-
with comparable running time. For surfaces with low thermore, the resulting conformal structure coef cient

11
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Figure 11: Conformality test for different schemes. Thefawdel is
with high mesh quality, the kitten model is with lower mestalify.

Figure 12: Convergence testing.

[ mesh T VIFIE [ Tan.CP T Inv.Dist. CP | Yamabe Flow | Vir. Rad. CP |
Knot 9792/19584/29376 2.324/18 2.314/17 2.223/17 2.234/17
Elk 9000/18000/27000 3.476/24 2.775/28 2.938/21 2.737/20
Rocker 10044/20088/30132( 3.424/23 2.891/21 2.938/21 2.922/21
Kitten 10219/20438/30657| 4.298/23 3.941/21 3.933/21 3.896/21

Table 1: Convergence test.

h:E! R may not be unique. For inversive distance,
virtual radius and mixed type schemes, the initializa-
tions are relatively easier, but the resulting circle pack-
ing metrics may not be unique.

In theory, the conformal structure coef cieht will
affect the admissible curvature space [13] and [9]. In
practice, we haven't found that different choiceshd
make differences in terms of conformality or robustness.

7. Conclusion

This work establishes a uni ed framework for dis-
crete surface Ricci ow, which covers most existing
schemes: tangential circle packing, Thurston's cir-
cle packing, inversive distance circle packing, discrete
Yamabe ow, virtual radius circle packing and mixed
scheme, with Spherical, Euclidean and hyperbolic back-
ground geometry. The uni ed frameworks for hyperbol-
ic and spherical schemes are introduced to the literature
for the rsttime. For Euclidean schemes, our formula-
tion is equivalent to Glickenstein's geometric construc-
tion.

Four newly discovered schemes are introduced,
which are hyperbolic and Euclidean virtual radius cir-
cle packing and the mixed schemes.

This work introduces a geometric interpretation to
the Hessian of discrete Ricci energy for all schemes,
which generalizes Glickenstein's formulation in Eu-
clidean case.

This work also gives explicit geometric interpreta-
tions to the discrete Ricci energy for all the schemes,
which generalizes Bobenko, Pinkall and Springborn's
construction [11] for Yamabe ow cases.

The uni ed frame work deepen our understanding to
the the discrete surface Ricci ow theory, and inspired
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us to discover the novel schemes of virtual radius circle
packing and the mixed scheme, improved the exibility
and robustness of the algorithms, greatly simpli ed tfie
implementation and improved the ef ciency.

Experimental results show the uni ed surface Ric-
ci ow algorithms can handle surfaces with all possi-

. . o5 [20]
ble topologies. We further compare different schemes
in terms of conformality, robustness, convergence rate, [21]
and the dif culty level of construction.

In the future, we will focus on answering the follow;.
ing open problems: whether all possible discrete surface [23]
Ricci ow schemes are the variations of the current u-
ni ed approach on the primal meshes and the dual dia- 24!
grams and so on. 25]
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Appendix

In the appendix, we explain the uni ed surface Ricci
ow algorithm 1 in details, and reorganize all the for-
mulae necessary for the coding purpose.

Algorithm 1 uni ed Surface Ricci Flow

Require: The inputs include:
1. A triangular mesl$, embedded ifE3;
2. The background geometig?, H? or S%;
3. The circle packing scheme2 f + 1,0; 1g;
4. Atarget curvaturd, 8 Ki = 2pc(S) andK; 2 ( ¥;2p).
5. Step lengtht
Ensure: A discrete metric conformal to the original one, which real-
izes the target curvatute€.
Initialize the circle radig, discrete conformal factarand confor-
mal structure coef cient, obtain the initial circle packing metric
(Sighie) _
: while max jK; K;jj > thresholddo
Compute the circle radg from the conformal factou
Compute the edge length frogrand h
Compute the corner angq-;Jk from the edge length using co-
sine law
Compute the vertex curvatuke
Compute the Hessian mattik
Solve linear systetildu= K K
Update conformal factar u
: end while
: Output the result circle packing metric.

1:

aren

N2

dt du

e
= o

Step 1. Initial Circle Packindg;h). Depending on
different schemes, the initialization of the circle packin
is different. The mesh has induced Euclidean méiic
For inversive distance circle packing, we choose

! minl ”
= —minlij;
aq 3] ij
this ensures all the vertex circles are separated. For
Yamabe ow, we choose alj to be 1. For virtual ra-

dius circle packing, we choose gls to be 1. Thery;

can be computed using the formulain Tab. 2. e

Step 3. Circle Radig. The computation for circle radii
from conformal factor uses the formulae in the rst col-
umn in Tab.2.

14

[ u

Edge Lengf;; [ 05K [ s ]

E2 logg Iizj = Zhijeuﬁuj + gl + ejezuj 302+ ejgiz &) X

4hij+(1+ g 2iy(1+ € &V )

H2 Iogtanhg coshj; = cosH; cos gi coslﬁg& sinhx
- -
’ ' e gt T
ahii+(1 qeU)(1 e el ,
<2 Iogtan% cosljj = it q ) e ) cndicosel gj cos‘kg'< sinx

(1+qe2ui)(1+eje ui)

Table 2: Formulae foE2, H2 andS? background geometries.

Step 4. Edge Length IThe computation of edge
lengths from conformal facton and conformal struc-
ture coef cienth uses the formulae in the 2nd column
in Tab.2

Step 5. Corner Anglg. The computation from edge
lengthl to the corner angleg uses the cosine law for-
mulae,

g = g+g 2iljcosg E2

coshly = cosHjcosh;j sinhljsinhlj cosgy H?2

cody = codicodj sinlisinljcosgk S
Step 6. Vertex Curvature KThe vertex curvature is

de ned as angle de cit

( _
20 Aro 10K v<9qS
K(vi) = P ?'[V'vVJ,Vk]quk Vf<ﬂ
aAfviviivid G v < TS
Step 7. Hessian Matrix H.
UCHHEN 1 N
L% = — QL 'D;
f1(ui; uj; uy) SALQ
where
A= sings(1)s(Ik);
and
L = diag(s(li); (1}); s(Ik));
and
o 1
0 t(i;isk t(iki)
D= @ t(j:i:k) 0 t(j:ki) A
t(ki;j) t(kj;i) 0

Step. 8 Linear Systenif the S is with H? background
geometry, then the Hessian matkixis positive de ne;

else ifSis with E2 background geometry, théhis pos-

itive de nite on the linear subspacg u; = 0. The lin-

ear system can be solved using any sparse linear solver,
such as Eigen [45].

For discrete surface Ricci ow with topological surg-
eries, we can add one more step right after step 4. In this
new step, we modify the connectivity &to keep the
triangulation to be (Power) Delaunay. This will greatly
improves the robustness as proved in [29] and [30].



EuclidearE? HyperbolicH? Sphericals?
li

lki

Mixed type schemes

Figure 13: Geometric interpretation to discrete Ricci ggervolumes of generalized hyperbolic tetrahedra.
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