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Abstract

Ricci �ow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to
a heat diffusion process and eventually becomes constant everywhere. Ricci �ow has demonstrated its great potential
by solving various problems in many �elds, which can be hardly handled by alternative methods so far.

This work introduces the uni�ed theoretic framework for discrete Surface Ricci Flow, including all the common
schemes: Tangential Circle Packing, Thurston's Circle Packing, Inversive Distance Circle Packing and Discrete Yam-
abe Flow. Furthermore, this work also introduces a novel schemes, Virtual Radius Circle Packing and the Mixed Type
schemes, under the uni�ed framework. This work gives explicit geometric interpretation to the discrete Ricci energies
for all the schemes with all back ground geometries, and the corresponding Hessian matrices.

The uni�ed frame work deepens our understanding to the the discrete surface Ricci �ow theory, and has inspired
us to discover the new schemes, improved the �exibility and robustness of the algorithms, greatly simpli�ed the
implementation and improved the ef�ciency. Experimental results show the uni�ed surface Ricci �ow algorithms can
handle general surfaces with different topologies, and is robust to meshes with different qualities, and is effective for
solving real problems.
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1. Introduction
Ricci �ow was introduced by Hamilton for the pur-

pose of studying low dimensional topology. Ricci �ow
deforms the Riemannian metric proportional to the cur-
vature, such that the curvature evolves according to a5

heat diffusion process, and eventually becomes constan-
t everywhere. In pure theory �eld, Ricci �ow has been
used for the proof of Poincaré's conjecture. In engi-
neering �elds, surface Ricci �ow has been broadly ap-
plied for tackling many important problems, such as pa-10

rameterization in graphics [1], deformable surface reg-
istration in vision [2], manifold spline construction in
geometric modeling [3] and cancer detection in medi-
cal imaging [4]. More applications in engineering and
medicine �elds can be found in [5].15
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Suppose(S;g) is a metric surface, according to the
Gauss-Bonnet theorem, the total Gaussian curvatureR

SKdAg equals to 2pc (S), whereK is the Gaussian cur-
vature,c (S) the Euler characteristics ofS. Ricci �ow
deforms the Riemannian metric conformally, namely,
g(t) = e2u(t)g(0), whereu(t) : S! R is the conformal
factor. The normalized Ricci �ow can be written as

du(t)
dt

=
2pc (S)

A(0)
� K(t): (1.1)

where A(0) is the initial surface area. Hamilton [6]
and chow [7] proved the convergence of surface Ricci
�ow. Surface Ricci �ow is the negative gradient �ow
of the Ricci energy. It is a powerful tool for designing
Riemannian metrics using prescribed curvatures, which20

has great potential for many applications in engineer-
ing �elds. Surface Ricci �ow implies the celebrated
surface uniformization theorem as shown in Fig.1. For
surfaces with boundaries, uniformization theorem still
holds as illustrated in Fig.2, where surfaces are confor-25

mally mapped to the circle domains on surfaces with
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Figure 1: Uniformization for closed surfaces by Ricci �ow.

Figure 2: Uniformization for surfaces with boundaries by Ricci �ow.

Figure 3: Conformal mapping preserves in�nitesimal circles.

constant curvatures.
Conformal metric deformation transforms in�nites-

imal circles to in�nitesimal circles as shown in Fig. 3.
Intuitively, one approximates the surface by a triangulat-30

ed polyhedron (a triangle mesh), covers each vertex by
a disk of �nite size (a cone), and deforms the disk radii
preserving the combinatorial structure of the triangula-
tion and the intersection angles among the circles. This
deformation simulates the smooth conformal mapping35

with very high �delity. Rodin and Sullivan [8] proved
that if the triangulation of a simply connected planar do-
main is subdivided in�nite times, the induced discrete
conformal mappings converge to the smooth Rieman-
n mapping. The discrete version of surface Ricci �ow40

was introduced by Chow and Luo in [9] in 2003. It is
based on the circle packing method.

Historically, many schemes of circle packing or cir-
cle pattern have been invented. The discrete surface can
be constructed by gluing Spherical, Euclidean or Hy-45

perbolic triangles isometrically along their edges. Ac-
cordingly, we say the triangle mesh has sphericalS2,
EuclideanE2 or hyperbolicH2 background geometry.
Under each background geometry, there are 6 schemes,
tangential circle packing, Thurston's circle packing, in-50

versive distance circle packing, discrete Yamabe �ow,
virtual radius circle packing and mixed type scheme.
There are 18 combinations in total. Among them, the
hyperbolic and spherical virtual radius circle packing
and mixed type schemes are �rst introduced in this55

work.
Most of the existing schemes were invented and de-

veloped individually in the past. This work seeks a co-
herent theoretic framework, which can unify all the ex-
isting schemes, and predicts undiscovered ones. This60

leads to deeper understandings of discrete surface Ric-
ci �ow and provides approaches for further generaliza-
tion. In practice, the theoretic discovery of virtual ra-
dius circle packing gives novel computational algorith-
m; the mixed schemes improves the �exibility; the u-65

ni�ed framework greatly simpli�es the implementation;
the geometric interpretations offer better intuitions.

1.1. Contributions

This work has the following contributions:

1. This work establishes a uni�ed framework for dis-70

crete surface Ricci �ow, which covers most exist-
ing schemes: tangential circle packing, Thurston's
circle packing, inversive distance circle packing,
discrete Yamabe �ow, virtual radius circle packing
and mixed type schemes, in Spherical, Euclidean75

and hyperbolic background geometry. In Eu-
clidean case, our uni�ed framework is equivalen-
t to Glickenstein's geometric formulation [10].To
the best of our knowledge, the uni�ed frameworks
for both hyperbolic and spherical schemes are re-80

ported for the �rst time.
2. This work introduces 4 novel schemes for discrete

surface Ricci �ow: virtual radius circle packing
and mixed type schemes under both hyperbolic and
Euclidean background geometries, which are nat-85

urally deduced from our uni�cation work. To the
best of our knowledge, these are introduced to the
literature for the �rst time.

3. This work gives an explicit geometric interpreta-
tion to the discrete Ricci energy for all the 1890

schemes. The geometric interpretations to 2 Yam-
abe �ow schemes (both Euclidean and Hyperbolic)
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were �rst made by Bobenko, Pinkall and Spring-
born [11].

4. This work also provides an explicit geometric in-95

terpretation to the Hessian of discrete Ricci energy
for all the 18 schemes. The interpretation in Eu-
clidean case is due to Glickenstein [10]. To the best
of our knowledge, the interpretation in Hyperbol-
ic and Spherical cases are introduced for the �rst100

time. Recently, Glickenstein and Thomas discov-
ered the similar result independently [12].

The paper is organized as follows: section 2 brie�y
reviews the most related theoretic works; section 3 in-
troduces the uni�ed framework for different schemes of105

discrete surface Ricci �ow, which covers 18 schemes
in total; section 4 explains the geometric interpretation
of the Hessian matrix of discrete Ricci energy for al-
l schemes with different background geometries; sec-
tion 5 gives a geometric interpretation of Ricci energy;110

Experimental results are reported in section 6, different
schemes are systematically compared. The work con-
cludes in section 7, future directions are discussed; Fi-
nally, in the appendix, we give the implementation de-
tails and reorganize all the formulae.115

2. Previous Works

Thurston's Circle Packing.In his work on constructing
hyperbolic metrics on 3-manifolds, Thurston [13] stud-
ied a Euclidean (or a hyperbolic) circle packing on a
triangulated closed surface with prescribed intersection120

angles. His work generalizes Koebe's and Andreev's re-
sults of circle packing on a sphere [14, 15, 16]. Thurston
conjectured that the discrete conformal mapping based
on circle packing converges to the smooth Riemann
mapping when the discrete tessellation becomes �ner125

and �ner. Thurston's conjecture has been proved by
Rodin and Sullivan [8]. Chow and Luo established the
intrinsic connection between circle packing and surface
Ricci �ow [9].

The rigidity for classical circle packing was proved130

by Thurston [13], Marden-Rodin [17], Colin de Ver-
diére [18], Chow-Luo [9], Stephenson [19], and He
[20].

Inversive Distance Circle Packing.Bowers-Stephenson
[21] introduced inversive distance circle packing which135

generalizes Andreev-Thurston's intersection angle cir-
cle packing. See Stephenson [19] for more information.
Guo gave a proof for local rigidity [22] of inversive dis-
tance circle packing. Luo gave a proof for global rigid-
ity in [23].140

Yamabe Flow.Luo introduced and studied the combi-
natorial Yamabe problem for piecewise �at metrics on
triangulated surfaces [24]. Springborn, Schröder and
Pinkall [25] considered this combinatorial conformal
change of piecewise �at metrics and found an explicit145

formula of the energy function. Glickenstein [26, 27] s-
tudied the combinatorial Yamabe �ow on 3-dimensional
piecewise �at manifolds. Bobenko-Pinkall-Springborn
introduced a geometric interpretation to Euclidean and
hyperbolic Yamabe �ow using the volume of gener-150

alized hyperbolic tetrahedron in [11]. Combinatorial
Yamabe �ow on hyperbolic surfaces with boundary has
been studied by Guo in [28]. The existence of the solu-
tion to Yamabe �ow with topological surgeries has been
proved recently in [29] and [30].155

Virtual Radius Circle Packing.The Euclidean virtual
radius circle packing �rst appeared in [5]. The hyper-
bolic and spherical virtual radius circle packing are in-
troduced in this work.

Mixed type Circle Packing.The Euclidean mixed type160

circle packing appeared in [5] and Glickenstein's talk
[31]. This work introduces hyperbolic and spherical
mixted type schemes.

Uni�ed Framework. Recently Glickenstein [10] set the
theory of combinatorial Yamabe �ow of piecewise �at165

metric in a broader context including the theory of cir-
cle packing on surfaces. This work focuses on the hy-
perbolic and spherical uni�ed frameworks.

Variational Principle. The variational approach to cir-
cle packing was �rst introduced by Colin de Verdiére170

[18]. Since then, many works on variational princi-
ples on circle packing or circle pattern have appeared.
For example, see Brägger [32], Rivin [33], Leibon
[34], Chow-Luo [9], Bobenko-Springborn [35], Guo-
Luo [36], and Springborn [37]. Variational principles175

for polyhedral surfaces including the topic of circle
packing were studied systematically in Luo [38]. Many
energy functions are derived from the cosine law and its
derivative. Tangent circle packing is generalized to tan-
gent circle packing with a family of discrete curvature.180

For exposition of this work, see also Luo-Gu-Dai [39].

Discrete Uniformization.Recently, Gu et al established
discrete uniformization theorem based on Euclidean
[29] and hyperbolic [30] Yamabe �ow. In a series of
papers on developing discrete uniformization theorem185

[40],[41],[42] and [43], Sa'ar Hersonsky proved sever-
al important theorems based on discrete harmonic maps
and cellular decompositions. His approach is comple-
mentary to the work mentioned above.
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Figure 4: Smooth surfaces are approximated by discrete Surfaces

3. Uni�ed Discrete Surface Ricci Flow190

This section systematically introduces the uni�ed
framework for discrete surface Ricci �ow. The whole
theory is explained using the variational principle on
discrete surfaces based on derivative cosine law [39].
The elementary concepts and some of schemes can be195

found in [38] and the chapter 4 in [5].

3.1. Elementary Concepts

In practice, smooth surfaces are usually approximat-
ed bydiscrete surfaces. Discrete surfaces are represent-
ed as two dimensional simplicial complexes which are200

manifolds, as shown in Fig. 4.

De�nition 3.1 (Triangular Mesh). SupposeS is a two
dimensional simplicial complex, furthermore it is also a
manifold, namely, for each point p ofS, there exists a
neighborhood of p, U(p), which is homeomorphic to the205

whole plane or the upper half plane. ThenS is called a
triangular mesh.

If U (p) is homeomorphic to the whole plane, then p
is called an interior point; if U(p) is homeomorphic to
the upper half plane, then p is called a boundary point.210

The fundamental concepts from smooth differential
geometry, such as Riemannian metric, curvature and
conformal structure, are generalized to the simplicial
complex, respectively.

In the following discussion, we useS = ( V;E;F) to215

denote the mesh with vertex setV, edge setE and face
setF. A discrete surface is with Euclidean (hyperbolic
or spherical) background geometry if it is constructed
by isometrically gluing triangles inE2 (H2 or S2).

De�nition 3.2 (Discrete Riemannian Metric). A dis-
crete metric on a triangular mesh is a function de�ned
on the edges, l: E ! R+ , which satis�es the triangle in-
equality: on each face[vi ;v j ;vk], li ; l j ; lk are the lengths
of edges against vi ;v j ;vk respectively,

l i + l j > lk; l j + lk > l i ; lk + l i > l j :

A triangular mesh with a discrete Riemannian metric is220

called a discrete metric surface.

� i

� k� j
l i

l jlk

vi

vj
vk

� i

� j � k

l i

l jlk

vi

vj vk

S2

� i

� j
� k

vi

vj

vk

l i

lk
l j

E2 S2 H2

Figure 5: Different background geometry, Euclidean, spherical and
hyperbolic.

De�nition 3.3 (Background Geometry). SupposeS is
a discrete metric surface, if each face ofS is a spherical,
( Euclidean or hyperbolic ) triangle, then we sayS is
with spherical, (Euclidean or hyperbolic) background225

geometry. We useS2, E2 andH2 to represent spherical
Euclidean or hyperbolic background metric.

Triangles with different background geometries satisify
different cosine laws:

1 =
cosqi+ cosq j cosqk

sinq j sinqk
E2

cosl i =
cosqi+ cosq j cosqk

sinq j sinqk
S2

coshl i = coshqi+ coshq j coshqk
sinhq j sinhqk

H2

The discrete Gaussian curvature is de�ned as angle
de�cit, as shown in Fig. 6.

De�nition 3.4 (Discrete Gauss Curvature). The dis-
crete Gauss curvature function on a mesh is de�ned on
vertices, K: V ! R,

K(v) =

(
2p � å jk q jk

i ; v < ¶M
p � å jk q jk

i ; v 2 ¶M
;

whereq jk
i 's are corner angle at vi in the face[vi ;v j ;vk],230

and¶M represents the boundary of the mesh.

vi

vj

vk

� jk
i

Figure 6: Discrete curvatures of an interior vertex

The Gauss-Bonnet theorem still holds in the discrete
case.
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Theorem 3.5 (Discrete Gauss-Bonnet Theorem).
SupposeS is a triangular mesh with Euclidean back-
ground metric. The total curvature is a topological
invariant,

å
v<¶S

K(v) + å
v2¶S

K(v) + eA(S) = 2pc (S); (3.1)

wherec is the characteristic Euler number, and K is the
Gauss curvature, A(S) is the total area,e = f + 1;0; � 1g235

if S is with spherical, Euclidean or hyperbolic back-
ground geometry.

3.2. Uni�ed Circle Packing Metrics

De�nition 3.6 (Circle Packing Metric). SupposeS =
(V;E;F) is a triangle mesh with spherical, Euclidean240

or hyperbolic background geometry. Each vertex vi is
associated with a circle with radiusgi . The circle radius
function is denoted asg : V ! R> 0; a function de�ned
on the verticese :V ! f + 1;0; � 1g is called thescheme
coef�cient; a function de�ned on edgesh : E ! R is245

called thediscrete conformal structure coef�cient. A
circle packing metric is a 4-tuple(S;g;h ;e), the edge
length is determined by the 4-tuple and the background
geometry.

In the smooth case, changing a Riemannian metric by250

a scalar function,g ! e2ug, is called a conformal metric
deformation. The discrete analogy to this is as follows.

De�nition 3.7 (Discrete Conformal Equivalence).
Two circle packing metrics(Sk;gk;hk;ek), k = 1;2, are
conformally equivalent ifS1 = S2, h1 = h2, e1 = e2.255

(g1 may not equals tog2.)

The discrete analogy to the concept of conformal fac-
tor in the smooth case is

De�nition 3.8 (Discrete Conformal Factor). Discrete
conformal factor for a circle packing metric(S;g;h ;e)
is a function de�ned on each vertexu : V ! R,

ui =

8
<

:

loggi E2

logtanhgi
2 H2

logtangi
2 S2

(3.2)

De�nition 3.9 (Circle Packing Schemes).Suppose
S= ( V;E;F) is triangle mesh with spherical, Euclidean
or hyperbolic background geometry. Given a circle
packing metric(S;g;h ;e), for an edge[vi ;v j ] 2 E, its

Ci

Cj

Ck

vi

vj
vk

r i

r k

r j

hi

hj hk

dij

dji

! i

! k

djkdkj

dki

! j

dik

Ci

Cj

Ck

Co

r i

r j

r k

vi

vjvk

dik

! j

dki

dkj
! i djk

! k

dij

dji

hj hk

hi

Ci

Cj
Ck

Co

r i

r j

r k

vi

vjvk

dik! j

dki

dkj ! i djk

! k

dij

dji

hj hk

hi

(a) tangential CP (b) Thurston's CP (c) Inversive distance CP

h = 1;e = 1 0� h � 1;e = 1 h � 1;e = 1

Figure 7: Tangential circle packing, Thurston's circle packing and
inversive distance circle packing schemes, and the geometric interpre-
tations to their Ricci energies.

vi

vj

vk

hk

hi hj

! k

! j

dijdji

dik

dki
dkj

djk

! i

� i� j

� k

vi
vj

vk

C0

r i r j

r k

wk

wiwj

dij dji

djk

dkj
dki

hj hi

hk� i � j

� k

pi

pk

pj

dik

vi

vk vj

hi

hk
hj

dkj dj k

dki

dik dij

dji

l i

lk
l j

(d) Yamabe �ow (e) virt.rad.cp (f) mixed type

h > 0;e = 0 h > 0;e = � 1 h > 0
e 2 f + 1;0; � 1g

Figure 8: Yamabe �ow, virtual radius circle packing and mixed type
schemes, and the geometric interpretations to their Ricci energies.

length li j is given by

8
>>><

>>>:

l2i j = 2hi j eui+ u j + eie2ui + eje2u j E2

coshl i j = 4hi j e
ui + uj +( 1+ eie2ui )(1+ ej e

2uj )

(1� eie2ui )(1� ej e
2uj )

H2

cosl i j = � 4hi j e
ui + uj +( 1� eie2ui )(1� ej e

2uj )

(1+ eie2ui )(1+ eje
2uj )

S2

(3.3)
The schemes are named as follows:

260

Scheme ei ej hi j

Tangential Circle Packing +1 +1 +1
Thurston's Circle Packing +1 +1 [0;1]
Inversive Distance Circle Packing +1 +1 > 0
Yamabe Flow 0 0 > 0
Virtual Radius Circle Packing -1 -1 > 0
Mixed type f� 1;0;+ 1g f� 1;0;+ 1g > 0
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Fig. 7 and Fig. 8 illustrate all the schemes with for
discrete surfaces with Euclidean background geometry.

Remark 3.10. From the de�nition, the tangential circle
packing is a special case of Thurston's circle packing;265

Thurston's circle packing is a special case of inversive
distance circle packing. In the following discussion, we
unify all three types as inversive distance circle packing.

3.3. Discrete Surface Ricci Flow

De�nition 3.11 (Discrete Surface Ricci Flow). A dis-
crete surface withS2, E2 or H2 background geometry,
and a circle packing metric(S;g;h ;e), the discrete sur-
face Ricci �ow is

dui(t)
dt

= K̄i � Ki(t); (3.4)

whereK̄i is the target curvature at the vertex vi .270

The target curvature must satisfy certain constraints to
ensure the existence of the solution to the �ow, such
as Gauss-Bonnet equation Eqn. 3.1, but also some addi-
tional ones described in [13], [17] and [9], for instances.

The discrete surface Ricci �ow has exactly the same275

formula as the smooth counter part Eqn. 1.1. Further-
more, similar to the smooth case, discrete surface Ricci
�ow is also variational: the discrete Ricci �ow is the
negative gradient �ow of the discrete Ricci energy.

De�nition 3.12 (Discrete Ricci Energy). A discrete
surface withS2, E2 or H2 background geometry, and
a circle packing metric(S;g;h ;e). For a triangle
[vi ;v j ;vk] with inner angles(qi ;q j ;qk), the discrete
Ricci energy on the face is given by

Ef (ui ;u j ;uk) =
Z (ui ;u j ;uk)

qidui + q jduj + qkduk: (3.5)

The discrete Ricci energy for the whole mesh is de�ned
as

ES(u1;u2; � � � ;un) =
Z (u1;u2;��� ;un) n

å
i= 1

(K̄i � Ki)dui ::

(3.6)

From de�nition, we get the relation between the surface
Ricci energy and the face Ricci energy

ES =
n

å
i= 1

(K̄i � 2p)ui + å
f 2F

Ef : (3.7)

The description of the energy in terms of an integral re-280

quires the fact that the inside is a closed form so that it

is de�ned independent of the integration path. This fol-
lows from the following symmetry lemma, which has
fundamental importance. In this work, we give three
proofs. The following one is algebraic, more dif�cult285

to verify, but leads to computational algorithm directly.
The second one is based on the geometric interpreta-
tion to the Hessian matrix in Section 4. The third one
is based on the geometric interpretation to the discrete
Ricci energy. The later two proofs are more geometric290

and intuitive.

Lemma 3.13 (Symmetry).A discrete surface withS2,
E2 or H2 background geometry, and a circle packing
metric (S;g;h ;e), then for any pair of vertices vi and
v j :

¶Ki

¶u j
=

¶K j

¶ui
: (3.8)

Proof 3.14. From the relation in Eqn. 3.7, it is suf�cient
and necessary to show the symmetry for each triangle
[vi ;v j ;vk] for all schemes,

¶qi

¶u j
=

¶qj

¶ui
:

This is proven by �nding the explicit formula for the
Hessain matrix of the face Ricci energy,

¶(qi ;q j ;qk)
¶(ui ;u j ;uk)

= �
1

2A
LQL� 1D; (3.9)

where

A =
1
2

sinqis(l j )s(lk) (3.10)

the matrix L

L =

0

@
s(l i ) 0 0

0 s(l j ) 0
0 0 s(lk)

1

A (3.11)

and the matrixQ

Q =

0

@
� 1 cosqk cosq j

cosqk � 1 cosqi
cosq j cosqi � 1

1

A (3.12)

and

D =

0

@
0 t (i; j;k) t (i;k; j)

t ( j; i;k) 0 t ( j;k; i)
t (k; i; j) t (k; j; i) 0

1

A (3.13)

where s(x) andt (i; j;k) are de�ned as

6



s(x) t (i; j;k)

E2 x 1=2(l2i + ej r2
j � ekr2

k)
H2 sinhx coshl i coshej r j � coshek rk

S2 sinx cosl i cosej r j � cosek rk

By symbolic computation, it is straightforward to verify295

the symmetry of Eqn. 3.9.

4. Geometric interpretation to Hessian

This section focuses on the geometric interpretation
to Hessian matrix of the discrete Ricci energy on each
face for E2;H2 and S2 cases. This gives the second300

proof of the symmetry lemma 3.13.

4.1. Euclidean Case

The interpretation in Euclidean case is due to Glick-
enstein [10] (Z. He [44] in the case of circle packings)
and illustrated in [5]. In the current work, we build305

the connection to the Power Delaunay triangulation and
power voronoi diagram.

We only focus on one triangle[vi ;v j ;vk], with corner
anglesqi ;q j ;qk, conformal factorsui;u j ;uk and edge
lengthsl i j for edge[vi ;v j ], l jk for [v j ;vk] and lki for310

[vk;vi ].

Power Delaunay Triangulation.As shown in Fig. 7
and Fig. 8, thepowerof q with respect tovi is

pow(vi ;q) = jvi � qj2 � eg2
i :

Thepower center oof the triangle satisi�es

pow(vi ;o) = pow(v j ;o) = pow(vk;o):

The power circle Ccentered ato with radiusg, where
g = pow(vi ;o).

Therefore, for tangential, Thurton's and inversive dis-
tance circle packing cases, the power circle is orthogo-315

nal to three circles at the verticesCi , Cj andCk; for Yam-
abe �ow case, the power circle is the circumcircle of
the triangle; for virtual radius circle packing, the power
circle is the equator of the sphere, which goes through
three pointsf vi + g2

i n;v j + g2
j n;vk + g2

k ng, wheren is320

the normal to the plane.
Through the power center, we draw line perpendicu-

lar to three edges, the perpendicular feets arewi ;wj and
wk respectively. The distance from the power center
to the perpendicular feet arehi ;h j andhk respectively.
Then it can be shown easily that

¶qi

¶u j
=

¶qj

¶ui
=

hk

lk
;
¶qj

¶uk
=

¶qk

¶u j
=

hi

l i
;
¶qk

¶ui
=

¶qi

¶uk
=

h j

l j
;

(4.1)

furthermore,

¶qi

¶ui
= �

hk

lk
�

h j

l j
;
¶qj

¶u j
= �

hk

lk
�

hi

l i
;
¶qk

¶uk
= �

hi

l i
�

h j

l j
:

(4.2)
These two formula induces the formula for the Hessian
of the Ricci energy of the whole surface. One can treat
the circle packing(S;g;h ;e) as a power triangulation,
which has a dual power diagram̄S. Each edgeei j 2 S
has a dual edge ¯e2 S̄, then

¶Ki

¶u j
=

¶K j

¶ui
=

jēi j j
jei j j

; (4.3)

and
¶Ki

¶ui
= � å

j

¶Ki

¶u j
: (4.4)

This gives a geometric proof for the symmetry lemma
3.13 in Euclidean case.

Suppose on the edge[vi ;v j ], the distance fromvi to
the perpendicular footwk is di j , the distance fromv j to
wk is d ji , thenl i j = di j + d ji , and

¶ l i j
¶ui

= di j ;
¶ l i j
¶u j

= d ji ;

furthermore

d2
i j + d2

jk + d2
ki = d2

ik + d2
k j + d2

ji :

This shows the power circle interpretation is equivalent
to Glikenstain's formulation.325

4.2. Hyperbolic Case

Let 4 123 be a hyperbolic triangle whose vertices are
labeled by 1;2;3: Let r1; r2; r3 be three positive numbers
associated to the vertices, ande1;e2;e3 2 f� 1;0;1g be
indicators of the type of the vertices.330

For the mixed type of discrete conformal geometry,
the edge length of4 123 is given by

coshlk = 4hi j
sinhr i

(1� ei ) coshr i + 1+ ei

sinhr j

(1� ej ) coshr j + 1+ ej
+ coshei r i coshej r j ;

wheref i; j;kg = 1;2;3:
Via the cosine law, the edge lengthsl1; l2; l3 determine

the anglesq1;q2;q3.
Whene1 = e2 = e3 = 0, this is the case of Yamabe335

�ow. There is a circle passing through the three vertices
of 4 123. It is still called thepower circle.

Whene1 = e2 = e3 = 1, this is the case of inversive
distance circle packing. Centered at each vertexi, there
is a circle with radiusr i . Then there is thepower circle340

orthogonal to the three circles centered at the vertices.
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Whene1 = e2 = e3 = � 1, this is the case of virtu-
al radius circle packing. Let4 123 be on the equator
plane of the ball model of the hyperbolic spaceH3. For
each vertexi, let ii0 be the geodesic arc perpendicular345

to the equator plane with lengthr i . Assume 10;20;30are
above the equator plane. There is a hemisphere passing
through 10;20;30 and orthogonal to the equator plane.
The power circlein this case is the intersection of the
hemisphere and the equator plane.350

For a mix type, the power circle can still be de�ned.
For any type, lethi be the distance from the center of

the power circle to the edgei j whose length islk.

Theorem 4.1. Let

eui =
er i � 1
er i + 1

= tanh
r i

2
:

Then
¶q1

¶u2
=

¶q2

¶u1

which equal to

tanhh3

sinh2 l3

q
2coshe1 r1 coshe2 r2coshl3 � cosh2e1 r1 � cosh2e2 r2:

This gives a geometric proof for the symmetry lemma355

3.13 in hyperbolic case.
We only need to prove the theorem for the case of

e1 = e2 = e3 = 1. General case can be proved similarly.

Proof 4.2. Step 1. Denote the center of the power circle
by o, the radius by r. Let x;y;z be the distance from o to
the vertices1;2;3. Then

coshx = coshr coshr1
coshy = coshr coshr2
coshz = coshr coshr3

(4.5)

Leta be the angle\ 13o andb the angle\ 23o. Then
a + b = q3: Therefore

1+ 2cosa cosb cosq3 = cos2a + cos2b + cos2q3:
(4.6)

By the cosine law,

cosa =
� coshx+ coshzcoshl2

sinhzsinhl2
;

cosb =
� coshy+ coshzcoshl1

sinhzsinhl1
;

cosq3 =
� coshl3 + coshl1coshl2

sinhl1sinhl2
:

Substituting the three formulas into the equation
(4.6), we obtain a relation between the 6 numbers360

l1; l2; l3;x;y;z.
Substituting the equations (4.5) into this relation, we

obtain a relation between l1; l2; l3; r1; r2; r3 and r.
Solving for r, we getcosh2 r = N

D ; where

N = 1+ 2coshl1coshl2 coshl3 � cosh2 l1 � cosh2 l2 � cosh2 l3;

D = cosh2 r1(1� cosh2 l1) + 2coshr2 coshr3(coshl2 coshl3 � coshl1)

+ cosh2 r2(1� cosh2 l2) + 2coshr3 coshr1(coshl3 coshl1 � coshl2)

+ cosh2 r3(1� cosh2 l3) + 2coshr1 coshr2(coshl1 coshl2 � coshl3):

Step 2. Since h3 is the height of the triangle4 o12 with
bottom the edge12. By the standard formula of height
of a hyperbolic triangle, we have

sinh2 h3 =
1+ 2coshxcoshycoshl3 � cosh2 x� cosh2y� cosh2 l3

sinh2 l3
:

After substituting the equations (4.5) into the above
formula, we have

tanh2 h3 =
cosh2 r(2coshr1 coshr2 coshl3 � cosh2 r1 � cosh2 r2) � sinh2 l3

cosh2 r(2coshr1 coshr2 coshl3 � cosh2 r1 � cosh2 r2)
:

After substituting the equationcosh2 r = N
D ; we have

tanh2 h3 =
N (2coshr1 coshr2 coshl3 � cosh2 r1 � cosh2 r2) � D sinh2 l3

N (2coshr1 coshr2 coshl3 � cosh2 r1 � cosh2 r2)
:

After substituting the expressions ofN andD in step 1,
we have

tanh2 h3 =

[(coshl1 coshl3 � coshl2) coshr1 +( coshl2 coshl3 � coshl1) coshr2 � sinh2 l3 coshr3]2

N (2coshr1coshr2 coshl3 � cosh2 r1 � cosh2 r2)
:

365

Step 3. By direct calculation, we have

¶q1

¶u2
=

¶q2

¶u1
=

� 1
sinqi sinhl j sinhlk

(coshr3 �
coshl1 coshl3 � coshl2

sinh2 l3
coshr1 �

coshl2 coshl3 � coshl1
sinh2 l3

coshr2) =

(coshl1 coshl3 � coshl2) coshr1 +( coshl2 coshl3 � coshl1) coshr2 � sinh2 l3 coshr3p
N � sinh2 l3

:

Comparing with the last formula of step 2, we have

¶q1

¶u2
=

¶q2

¶u1
=

tanhh3

sinh2 l3

q
2coshr1 coshr2 coshl3 � cosh2 r1 � cosh2 r2:

4.3. Spherical Case

According to a general principle of the relation of hy-
perbolic geometry and spherical geometry, to obtain a
formula in spherical geometry, we only need to replace
sinh and cosh in hyperbolic geometry by

p
� 1sin and370

cos:
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For the mixed type of discrete conformal geometry
with spherical background geometry, the edge length of
4 123 is given by
coshli j =

� 4hi j
sinr i

(1� ei ) cosr i + 1+ ei

sinr j

(1� ej ) cosr j + 1+ ej
+ cosei r i cosej r j :

Via the cosine law, the edge lengthsl1; l2; l3 determine
the anglesq1;q2;q3.

We can de�ne power circles similarly. Lethi be the375

distance from the center of the power circle to the edge
i j whose length islk.

Theorem 4.3. Let

eui = tan
r i

2
:

Then
¶q1

¶u2
=

¶q2

¶u1

which equal to

tanh3

sin2 l3

p
� 2cose1 r1 cose2 r2 cosl3 + cos2e1 r1 + cos2e2 r2:

This gives a geometric proof for the symmetry lemma
3.13 in spherical case.380

This theorem is also proved by using the general prin-
ciple: replace sinh and cosh in hyperbolic geometry byp

� 1sin and cos:
Here we can give the second proof for the symmetry

lemma 3.13 based on the geometric interpretation to the385

Hessian, which is geometric and intuitive.

Proof 4.4. Formula 4.1 show the symmetry for al-
l schemes with Euclidean background geometry; theo-
rem 4.1 proves the symmetry for the hyperbolic cases;
theorem 4.3 for the spherical cases.390

5. Geometric Interpretations to Ricci Energies

The geometric interpretation to Ricci energies of Eu-
clidean and hyperbolic Yamabe schemes were discov-
ered by Bobenko, Pinkall and Springborn in [11]. The
interpretation to Ricci energies of Euclidean schemes395

(without the mixed type) are illustrated in [5]. In the
current work, we generalize the geometric interpreta-
tions to all the schemes in all background geometries
covered by the uni�ed framework, as shown in Fig. 13.

We use the upper half space model forH3, with Rie-
mannian metric

ds2 =
dx2 + dy2 + dz2

z2

wi wj

wk

w0

w i w j

w k

w 0

� u i

� u k

� u j

� i

� k

� j

� ij

� jk� ki

� ij

� jk� ki

l ij
l jk

l ki

Figure 9: Generalized hyperbolic tetrahedron.

the xy-plane is the ideal boundary. Consider a trian-400

gle [vi ;v j ;vk], its Ricci energy is closely related to the
volume of a generalized hyperbolic tetrahedron whose
vertices can be inH3, truncated by a horosphere or trun-
cated by a hyperbolic plane.

In Fig. 9, the generalized hyperbolic tetrahedron has405

4 verticesw0;wi ;wj ;wk: The tetrahedron vertexw0 is
called thetop vertex. The 4 faces of the tetrahedron are
hyperbolic planes, the 6 edges are geodesics. The 6 edge
lengths of the generalized tetrahedron are� ui; � u j ; � uk
andl i j ; l jk; l ki. The generalized tetrahedron is uniquely410

determined by these 6 edge lengths.
The followings are the common principles for

constructing the generalized tetrahedron for all the
schemes,

1. For all E2 schemes, the top vertexw0 is ideal (at415

in�nity) and truncated by a horosphere; for allH2

schemes, the top vertex is hyperideal (exceeding
the boundary ofH3) and truncated by a hyperbolic
plane; for allS2 schemes, the top vertex is inH3.

2. For wi , if the corresponding vertexvi is of inver-420

sive distance circle packingei = + 1, then it is hy-
perideal and truncated by a hyperbolic plane; ifvi
is of Yamabe �owei = 0, then it is ideal and trun-
cated by a horosphere; ifvi is virtual radius circle
packinge1 = � 1, then it is inH3. Same results425

holds forwj andwk.
3. The edges on the truncated tetrahedron, connecting

to the top vertex on the original tetrahedron, have
lengths� ui, � u j and� uk respectively.

4. For the edge lengthsl i j , there is a uni�ed formula
for three geometries: Euclidean, hyperbolic, spher-
ical,

hi j =
1
2

(el i j + eieje� l i j ): (5.1)

The triangle associated to the top vertexw0 is the tri-430

angle[vi ;v j ;vk]. It is obtained by truncating by a horo-
sphere, truncating by a hyperbolic plane or intersecting
with a sphere. Given� ui; � u j ; � uk;hi j ;h jk;hki, using
cosine law, we can calculate the edge lengths of the tri-
angle[vi ;v j ;vk]. They are exactly given by the formula435

Eqn. 3.3. That means the triangle[vi ;v j ;vk] has lengths
l i j ; l jk; lki and anglesqi ;q j ;qk.
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Here we can give the third proof for the symmetry
lemma based on the geometric interpretation to the Ric-
ci energy, which is more geometric, intuitive and much440

easier to verify.

Proof 5.1. As shown in Fig. 9, for a generalized hy-
perbolic tetrahedron, the4 vertices can have any types.
The3 vertical edges have lengths� ui ; � u j ; � uk with di-
hedral anglesqi ;q j ;qk. The bottom edges have lengths445

l i j ; l jk; l ki with dihedral anglesbi j ;b jk;bki.
Let V be the volume of the generalized hyperbolic

tetrahedron. By Schlä�i formula

dV = �
1
2

�
� uidqi � uj dq j � ukdqk + l i j dbi j + l jkdb jk + l kidbki

�

(5.2)

During the Ricci �ow, the conformal structure coef�-
cientshi j ;h jk;hki are invariant, sol i j ; l jk; l ki are �xed.
Because the generalized tetrahedron is determined by
the edge lengths� ui; � u j ; � uk; l i j ; l jk; l ki, during the450

�ow, all dihedral anglesqi ;q j ;qk;bi j ;b jk;bki are func-
tions of ui;u j ;uk, the volume V is also the function of
ui;u j ;uk.

Consider the function,
W(ui ;uj ;uk) = uiqi + uj q j + ukqk � l i j bi j � l jkb jk � l kibki � 2V

(5.3)
hence,
dW = qidui + q jduj + qkduk

+ uidqi + uj dq j + ukdqk � l i j dbi j � l jkdb jk � l kidqki
� 2dV

substitute Schlä�i formula Eqn. 5.2, we have

dW = qidui + q jduj + qkduk

therefore

W =
Z

qidui + q jduj + qkduk + c:

W in fact, is the discrete Ricci energy on face in E-
qn. 3.5. This shows the differential 1-form

qidui + q jduj + qkduk (5.4)

is exact, therefore closed. Namely, the Hessian matrix

¶(qi ;q j ;qk)
¶(ui ;u j ;uk)

is symmetric.

The formula Eqn. 5.3 represents the Ricci energy on a455

face as the volume of the generalized hyperbolic tetra-
hedron with other terms of conformal factors and con-
formal structure coef�cients. This formula was intro-
duced �rst by Bobenko, Pinkall and Springborn in [11]
for Euclidean and hyperbolic Yamabe �ow. In the cur-460

rent work, we generalize it to all 18 schemes. The d-
ifferential in Eqn. 5.4 is independent of the choice of
horospheres, since the Schlä�i formula is independent
of the choice of horospher for an ideal vertex.

6. Experimental Results465

In this section, we report our experimental results
based on uni�ed Ricci �ow. We thoroughly compare
different schemes in terms of robustness, conformality,
ef�ciency and initialization dif�culty.

6.1. Experimental Environment470

We implemented the uni�ed Ricci �ow algorithm-
s using generic C++ language on Windows platform.
The method is based on optimizing the convex energy
using Newton's method. The sparse linear systems are
solved using Eigen library [45]. The mesh representa-475

tion is based on dynamic halfedge data structure. The
current implementation covers all schemes: tangential
circle packing, Thurston's circle packing, inversive dis-
tance circle packing, Yamabe �ow, virtual radius circle
packing and mixed type schemes, for discrete surfaces480

with Euclidean and hyperbolic background geometries.
The algorithms can handle surfaces different topologies.
The package is accessible for the whole research com-
munity.

The computational time is tested on the desktop with485

2.00GHz CPU, 3.00G RAM. The geometric data sets
are from the public databases, such as [46] and [47].
The human face surfaces were scanned from a high
speed and high resolution, phase shifting scanner, as
described in [48]. We tested our algorithm on a huge490

amount of various models, including different sizes and
topology types. Some of them are without any re�ne-
ment or geometric processing, in order to test the ro-
bustness of the algorithms. Some of them are re-meshed
using the algorithm in [49].495

6.2. Generality Testing

Fig. 1 and 2 demonstrate the generality of Ricci �ow
method to handle surfaces with all possible topolo-
gies. Fig. 1 shows the uniformization for closed sur-
faces, where surfaces are conformally mapped to the500

unit sphere, Euclidean plane or the hyperbolic disk.
Fig. 2 illustrates the uniformization for surfaces with
boundaries, where compact surface with boundaries
are mapped to constant curvature spaces, such that all
boundaries are mapped to geodesic circles. Suggested505

by Glickenstein: Although there is not currently a ro-
bust theory of Ricci �ow with boundary in the smooth
setting, the discrete Ricci �ow can compute the canoni-
cal conformal mapping with high ef�cacy and ef�cien-
cy. These two �gures cover all the topology types of510

compact surfaces.
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(a) low quality face (b) high quality face

(c) low quality bimba (d)high quality bimba

Figure 10: Robustness testing.

The uniformization of the genus zero closed surface
can be computed using Ricci �ow with spherical back-
ground geometry, or Euclidean background geometry.
The spherical Ricci energy is non-convex, therefore the515

spherical Ricci �ow is not so stable as the Euclidean
Ricci �ow. For surface with multiple boundaries, we
used Ricci �ow method with Koebe's iteration [50].

6.3. Comparisons Among Schemes

In the following we compare different schemes of520

surface Ricci �ow in details.

Robustness.In practice, the biggest challenge for Ricci
�ow algorithm is the robustness. Given a target curva-
tureK̄, we need to ensure the following two points:

1. The target curvature is admissible, namely, the so-525

lution to the Ricci �ow Eqn. 3.4 exists.
2. The solution is reachable. It is possible that the

�ow hits the boundary of the admissible curvature
space before it hits the target curvature.

For Tangential circle packing, Thurston's circle pack-530

ing, there are theorems describing the admissible curva-
ture spaces [13] and [9]. For Euclidean (or hyperbol-
ic) Yamabe �ow, if the Delaunay condition is preserved
during the �ow by edge swapping, the admissible cur-
vature space is given in the recent works [29] and [30].535

We test robustness to the mesh qualities of different
schemes. As shown in Fig. 10, the low quality meshes
are simpli�ed from the raw data, they have many ob-
tuse angles and degenerated triangles; the high quality
meshes are obtained using the method in [49]. We use540

different schemes to compute Riemann mappings. For
surfaces with high mesh qualities, all schemes succeed
with comparable running time. For surfaces with low

mesh qualities, tangential circle packing outperforms al-
l other schemes. The other schemes either crash in the545

�ow process, or pass through with carefully chosen s-
mall step length, therefore, the running times are much
longer.

If we allow the connectivity to be modi�ed during the
�ow, to preserve the power Delaunay condition, then all550

schemes succeed on both surfaces. This shows the pre-
serving the power Delaunay condition greatly improves
the robustness of the Ricci �ow algorithms.

Conformality. Fig. 11 compares the qualities of differ-
ent schemes: tangential circle packing, inversive dis-555

tance circle packing, Yamabe �ow and virtual radius
circle packing. The parameterization is denoted asj :
M ! R2. We calculate each corner angle in the mesh
before and after the discrete conformal mapping. Then
we compute the ratio between two angle values, take the560

logarithm. The histogram of the logarithm of the angle
ratios is a good measurement for the quality of the dis-
crete conformal mapping. If the mapping has high con-
formality, then all angle ratios are close to 1, and the his-
togram is a delta function at 0. Otherwise, the histogram565

is with high standard deviation. From the histograms in
Fig. 11, we can see the tangential circle packing pro-
duces mappings with lower conformity. The other three
schemes produce mappings with similar conformality.

Convergence Rate.Fig. 12 and table 1 show one ex-570

periment for comparing the convergence rates of differ-
ent schemes on four different genus one surfaces. In
the experiment, the curvature error threshold is set to
1e� 6 the step length in Newton's method is chosen
to be 5e� 1. In the table 1, each item shows the run-575

ning time in seconds, and iterations in the optimization.
From the table, we can see the running time and itera-
tions of different schemes are similar.

In practice, tangential circle packing is more robust
to lower quality mesh qualities, the step length can be580

chosen to be larger, therefore, it converges faster than
other schemes.
Initialization. In practice, the discrete surfaces are giv-
en as triangular meshes, in the initialization stage, we
need to convert the edge length function to circle pack-585

ing metric(S;g;h ;e). For different schemes, this con-
version has different level of dif�culties.

For tangential circle packing and Yamabe �ow, the
initializations are easy and the resulting circle packing
metrics are unique. The initialization is dif�cult for590

Thurston's circle packing, which requires the intersec-
tion angles between two vertex circles are acute, fur-
thermore, the resulting conformal structure coef�cient
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Tangential CP

Inversive distance CP

Yamabe �ow

Virtual radius CP

Figure 11: Conformality test for different schemes. The face model is
with high mesh quality, the kitten model is with lower mesh quality.

Figure 12: Convergence testing.
mesh V/F/E Tan. CP Inv. Dist. CP Yamabe Flow Vir. Rad. CP

Knot 9792/19584/29376 2.324/18 2.314/17 2.223/17 2.234/17
Elk 9000/18000/27000 3.476/24 2.775/28 2.938/21 2.737/20
Rocker 10044/20088/30132 3.424/23 2.891/21 2.938/21 2.922/21
Kitten 10219/20438/30657 4.298/23 3.941/21 3.933/21 3.896/21

Table 1: Convergence test.

h : E ! R may not be unique. For inversive distance,
virtual radius and mixed type schemes, the initializa-595

tions are relatively easier, but the resulting circle pack-
ing metrics may not be unique.

In theory, the conformal structure coef�cienth will
affect the admissible curvature space [13] and [9]. In
practice, we haven't found that different choices ofh 's600

make differences in terms of conformality or robustness.

7. Conclusion
This work establishes a uni�ed framework for dis-605

crete surface Ricci �ow, which covers most existing
schemes: tangential circle packing, Thurston's cir-
cle packing, inversive distance circle packing, discrete
Yamabe �ow, virtual radius circle packing and mixed
scheme, with Spherical, Euclidean and hyperbolic back-610

ground geometry. The uni�ed frameworks for hyperbol-
ic and spherical schemes are introduced to the literature
for the �rst time. For Euclidean schemes, our formula-
tion is equivalent to Glickenstein's geometric construc-
tion.615

Four newly discovered schemes are introduced,
which are hyperbolic and Euclidean virtual radius cir-
cle packing and the mixed schemes.

This work introduces a geometric interpretation to
the Hessian of discrete Ricci energy for all schemes,620

which generalizes Glickenstein's formulation in Eu-
clidean case.

This work also gives explicit geometric interpreta-
tions to the discrete Ricci energy for all the schemes,
which generalizes Bobenko, Pinkall and Springborn's625

construction [11] for Yamabe �ow cases.
The uni�ed frame work deepen our understanding to

the the discrete surface Ricci �ow theory, and inspired
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us to discover the novel schemes of virtual radius circle
packing and the mixed scheme, improved the �exibility630

and robustness of the algorithms, greatly simpli�ed the
implementation and improved the ef�ciency.

Experimental results show the uni�ed surface Ric-
ci �ow algorithms can handle surfaces with all possi-
ble topologies. We further compare different schemes635

in terms of conformality, robustness, convergence rate,
and the dif�culty level of construction.

In the future, we will focus on answering the follow-
ing open problems: whether all possible discrete surface
Ricci �ow schemes are the variations of the current u-640

ni�ed approach on the primal meshes and the dual dia-
grams and so on.
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Appendix
In the appendix, we explain the uni�ed surface Ricci770

�ow algorithm 1 in details, and reorganize all the for-
mulae necessary for the coding purpose.

Algorithm 1 Uni�ed Surface Ricci Flow

Require: The inputs include:
1. A triangular meshS, embedded inE3;
2. The background geometry,E2, H2 or S2;
3. The circle packing scheme,e 2 f + 1;0; � 1g;
4. A target curvaturēK, å K̄i = 2pc (S) andK̄i 2 (� ¥ ;2p).
5. Step lengthdt

Ensure: A discrete metric conformal to the original one, which real-
izes the target curvaturēK.

1: Initialize the circle radiig, discrete conformal factoru and confor-
mal structure coef�cienth , obtain the initial circle packing metric
(S;g;h ;e)

2: while maxi jK̄i � Ki j > thresholddo
3: Compute the circle radiig from the conformal factoru
4: Compute the edge length fromg andh
5: Compute the corner angleq jk

i from the edge length using co-
sine law

6: Compute the vertex curvatureK
7: Compute the Hessian matrixH
8: Solve linear systemHdu = K̄ � K
9: Update conformal factoru  u� dt � du

10: end while
11: Output the result circle packing metric.

Step 1. Initial Circle Packing(g;h ). Depending on
different schemes, the initialization of the circle packing
is different. The mesh has induced Euclidean metricl i j .
For inversive distance circle packing, we choose

gi =
1
3

min
j

l i j ;

this ensures all the vertex circles are separated. For
Yamabe �ow, we choose allgi to be 1. For virtual ra-
dius circle packing, we choose allgi 's to be 1. Thengi j775

can be computed using thel i j formula in Tab. 2.

Step 3. Circle Radiig. The computation for circle radii
from conformal factor uses the formulae in the �rst col-
umn in Tab.2.

ui Edge Lengthli j t (i; j ; k) s(x)

E2 loggi l2i j = 2hi j e
ui + uj + ei e

2ui + ej e
2uj 1

2 (l2i + ej g
2
j � ekg2

k ) x

H2 logtanh
gi
2 coshli j =

4hi j +( 1+ ei e
2ui )(1+ ej e

2uj )

(1� ei e
2ui )(1� ej e

2uj )
coshli cosh

ej gj � coshek gk sinhx

S2 logtan
gi
2 cosli j =

4hi j +( 1� ei e
2ui )(1� ej e

2uj )

(1+ ei e
2ui )(1+ ej e

2uj )
cosli cos

ej gj � cosek gk sinx

Table 2: Formulae forE2, H2 andS2 background geometries.

Step 4. Edge Length l.The computation of edge780

lengths from conformal factoru and conformal struc-
ture coef�cienth uses the formulae in the 2nd column
in Tab.2

Step 5. Corner Angleq. The computation from edge
lengthl to the corner angleq uses the cosine law for-
mulae,

l2k = g2
i + g2

j � 2l i l j cosqk E2

coshlk = coshl i coshl j � sinhl i sinhl j cosqk H2

coslk = cosl i cosl j � sinl i sinl j cosqk S2

Step 6. Vertex Curvature K.The vertex curvature is
de�ned as angle de�cit

K(vi) =

(
2p � å [vi ;vj ;vk] q

jk
i vi < ¶S

p � å [vi ;vj ;vk] q
jk

i vi < ¶S

Step 7. Hessian Matrix H.

¶(qi ;q j ;qk)
¶(ui ;u j ;uk)

= �
1

2A
LQL� 1D;

where
A = sinqis(l j )s(lk);

and
L = diag(s(l i );s(l j );s(lk)) ;

and

D =

0

@
0 t (i; j;k) t (i;k; j)

t ( j; i;k) 0 t ( j;k; i)
t (k; i; j) t (k; j; i) 0

1

A :

Step. 8 Linear System.If the S is with H2 background
geometry, then the Hessian matrixH is positive de�ne;785

else ifS is with E2 background geometry, thenH is pos-
itive de�nite on the linear subspaceå i ui = 0. The lin-
ear system can be solved using any sparse linear solver,
such as Eigen [45].

For discrete surface Ricci �ow with topological surg-790

eries, we can add one more step right after step 4. In this
new step, we modify the connectivity ofS to keep the
triangulation to be (Power) Delaunay. This will greatly
improves the robustness as proved in [29] and [30].
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Figure 13: Geometric interpretation to discrete Ricci energy - volumes of generalized hyperbolic tetrahedra.
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