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Abstract Let X be a compact connected strongly pseudoconvexCRmanifold of real dimen-
sion 2n − 1 in C

N . It has been an interesting question to find an intrinsic smoothness criteria
for the complex Plateau problem. For n ≥ 3 and N = n + 1, Yau found a necessary and
sufficient condition for the interior regularity of the Harvey–Lawson solution to the complex
Plateau problem by means of Kohn–Rossi cohomology groups on X in 1981. For n = 2 and
N ≥ n + 1, the first and third authors introduced a new CR invariant g(1,1)(X) of X . The
vanishing of this invariant will give the interior regularity of the Harvey–Lawson solution
up to normalization. For n ≥ 3 and N > n + 1, the problem still remains open. In this
paper, we generalize the invariant g(1,1)(X) to higher dimension as g(�n1)(X) and show that
if g(�n1)(X) = 0, then the interior has at most finite number of rational singularities. In
particular, if X is Calabi–Yau of real dimension 5, then the vanishing of this invariant is
equivalent to give the interior regularity up to normalization.
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1 Introduction

One of the natural fundamental questions of complex geometry is to study the boundaries of
complex varieties. For example, the famous classical complex Plateau problem asks which
odd dimensional real sub-manifolds of C

N are boundaries of complex sub-manifolds in
C
N . In their beautiful seminal paper, Harvey and Lawson [14] proved that for any compact

connected CRmanifold X of real dimension 2n−1, n ≥ 2, in CN , there is a unique complex
variety V in C

N such that the boundary of V is X . In fact, Harvey and Lawson proved the
following theorem.

Theorem (Harvey–Lawson [14,15]) Let X be an embeddable strongly pseudoconvex CR
manifold. Suppose that X is contained in the boundary of a strongly pseudoconvex bounded
domain in C

N . Then X can be CR embedded in some C
N and X bounds a Stein variety

V ⊆ C
N with at most isolated singularities.

The above theorem is one of the important theorems in complex geometry. It relates theory
of strongly pseudoconvex CR manifolds on the one hand and the theory of isolated normal
singularities on the other hand.

The next fundamental question is to determine when X is the boundary of a complex
sub-manifold in C

N , i.e., when V is smooth. In 1981, Yau [26] solved this problem for the
case n ≥ 3 by calculation of Kohn–Rossi cohomology groups H p,q

K R (X). More precisely,
suppose X is a compact connected strongly pseudoconvex CR manifold of real dimension
2n − 1, n ≥ 3, in the boundary of a bounded strongly pseudoconvex domain D in C

n+1.
Then X is the boundary of a complex sub-manifold V ⊂ D − X if and only if Kohn–Rossi
cohomology groups H p,q

K R (X) are zeros for 1 ≤ q ≤ n − 2 (see Theorem 5.1).
For n = 2, i.e. X is a 3-dimensional CR manifold, the intrinsic smoothness criteria

for the complex Plateau problem remains unsolved for over a quarter of a century even
for the hypersurface case. The main difficulty is that the Kohn–Rossi cohomology groups
are infinite dimensional in this case. Let V be a complex variety with X as its boundary.
Then the singularities of V are surface singularities. In [9], the first and the third authors
introduced a new CR invariant g(1,1)(X) to solve the regularity problem of the Harvey–
Lawson solution to the complex Plateau problem. More precisely, they showed that if X is a
strongly pseudoconvex compact Calabi–YauCRmanifold of dimension 3 and X is contained
in the boundary of a strongly pseudoconvex bounded domain D in C

N with holomorphic
De Rham cohomology H2

h (X) = 0, then X is the boundary of a complex sub-manifold up
to normalization V ⊂ D − X with boundary regularity if and only if g(1,1)(X) = 0. In
particular, if N = 3, then X is the boundary of a complex sub-manifold V ⊂ D − X if and
only if g(1,1)(X) = 0.

For n ≥ 3 and N > n + 1, i.e., non-hypersurface type, the complex Plateau problem
still remains open. In this paper, we generalize the invariant g(1,1)(X) to higher dimension
as g(�n1)(X) and show that if g(�n1)(X) = 0, then the interior which X bounds has at most
finite number of rational singularities. In particular, if X is Calabi–Yau of real dimension 5,
i.e., n = 3, then the vanishing of this invariant is equivalent to give the interior regularity.

Theorem A Let X be a strongly pseudoconvex compact CR manifold of dimension 2n − 1,
where n > 2. Suppose that X is contained in the boundary of a strongly pseudoconvex
bounded domain D in C

N . Then X is the boundary of a variety V ⊂ D − X with boundary
regularity and the number of non-rational singularities (up to normalization) is not great
than g(�n1)(X). In particular, if g(�n1)(X) = 0, then V has at most finite number of rational
singularities.
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On higher dimensional complex Plateau problem 391

Theorem B Let X be a strongly pseudoconvex compact Calabi–Yau CR manifold of dimen-
sion 5. Suppose that X is contained in the boundary of a strongly pseudoconvex bounded
domain D in C

N . Then X is the boundary of a complex sub-manifold (up to normalization)
V ⊂ D − X with boundary regularity if and only if g(�31)(X) = 0.

In Sect. 2, we shall recall the definition Kohn–Rossi cohomology and holomorphic De
Rham cohomology for a CR manifold. In Sect. 3 , we survey some known results about
the conjecture of minimal discrepancy and properties of terminal and rational Gorenstein
threefolds singularities. In Sect. 4, we generalize the invariant of singularities g(1,1) to higher
dimension as g(�n1) and and study some properties of g(�n1). In Sect. 5, we use the results
in Sect. 4 to solve our main theorems in this paper.

2 Strongly pseudoconvex CR manifolds

Kohn–Rossi cohomology was first introduced by Kohn–Rossi. Following Tanaka [25], we
reformulate the definition in a way independent of the interior manifold.

Definition 2.1 Let X be a connected orientable manifold of real dimension 2n − 1. A CR
structure on X is an (n − 1)-dimensional subbundle S of CT (X) (complexified tangent
bundle) such that

(1) S
⋂

S̄ = {0},
(2) If L , L ′ are local sections of S, then so is [L , L ′].

Such a manifold with a CR structure is called a CRmanifold. There is a unique subbundle
H of T (X) such that CH = S

⊕
S̄. Furthermore, there is a unique homomorphism J :

H −→ H such that J 2 = −1 and S = {v − i Jv : v ∈ H}. The pair (H, J ) is called the real
expression of the CR structure.

Let X be a CR manifold with structure S. For a complex valued C∞ function u defined
on X , the section ∂̄bu ∈ �(S̄∗) is defined by

∂̄bu(L̄) = L̄(u), L ∈ S.

The differential operator ∂̄b is called the (tangential) Cauchy–Riemann operator, and a solu-
tion u of the equation ∂̄bu = 0 is called a holomorphic function.

Definition 2.2 A complex vector bundle E over X is said to be holomorphic if there is a
differential operator

∂̄E : �(E) −→ �
(
E ⊗ S̄∗)

satisfying the following conditions:

1. ∂̄E ( f u)(L̄1) = (∂̄b f )(L̄1)u + f (∂̄Eu)(L̄1) = (L̄1 f )u + f (∂̄Eu)(L̄1),
2. (∂̄Eu)[L̄1, L̄2] = ∂̄E (∂̄Eu(L̄2))(L̄1) − ∂̄E (∂̄Eu(L̄1))(L̄2),

where u ∈ �(E), f ∈ C∞(X) and L1, L2 ∈ �(S).

The operator ∂̄E is called the Cauchy–Riemann operator and a solution u of the equation
∂̄Eu = 0 is called a holomorphic cross section.

A basic holomorphic vector bundle over a CR manifold X is the vector bundle T̂ (X) =
CT (X)/S̄. The corresponding operator ∂̄ = ∂̄T̂ (X) is defined as follows. Let p be the
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392 R. Du et al.

projection from CT (X) to T̂ (X). Take any u ∈ �(T̂ (X)) and express it as u = p(Z),
Z ∈ �(CT (X)). For any L ∈ �(S), define a cross section (∂̄u)(L̄) of T̂ (X) by (∂̄u)(L̄) =
p([L̄, Z ]). One can show that (∂̄u)(L̄) does not depend on the choice of Z and that ∂̄u gives
a cross section of T̂ (X)⊗ S̄∗. Furthermore one can show that the operator u �−→ ∂̄u satisfies
(1) and (2) of Definition 2.2, using the Jacobi identity in the Lie algebra �(CT (X)). The
resulting holomorphic vector bundle T̂ (X) is called the holomorphic tangent bundle of X .

If X is a real hypersurface in a complex manifold M , we may identify T̂ (X) with the
holomorphic vector bundle of all (1, 0) tangent vectors to M and T̂ (X) with the restriction
of T̂ (M) to X . In fact, since the structure S of X is the bundle of all (1, 0) tangent vectors

to X , the inclusion map CT (X) −→ CT (M) induces a natural map T̂ (X)
φ−−→ T̂ (M)|X

which is a bundle isomorphism satisfying ∂̄(φ(u))(L̄) = φ(∂̄u(L̄)), u ∈ �(T̂ (X)), L ∈ S.
For a holomorphic vector bundle E over X , set

Cq(X, E) = E ⊗ ∧q S̄∗,C q(X, E) = �(Cq(X, E))

and define a differential operator

∂̄
q
E : C q(X, E) −→ C q+1(X, E)

by

(
∂̄
q
Eφ

) (
L̄1, . . . , L̄q+1

) =
∑

i

(−1)i+1∂̄E

(
φ(L̄1, . . . ,

̂̄Li , . . . , L̄q+1)
)

(L̄i )

+
∑

i< j

(−1)i+ jφ
(
[L̄i , L̄ j ], L̄1, . . . ,

̂̄Li , . . . , L̄q+1

)

for all φ ∈ C q(X, E) and L1, . . . , Lq+1 ∈ �(S). One shows by standard arguments that

∂̄
q
Eφ gives an element of C q+1(X, E) and that ∂̄q+1

E ∂̄
q
E = 0. The cohomology groups of the

resulting complex {C q(X, E), ∂̄
q
E } is denoted by Hq(X, E).

Let {A k(X), d} be the De Rham complex of X with complex coefficients, and let Hk(X)

be the De Rham cohomology groups. There is a natural filtration of the De Rham complex,
as follows. For any integer p and k, put Ak(X) = ∧k(CT (X)∗) and denote by F p(Ak(X))

the subbundle of Ak(X) consisting of all φ ∈ Ak(X) which satisfy the equality

φ
(
Y1, . . . , Yp−1, Z̄1, . . . , Z̄k−p+1

) = 0

for all Y1, . . . , Yp−1 ∈ CT (X)x and Z1, . . . , Zk−p+1 ∈ Sx , x ∈ X . Then

Ak(X) = F0
(
Ak(X)

)
⊃ F1

(
Ak(X)

)
⊃ · · ·

⊃ Fk
(
Ak(X)

)
⊃ Fk+1

(
Ak(X)

)
= 0.

Setting F p(A k(X)) = �(F p(Ak(X))), we have

A k(X) = F0
(
A k(X)

)
⊃ F1

(
A k(X)

)
⊃ · · ·

⊃ Fk
(
A k(X)

)
⊃ Fk+1

(
A k(X)

)
= 0.

Since clearly dF p(A k(X)) ⊆ F p(A k+1(X)), the collection {F p(A k(X))} gives a filtration
of the De Rham complex.
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On higher dimensional complex Plateau problem 393

We denote by H p,q
KR (X) the groups E p,q

1 (X) of the spectral sequence {E p,q
r (X)} associated

with the filtration {F p(A k(X))}. We call H p,q
KR (X) the Kohn–Rossi cohomology group of

type (p, q). More explicitly, let

Ap,q(X) = F p(Ap+q(X)),A p,q(X) = �(Ap,q(X)),

C p,q(X) = Ap,q(X)/Ap+1,q−1(X),C p,q(X) = �(C p,q(X)).

Since d : A p,q(X) −→ A p,q+1(X) maps A p+1,q−1(X) into A p+1,q(X), it induces an
operator d ′′ : C p,q(X) −→ C p,q+1(X). H p,q

KR (X) are then the cohomology groups of the
complex {C p,q(X), d ′′}.

Alternatively H p,q
KR (X)may be described in terms of the vector bundle E p = ∧p(T̂ (X)∗).

If for φ ∈ �(E p), u1, . . . , u p ∈ �(T̂ (X)), Y ∈ S, we define (∂̄E pφ)(Ȳ ) = Ȳφ by

Ȳφ(u1, . . . , u p) = Ȳ (φ(u1, . . . , u p)) +
∑

i

(−1)iφ
(
Ȳ ui , u1, . . . , ûi , . . . , u p

)

where Ȳ ui = (∂̄T̂ (X)ui )(Ȳ ), then we easily verify that E p with ∂̄E p is a holomorphic vector
bundle. Tanaka [25] proves that C p,q(X) may be identified with Cq(X, E p) in a natural
manner such that

d ′′φ = (−1)p ∂̄E pφ, φ ∈ C p,q(X).

Thus, H p,q
K R (X) may be identified with Hq(X, E p).

We denote by Hk
h (X) the groups Ek,0

2 (X) of the spectral sequence {E p,q
r (X)} associated

with the filtration {F p(A k(X))}. We call Hk
h (X) the holomorphic De Rham cohomology

groups. The groups Hk
h (X) are the cohomology groups of the complex {S k(X), d}, where

we put S k(X) = Ek,0
1 (X) and d = d1 : Ek,0

1 −→ Ek+1,0
1 . Recall that S k(X) is the kernel

of the following mapping:

d0 : Ek,0
0 = FkA k = A k,0(X)

→ Ek,1
0 = FkA k+1/Fk+1A k+1 = A k,1(X)/A k+1,0.

Note that S may be characterized as the space of holomorphic k-forms, namely holomor-
phic cross sections of Ek . Thus the complex {S k(X), d} (respectively, the groups Hk

h (X)

will be called the holomorphic De Rham complex (respectively, the holomorphic De Rham
cohomology groups).

Definition 2.3 Let L1, . . . , Ln−1 be a local frame of the CR structure S on X so that
L̄1, . . . , L̄n−1 is a local frame of S̄. Since S ⊕ S̄ has complex codimension one in CT (X),
we may choose a local section N of CT (X) such that L1, . . . , Ln−1, L̄1, . . . , L̄n−1, N span
CT (X). We may assume that N is purely imaginary. Then the matrix (ci j ) defined by

[Li , L̄ j ] =
∑

k

aki, j Lk +
∑

k

bki, j L̄k + ci, j N

is Hermitian, and is called the Levi form of X .

Proposition 2.4 The number of non-zero eigenvalues and the absolute value of the signature
of (ci j ) at each point are independent of the choice of L1, . . . , Ln−1, N.

Definition 2.5 X is said to be strongly pseudoconvex if the Levi form is positive definite at
each point of X .
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394 R. Du et al.

Definition 2.6 Let X be a CRmanifold of real dimension 2n−1. X is said to be Calabi–Yau
if there exists a nowhere vanishing holomorphic section in �(∧n T̂ (X)∗), where T̂ (X) is the
holomorphic tangent bundle of X .

Remark

1. Let X be a CR manifold of real dimension 2n − 1 in C
n . Then X is a Calabi–Yau CR

manifold.
2. Let X be a strongly pseudoconvexCRmanifold of real dimension 2n−1 contained in the

boundary of bounded strongly pseudoconvex domain in C
n+1. Then X is a Calabi–Yau

CR manifold.

The proof of these two statements is essentially the fact that any hypersurface singularities
are Gorenstein and with the same arguments as Lemma 4.6 to get a nowhere vanishing
holomorphic section of the holomorphic tangent bundle of X .

3 Minimal discrepancy and 3-dimensional canonical Gorenstein
singularities

Canonical singularities appear as singularities of the canonical model of a projective variety,
and terminal singularities are special cases that appear as singularities of minimal models.
They were introduced by Reid in 1980 ([20]). Terminal singularities are important in the
minimal model program because smooth minimal models do not always exist, and thus one
must allow certain singularities, namely the terminal singularities.

Suppose that X is a normal variety such that its canonical class KX is Q-Cartier, and let
f : Y → X be a resolution of the singularities of X . Then

KY = f ∗KX +
∑

i

ai Ei ,

where the sum is over the irreducible exceptional divisors, and the ai are rational numbers,
called the discrepancies.

Then the singularities of X are called:
⎧
⎪⎪⎨

⎪⎪⎩

terminal ai > 0 for all i
canonical ai ≥ 0 for all i
log-terminal ai > −1 for all i
log-canonical ai ≥ −1 for all i.

(3.1)

Definition 3.1 Theminimal discrepancy of a variety X at 0, denoted by Md0(X) (or Md(X)

for short), is the minimum of all discrepancies of discrete valuations of C(X), whose center
on X is 0.

Remark 3.2 The minimal discrepancy only exists when X has log-canonical singularities
(see, e.g. [4]). Whenever Md(X) exists it is at least −1.

Shokurov conjecture that the minimal discrepancy is bounded above in term of the dimen-
sion of a variety.

Conjecture 3.3 (Shokurov [22]) The minimal discrepancy Md0(X) of a variety X at 0 of
dimension n is at most n − 1. Moreover, if Md0(X) = n − 1, then (X, 0) is nonsingular.
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On higher dimensional complex Plateau problem 395

The conjecture was confirmed for surfaces ([1]) and 3-dimensional singularities after the
explicit classification ([21]) of Gorenstein terminal threefold singularities with [11] or [18].
If X is a local complete intersection, then the conjecture also holds (see [10] and [11]).

In this paper, we are going to consider the 3-dimensional singularities. Mori ([19]),
Cutkosky ([5]) and Brenton ([3]) had some classification theorems about special 3-folds
singularities. The following two theorems will be used to prove our main theorems.

Theorem 3.4 ([20] Corollary 2.14, Corollary 2.12) Let 0 ∈ V be a 3-dimensional rational
Gorenstein singularity, then there exists a partial resolution π : Ṽ → V such that π−1{0} is
a union of nonsingular rational or elliptic ruled surfaces, Ṽ only has terminal singularities
and KṼ = π∗KV .

Remark 3.5 The information of the irreducible and reduced components of the exceptional
set can also be found in [3].

Definition 3.6 A singular point 0 is called compound Du Val (cDV) if for a general section
H through 0, 0 ∈ H is a Du Val singularities.

Remark 3.7 A cDV singularity is formally equivalent to the germ of a hypersurface singu-
larity ({ f = 0}, 0) in C

4, where

f (x0, x1, x2, x3) = fXn (x0, x1, x2) + x3g(x0, x1, x2, x3), (3.2)

where Xn stands for An , Dn or En , g(0, 0, 0, 0) = 0 and fXn is one of the following
polynomials:

f An = x20 + x21 + xn+1
2 (n ≥ 1) (3.3)

fDn = x20 + x21 x2 + xn−1
2 (n ≥ 4) (3.4)

fE6 = x20 + x31 + x42 (3.5)

fE7 = x20 + x31 + x1x
3
2 (3.6)

fE8 = x20 + x31 + x52 . (3.7)

Theorem 3.8 ([21] Theorem 1.1) Let 0 ∈ V be a 3-dimensional singularity. Then 0 is an
isolated cDV singularity if and only if 0 is Gorenstein terminal.

4 New invariants of singularities and new CR-invariants

LetV be an n-dimensional complex analytic subvariety inCN with only isolated singularities.
In [27], Yau considered four kinds of sheaves of germs of holomorphic p-forms

1. �̄
p
V := π∗�p

M , where π : M −→ V is a resolution of singularities of V .

2. ¯̄�p
V := θ∗�p

V \Vsing where θ : V \Vsing −→ V is the inclusion map and Vsing is the
singular set of V .

3. �
p
V := �

p
CN /K p , where K p = { f α + dg ∧ β : α ∈ �

p
CN ;β ∈ �

p−1
CN ; f, g ∈ I } and

I is the ideal sheaf of V in C
N .

4. �̃
p
V := �

p
CN /H p , where H p = {ω ∈ �

p
CN : ω|V \Vsing = 0}.

Clearly �
p
V , �̃

p
V are coherent. �̄p

V is a coherent sheaf because π is a proper map. ¯̄�p
V is

also a coherent sheaf by a theorem of Siu (cf Theorem A of [23]). In case V is a normal

variety, the dualizing sheaf ωV of Grothendieck is actually the sheaf ¯̄�n
V .
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396 R. Du et al.

Definition 4.1 Let V be an n-dimensional Stein space with 0 as its only singular point. Let
π : (M, A) → (V, 0) be a resolution of the singularity with A as exceptional set. The
geometric genus pg and the irregularity q of the singularity are defined as follows (cf. [27],
[24]):

pg := dim �(M\A,�n)/�(M,�n), (4.1)

q := dim �
(
M\A,�n−1) /�

(
M,�n−1) , (4.2)

g(p) := dim �
(
M,�

p
M

)
/π∗�

(
V,�

p
V

)
. (4.3)

Let X be a compact connected strongly pseudoconvex CR manifold of real dimension
2n − 1, in the boundary of a bounded strongly pseudoconvex domain D in C

N . By a result
of Harvey and Lawson, there is a unique complex variety V in C

N such that the boundary
of V is X . Let π : (M, A1, . . . , Ak) → (V, 01, . . . , 0k) be a resolution of the singularities
with Ai = π−1(0i ), 1 ≤ i ≤ k, as exceptional sets.

In order to solve the classical complex Plateau problem,we need to find someCR-invariant
which can be calculated directly from the boundary X and the vanishing of this invariant will
give regularity of Harvey-Lawson solution to complex Plateau problem.

For this purpose, we define a new sheaf ¯̄�1,1
V , new invariant of surface singularities g(1,1)

and new CR invariant g(1,1)(X) in [9]. Now, we are going to generalize them to higher
dimension for dealing with general complex Plateau problem.

Definition 4.2 Let (V, 0) be a Stein germ of an n-dimensional analytic spacewith an isolated

singularity at 0. Define a sheaf of germs ¯̄��p1
V by the sheaf associated with the presheaf

U �→
〈
�p�

(
U, ¯̄�1

V

)〉
,

where U is an open set of V and 2 ≤ p ≤ n.

Lemma 4.3 Let V be an n-dimensional Stein space with 0 as its only singular point in C
N .

Let π : (M, A) → (V, 0) be a resolution of the singularity with A as exceptional set. Then
¯̄��p1
V is coherent and there is a short exact sequence

0 −→ ¯̄��p1
V −→ ¯̄�p

V −→ G (�p1) −→ 0 (4.4)

where G (�p1) is a sheaf supported on the singular point of V . Let

G(�p1)(M\A) := �
(
M\A,�

p
M

)
/
〈
�p�

(
M\A,�1

M

)〉
, (4.5)

then dim G
(�p1)
0 = dimG(�p1)(M\A).

Proof Since the sheaf of germ ¯̄�p
V is coherent by a theorem of Siu (cf Theorem A of [23]),

for any point w ∈ V there exists an open neighborhood U of w in V such that �(U, ¯̄�1
V )

is finitely generated over �(U,OV ). So �(U,�p ¯̄�1
V )) is finitely generated over �(U,OV ),

which means �(U, ¯̄��p1
V ) is finitely generated over �(U,OV ), i.e. ¯̄��p1

V is a sheaf of finite

type. It is obvious that ¯̄��p1
V is a subsheaf of ¯̄�p

V which is also coherent. So ¯̄��p1
V is coherent.

Notice that the stalk of ¯̄��p1
V and ¯̄�p

V coincide at each point different from the singular
point 0, G (�p1) is supported at 0. And from Cartan Theorem B

dim G
(�p1)
0 = dim �

(
V, ¯̄�p

V

)
/�

(
V, ¯̄��p1

V

)
= dimG(�p1)(M\A).

��
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On higher dimensional complex Plateau problem 397

Thus, fromLemma4.3,we candefine a local invariant of a singularitywhich is independent
of resolution.

Definition 4.4 Let V be an n-dimensional Stein space with 0 as its only singular point. Let
π : (M, A) → (V, 0) be a resolution of the singularity with A as exceptional set. Let

g(�p1)(0) := dim G
(�p1)
0 = dimG(�p1)(M\A). (4.6)

We will omit 0 in g(�p1)(0) if there is no confusion from the context.
Let π : (M, A1, . . . , Ak) → (V, 01, . . . , 0k) be a resolution of the singularities with

Ai = π−1(0i ), 1 ≤ i ≤ k, as exceptional sets. In this case we still let

G(�p1)(M\A) := �
(
M\A,�

p
M

)
/
〈
�p�

(
M\A,�1

M

)〉
,

where A = ∪i Ai .

Definition 4.5 If X is a compact connected strongly pseudoconvex CR manifold of real
dimension 2n−1, in the boundary of a bounded strongly pseudoconvex domain D inCN . Sup-
pose V in C

N such that the boundary of V is X . Let π : (M, A = ∪i Ai ) → (V, 01, . . . , 0k)
be a resolution of the singularities with Ai = π−1(0i ), 1 ≤ i ≤ k, as exceptional sets. Let

G(�p1)(M\A) := �
(
M\A,�

p
M

)
/
〈
�p�

(
M\A,�1

M

)〉
(4.7)

and
G(�p1)(X) := S p(X)/〈�pS 1(X)〉, (4.8)

where S q are holomorphic cross sections of ∧q(T̂ (X)∗). Then we set

g(�p1)(M\A) := dimG(�p1)(M\A), (4.9)

g(�p1)(X) := dimG(�p1)(X). (4.10)

Lemma 4.6 Let X be a compact connected strongly pseudoconvex CR manifold of real
dimension 2n − 1 which bounds a bounded strongly pseudoconvex variety V with only
isolated singularities {01, . . . , 0k} in C

N . Let π : (M, A1, . . . , Ak) → (V, 01, . . . , 0k) be
a resolution of the singularities with Ai = π−1(0i ), 1 ≤ i ≤ k, as exceptional sets. Then
g(�p1)(X) = g(�p1)(M\A), where A = ∪Ai , 1 ≤ i ≤ k.

Proof Take a one-convex exhausting function φ on M such that φ ≥ 0 on M and φ(y) = 0
if and only if y ∈ A. Set Mr = {y ∈ M, φ(y) ≥ r}. Since X = ∂M is strictly pseudoconvex,
any holomorphic q-form θ ∈ S q(X) can be extended to a one side neighborhood of X in M .
Hence θ can be thought of as holomorphic q-form on Mr , i.e. an element in �(Mr ,�

q
Mr

). By

Andreotti and Grauert ([2]), �(Mr ,�
q
Mr

) is isomorphic to �(M\A,�
q
M ). So g(�p1)(X) =

g(�p1)(M\A). ��

By Lemma 4.6 and the proof of Lemma 4.3, we can get the following lemma easily.

Lemma 4.7 Let X be a compact connected strongly pseudoconvex CR manifold of real
dimension 2n − 1, which bounds a bounded strongly pseudoconvex variety V with only iso-
lated singularities {01, . . . , 0k} in C

N . Then g(�p1)(X) = ∑
i g

(�p1)(0i ) = ∑
i dim G

(�p1)
0i

.

The following proposition is to show that g(�p1) is bounded above.
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Proposition 4.8 Let V be an n-dimensional Stein space with 0 as its only singular point.
Then

g(�p1) ≤
⎧
⎨

⎩

g(p), p ≤ n − 2;
g(n−1) + q, p = n − 1;
g(n) + pg, p = n.

Proof Since

g(�p1) = dim �
(
M\A,�

p
M

)
/
〈
�p�

(
M\A,�1

M

)〉
,

g(p) = dim �(M,�p)/π∗�(V,�
p
V ),

dim �
(
M\A,�

p
M

)
/�

(
M,�

p
M

) =
⎧
⎨

⎩

0, p ≤ n − 2;
q, p = n − 1;
pg, p = n.

and

π∗�
(
V,�

p
V

) = 〈
π∗ (

�p�(V,�1
V

)〉

⊆ �p�(M,�1
M )

⊆ �p�(M\A,�1
M ), (4.11)

the result follows easily. ��
The following theorem is the crucial part for solving the classical complex Plateau problem

of real dimension 3.

Theorem 4.9 ([9]) Let V be a 2-dimensional Stein space with 0 as its only normal singu-
lar point with C

∗-action. Let π : (M, A) → (V, 0) be a minimal good resolution of the
singularity with A as exceptional set, then g(�21) ≥ 1.

Remark 4.10 We also show that g(�21) is strictly positive for rational singularities ([6]) and
minimal elliptic singularities ([7]) and exact 1 for rational double points, triple points and
quotient singularities ([8]).

Similarly, the following theorem is the crucial part for solving the classical complex Plateau
problem of real dimension 5.

Theorem 4.11 Let V be ann-dimensional Stein spacewith0 as its only non-rational singular
point, where n > 2, then g(�n1) ≥ 1.

Proof Suppose π : M → V be any resolution of the singularity 0 with E as its exceptional
set. By a result of Greuel ([13], Proposition 2.3), for every holomorphic 1 form η on V − 0,
π∗(η) can extends holomorphically to M . Since 0 is not rational, there exists a holomorphic
n form ω on V − 0 such that π∗(ω) can not extends holomorphically to M . So

g(�n1) ≥ dim �
(
M − E,�n

M

)
/�n�

(
M,�1

M

)
> 0.

��
Theorem 4.12 Let V be a 3-dimensional Stein space with 0 as its only normal Gorenstein
singular point, then g(�31) ≥ 1.
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Proof If 0 is non-rational, then g(�31) ≥ 1 by Theorem 4.11. So we only need to show that
the result is true for rational Gorenstein singularities. It is well known that rational Gorenstein
singularities are canonical (see [16] Corollary 5.24).

We are going to separate our argument into two cases to finish the proof.

Case i If 0 is terminal, by Theorem 3.8, 0 is a cDV singularity defined by f (x0, x1, x2,
x3) = 0. Take a typical blowing-up σ : V ′ → V at 0, the exceptional set, i.e., the
projectivised tangent cone is a subscheme of degree 2 in P

3 whose irreducible and
reduced component denoted by F is a nonsingular rational surface after desingular-
ization. Consider

s = dx1 ∧ dx2 ∧ dx3
∂ f/∂x0

.

A typical piece of the blowing-up of C4 at 0 has coordinates y0, y1, y2 and y3 with
x0 = y0, x1 = y0y1, x2 = y0y2, x3 = y0y3, and in this piece the nonsingular proper
transform is given by f (y0, y0y1, y0y2, y0y3)/y20 . Then

dxi = yi dy0 + y0dyi , i = 1, 2, 3

and the vanishing order of ∂ f (y0, y0y1, y0y2, y0y3)/∂y0 along y0 is 1. Then

σ ∗s =
∧3

i=1(yi dy0 + y0dyi )

∂ f (y0, y0y1, y0y2, y0y3)/∂y0

= y20�(y0, y1, y2, y3)

∂ f (y0, y0y1, y0y2, y0y3)/∂y0
,

(4.12)

where
�(y0, y1, y2, y3)

= y1dy0 ∧ dy2 ∧ dy3 + y2dy1 ∧ dy0 ∧ dy3

+ y3dy1 ∧ dy2 ∧ dy0 + y0dy1 ∧ dy2 ∧ dy3.

(4.13)

So the vanishing order of σ ∗s along F is 1.
Letπ : M → V ′ be a resolution consists of a series of blowing-ups with E = ∪Ei as
the exceptional set ofπ◦σ , where each Ei is the non-singular irreducible component.
We can assume without loss of generality that the exceptional set E is a divisor with
normal crossings. So (π ◦σ)∗s ∈ �(M,�3

M ) vanishes along some E j = π∗F ⊆ E
of order 1, which is a nonsingular rational surface, i.e. OrdE j (π ◦ σ)∗s = 1. Take
a tubular neighborhood Mj of E j such that Mj ⊂ M . Consider the exact sequence
([12])

0 → �1
Mj

(log E j )(−E j ) → �1
Mj

→ �1
E j

→ 0. (4.14)

By taking global sections we have

0 → �
(
Mj ,�

1
Mj

(log E j )(−E j )
)

→ �
(
Mj ,�

1
Mj

)
→ �

(
E j ,�

1
E j

)
. (4.15)

Since E j is a nonsingular rational surface, h1(E j ,OE j ), the irregularity of E j , is 0.
Then �(E j ,�

1
E j

) = 0 by Hodge symmetry. Therefore

�
(
Mj ,�

1
Mj

(log E j )(−E j )
)

= �
(
Mj ,�

1
Mj

)
(4.16)

from (4.15).
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Suppose η ∈ �(Mj ,�
1
Mj

), then η ∈ �(Mj ,�
1
Mj

(log E j )(−E j )) by (4.16). Chose
a point P in E j which is a smooth point in E . Let (x1, x2, x3) be a coordinate system
center at P such that E j is given locally by x1 = 0. Write η locally around P :
η � f1dx1 + f2x1dx2 + f3x1dx3, where f1, f2 and f3 are holomorphic functions
and “�” means local equality around P . So the vanishing order of any elements
in �3�(M,�1

M ) along the irreducible exceptional set E j is at least 2 by noticing
�(M,�1

M ) ⊆ �(Mj ,�
1
Mj

) under natural restriction. So

g(�31) = dim �
(
M,�3

M

)
/�3�

(
M,�1

M

) ≥ 1.

Case ii If 0 is canonical but not terminal, then byTheorem3.4, there exists a partial resolution
ρ : Ṽ → V such that ρ−1{0} = ∪i Fi is a union of nonsingular rational or elliptic
ruled surfaces, Ṽ only has terminal singularities and KṼ = ρ∗KV . So if we let
π : M → Ṽ be a resolution consists a series of blowing-ups, then the discrepancy of
some π∗Fj for V is 0. Therefore there is a section s ∈ �(M,�3

M ) such that s does
not vanish along some irreducible exceptional set E j := π∗Fj , i.e. OrdE j s = 0.
Take a tubular neighborhood Mj of E j such that Mj ⊂ M . Consider the same exact
sequence as in Case i:

0 → �1
Mj

(log E j )(−E j ) → �1
Mj

→ �1
E j

→ 0. (4.17)

By taking global sections we have

0 → �
(
Mj ,�

1
Mj

(log E j )(−E j )
)

→ �
(
Mj ,�

1
Mj

)
→ �

(
E j ,�

1
E j

)
. (4.18)

We know that E j must be a rational surface or elliptic ruled surface. If E j is rational,
we have h1(E j ,OE j ), the irregularity of E j , is 0. Then �(E j ,�

1
E j

) = 0 by Hodge
symmetry. Therefore

�
(
Mj ,�

1
Mj

(log E j )(−E j )
)

= �
(
Mj ,�

1
Mj

)
(4.19)

from (4.18). Then by the same local argument as in Case i and �(M,�1
M ) ⊆

�(Mj ,�
1
Mj

), we have

g(�31) = dim �
(
M,�3

M

)
/�3�

(
M,�1

M

) ≥ 1.

If E j is elliptic ruled surface, the only difference is that h1(E j ,OE j ), the irregularity
of E j , is 1. Then �(E j ,�

1
E j

) = 1 by Hodge symmetry. Therefore

dim �(Mj ,�
1
Mj

)/�(Mj ,�
1
Mj

(log E j )(−E j )) ≤ 1 (4.20)

from (4.15).
If we take three C-linear independent holomorphic 1-forms in �(M,�1

M ), then
there must exist two elements η1, η2 ∈ �(M,�1

M ) such that η1|Mj , η2|Mj ∈
�(Mj ,�

1
Mj

(log E j )(−E j )) from (4.20). Similarly, chose a point P in E j which
is a smooth point in E . Let (x1, x2, x3) be a coordinate system center at P such that
E j is given locally by x1 = 0. Write η1 and η2 locally around P :

η1 � f1dx1 + f2x1dx2 + f3x1dx3

and

η2 � g1dx1 + g2x1dx2 + g3x1dx3,
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where fi and gi (1 ≤ i ≤ 3) are holomorphic functions and “�”means local equality
around P . So the vanishing order of any elements in �3�(Mj ,�

1
Mj

) along the irre-

ducible exceptional set E j is at least 1. So by noticing �(M,�1
M ) ⊆ �(Mj ,�

1
Mj

),
we have

g(�31) = dim �
(
M,�3

M

)
/�3�

(
M,�1

M

) ≥ 1.

��

5 The classical complex Plateau problem

In 1981, Yau [26] solved the classical complex Plateau problem for the case n ≥ 3.

Theorem 5.1 ([26]) Let X be a compact connected strongly pseudoconvex CR manifold of
real dimension 2n − 1, n ≥ 3, in the boundary of a bounded strongly pseudoconvex domain
D in C

n+1. Then X is the boundary of a complex sub-manifold V ⊂ D − X if and only if
Kohn–Rossi cohomology groups H p,q

K R (X) are zeros for 1 ≤ q ≤ n − 2

When n = 2, the Plateau problem remains unsolved for many years even there are no any
criterion to judge whether X is the boundary of a complex manifold. In [9], the first and the
third authors used CR invariant g(1,1)(X) to give the sufficient and necessary condition for
the variety bounded by a Calabi–Yau CR manifold X being smooth if H2

h (X) = 0.

Theorem 5.2 ([9]) Let X be a strongly pseudoconvex compact Calabi–Yau CR manifold of
dimension3. Suppose that X is contained in the boundary of a strongly pseudoconvex bounded
domain D in C

N with H2
h (X) = 0. Then X is the boundary of a complex sub-manifold (up

to normalization) V ⊂ D − X with boundary regularity if and only if g(1,1)(X) = 0.

Theorem 5.3 ([9]) Let X be a strongly pseudoconvex compact CR manifold of dimension 3.
Suppose that X is contained in the boundary of a strongly pseudoconvex bounded domain D
in C

3 with H2
h (X) = 0. Then X is the boundary of a complex sub-manifold V ⊂ D − X if

and only if g(1,1)(X) = 0.

We will use the new CR invariant g(�n1)(X) to deal with complex Plateau problem of X
in general type.

Theorem 5.4 Let X be a strongly pseudoconvex compact CR manifold of dimension 2n−1,
where n > 2. Suppose that X is contained in the boundary of a strongly pseudoconvex
bounded domain D in C

N . Then X is the boundary of a variety V ⊂ D − X with bound-
ary regularity and the number of non-rational singularities is not great than g(�n1)(X). In
particular, if g(�n1)(X) = 0, then V has at most finite number of rational singularities.

Proof It is well known that X is the boundary of a variety V in D with boundary regularity
([15,17]). Suppose {01, . . . 0k} be k non-rational singularities in V . The the result follows
easily from Theorem 4.11 and Lemma 4.7. ��

When X is a Calabi–Yau CR manifold of dimension 5, we give the following necessary
and sufficient condition for the variety bounded by X being smooth.

Theorem 5.5 Let X be a strongly pseudoconvex compact Calabi–YauCRmanifold of dimen-
sion 5. Suppose that X is contained in the boundary of a strongly pseudoconvex bounded
domain D in C

N . Then X is the boundary of a complex sub-manifold (up to normalization)
V ⊂ D − X with boundary regularity if and only if g(�31)(X) = 0.
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Proof (⇒) : Since V is smooth, g(�31)(X) = 0 follows from Lemma 4.7.
(⇐) : It is well known that X is the boundary of a variety V in D with boundary regularity

([15,17]). The the result follows easily from Theorem 4.12 and Lemma 4.7. ��
Corollary 5.6 Let X be a strongly pseudoconvex compactCalabi–YauCRmanifold of dimen-
sion 5. Suppose that X is contained in the boundary of a strongly pseudoconvex bounded
domain D in C

4. Then X is the boundary of a complex sub-manifold V ⊂ D − X with
boundary regularity if and only if g(�31)(X) = 0.

Proof The result follows easily from the fact that isolated hypersurface singularities are
normal and Gorenstein. ��
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